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ABSTRACT 

In this paper, we present a Hierarchical Differential Evolution (HDE) algorithm for minimal cut set 

(mcs) identification of coherent and non-coherent Fault Trees (FTs). In realistic application of 

large-size systems, problems may be encountered in handling a large number of gates and events. 

In this work, to avoid any approximation, mcs identification is originally transformed into a 

hierarchical optimization problem, stated as the search for the minimum combination of cut sets 

that can guarantee the best coverage of all the minterms that make the system fail: during the first 

step of the iterative search, a multiple-population, parallel search policy is used to expedite the 

convergence of the second step of the exploration algorithm. The proposed hierarchical method is 

applied to the Reactor Protection System (RPS) of a Pressurized Water Reactor (PWR) and to the 

the Airlock System (AS) of a CANadian Deuterium Uranium (CANDU) reactor. Results are 

evaluated with respect to the accuracy and computational demand of the solution found.  

Keywords: Dynamic Reliability; Minimal Cut Sets (mcs); Fault Trees (FTs); Hierarchical 

Differential Evolution (HDE). 
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1. INTRODUCTION 

Fault Tree (FT) is a tool widely used in Probabilistic Safety Assessment (PSA) of Nuclear Power 

Plants (NPPs) [NUREG,  1983; NASA, 2002; Zio, 2007]. Traditionally, FTs are used for 

quantifying various probabilistic measures (including probabilities and/or frequencies of sequences, 

safety margins, importance factors and sensitivity indices) [Høyland et al., 1994; Kumamoto et al., 

1996; Epstein et al., 2005; Gao et al., 2007; Borgonovo, 2010]. The size of the system may 

challenge the FT analysis, in practical situations. For example, in the first case study considered in 

this work for the Reactor Protection System (RPS) of a Pressurized Water Reactor (PWR) with 12 

components [Wash-1400, 1976], the minimal cut sets (mcs) identification problem gives rise to a 

FT structure function Φ composed by 2
12

=4096 minterms (products of the literals α representing  

each component state, α=1 failed, α=0 safe), 485361 cut sets (combinations of components failures 

leading the system into failure) and a cut set chart (table with all minterms as columns and cut sets 

as rows) of 1966682772 elements. 

To overcome the problem, research efforts have developed in two directions: one looking for 

approximations of the probabilistic measures of interest obtained by considering only some selected 

mcs; another one developing computational methods to more efficiently assess the probabilistic 

measures from the exact mcs. One example of approximation consists in considering only small 

order mcs (i.e., mcs formed by a small number of elements) [Rauzy, 2001], which in principle 

capture the main part of the top-event probability. Another truncation process selects only the mcs 

with probability of occurrence larger than a given threshold. However, mcs truncation can have 

direct consequences on the safety level of the NPP, because it is not known how many are the mcs 

neglected (because of small order or probability) in the estimation of the risk/safety indicators of 

interest. For this reason, it has been pointed out that mcs exact identification (rather than truncation) 

is one of the technical issues to be tackled in the development of PSA for risk-informed decision 

making, e.g. for maintenance, service inspections and safety margins quantification in new NPPs 

design [Fleming, 2003; Duflot et., al, 2009; Zio et al., 2010]. 

A first attempt in developing computational methods for limiting the mcs combinatorial explosion 

of FTs without approximation has been to encode the Boolean formulae derived by the FTs into 

binary decision diagrams (BDDs) [Akers, 1978]. One of the major advantages of a BDD is that it 

provides exact values for probabilistic measures and it does not need any kind of truncation or 

approximation. However, BDD is highly memory consuming and very large models are beyond 

capability [Rauzy et al., 1997]. Another attempt for identifying mcs is the Dynamic Flowgraph 

Methodology (DFM), which is a directed graph-based approach to model and analyze the behavior 

of dynamic systems [Garrett et al., 1995]. The main drawback is scalability, in that realistic 



modeling causes a combinatorial explosion as the number of states in the system increases 

[Bjorkman, 2013]. In order to tackle this challenge, a DFM has been solved by a BDD (based on 

meta-products or on zero-suppressed BDD) [Bjorkman, 2013]. Also Petri nets suffer from the 

combinatorial explosion of the number of states, when applied to complex systems [Labeau et al., 

2000].  

We propose a novel approach to tackle the issue of exact mcs identification of coherent and non-

coherent FTs based on a Hierarchical Differential Evolution (HDE) algorithm. The Differential 

Evolution (DE) algorithm has been demonstrated to be an efficient, effective, fast and robust 

method for the identification of prime implicants (PIs) in simple non-coherent structure functions: a 

comparison with respect to a traditional analytical approach known as Quine-McCluskey algorithm 

and a Genetic Algorithm (GA) has been presented in [Di Maio et al., 2013]. In the present paper, 

DE is applied within a hierarchical scheme to deal with its computational limitations and avoid any 

approximation in the identification of mcs of complex coherent structure functions. With the 

proposed scheme, we look for the minimum combination of cut sets that can guarantee the best 

coverage of all the minterms that make the system fail: during the first step of the iteration process, 

a multiple-population, parallel search policy is implemented to expedite the convergence of the 

second step of the exploration algorithm. 

The paper is organized as follows. Section 2 is devoted to recalling some basic terminology (FT, 

Boolean Formulae, coherent and non-coherent structure functions, minterms, etc.). In Section 3, the 

HDE technique for mcs identification is presented. In Section 4.1, it is applied to the FT of a 

Reactor Protection System (RPS) of a PWR and its results are compared with those obtained with a 

DE algorithm, whereas in Section 4.2 the results of the application of HDE to the Airlock System 

(AS) of a CANDU reactor are shown. Conclusions and remarks are given in Section 5. 

2. TERMINOLOGY 

In this Section, we introduce the terminology used throughout the article with reference to FT 

analysis. The causal relations that lead to the FT top event can be described by a set of Boolean 

formulae built over a set of variables (literals) α1, α2, α3,... αn, and connectives (and, or, not, k-out-

of-n), whose semantics are defined by means of truth tables. By manipulation of the truth tables, the 

top event can be expressed in terms of the n primary events (e.g., components failures in our case of 

interest). The simplest way to express the structure function Φ, which relates the top event to the 

primary events, is in terms of minimal cut sets (mcs) *  , where   is the whole set of cut sets. 

A mcs is an irreducible combination of primary events (cut set  ), which if all verified cause the 

top event to occur. Then, a mcs *  is one of the 2
n
 products of literals (minterms), whose 



occurrence ensures the failure of the system *( ) 1   , while no proper subset of *  is a cut set 

[Epstein, 2005]. A structure function Φ is coherent if it can be expressed without any *  of 

complemented literals  , non-coherent otherwise.  

 

3. A NOVEL TECHNIQUE FOR MCS IDENTIFICATION 

We treat the problem of mcs identification as a set covering problem (SCP) [Beasley et al., 1996]. 

In the context of mcs identification, the SCP is the problem of covering each one of the minterms 

by a group of cut sets of minimal cost. We define the cost of a cut set Π as the number of literals α 

associated with system components included in the cut set (literal cost). Within the evolutionary 

optimization scheme here proposed, each solution of the SCP, ˆ ,
opt

x  is represented by a specific 

combination of independent variables, or, mathematically speaking, by a R-dimensional vector 

1 2
( , ,..., )

R
x x x x  (hereafter called chromosome, within the jargon of the DE-optimization method 

adopted) where a value of 1 in the i-th vector position xi implies that Πi is chosen to be in the cover 

and vice versa a value of 0 [Sen, 1993]. The total cost of each possible solution ˆ
opt

x  is defined as the 

combination of two parts: the literal cost of the cut sets selected to be in the cover and the cost 

associated with the number of faulty minterms left uncovered by the solution. 

3.1 Differential Evolution 

DE belongs to the class of Evolutionary Algorithms (EAs), which have proven effective in tackling 

optimization problems with high complexity, number of variables and dimensionality [Wang et al., 

2010]. DE search for the optimum entails three phases, called mutation, crossover and selection 

[Storn et al., 1997; Holland, 1975]. 

In the mutation phase, for each r-th bit 
r

x  of the NP chromosomes 
1 2

( , ,..., )
R

x x x x  present in the 

population at the g-th generation, g=1,2,…,G, an estimation probability ( )
r

P x  is calculated: 
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where b is a positive real constant typically chosen ∈[6,9], F is a constant user-defined weighting 

factor typically chosen ∈[0,2] and ,  and l k m

r r r
x x x  are the r-th bit of three randomly chosen 

chromosomes with indexes  , , 1,2,...,l k m NP . From the probability estimation vector 

(1) 



        1 2
, ,...,

R
P x P x P x P x , the corresponding bits of the noisy vector v  of the current 

chromosome x  are generated: 

1          if ( )

0          otherwise

r

r

rand P x
v


 
  

where rand is a uniform random number in [0,1). 

The r-th bit of the trial chromosome u
 
can be obtained by the crossover operator through Eq. (3): 

      if  or ( )

      otherwise

r

r

r

v rand CR r irand R
u

x

 
 
  

where [0,1]CR  is a control parameter which influences the probability for each r-th bit of v  to be 

selected, irand(R) is a uniform discrete random number from the set  1,2,..., R , where R is the 

length of the chromosome (i.e., the number of bits). Therefore, at least one bit of the trial 

chromosome u  is inherited from the mutant chromosome v  so that DE is able to avoid duplication 

of chromosomes x  and effectively search within the neighborhood; this contributes to maintaining 

the diversity inside the perturbed population, shuffling old and new information, and also increases 

the probability of maintaining some good properties from x , avoiding drastic changes during the 

generation of new solution.  

During the selection process, the population is modified by substitution. Referring to a 

minimization search, if the fitness of the trial chromosome u , i.e., the total cost of all Π belonging 

to u , is less than the fitness of x , the former will be a member of the g+1-th generation replacing 

the latter, or the latter will be maintained, otherwise: 

      ( ) ( )

     

u if fitness u fitness x
x

x otherwise


 


 

The fitness used in the DE applications that follow is called “One complement” fitness function 

[Shackleford et al., 2001]: it accounts for the literal cost of the Π selected to be in the cover and the 

cost associated with the number of faulty minterms left uncovered. In particular, the cost of the trial 

chromosome u
 
is mapped into a binary number made up by two parts: the most important digits are 

determined as the complement to one of the uncovered faulty minterms, whereas the least important 

digits are determined as the complement to one of the sum of the costs of the cut sets included in the 

trial cromosome. In this way, a complete subset of cut sets that covers all faulty minterms has surely 

a larger fitness than any other incomplete subset. Moreover, since the selection criterion of DE is 

greedy, for sure the following generation is better than or at least equal to the previous generation. 

 

3.2 Hierarchical Differential Evolution 

(2) 

(3) 

(4) 



The novelty of the Hierarchical Differential Evolution (HDE) here proposed for mcs identification, 

builds on the setting of a two-steps DE optimization (The pseudocode is shown in Fig. 1). The first 

optimization is fed with subsets Γs, s=1, 2, ...,S, of the whole set Ω of cut sets Π, where the s-th 

subset Γs is generated by randomly assigning to it N cut sets Π of Ω in a way that each cut set 

belongs to only one subset, i.e.,    for   
s p

s p    , and the union of all the subsets is equal to 

all the cut sets, i.e. 
1

S

s
s

  . 

For each of the subsets 
s

 , s=1, 2, ...,S, 

1a) we build a cut set chart, using all the minterms as columns and the cut sets Π belonging to 

s
  as rows 

2a) we build the cost vector, where to each Π is assigned its literal cost 

3a) we perform the DE optimization (Section 3.1) 

4a) we find the best chromosomes {Π}s.  

The second DE optimization is performed on the new subset  
1

S

s
s

  comprising all the cut sets 

included in the best chromosomes  
s

  found at the end of the first optimization. In detail,  

1b) we build a new cut set chart, using all the minterms as columns and the cut sets belonging to 

 
1

S

s
s

  as rows  

2b) we build a new cost vector where to each cut set belonging to  
1

S

s
s

  is assigned its literal 

cost 

3b) we perform the DE optimization (Section 3.1) 

4b) we find the mcs *  of the system. 

 

Three performance indicators are used to judge the goodness of the results. In the evaluation, the 

optimizations are repeated a number of times (5 in our case), to account for the inherent 

stochasticity of the search algorithm. The three performance indicators are: 

- Cpu: cpu time (expressed in seconds) necessary to converge to the solution ˆ
opt

x . 

- Success rate (Sr): percentage of trials for which the true optimum 
opt

x  is found. 

- Accuracy (λ): the larger λ, the larger the accuracy of the solution [Tvrdìk, 2006] as: 
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for 1:s S  

sample without replacement N  cut sets   from    

populate the s-th subset s  

end 

for 1:s S  

create an initial population of NP  potential solutions x  containing the R cut sets   belonging to the s-th 

subset s  

for 1:g G  

select (for each potential solution x ) three randomly chosen chromosomes for reproduction (Eq. 1) 

create (for each x ) a noisy vector v  using mutation process (Eq. 2) 

create a trial vector u  mixing x  and v  (Eq. 3) 

compare x  with each related trial u  and eventually replace (Eq. 4) 

end 

memorize all the cut sets Π contained in the s-th best solutions set  
s

  

end  

create an initial population of NP  potential solutions x  composed by  
s

 , 1,2,...,s S  

for 1:g G  

select (for each potential solution x ) three randomly chosen chromosomes for reproduction (Eq. 1) 

create (for each x ) a noisy vector v  using mutation process (Eq. 2) 

create a trial vector u  mixing x  and v (Eq. 3) 

compare x  with each related trial u  and eventually replace (Eq. 4) 

end 

memorize the best solution found ˆ
optx  that contains the mcs 

*  

 

Fig. 1. Pseudocode of the HDE optimization technique 

 

 

4. APPLICATION TO NUCLEAR SAFETY SYSTEMS 

4.1. PWR Reactor Protection System analysis 

The procedure for mcs identification developed in Section 3 is here applied to the Reactor 

Protection System (RPS) of a Nuclear Power Plant (NPP) for the case of a small Loss of Coolant 

F
irst step

 D
E

 
S

eco
n

d
 step

 D
E

 

(5) 



Accident (LOCA) [Marseguerra et al., 2004]. The RPS is a multi-channel electrical alarm and 

actuating system that monitors the operation of the reactor. During normal control of the reactor, the 

rods are raised or lowered into the core by the use of magnetic jacks. Upon detection of an 

abnormal condition, RPS initiates counteracting actions to prevent a potentially unsafe condition: 

control rods are rapidly dropped into the core by removing the voltage to the magnetic jacks in 

order to allow the shutdown of the reactor. More precisely, control rod assemblies are dropped by 

removal of power through the opening of either the reactor trip breaker of  Train A (RTA) or of the 

reactor trip breaker of Train B (RTB) [Marseguerra et al., 2004]. The two trip breakers, connected 

in series, control the power provided by two motor generators connected in parallel. Each of them is 

bypassed by a special test breaker of the same type of the trip breakers, called bypass A (BYA) and 

bypass B (BYB), for RTA and RTB, respectively. The tripping signals which trip the breakers come 

from two relay logic trains which are identical in design, called Trip Train A (TrainA) and Trip 

Train B (TrainB). For prevention against possible interactions that may cause false scrams or failure 

to scram, the system trips on loss of electrical power and each trip channel is physically separated 

from the others and from other equipment [Schreiber et al., 2009].  

In this analysis, the top event of the RPS FT considered consists in at least 2 out of 48 rods failing 

to enter the core following a small LOCA, which leads to reactor scram [Wash-1400, 1976]. The 

failed insertion of the control rod can be originated by a core distortion (CD) (e.g., a change of the 

channel geometry due to the swelling of the fuel cladding) or by a failure in the rod drop (RDF). 

Wire faults (WF) are lumped into a single fault and a common mode failure (CMF) is considered, 

involving several trip circuit breaker faults and wire faults on each branch of the redundant trip 

breaker system. Trip trains (TrainA and TrainB) can even independently fail to deliver the signal to 

the RPS trip breakers, while the trip breakers (RTA and RTB) can fail upon receipt of a valid signal 

(e.g. due to sticking of the undervoltage trip attachment), as their bypass trip breakers (BYA and 

BYB). Operators interference in the correct automatic operation is considered during testing or 

maintenance operations (TestA and TestB). Therefore, CD, RDF, WF, CMF, TrainA, TrainB, RTA, 

RTB, BYA, BYB, TestA and TestB are considered as basic failure events (Tab. 1). The structure 

function Φ for the considered RPS failure event gives rise to 4096 minterms (4052 leading the RPS 

into failure state) and 485361 cut sets Π. Further details on the modeling assumptions, the detailed 

data for the reliability analysis and the FT for the considered top event can be found in [Wash-1400, 

1976]. For the sake of clarity, in Fig. 2, a sketch of the complete FR of the small LOCA for the RPS 

is provided. 

 

 Basic Failure Events ID Code 

1. Trip Train controlling RTA TrainA 



2. Trip Train controlling RTB TrainB 

3. Reactor trip breaker controlled by RPS Train A RTA 

4. Reactor trip breaker controlled by RPS Train B RTB 

5. Special test breaker bypassing RTA BYA 

6. Special test breaker bypassing RTB BYB 

7. RTA undergoing testing TestA 

8. RTB undergoing testing TestB 

9. Core distortion CD 

10. Failure in the rod drop  RDF 

11. Wire failure WF 

12. Common mode failure CMF 

Table 1. Basic failure events and failure codes for the RPS system 

The true solution 
opt

x  that will be used for comparison in the following subsections, has been 

obtained by traditional consolidated algorithms in [Wash-1400, 1976]: it consists in 15 mcs Π
*
 

({CD}, {RDF}, {WF}, {CMF}, {RTA, RTB}, {RTA, BYB}, {RTA, TrainB}, {RTB, BYA}, 

{RTB, TrainA}, {BYA, BYB}, {BYA, TrainB}, {BYB, TrainA}, {TrainA, TrainB}, {TrainA, 

TestB}, {TrainB, TestA}) [Marseguerra et al., 2004]. Moreover, the results provided by the 

proposed HDE will be also compared with a DE approach [Di Maio et al., 2013], for showing the 

improved capabilities of the HDE with respect to similar algorithms.   

 

Fig. 2. Partial reproduction of the complete FT of the of the RPS system [Wash-1400, 1976] 
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4.1.1. DE Results 

We apply to the RPS case study the DE approach [Di Maio et al., 2013] with a “One complement” 

fitness function [Shackleford et al., 2001] embedded into the evolutionary algorithm: since the 

columns in the cut set chart are 4052 (that is, equal to the number of minterms leading the system 

into failure state) 12 bits code the maximum number of uncovered columns, whereas 22 bits code 

the literal cost part of the trial solution because the sum of the literal cost of all the 485361 cut sets 

is equal to 3936648. In Fig. 3, the calculation procedure of the “One complement” fitness function 

is shown for the best solution 
opt

x  of the RPS mcs identification problem: in this particular case, the 

uncovered columns are equal to zero, whereas the total cost of the best solution 
opt

x  is equal to 

4·1+11·2=26 (i.e., 4 cut sets contain only one basic event and 11 contain 2 basic events); the 

complement to one of 0 on 12 bits is equal to 4095, and the complement to one of 26 on 22 bits is 

equal to 4194277; joining together the two parts of the fitness function gives a fitness value for 
opt

x  

equal to 17179869157.  

 

Fig. 3. Procedure for the calculation of the fitness function for the best solution of the RPS system 

In this application, parameters F and b (Eq. 1) and CR (Eq. 3) are set equal to the values reported in 

Tab. 2. 

Parameters 

F 0.1 

b 9 

CR 0.2 

Table 2. Values of the parameters F, CR and b used in the DE 

The analysis is performed for a population size NP=50, because this is the maximum value allowed 

by the computer memory constraints: the identification of the mcs for the RPS entails chromosomes 



of length R=485361 (i.e., the number of cut sets Π), and an allocated memory of NP R  bits (equal 

to 24268050, in our case); any further increase in NP is not allowed by the Matlab® software used 

in this work to develop the DE and HDE. The only stopping criterion is the generation number G 

set equal to MAXGEN=10000. Performance indicators are the same introduced in Section 2 and are 

quantified on a set of 5 trials of optimization.  Results of the DE optimizations are shown in Tab. 3. 

 

NP 50 

Cpu [s] 91157.80 

Sr 0 % 

λ 2.16 

 

Tab. 3. Performance indicators for the DE-based algorithm, with NP=50 

It is seen that in this real case with a large number of minterms and cut sets, DE is not capable of 

finding the true solution 
opt

x   (found in [Wash-1400, 1976] by traditional consolidated algorithms) 

among all the cut sets (Sr=0%), due to the hardware computational capability that limit the 

population size to NP=50. To overcome this limitation, we apply HDE to the FT of the RPS. 

4.1.2. HDE Results 

In accordance with the procedural steps presented in Section 3.2 and Fig. 1, we partition Ω into 

S=50 subsets Γs (39 subsets composed by 9707 cut sets and 11 subsets composed by 9708 cut sets): 

the number of the cut sets belonging to each Γs is chosen guided by the fact that the DE has shown 

good results (in terms of success rate (Sr)) when applied to cut sets groups smaller than 10000 [Di 

Maio et al., 2013]. For each Γs, its cut set chart and its cost vector are built as shown in Section 3.2. 

When parameters F, b, CR are set as in Table 2, NP=100 and MAXGEN=1500, the total time 

approximately required for the first level optimization is 25721 [s] on an Intel® Core™ i5.2500 

CPU @3.30GHz. 

The number of cut sets Π found by the first step of the optimization is 1510, among which the 

second step DE will search for the mcs *.  For this, the cut set chart and the cost vector associated 

to the new cut sets are defined as shown in Section 3.2. As for the first optimization step, the 

parameters F, b, CR are set equal to the values reported in Tab. 2, NP=100 and MAXGEN=1500. 

The mcs found by the HDE are the same as those reported in [Marseguerra et al., 2004], proving the 

HDE procedure effective in finding the mcs in large structure functions. The cpu time required for 

the second-step optimization is equal to 990.71 [s]. Thus, the total time required by the HDE 

optimization is equal to 26700 [s], much shorter than for the DE (Table 3).  



 

For showing the better results of HDE with respect to DE, in Fig. 4, the evolution of the difference 

Δ between the fitness values of 
opt

x
 
 and  ˆ

opt
x  is shown on a semi-logarithmic plot. HDE shows 

superior convergence performance. In fact, in the first step of the optimization (continuous line with 

circles) it achieves better results than DE (continuous line with triangles) by resorting to a larger 

population for exploring a reduced and focused search space, whereas in the second step of the 

optimization (continuous line with stars) it explores an even more reduced search space made up of 

the selected best chromosomes  
1

S

s
s

  reaching Δ=0 in only 2200 generations. It is worth pointing 

out that, with respect to the accuracy of the solution found and the success rate of HDE (for a set of 

5 trials), at the end of the first optimization stage it is meaningless to calculate Sr and λ, because the 

true solution 
opt

x  might not be included into the set of solutions {Π}s of the S subsets 
s

 . On the 

other hand, at the end of the second optimization step, HDE provides Sr=100% and λ=11. 

 

 

Fig. 4. Fitness function convergence using ordinary DE and HDE 

In principle, the extension to a hierarchical, multi-step, DE-based algorithm for mcs identification is 

straightforward, allowing the treatment of very large systems. It is always feasible to group the 

possible solutions in different subgroups and then run a different optimization for each subgroup 

until the solution converges to the optimum of the fitness function. In other words, applying a 

hierarchical DE-based procedure, the NP-complete problem [Sen, 1993] associated to the mcs 

identification of a complex (even non-coherent) structure function can be tackled in such way that 
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the computational complexity of the problem grows linearly with the number of subgroups 

dimension and not exponentially, as it is when resorting to the single DE optimization. 

4.2. CANDU Airlock System 

A second application of the HDE for mcs identification considers the FT developed for 

analyzing a scenario of a Design Basis Accident (DBA) occurred in 2011 in the Airlock System 

(AS) of a CANDU NPP [Lee et al., 2012; Di Maio et al., 2013b]. The AS is a safety system 

required to keep the pressure of the inner side of the reactor vault lower than the outer side in order 

to avoid the dispersion of contaminants out of the reactor bay, in case of accident. Therefore, the FT 

top event is the incapability of the AS to maintain the pressure boundary [Lee et al., 2012]. The 

system consists of a vessel in the containment wall of the reactor vault, with two doors in order to 

allow the inspection of the vault: one door opens towards the inside of the reactor vault, the other 

towards the outside; so, at least one airlock door, whose seals are normally inflated via the air 

system, must be closed by a latch with sufficient pressure in the seals to fulfill its safety function. 

During the accident, the inflation of the seals is switched to the back-up air supply tank. Possible 

causes for the top event occurrence can be: the pressure equalizer valve fails (V1), doors fail to 

close because latches are not locked (D1) and seals are cracked or cannot be inflated (S1). The 

pressure equalizer valves are designed to equalize the pressure between the reactor bay and the 

service side and, therefore, to allow controlled flow between these two areas. The pressure 

equalization can fail due to gear box failure (G1) that may limit the vents from opening and closing, 

to the presence of leakages in the piping system (P1/P2) or to the failure of the exhaust pipe (E1). 

The airlock doors must be closed by a latch, otherwise the pressure equalizer valves and seals 

cannot be called in operation on demand. In addition, the possibility is considered that the back-up 

tank is already empty (T1) or fails to engage (T2) when the inflation of the seals is switched to the 

back-up air supply system. The basic failure events that can give rise to the AS failure are listed in 

Table 6. 

 Basic Failure Events ID Code 

1. Pressure equalizer valve is failed V1 

2. Doors fail to close and lock D1 

3. Seals are cracked S1 

4. Gearbox fails G1 

5. The piping system presents minor leakages P1 

6. The piping system presents major leakages P2 

7. Exhaust pipe fails open E1 

8. Back up tank is empty T1 

9. Back up tank fails to engage T2 



Tab. 6. Basic failure events and failure codes for a DBA in a CANDU AS [Di Maio et al., 2013b] 

The FT for the DBA here considered is shown in Fig. 5 [Lee et al., 2012]. The structure 

function expression is        1 and 1  or 1 and 1 or 1 or 1  or 1 or 2 or 2  or 1G E T S V P V T P D  
 

. 

There are 497 minterms leading to the system failure, 16867 cut sets and 7 mcs * =({D1}, {P2}, 

{T2}, {V1}, {E1,G1}, {P1,T1}, {S1,T1}) as found in  [Lee et al., 2012] by traditional consolidated 

algorithms for mcs identification.  

 

Fig. 5. FT for the DBA of the AS [Lee et al., 2012] 

 

4.2.1. HDE Results 

In Fig. 6 the calculation procedure of the “One Complement” fitness function is shown for the 

best solution: in the problem of the AS of the CANDU, where the columns of its cut set chart are 

497 (that is, equal to the number of minterms), 9 bits code the maximum number of uncovered 

columns, whereas the sum of the cost of all the 16867 cut sets is equal to 103298 so that 17 bits 

code the cost part of the trial solution. The uncovered columns are equal to zero, while the total cost 

of the best solution is equal to 10 (4 cut sets contain only one basic event and 3 contain 2 basic 

events); the complement to one of 0 on 9 bits is equal to 511, and the complement to one of 10 on 

17 bits is equal to 131061; joining together this two parts of the fitness function gives a fitness 

value for 
opt

x  equal to 67108853. 

 



 

Fig. 6. Procedure for the calculation of the fitness function for the best solution of the CANDU AS 

 

In the proposed two-step HDE framework, we have set the number of subsets Γs  equal to S=10 and 

the number of minimal cut sets Π of Ω  equal to N=1687 for each s-th subset Γ. We perform the 

first-stage DE optimization with a population size equal to NP=500 and stopping criterion 

“maximum number of generation”, MAXGEN=700. The mean cpu time required for performing the 

optimization on a single s-th subset is equal to 607.20 [s]. At this first optimization stage, the 

number of cut sets is 100 and the true solution 
opt

x  does not belong to any of the S subsets. 

However, it is worth pointing out that on Intel® Core™ i5.2500 CPU @3.30GHz the computational 

demand approximately required for the first step is 1214.40 s. 

We perform the second DE optimization comprising all the 100 cut sets included in the best 

individuals  
s

  found at the end of the first optimization. The population size equal to NP=500 

and MAXGEN=200. The mcs found by the HDE are the same as those reported in [Lee et al., 2012], 

proving that the HDE is capable of identifying the exact mcs *  of a complex system as the AS of a 

CANDU. The cpu time required for the second step optimization is equal to 19.76s making the total 

time required by the HDE optimization equal to 1233s. 

For further comparison of the results with other similar algorithms, in Fig. 7 the faster convergence 

obtained by the HDE compared with DE with NP=700 is shown: the faster evolution towards zero 

of the difference Δ between the fitness values of 
opt

x
 
 and ˆ

opt
x  of HDE highlights its superior 

performance. In fact, in the first step of the optimization (continuous line with circles) it achieves 

better results than DE (continuous line with triangles) by resorting to a larger population for 

exploring a reduced search space, whereas in the second step of the optimization (continuous line 

with stars) it explores an even more reduced search space made up of best individuals, reaching 

Δ=0 in only 800 generations, whereas around 1550 generations are needed for DE such that Δ=0. 



As a final remark, it is worth pointing out that, in this latter case, i) the number of generations 

needed for Δ=0 is much smaller than for the RPS case study of Section 4.1.2 and ii) DE is still 

capable of finding the solution 
opt

x  of the mcs identification problem, whereas in Fig. 7 the 

unfeasibility of resorting to DE for the RPS case study is clear. This is due to the fact that the 

number of components of the RPS case study is larger than that of the AS here considered. 

 

Fig. 7. Fitness function convergence using DE and HDE 

5. CONCLUSIONS 

The exact identification of the mcs of FTs is an important task in PSA. It becomes non-trivial for 

systems that are composed by large numbers of components. In this paper, we have addressed this 

issue by proposing a novel HDE algorithm. This amounts to transferring the mcs identification into 

a hierarchical optimization problem: during the first step, a multiple-population, parallel DE search 

policy is used to expedite the convergence of a second step of DE exploration. The proposed 

method has been applied for the analysis of a RPS of a PWR and a AS of a CANDU. The superior 

HDE performance is evident when the number of basic events in the FT is large.  
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