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Abstract 

Motivated by the emergence of online penny or pay-to-bid auctions, in this study, we analyze the 
operational consequences of all-pay auctions competing with fixed list price stores. In all-pay 
auctions, bidders place bids, and highest bidder wins. Depending on the auction format, the winner 
pays either the amount of their bid or that of the second-highest bid. All losing bidders forfeit their 
bids, regardless of the auction format. Bidders may visit the store, both before and after bidding, 
and buy the item at the fixed list price. In a modified version, we consider a setting where bidders 
can use their sunk bid as a credit towards buying the item from the auctioneer at a fixed price 
(different from the list price). We characterize a symmetric equilibrium in the bidding/buying 
strategy and derive optimal list prices for both the seller and auctioneer to maximize expected 
revenue. We consider two situations: (1) one firm operating both channels (i.e. fixed list price store 
and all-pay auction), and (2) two competing firms, each operating one of the two channels. 

Introduction 

Auctions are fascinating and important sales mechanisms that date back to antiquity. They 
have been used extensively in both business-to-consumer and business-to-business markets. With 
the advent of the Internet, auctions have also become popular in consumer-to-consumer markets as 
exemplified by the online auction behemoth eBay. In addition to the many Internet-based traditional 
auction formats, where a seller auctions an item to a group of buyers, the dot-com entrepreneurial 
spirit gave rise to many non-traditional auction formats and auction-based business solutions. Two 
notable examples include Priceline, a Name- Your-Own-Price ‘reverse auction’ mechanism, and 
Google’s AdWords, a keyword auction for online ad space. 

The latest Internet-based auction mechanism that has been growing in popularity is the 
penny or pay-to-bid auction, examples of which include quibids.com, dealdash.com, beezid.com, and 
the former online auction sites swoopo.com and offandaway.com. Three particular features 
separate these online auctions sites from the more common ones and, in particular, from eBay. First, 
unlike eBay, which hosts auctions for sellers only, the penny auction sites act as the seller of the 
items auctioned, which are usually brand new and are predominately from the consumer electronics 
category. Second, unlike the hard-ending rule of eBay, where an auction ends at a pre-specified date 
and time, penny auctions employ a ‘going, going,.. .gone’ ending rule by extending the auction clock 
for each incoming bid in the final moments. Third, the penny auction mechanism is drastically 
different in that bidders first buy a pack of ‘bids’ for a fixed price (e.g., a pack of 100 ‘bids’ for $60), 
and these ‘bids’ are then used to nominally raise the price in an auction (e.g., by one cent — hence 
the name penny auction). In other words, for the given example, raising the auction price by one 
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cent costs the bidder 60 cents. The bidder who places the last ‘bid’ wins the item and pays the final 
auction price, in addition to the incurred sunk cost of the ‘bids’ purchased at the outset of the pro-
cess; all non-winning bidders incur only the sunk cost of ‘bidding’. Despite their peculiar format, due 
to the nature of this sunk bidding cost, penny auctions can, in effect, be characterized as second-
price all-pay auctions. 

 All-pay auctions are similar to traditional auctions in that whoever submits the highest bid 
wins the item; however, unlike traditional auctions, where non-winning bidders pay nothing, in all-
pay auctions, non-winning bidders forfeit their bids (i.e., all bidders pay their bid but only the highest 
bidder wins the item). The added prefix second-price refers to the fact that the highest bidder must 
pay the amount of the second-highest bid only, and not the actual amount they bid. Although their 
process might seem a bit peculiar, all-pay auctions are well established in the auction literature. 
More details regarding auction theory and all-pay auctions are discussed in Section 2. To see how 
penny auctions constitute, in effect, second-price all-pay auctions, consider the case when there are 
only two bidders. With only two bidders, the first bidder who fails to counter-bid will lose and forfeit 
the sunk bidding cost, while the winning bidder will have matched the cost of bidding (i.e., paid the 
same amount as the second-highest bidder). Of course, the winner must also pay the additional final 
auction price, but this amount will be an order of magnitude smaller than the sunk bidding cost, and 
thus, can be considered potentially negligible. The extension to multiple bidders is immediate: in 
each ‘‘bidding round’’, bidders must decide whether to stay in the game by placing a bid, or decide 
to drop out and accept the sunk cost of bidding. There remains, however, the issue how to enforce 
all bidders to participate in each ‘‘bidding round’’. More details regarding the link between penny 
auctions and all-pay auctions are discussed in Section 3. 

 Bidders are drawn to participate in online penny auctions by the chance of winning an item 
at a highly discounted price. From the online penny auctioneers’ perspective, the expectation is that 
there will be enough active bidders such that the revenue from all ‘bids’ exceeds the cost of the 
item. Typical anecdotal stories tell us that a winning bidder may acquire a brand new smartphone 
for just $50, while the penny auction site collects a total revenue of $2000 from the bidding process. 
These stories have generated much negative press in academia, newspapers and blogs, and critics 
have basically labeled penny auctions as online gambling (Robinson, Giebelhausen, & Cotte, 2013; 
USA Today, 2011; NY Times, 2009a, 2009b; Guina, 2009). In an extreme example, a class-action 
lawsuit has been filed against quibids.com, claiming that it is more akin to a gambling website than 
an auction website (BusinessWire, 2010). Since online gambling is regulated in most countries, the 
general strategy from the penny auction sites has been to position themselves as ‘entertainment 
shopping’ channels. Due to the unusual and unintuitive format of all-pay auctions it is perhaps not 
surprising that penny auction websites are being labeled as online gambling sites. 

 The main motivation of this paper is to clarify some of the misunderstandings around penny 
auction sites, as well as to provide some insights regarding bidding strategies and analyze the opera-
tional consequences for sites themselves. Specifically, we consider a setting where bidders have 
access to two sales channels: a store that sells items at a fixed list price, and an all-pay auction. 
Bidders who choose to bid in the all-pay auction take into consideration that they can, either before 
or after bidding, buy the item directly at the fixed list price from the store. In a modified version to 
the all-pay auction, we consider a format where all losing bidders are given the option of using their 
sunk bid as a credit towards purchasing the item from the auctioneer at a fixed price (which, 
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naturally, is higher than the store list price). The feature of using the sunk bid as a credit constitutes 
an interesting aspect of real- world penny auction sites because it provides an additional twist 
compared to traditional auctions. Our main research objectives involve uncovering whether, how, 
and for whom the added auction channel provides value, and analyzing what effects competing 
auction channels have on setting optimal list prices. To analyze the dynamics between the seller and 
auctioneer, we consider two cases. In the first case, we assume there is only one firm operating both 
the fixed list price store and the all-pay auction. In the second case, we assume there are two 
competing firms: one operating the fixed list price store and one operating the all-pay auction. 

 The main contributions of our paper are as follows. First, we illuminate the dynamics of 
online penny auctions as an application of second-price all-pay auctions. In contrast to the negative 
publicity and previous published results regarding penny auctions, our analysis indicates that 
consumers are in fact better off at the expense of the penny auction site. Second, we develop 
equilibrium bidding strategies in a private valuation framework for both first- and second-price all-
pay auctions when bidders have pre- and post-bidding options to consider. Our inclusion of posted 
prices in the all-pay auction framework and with the addition of using lost bids as credits towards 
posted-price purchasing is, to the best of our knowledge, a novel extension. Third, we develop 
optimal posted pricing policies for the seller and auctioneer and discuss the economic implications. 
Finally, we illustrate the effect of ‘sunk-bid credit’ on the distribution of both final auction price and 
total revenue. For readability, all proofs are relegated to the Appendix. 

 

Auction theory background 

 In addition to their commercial and social aspects, auctions are interesting from a 
theoretical perspective. The voluminous literature on auctions and bidding mechanisms spans not 
only Operations Research and Economics, but also Information Systems, Marketing, Computer 
Science, Statistics, and Theoretical Biology. However, despite the wide proliferation of auction 
theory, critiques regarding limitations and overly restrictive assumptions have also been raised. A 
motivating example appears in the almost exclusive consideration of analyzing auctions in isolation 
and independent of overall context, an issue raised by Rothkopf and Harstad (1994), Pinker, 
Seidmann, and Vakrat (2003), Shen and Su (2007) and Haruvy et al. (2008). Rarely, if ever, do bidders 
lack external options when deciding whether to bid and how much to bid in an auction. This 
research expands the traditional auction framework and analyzes the dynamics when bidders 
consider external options, both before and after bidding. To establish theoretical context, we begin 
with a brief discourse on fundamental auction theory. 

 The standard private valuation, single-item auction model centers on a fixed number of 
bidders N, each with i.i.d. valuation V drawn from distribution FV (v)= Pr{V ≪ v}, with support on 
[v,v]. Each bidder knows only their own (realized) valuation v, the number of bidders N, and the 
distribution FV(v), but not the realized valuations of the other N - 1 bidders. Although auction 
formats may either be open or sealed-bid, in this paper, we focus on the sealed-bid versions. In 
sealed-bid auctions, each bidder places their bid in a sealed envelope. When all bids have been sub-
mitted, the auctioneer opens the bids and announces, according to the specified format, the winner 
and the amount the winner has to pay. Typically two auction formats are considered: first-price auc-
tion, where the highest bidder wins and pays the amount of their bid, and second-price auction, 



where the highest bidder wins but pays the amount of the second highest bid. A third and slightly 
more unusual format is the aforementioned all-pay auction, which comes in two general versions: 
the first-price all-pay auction, where everyone pays the amount they bid, but only the highest bidder 
wins the item; and the second-price all-pay auction, where all losing bidders pay their bid while the 
highest bidder, who wins the item, pays the amount of the second-highest bid.1 For all four auction 
formats, a bidder’s decision of whether to bid and the bid amount b can be illustrated by a decision 
tree. See the decision tree in Fig. 1, where xb is the price the bidder pays upon winning the auction, 
and yb is the cost the bidder incurs for losing the auction. Note that xb and yb are functions of the bid 
amount b. In a first-price and second-price auction, yb = 0, while for the two all-pay auctions yb = b. 
In a first-price and first-price all-pay auction, xb = b, while in a second-price and second-price all-pay 
auction, xb is the amount of the second highest bid. The probability of winning pb depends on the bid 
b. 

 

 

 Traditionally in auction theory the primary focus lies on bidding strategies of a symmetric 
equilibrium, which are characterized by two factors: (1) the bid amount b increases in the bidder’s 
valuation v, thus ensuring that the bidder with the highest valuation wins; and (2) no individual 
bidder has an incentive to deviate from the bidding strategy, given that the other N - 1 bidders 
adhere to it. The classic and well-established Nash equilibrium bidding strategies are: (i) in a first-
price auction, b = E[V(1) l V(1) < v]; (ii) in a second-price auction, b = v; (iii) in a first-price all-pay 

auction, b = Pr{ V(1) < v} x E[V(1) | V(1) < v]; and (iv) in a second-price allpay auction, b = ∫ 𝑥λv
𝑣

𝑣 (1)(x)dx, 

where V(1) is the highest valuation from the other N - 1 bidders, and λv(1)(∙) is the hazard rate 
function of V(1). A striking difference between second-price all-pay auctions and the other three 
auction formats is that, in the latter types, bidders never bid above their valuations; however, in a 
second-price all-pay auction bidders with ‘high’ valuation may bid an arbitrarily high amount. This 
particular bidding phenomena is often observed by professors when conducting the Dollar Auction 

                                            
1 Based on applications from theoretical biology, second-price all-pay auctions are often referred to as war of attrition. In 

this paper, we use the term ‘second-price allpay auction’. 



in a class-room setting. 

 Despite the differences in bidding strategies across the four auction formats, the revenue 
equivalence theorem states that the expected surplus for the bidder and the expected revenue for 
the seller remains the same (Vickrey, 1961; Myerson, 1981; Riley & Samuelson, 1981). Furthermore, 
the probability of winning is the same in each auction format, namely pb = Pr{V(1) < v}. For more 
general background on auctions, see Krishna (2002); for more details regarding bidding in all-pay 
auctions, see Milgrom and Weber (1985) and Krishna and Morgan (1997). Rather than focusing on 
direct applications of the auction format per se, the extant literature tends to use all-pay auctions as 
a framework for a diverse collection of applications, including animal conflict and evolution 
(Maynard Smith, 1974; Bishop, Cannings, & Maynard Smith, 1978), arms race (O’Neil, 1986), and 
lobbying (Baye, Kovenock, & de Vries, 1993; Anderson, Goeree, & Holt, 1998). For an experimental 
study that compares the results from Anderson et al. (1998) with empirical results see Gneezy and 
Smorodinsky (2006). Finally, we highlight the distinction between pay-to-bid and (multi-unit) pay-as-
bid auctions, where in the latter all winning bidders pay the same price. For an application of pay-as-
bid auctions to electricity markets see Swider and Weber (2007). 

 Two papers similar to ours that also consider the operational aspects of selling through dual 
channels include Etzion, Pinker, and Seidmann (2006) and Caldentey and Vulcano (2007). Both 
papers are motivated by online, multi-unit auctions competing with a fixed list price store. Our paper 
and results complement the insights of these authors, although some key differences do exist. 
Primarily, as motivated by eBay, these authors consider a dual-channel setting with a fixed list price 
and a multi-unit uniform price auction (where the winning bidders all pay the price of the highest 
non-winning bid), while we consider a setting where the competing auction channel is a single-unit 
all-pay auction (as motivated by online penny auctions). Naturally, the auction format will 
significantly affect the bidding strategies of the bidders. In particular, unlike the bidding strategy of 
Etzion et al. (2006) and Caldentey and Vulcano (2007), where bidders do not bid above the fixed list 
price, in our study’s second-price all-pay auction setting, the fixed list price does not act as an upper 
bound on bidders’ bids. Instead, in our setting, the fixed purchase price the auctioneer offers to 
losing bidders act as the upper bound. Interestingly there is no upper bound on the post-bidding 
purchase price. Furthermore, we show that with traditional auction formats, such as those in Etzion 
et al. (2006) and Caldentey and Vulcano (2007), the auctioneer is, in effect, not interested in offering 
post-bidding purchase options. 

Online penny auctions as second-price all-pay auctions 

 In contrast to the negative publicity we mentioned in our introduction and to the results 
achieved by Platt, Price, and Tappen (2013), Augenblick (2011), Hinnosaar (2013), Byers, 
Mitzenmacher, and Zervas (2010), who also analyzed online penny auctions, our results show that 
bidders derive a positive expected surplus at the expense of a negative expected net revenue for the 
penny auction site. Similar to all modeling papers, our results provide insights only to the degree 
that the model assumptions are reasonably realistic. The three main assumptions we impose are: (1) 
penny auction sites source their items at retail, (2) bidders follow the proposed bidding strategy, and 
(3) penny auctions can be modeled as standard auctions. An auction is standard if the highest bidder 
is guaranteed to win Krishna (2002, p. 29). 

 The first assumption (i.e., that penny auction sites source their items at retail), served as the 



original business model of, for instance, swoopo.com. Recently, some penny auction sites appear to 
source their items at wholesale prices. However, even if sourcing at wholesale prices could provide 
the auctioneer with a positive expected profit, the auctioneer’s profit margin will be dictated by the 
fixed list price. We elaborate on this point in Section 5.2. Regarding the second assumption (i.e., that 
bidders follow the proposed bidding strategy), deriving the equilibrium bid is non-trivial and, 
furthermore, is sensitive to correct estimation of various parameters. For instance, it is easy to show 
that bidders following the proposed equilibrium bidding strategy but underestimating the total 
number of bidders N will overbid. The effect from overbidding would generate a positive expected 
profit for the auctioneer. On the other hand, over time, one would expect the effect from consistent 
overbidding to level off.2 Furthermore, the second assumption is standard in auction theory, and its 
limitations are not exclusive to our paper. The third assumption (i.e., that penny auctions can be 
modeled as standard auctions) is more technical and requires further elaboration. 

 Strictly speaking, the current format of most penny auctions is non-standard in that the 
winner is the bidder who places the last bid (i.e., the winner does not necessarily have to be the 
bidder who spends the most). One might conjecture though that, in practice, the main bidding 
activity and, in particular, counter-bidding takes place close to the end of the auction and that, 
consequently, the bidder who places the most bids does indeed win. Furthermore, most penny 
auction sites provide a service where bidders enter the maximum amount they are willing to spend, 
and then the auction site will monitor and bid as minimally required on behalf of the bidder. This 
service can be related to what is referred to as proxy bidding on eBay. Examples include BidBuddy on 
dealdash.com, beezid sniper on beezid.com, Bid-O-Matic on quibids.com, and bid butler on the 
former swoopo.com and Auto-bid on the former offandaway.com. Although these features do not 
guarantee penny auctions to be standard, it would seem that in reality, they are. 

 Deciding whether or not penny auctions constitute de facto standard auctions is an 
interesting and legally relevant empirical question but one that we do not seek to answer in this 
paper. Nevertheless, to gain some insight, we analyzed the bidding data presented in Byers et al. 
(2010). The data-set includes 2,541,332 bids from 7353 swoopo.com auctions. Our objective was to 
see how often the winner of the auction was the bidder with the most, second most, or third most 
placed bids. The results were that in 62%, 11%, and 7% of the auctions the winner was the bidder 
with the most, second most, and third most bids, respectively. (The fourth and fifth most placed bids 
were 5% and 3%, respectively.) In other words, in about 80% of the auctions, the winner was a 
bidder with the top three most placed bids. There are many interesting empirical analyses that could 
be conducted to further explore what factors influence the bid distributions of the winners and how 
they do so, but we leave this question for subsequent research. Proxy bidding services enable penny 
auctions sites to, in effect, operate as a second-price all-pay auction. Specifically, for all bidders with 
registered proxy bids, penny auction sites may simply ensure a rotation in each bidding round and 
wait until the auction clock has expired before the proxy bids counter-bid the manually placed bids; 

                                            
2 Anecdotal stories reveal cases of ‘strategic’ underbidding, where unscrupulous, ‘self-colluding’ bidders set up two 

accounts and bid against themselves in an effort to deter others from bidding. After having bid a few times against 
themselves, thus making everyone else believe they are observing a bidding war, the unscrupulous bidder stops and wins 
the auction at a significant discount. Conversely, it may be the seller that is unscrupulous. It should be fairly obvious that the 
incentives for shillbidding (i.e., when an auctioneer secretly employs an accomplice to bid in order to drive up the auction 
price) are much higher in penny auctions than in, for instance, eBay-type auctions. Note though that shill-bidding and 
establishing two accounts to counter-bid against oneself is a fraudulent and illegal practice. 
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however, the actual process remains unknown.3 

Model framework 

 We consider a setting where bidders have access to two sales channels: a seller selling at a 
fixed list price, and an auctioneer hosting an all-pay auction. In the fixed list price channel, bidders 
can buy the item for p1. For the all-pay auction channel, we consider two versions: first-price and 
second-price. In the first-price version, bidders place a bid b, and if their bid is the highest, they win 
the item and pay b, but if their bid is not the highest they still pay b. In the second-price version, 
bidders place a bid b, which they forfeit if it is not the highest bid; however, if their bid is the highest, 
they win the item at the price of the second-highest bid. Regardless of the all-pay version, bidders 
who lose out in the auction can choose to either: (1) accept the loss of b and do nothing, or (2) 
return to the store and buy the item at p1. 

 Later in our study, we consider a modified all-pay auction channel where non-winning 
bidders can use their failed bid b as a credit towards purchasing the item at p2 from the auctioneer. 
In other words, in the modified setting we consider three post-bidding options for non-winning 
bidders: (1) do nothing, (2) buy from the seller at p1 (but without any credit from the failed bid), or 
(3) buy from the auctioneer at p2 using their bid b as a credit (i.e., pay an additional p2 - b). We 
implicitly assume that the credit provided to bidders cannot be negative. That is, bidders who place 
a bid b > p2, are not reimbursed b - p2, and thus, the auctioneer sells the item for max{p2 - b, 0}. 

 Bidders arrive with a realized valuation v and know there are N ≫ 1 other bidders with 
valuation drawn i.i.d. from FV (v) = Pr{V ≪ v}, with support on [𝑣, 𝑣]. Note that in order to simplify 

the notation in the analysis, we assume there are N +1 total bidders. Our main interest lies in 
characterizing a symmetric equilibrium in the bidding/buying strategy. Therefore, for the remainder 
of the paper, we define pv as the probability that a bidder with valuation v has the highest valuation 
and hence wins the auction, pv = Pr{V(1)< v} = (FV(v))N, where V(1) is the highest order statistic of the 
other N bidders’ valuation. 

Bidding/buying strategy in first-price all-pay auctions 

 We start by analyzing the bidding and buying strategy for the first-price version of the all-pay 
auction channel and when the bidders who lose out can buy the item from the seller only. See panel 
A of Fig. 2, where xb = b. A bidder with valuation v > p1 will never just forfeit their bid if they lose the 
auction; that is, if they lose they would always be better off buying the item at p1. Consequently, 
standard bidding strategies from auction theory are not immediately applicable. On the contrary, we 
propose that auction participants bid a given fraction of p1 — namely, a fraction representing the 
probability that their valuation is the highest, as well as a constant representing the expected 
surplus of the buyer with v = p1. For bidders with v ≪ p1, it will never be optimal to buy the item at 
p1, neither from the outset nor after having lost an auction. It therefore follows that bidders with v 
≪ p1 face a traditional auction theory framework and, hence, should bid accordingly. We formally 
summarize this result in the following lemma. 

Lemma 1. Assume there are N + 1 bidders and two sales channels: (1) a fixed list price p1, (2) a first-

                                            
3 We contacted several prominent online penny auctions to clarify their specific bidding transaction rules, but in terms of 
their non-specific online documentation, all responses were vague. 



price all-pay auction. If a bidder with valuation v acts as follows, 

 

Given the above bidding strategy, the expected surplus for a bidder with valuation v > p1 is 

 

For a bidder with valuation v 6 p1, the expected surplus is 

 

 In other words, for all bidders, the expected surplus is higher with the added all-pay auction 
channel than if there were a fixed list price store only. The bidders with low valuation derive some 
surplus from having the chance of winning an item they cannot afford, while the high valuation 
bidders receive the added expected surplus ∅p1. Since bidders with v > p1 receive the added benefit 
∅p1, they have no incentive to bid as if their valuation were below p1, a condition that ensures they 
do not deviate from the equilibrium bidding strategy. It should be stressed that the expected surplus 
is that which results from following the bidding and buying strategy to its conclusion, and not the 
expected surplus from participating in the auction. 

 We now extend the above setting and allow losing bidders the option of using their sunk bid 
b as credit towards buying the item for p2. See panel B in Fig. 2, where xb = b. This extension requires

 



 

some clarifications: First, it is of interest to consider only those prices such that p2 > p1 .4 Second, as 
mentioned above, no buyer would ever bid more than p-j, regardless of their valuation v. Third, 
buyers with valuation v > p1 will not just forfeit their bid if they lose the auction, since they still have 
an option of buying it at either p2 or p1. Fourth, although buyers with v < p1 will never buy the item 
at p1, upon losing the auction, they might have an incentive to buy the item at p2. This situation 
would arise if their bid was more than p2 - v, in which case rather than take the loss b they take the 
loss p2 - v. However, at equilibrium, and assuming the auctioneer sources from the seller (see 
Section 5.2), this situation will never occur because the auctioneer has no incentive to offer a losing 
bidder the item at a price p2 such that p2 - b < p1. The bid b can be seen as a ‘‘sunk’’ revenue, and 
thus, the optimal decision is to buy the item from the seller at p1 only if the net revenue is positive 
(i.e., if p2 - b > p1 ).5 Therefore, without loss of generality, we may assume that the seller commits to 
a price p2 ≫ p1 + bp1 = p1 + pp1 E[V(1)|V(1) < p1], where bp1 is the bid by a bidder with valuation v = p1 
and is defined according to Lemma 1. Given this assumption, there exists a threshold v+ = F-1 ((p2 - p1 
+∅p1)/p1

1/N) such that if v ≪ v+, then the buyer should act according to Lemma 1, while if v+ < v then 
the buyer should first bid b = (p1 -(1 - pv)p2 - /∅p1 )/pv and, if unsuccessful, buy at p2. Note, however, 
that the threshold v+ depends on the particular values of p1 and p2 and may collapse to p1 or v. We 
formally summarize the result. 

Lemma 2. Assume there are N + 1 bidders and two sales channels: (1) a fixed list price p1, (2) a first-
price all-pay auction where losing bidders may use their bid as a credit to buy the item for p2 (and p2 
≫ p1 + pp1 E[V(1)|V(1) < p1 ]). If a bidder with valuation v acts as follows, 

1. if v ≪ v+, act according to Lemma 1, 

2. if v > v+, bid b = (p1 - (1 - pv )p2 - /∅p1 )/p1
1/N, and, if lose, buy at p2, 

where v+= max {p1, F-1 (min{1, (p2-p1 + ∅p1)/P1
1/N})}, then the strategy is a Nash equilibrium. 

 With the added option, the expected surplus for a bidder with valuation v > v+ is, ∅v= Pv(v - 
(p1 - (1 - Pv)p2 - ∅p1 )/Pv)+ (1 - pv)(v -p2) = v - p1 + ∅p1, while for the buyers with v ≪ v+, the expected 
surplus is the same as before. In other words, although adding p2 segments the buyers with v > p1 
into two different bidding-strategy groups, their expected surplus does not change. While the 
expression for v+ appears complicated, it simply represents the valuation v at which p1 + bv = p2; that 
is, the point at which a bidder is indifferent between: (1) forfeiting the bid bv and buying the item at 
retail for p1, or (2) using the bid bv as credit towards buying the item from the auctioneer at p2. As 
mentioned above, depending on the particular values of p1 and p2, the threshold that segments the 
high-valuation buyers may or may not exist. That is, if p2 is too high then v+ collapses to 𝑣, resulting 
in only one type of high-valuation buyers. An upper bound on p2 in order to ensure the 
segmentation is provided in the following corollary. 

Corollary 1. For the first-price all-pay auction channel scenario, if p2 ≫ 2p1, no one will buy the item 
at p2. 

 Thus, if p2 is twice as high as p1, then no one will buy at p2, so there is no point in offering the 

                                            
4 Anecdotal motivation includes auctions observed on swoopo.ca for Sony Playstation 3 (250 gigabyte) consoles. In June, 
2010, Swoopo offered them at $389, while, for instance, BestBuy.ca was selling them at $349.99. 
5 We would like to acknowledge one of the reviewers for providing this insight. 



 

price p2. It should be noted that the upper bound in Corollary 1 is not the minimum that is required 
for the result to hold. Since the buyers with v > p1 are given the added surplus of ∅p1 , the minimum 
bound for the result to hold is p2 ≫ 2p1 - ∅p1. 

Bidding/buying strategy in second-price all-pay auctions 

 Next, we consider the bidding and buying strategy for the second-price version of the all-pay 
auction channel. Similar to the first-price version, we first consider the setting where a bidder who 
loses the auction may purchase the item from the retailer. See panel A of Fig. 2, where xb is the 
amount of the second highest bid. Similar to above, a bidder with valuation v > p1 will never just 
forfeit their bid if they lose the auction, so standard results from auction theory do not apply. 
Furthermore, it is intuitive that, given the difference in auction format, the results from Lemma 1 do 
not apply. On the other hand, for bidders with v ≪ p1, it will never be optimal for bidders to buy the 
item at p1, and hence, the bidder faces a traditional auction theory framework and should bid 
accordingly. We formally summarize the bidding/buying strategies in the following lemma. 

Lemma 3. Assume there are N + 1 bidders and two sales channels: (1) a fixed list price p1, (2) a 
second-price all-pay auction. If a bidder with valuation v acts as follows, 

1. if v 6 p1, bid bv = ∫ 𝑥𝜆𝑣
𝑣

0 (1)+(x)dx, and, if lose, do nothing, 

2. if v > p1, bid bv = bp1 + ∫ 𝑝1𝜆𝑣
𝑣

𝑝1 (1)(x)dx, and, if lose, buy at p1, 

where 𝜆𝑣(1)(x) is the hazard rate function of V(1), then the strategy is a Nash equilibrium. 

 Lemma 3 is partially derived from the equilibrium bidding strategies of first-price all-pay 
auctions and through applying the revenue equivalence theorem. Many of the subsequent results 
are derived through the same basic technique (i.e., by applying the revenue equivalence theorem to 
our result for the first-price all-pay auction version). Consequently, given the results of Lemma 1, the 
expected bidder surplus ∅v, for a bidder with valuation v ≪ P1 in a second-price all-pay auction is 
also given by ∅v = pv(v - E[V(1)|V(1) < v]), while for a bidder with valuation v > p1, the expected surplus 
is given by ∅v = v - p1 + ∅p1. 

 We now extend the above setting and allow losing bidders the option of using their sunk bid 
b as a credit towards buying the item for p2. See panel B of Fig. 2, where xb is the amount of the 
second highest bid. Similar to the first-price all-pay auction setting, we can assume the auctioneer 

sets p2 ≫ p1 + bP1 = p1 + ∫ 𝑥𝜆𝑣
𝑃

0 (1) (x)dx, where bp1 is the bid by a bidder with valuation v = p1 and is 

defined according to Lemma 3. Given this assumption, there exists a threshold v-, such that if v ≪ v-, 
the bidder should act according to Lemma 3, while if v > v-, the bidder should simply bid b = p2, and if 
unsuccessful buy at p2. We formally summarize this scenario as follows. 



 

 

 

Lemma 4. Assume there are N + 1 bidders and two sales channels: (1) a fixed list price p1, (2) a 
second-price all-pay auction where the losing bidders may use their bid as a credit to buy the item for 

p2 (and P2 ≫ P1 + + ∫ 𝑥𝜆𝑣
𝑃

0 (1) (x)dx). If a bidder with valuation v acts as follows, 

1. if v ≪ v-, act according to Lemma 3, 

2. if v > v-, bid b = p2, and, if lose, buy at p2, 

where v- = F-1(1 - exp(p1 + bp1 - p2)p1 + ln(1 - (F(p1))N)1/N), then the strategy is a Nash equilibrium. 

 Similar to the first-price setting, the added p2 and threshold v- do not change the expected 
surplus for bidders with valuation v > v-; the expected surplus remains ∅v = v – p1 + ∅p1. Furthermore, 
although the expression for v- may appear rather complicated, it simply represents the point of 
indifference between accepting the sunk bidding cost and purchasing at p1 versus using the sunk 
bidding cost as a credit and purchasing at p2. Observe that v- is increasing in p2 and that there is no 
upper bound on p2 such that v- collapses to v. In other words, the auctioneer may set an arbitrarily 
high p2, including above v, and still there are bidders who will bid p2 and, if unsuccessful, buy at p2. 
This scenario can be contrasted to the first-price setting, or a strict second-price auction setting 
without p2 (Etzion et al., 2006), where bidders never bid b > p1. On the other hand, if p2 is ‘too low’, 



 

then no one will buy the item from the retail store at p1. We summarize this outcome in the 
following corollary. 

Corollary 2. For the second-price all-pay auction channel scenario, if p2 = p1 + bp1 , no one will buy the 
item at the store for the fixed list price p1. 

 From the perspective of the bidders (or society), auction theory usually seeks to address the 
issue of efficiency (i.e., that the object ends up with the bidder who, ex post, values it the most). In 
our setting, all bidders with valuation v > p1 are guaranteed to receive an item, either through 
winning the auction or through buying from one of the post-bidding options. Therefore, the added 
auction channel provides no gain in efficiency for those bidders. When the valuation of all bidders is 
less that p1, then the added auction channel does provide efficiency gain. We point out that the gain 
in efficiency comes at the loss of the auctioneer, a fact that leads us to the other topic of interest — 
namely the seller’s and auctioneer’s expected revenue, which we discuss in Section 5. However, we 
first illustrate Lemmas 1-4 with two numerical examples, and we compare the bidding strategies to 
traditional first- and second- price all-pay auction bidding strategies. 

Numerical illustration for uniform distributed valuations 

 To gain insight into bidders’ bidding strategies, we illustrate with two numerical examples 
based on four bidders and valuations uniformly distributed on [0,1];FV(v) = v, for v ϵ [0,1]. The two 
numerical examples are based on the following prices: (I) p1 = .50, p2 = .70, and (II) p1 = .50, p2 = 1.25. 
The two examples have the following thresholds: (I) v+ = .76 and v- = .71; and (II) v+ = 1.0 and v- = .92. 
In the first-price all-pay auction scenario, there are three types of bidders: (1) bidders with v ≪ p1 

who bid bv = vN 𝑁

𝑁+1
v and, if they lose, do nothing; (2) bidders with p1<v≪ v+ who bid bv = vNp1 – 

𝑃1
𝑁+1

𝑁+1
 and, if they lose, buy the item for p1; and (3) bidders with v+ < v ≪ v who bid bv = (p1 - (1 - vN) 

p2 – 
𝑃1

𝑁+1

𝑁+1
/vN and, if they lose, buy the item at p2. Note that when p2 = $1.25 and v+ ≡l 𝑣, then the 

third category does not exist. In the second-price all-pay auction scenario there are also three types 

of bidders: (1) bidders with v ≪p1 who bid bv = ∫ 𝑁𝑥
𝑣

0
N/(1-xN)dx and, if they lose, do nothing; (2) 

bidders with p1 < v ≪ v- who bid bv = bp1 + ∫ 𝑝1𝑁𝑥
𝑣

𝑝1
N/(1-xN)dx and, if they lose, then buy the item for 

p1; and (3) bidders with v- < v ≪ 𝑣 who bid bv = p2 and, if they lose, then buy the item at p2. 

 Fig. 3 displays the bidding strategy for the first-price (left) and second-price (right) format as 
a function of a bidder’s valuation. Note that the vertical axes for the left and right graphs are scaled 
differently. In each graph, the solid curve represents the bidding strategy in the all-pay auction with 
pre- and post-bidding options, while the dotted curve represents the equilibrium bidding in a tra-
ditional all-pay auction framework (i.e., without fixed list price options). The 45-degree reference 
line in the each graph highlights bidders who bid below/above their valuation and coincides with the 
equilibrium (truthful) bidding strategy of a traditional second-price auction (i.e., not the all-pay 
format and with no fixed price purchase option). 

 A couple of interesting observations arise. First, in the first-price scenario, regardless of 
whether the p2 option is available, nobody bids above the fixed list price p1. In contrast, in the 
second-price scenario, the fixed list price p1 does not act as an upper-bound, but instead, the 
auctioneer list price p2 acts as the upper bound. Second, in the first-price scenario, nobody bids 



 

higher than they would if there were no external retail options. That is, we observe in the left graphs 
that the solid lines are below the dotted lines, which indicates that bidders will shade their bids 
more due to the purchasing options. In contrast, in the second-price scenario, depending on the 
value of p2, bidders may bid more than they would if there were no purchasing options. This 
observation is illustrated in case (I), in which bidders bid more compared to an auction framework 
with no purchasing options (i.e., there is a segment where the solid line is above the dotted line). 
This effect is due to the credit from the sunk bid b (i.e., if they lose, they do not incur a loss but 
receive a positive surplus from purchasing the item using their credit from the sunk bid). However, 
when p2 is ‘high’, as in case (II), then none of the bidders bids more than they would if there were no 
purchasing option. 

 Fig. 4 displays the expected surplus for both numerical examples and both all-pay auction 
formats. The solid curve represents the expected bidder surplus in the all-pay auction with pre- and 
post-bidding options, while the dotted curve represents the bidder surplus in a traditional all-pay 
auction framework (i.e., without purchasing options). As we know from the revenue equivalence 
theorem, the expected surplus is the same for the first- and second-price all-pay auction format. We 
observe that for bidders with v > p1, the expected surplus is virtually v – p1. In other words, the 
incremental gain in expected surplus that comes from introducing an all-pay auction channel to a 
setting with only a fixed list price channel is rather small. On the other hand, the incremental gain in 
expected surplus that comes from having a fixed list price option in addition to an all-pay auction 
channel is significant. We see that there is a gap between the dotted curve and the solid curve, 
which furthermore appears to be growing in v. 

 

1.1. Comparison to traditional first- and second-price auctions 

 Etzion et al. (2006) consider a setting where the auction channel is a traditional second-price 



 

auction and the auctioneer does not offer losing bidders a purchase option (i.e., panel A of Fig. 2, 
where xb is the amount of the second highest bid, but the cost b following losing the auction is zero). 
These authors show that a weakly- dominating bidding strategy is bv = max{v, p1}. If we extend their 
setting to include the auctioneer offering the losing bidders a purchase option of a fixed price p2, 
then, trivially, p2 can only be less than p1. See panel B of Fig. 2, where xb is the amount of the second 
highest bid, but the cost b following losing the auction is zero. The issue is that, unlike the all-pay 
auction, where all bidders incur a cost of bidding, there is no cost in a second-price auction, and 
hence, the auctioneer does not have any forceful or credible mechanism to get bidders to pay more 
than the competing fixed price channel. Therefore, the only credible scenario would be if p2 ≪ p1. 
However, it can easily be shown that the optimal bidding strategy becomes bv = max{v, p2}, that is, 
the same argument as the proof of Lemma 1 in Etzion et al. (2006) applies. Consequently, the 
auctioneer is worse off compared to not offering a post-bidding purchase option. In this scenario, 
the auctioneer is better off by explicitly not offering a post-purchase option or, in effect, by not 
offering a post-purchase option by setting p2 > p1. 

             Next we consider a first-price setting (i.e., panel A of Fig. 2, where xb = b, but the cost b 
following losing the auction is zero). In this setting, it can be shown that a weakly-dominating 
bidding strategy is for bidders with valuation v ≪ p1 to bid b = E[V(1)|V(1) < v] and for bidders with 
valuation v > p1 to bid b = p1 - ∅p1 /pv, where ∅p1 is the expected surplus of a bidder with valuation v 
= p1 who bids b = E[V(1)|V(1) < p1]. Similar to the argument above for the second-price auction, the 
first-price auctioneer would never be better off offering a post-bidding purchase option. 

 

 By the revenue equivalence theorem, we know that the expected surplus for both the first-
price and second-price auction will be the same as for the first-price all-pay and second-price all-pay 
auctions. 



 

Seller’s and auctioneer’s pricing problem 

Given the above bidding and buying strategy, we now consider the seller’s and auctioneer’s problem 
in setting optimal prices p1 and p2 to maximize expected revenue. We first consider a system where a 
single firm operates both the fixed list price store and the all-pay auction. Later, we extend the 
setting and consider a system with two firms: a seller and an all-pay auctioneer. 

Single firm, dual channels 

 If there is only one firm, then, from non-winning bidders, the firm receives either bv, bv + p1, 
or p2, depending on whether the bidder’s valuation is less than p1, between p1 and the threshold v+ 
(first-price setting) or v- (second-price setting), or greater than 

 v+/v-. If, on the other hand, a bidder wins the auction, then the firm receives either the bid bv (first-
price setting) or the amount of the second highest bid (second-price setting). Let the firm’s expected 
revenue (per bidder) in a first- and second-price setting be represented by π1st and π 2nd, 
respectively. These expected revenues can be expressed as, 

 

 

with bv and v+ as defined in Lemmas 1 and 2, and 



 

 

where bv and v- are defined in Lemmas 3 and 4, and b(2) is the conditional expected bid of the second 
highest bidder, given that their valuation is below v. A counter-intuitive result is that regardless of 
the all-pay auction format, the firm’s expected revenue 𝜋 is independent of p2. In other words, 
although p2 may segment the bidders into different bidding-strategy categories, it does not affect 
the firm’s expected revenue, regardless whether the all-pay auction is a first- or second-price 
version. We summarize this result in the following proposition. 

Proposition 1. If there is one firm operating both the fixed list price channel and the all-pay auction 
channel (first- or second-price), then the expected revenue per bidder is independent of p2 and given 
by, 

 

 From Eq. (3), it is not immediately apparent whether the firm is better or worse off with the 
added all-pay auction channel. Although the firm receives an additional expected revenue of 

∫ 𝑝𝑣𝐸{𝑉(1)|𝑉(1) < 𝑣}
𝑝1

𝑣
f(v)dv and Pp1𝐸{𝑉(1)|𝑉(1) < 𝑝1}(1-Fv(p1)), this comes at the expense of a lesser 

revenue p1(1 - pp1 )(1 - FV(p1)) as compared with operating only a fixed list price channel with 
expected revenue of p1(1 - FV(p1)). To explore this trade-off, in Section 5.3, we discuss the case when 
bidders’ valuations are uniformly distributed. Furthermore, although the expected revenue is the 
same for the two different all-pay auction formats, the distribution of the revenue will be quite 
different, another point that we highlight in Section 5.3. 

 In Section 4.4, we summarized weakly-dominating bidding strategies for traditional first- and 
second-price auctions. It follows from the revenue equivalence theorem that Proposition 1 also 
applies to the first- and second-price auction. Thus, as long as the first- or second-price auctioneer 
does not offer a post-bidding purchase option p2 < p1, then the expected revenue is given by (3). 

Dual firms, dual channels 

 We now extend the above setting and consider a system with two firms: a seller operating 
the fixed list price store and an auctioneer hosting the all-pay auction. To make the revenue compar-
ison consistent with the setting with a single firm, we assume the auctioneer purchases the goods at 
p1 from the seller. The modeling motivation is that we are interested in deriving expressions for the 
seller’s expected revenue 𝜋r and the all-pay auctioneer’s expected net revenue 𝜋ap such that 𝜋 =𝜋r + 
𝜋ap. The real-world motivation is to analyze the commercial viability of the founding business model 
of swoopo.com. During their early years, Swoopo would only after an auction was completed 

http://swoopo.com/


 

purchase an item at retail and arrange to have it shipped directly to the winning bidder. 

 Recall that both the winner of the all-pay auction as well as the losers with v > v+ (first-price) 
or v > v- (second-price) receive an item from the all-pay auction channel. With these changes, the 
expected revenue (per bidder) for the seller becomes, 

 

 Note that the first part of the revenue function is the expected revenue for a seller operating 
in a setting without the all-pay auction channel. Thus, compared to the setting when there is a fixed 
list price channel only, the seller is better off with the added all-pay auction channel (regardless of 
the specific auction format). This outcome is intuitive since we have assumed the all-pay auctioneer 
buys the items from the seller, and hence, when a bidder with v ≪ p1 wins the auction, positive 
expected revenue will result. 

 Since we have assumed a ‘closed system’ with the auctioneer buying from the seller, it 
follows that the expected gain for the seller must come at the expense of the all-pay auctioneer. The 
expected net revenue (per bidder) for the auctioneer operating a first-price all-pay auction is given 
by 

 

with bv and v+ as defined according to Lemmas 1 and 2, while the expected net revenue (per bidder) 
in a second-price all-pay auction is given by 

 

with bv and v- as defined according to Lemmas 3 and 4, and b(2) is the conditional expected bid of the 
second highest bidder, given that their valuation is below v. Although, from Eqs. (5) and (6), it is not 
immediately apparent that the auctioneer incurs an expected loss, this is indeed the case. We 
formally summarize this result in the following proposition. 

Proposition 2. If there are N +1 bidders who act according to Lemmas 1 and 2 in a first-price all-pay 
auction or Lemmas 3 and 4 in a second-price all-pay auction, and the auctioneer buys the items from 
the seller at p1, then the auctioneer’s expected net revenue is always negative and given by, 



 

 

 Our results are based on the assumption that the auctioneer purchases the items at retail 
price p1 from the store. As discussed above, this was the original business model of the first 
generation of penny auction sites. Since then, many penny auction sites appear to be purchasing at 
wholesale. Accommodating expressions (4)-(6) to a wholesale scenario is a straight forward process. 
First, for the seller, this scenario implies only that revenue from losing bidders with a valuation 
above p1 but below the threshold v +/v- is generated. In other words, the competition from the all-
pay auction channel is much more pronounced and significantly reduces the seller’s expected 
revenue. In fact, from Corollary 2, we know that if the auctioneer sets the post-bidding price p2 at 
the lower feasible bound, then the seller will have no sales. Second, for the auctioneer, the bidding 
strategies of consumers will not change, and hence bv, b(2) and the integral limits in (5) and (6) 
remain unaffected. Instead, the only changes are with respect to the cost of the item p1 inside the 
integrals. If a ‘low enough’ wholesale price pw can be secured, then the auctioneer could incur a 
positive expected (net) revenue. Note, though, that bv and the integral limit are functions of p1, 
which is under the control of the seller. 

 Similar to the single-firm, dual-channel case, the extension to traditional first- or second-
price auction settings is immediate. In other words, by the revenue equivalence theorem, both the 
seller’s expected revenue given by (4) and the auctioneer’s expected revenue given by (7) hold in a 
first- or second-price auction setting. 

Numerical illustration for uniform distributed valuations 

 To gain further insight into the seller’s and auctioneer’s expected revenue, we illustrate for 
the case when bidders’ valuations are uniformly distributed on [0,1];FV(v) = v, for vϵ[0,1]. With bid-
ders’ valuations uniformly distributed on [0,1], Eq. (3) becomes 

 

The first part of Eq. (8) is the expected revenue for a firm with a fixed list price channel only, while 
the last two parts represent the net effect of operating the competing auction channel. Since p1 < 1, 

we have 𝑃1
𝑁+2<𝑃1

𝑁+1, but, on the other hand, for all N < ∞,2/(N + 2) > 1/(N + 1). Therefore, from Eq. 
(8), it remains unclear whether the firm is strictly worse off with the added all-pay auction channel. 
To gain some intuition before deriving the formal results, we illustrate with numerical examples. 

 Graph A in Fig. 5 displays Eq. (8) for the case with three and five bidders. The horizontal axis 
represents p1, while the vertical axis represents the expected revenue 𝜋. The dashed line represents 
the case of three bidders (N = 2), and the dotted line represents the case of five bidders (N = 4). The 
solid line provides a comparison benchmark when the firm does not have an all-pay auction and sells 
through a fixed list price channel only, in which case the expected profit is 𝜋 M = p1 (1 -FV(p1))= p1(1 –
p1). We see that as the number of bidders increases, the profit function gets closer to the setting 
with only a fixed list price. From (8), we see that the asymptotic limit in N is the revenue from a fixed 
list price with no competing all-pay channel. Note too that for all cases, the optimal price 𝑝1

∗ that 



 

maximizes the firm’s expected profit is 1 /2. We formally confirm this result in the following 
proposition. 

Proposition 3. If there is only one firm operating both the fixed list price store and the all-pay auction 
channel, and bidders with valuation drawn from U[0,1] follow the strategies given in Lemmas 1 and 2 
for the first-price scenario or Lemmas 3 and 4 for the second-price scenario, then the optimal price 
that maximizes expected revenue is p1

∗  = 1/2. 

 Another thing to note in graph A of Fig. 5 is that for ‘high’ prices it seems that the firm is 
better off with the added channel, while for ‘low’ prices, the seller is better off with just the fixed list 
price sales channel. Comparing the expected revenue Eq. (8) with the expected revenue for a firm 
with only a fixed list price channel (𝜋M), we can derive a threshold in p1 for when the firm is better 
off with the added all-pay auction channel. This is result summarized in the following proposition. 

Proposition 4. If there are N + 1 bidders with valuation drawn from U[0,1] who follow the strategies 
given in Lemmas 1 and 2 for the first- price scenario or Lemmas 3 and 4 for the second-price scenario, 

and p1≫
𝑁+2

2(𝑁+1)
, then the firm’s expected revenue (per bidder) is higher with the added all-pay 

auction than with just a fixed list price sales channel. 

 Thus, while the addition of an all-pay auction in the presence of optimally set prices 
decreases firm revenue (since it provides a bidder surplus), this loss decreases with an increased 
number of bidders and actually becomes a gain if the firm has sub-optimally set prices too high. We 
can also see that the threshold provided in Proposition 4 asymptotically approaches 0.5 as N 
increases. 

 Note that although the expected total revenue is the same with or without the added p2 
post-bidding option, and regardless of the auction format, the distributions of the final auction price 
and total revenue are drastically different. From Fig. 3, we observed that while p2 does not affect the 
upper bound on bids in a first-price setting, it does so in a second-price setting. It therefore follows 
that the distributions of the final auction price and total revenue for the two auction formats and 
the two post-bidding options should display differences. Illustrations based on simulation results are 
shown in Fig. 6. The box-plots are based on a simulation model for the single-firm scenario with four 
bidders, V ~ U[0,1], p1 = .50,p2 = .70, v+ = :76 and v- = .71. 

 The box-plots are generated from 5000 iterations of randomly drawing four valuations and 
deriving the associated bids based on Lemmas 1-4 for the first- and second-price auction format, 
respectively. The box-plots in panel A represent the final auction price in the first-price (two left) and 
second-price (two right) (i.e., the highest and second highest bid, respectively). We observe that the 
inter-quartile range is larger when bidders have the added option to purchase at p2. In particular, for 
the second-price auction format, the inter-quartile range is more than twice as large with the added 
p2 option than it is with just the p1. Furthermore, as evident from the graphs in Fig. 3, we observe 
that in a first-price setting, the final auction price is bounded by p1 (with or without the p2 option), 
while in a second-price setting with the p2 option, the final auction price is bounded by p2; without 
the p2, the final auction price is unbounded. 

 The box-plots in panel B of Fig. 6 display the total revenue for a single firm under five 
scenarios: fixed list price only at p1 (leftmost box-plot), first-price all-pay with and without p2 option 



 

(second and third from left), and second-price all-pay auction with and without p2 option (two 
rightmost). We can observe that the inter-quartile range for a given auction format and the two 
postbidding options are almost identical. In other words, adding the p2 options does not drastically 
affect the inter-quartile range and in fact, for the first-price scenario, the distributions are almost 
identical. For the second-price scenario with the p2 option, the total revenue is, of course, bounded 
at 4 x p2 = 2.8, while without p2, the total revenue is (theoretically) unbounded. We also note the 
comparison to the scenario with a fixed list price channel only. We see that while the first-price 
scenario is quite close in distribution to the fixed list price only scenario, the inter-quartile range in 
the second-price scenario is almost twice. 

 Next, we illustrate the expected revenue for the dual firms, dual channels system. If the 
bidders’ valuations are drawn from U[0,1], then the seller’s expected revenue function (4) becomes 

 

and the all-pay auctioneer’s expected net revenue function (7) becomes  

 

As we observed above, the seller’s expected profit is always positive, while the auctioneer’s 
expected net revenue is always negative (since Np1/(N + 2) < 1). The seller would naturally want to 
set the optimal price  𝑝1

∗that maximizes (9). However, unlike the scenario when the seller also 
operates the all-pay auction channel, the optimal price is not necessarily 1 /2. In fact, there is no 
closed-form solution for (9) since the function depends on the number of bidders through the N + 2 
exponent. Numerical illustrations of the expected profit functions (9) and (10) are provided in graph 
B of Fig. 5. The horizontal axis represents the fixed list price p1, as set by the seller, while the vertical 
axis represents the expected revenue (per bidder) for the seller (top) and auctioneer (bottom). The 
dashed, dotted and solid lines represent the case with three, five, and nine bidders respectively (i.e., 
the top and bottom curves represent Eqs. (9) and (10), respectively, for different number of 
bidders). As anticipated, we see that the auctioneer always incurs an expected loss, and that the loss 
increases with the list price p1 and decreases with the number of bidders. Further, we see that the 
seller’s expected revenue is always positive and that, depending on the number of bidders, the 
optimal price pH changes. Note too that the sum of the seller’s and auctioneer’s expected revenue is



 

equal to the expected revenue for the case with a single firm operating both channels, and that the 
asymptotic limit in N is the single firm operating a fixed list price only. 

Conclusion 

 Auctions are an integral part of human commercial and social interaction. They were used in 
the ancient bazaars, and they are still used extensively in today’s modern technology-driven 
markets. Given the importance and prevalence of auctions, it is not surprising to see a vast body of 
theoretical and empirical research developing around them. However, it is surprising that relatively 
little of this research has focused on understanding the implications of auctions in the presence of 
other commercial sales channels. Most bidders who are considering bidding for an item have 
external options to consider. This condition is not restricted solely to bidders bidding in, for instance, 
an online auction for the latest smartphone, but also to private collectors attending exclusive art 
auctions, billion-dollar telecom companies participating in official radio frequency spectrum 
auctions, or interest groups pursuing various lobbying activities. The objective of this paper has been 
to further our understanding of auctions in the presence of other competing sales channels. 
Specifically, we analyzed the interaction between an all-pay auction and a fixed list-price store, and 
we derived: (1) equilibrium bidding and buying behaviors of the bidders, and (2) optimal list prices. 

 A novel contribution of our paper derives from the fact that we have extended the general 
auction framework to offer non-winning bidders an opportunity to use their sunk bid as a credit 
towards purchasing the item directly from the auctioneer. The ‘buy-it-now’ prices offered by online 
penny auctions represent a direct application of this framework. Most penny auction sites provide 
non-winning bidders with an opportunity to purchase the item directly at a fixed price, using their 
sunk bidding cost as credit. Another application of this extended framework could include situations 
where non-winning R&D projects or lobbying activities ex post have options of other rewards from 
the ‘auctioneer’ (company or political party) — for example, patent applications or political 
concession to the interest group. The extension to having a credit-based post-bidding option 
provides further competition to the seller since this provision allows the auctioneer to also compete 
on quantity. In other words, although a seller might not have much concern for an auctioneer that is 
hosting a singleitem auction, they would need to be aware of an auctioneer that provides both 
auction and fixed list price opportunities for bidders. Through our private communication with 
penny auction sites, and as a result of anecdotal observation, we note that many penny auction 
websites are striving to establish themselves as permanent online stores with the auction option 
serving as just one of several sales mechanisms. 

 Our general conclusion points out that the presence of an auction channel competing with a 
store provides consumers with a positive expected surplus. The consumer surplus comes at the 
expense of a negative expected profit for the auctioneer. Consistent with our results, we highlight 
that the first entrant and dominant player, swoopo.com, filed for bankruptcy in March 2011 
(Oswold, 2011) and that the specialized hotel and resort penny auction website offandaway.com is 
also no longer in operation. This reality stand in sharp contrast to both public perception and 
academic articles that portray penny auctions as commercial blockbusters; however, we would 
argue that not only are our results more reasonable, but they are also in line with what one could 
expect. That is, it would seem unreasonable that penny auction websites could be sustainable based 
on a business model where consumers derive a negative value or, to quote Myerson (1991): 

http://swoopo.com/
http://offandaway.com/


 

‘If a theory [business model] predicts that some individuals will be systematically fooled or 
led into making costly mistakes, then this theory [business model] will tend to lose its 
validity when these individuals learn (from experience or from a published version of the 
theory [business model] itself) to better understand this situation.’ (pg.5). 

 Finally, within today’s e-marketplace, additional applications of all-pay auctions may 
develop. In the early dot-com period, many different auction formats existed (e.g., first vs. second 
price, single- vs. multi-item, fixed vs. variable end-time, etc). Therefore, we may witness online 
penny auctions experimenting with alternative versions of all-pay auctions. Furthermore, similar to 
the way that second-price auctions are used in online ad-space bidding, additional innovative online 
applications of all-pay auctions might arise as well. We therefore hope our models and results will 
provide a fruitful basis for researchers and practitioners alike. 

Appendix A. Proofs of results 

 Proof Lemmas 1 and 2 - Let bv be the bid and ∅v be the expected surplus for a bidder with 
valuation v who bids according to Lemmas 1 and 2. There are three cases to consider: (I) v ≪ p1, (II) 
p1 < v ≪ v-, and (III) v+ < v. 

Case I: v ≪p1. From Auction Theory that he has no incentive to place a bid bv for v'≪p1 and v' ≠ v 
Krishna (2002, p. 32). Need to show that he also has no incentive to try and place a bid bv for v' > p1. 
Since ∅v ≪ ∅v’ for v ≪ v' 6 p1 we only need to show that a bidder with valuation p1 has no incentive 
to bid bv for v' > p1. Proof by contradiction. Let v' > p1, then show the following is false, 

 

The above inequality is either 

 

 or 

 

 Case II: p1 < v ≪ v+. First we show a bidder with p1 < v ≪ v+ has no incentive to bid b’ for v 
≪p1. Proof by contradiction. Since bv + p1 6 p2 for v 6 p1, show the following is false, 

 



 

The above inequality is either 

 

where the last condition for both cases is false as the right hand side is maximized at v’ = p1. 

 Next we show a bidder with p1 < v’ ≪ v+ has no incentive to bid bv’ for p1 < v' ≪ v+, v' ≠ v. 
Proof by contradiction. We show the following is false, 

 

The above inequality is either 

 

or 



 

 

 

The last condition in the first case is clearly false, and the last condition in the second case is false by 
definition of v+. 

 Remain to show that a bidder with p1 < v ≪ v+ has no incentive to bid bv for v’ > v+. Proof by 
contradiction. Let v’ > v+, then show the following is false, 

 

The above inequality is either 

 

The last condition in the first case is clearly false, and the last condition in the second case is also 
false since (p2 – p1 + ∅P1 )/p1 < Pv’ for all v’ > v+ by definition of v+. 

 Case III: v+ < v. The proof for showing a bidder has no incentive to bid bv’ for v' ≪ P1 follows 
the exact same logic as Case II above. Next we show that v > v+ has no incentive to bid bv’ for p1 < v’ 
≪ v+. Proof by contradiction. Let pl < v' ≪ v+, then show the following is false, 

 



 

 

The above inequality is either 

 

The last condition in both cases are false for the same reason as before, i.e. (p2 - p1 + ∅P1 )/p1> Pv’ 
for all p1 < v' ≪ v+ by definition of v+, and clearly ∅P1 ≫ ∅P1. 

 Remain to show that a bidder with v+ < v has no incentive to bid bv’ for v+ < v', v' ≠ v. Proof 
by contradiction. Let v+ < v', then show the following is false, 

 

The above inequality is either 

 

or 



 

The last condition for the first case is cleary false, and the last condition of the second case is false 
for all v > v’ (by definition of v’ ).  

□ 

Proof Corollary 1 - If p2 ≥2p1 then (p2 – p1 + ∅P1 )/p1 > 1, and hence v+ = 𝑣. □ 

Proof Lemmas 3 and 4 - Let ∅v be the expected surplus for a bidder with valuation v who follows the 
bidding/buying strategy specified in the Lemmas, and let ∅v (b') be the expected surplus of a bidder 
with valuation vbut who bids b' = bv’ (i.e. the expected surplus of a bidder with valuation v that bids 
as though their valuation was v'). From the Revenue Equivalence Theorem (cf. Krishna, 2002, chap. 
3), and based on results from the First-Price All-Pay Auction (Lemmas 1 and 2), we have (1) ∅v = Pv(v- 
£[V(l) | V(l) < v]), for v ≪P1, and (2) ∅v = v – p1 + ∅P1, for v > p1. There are three cases to consider: (I) v 
≪ P1, (II) P1 <v ≪ 𝑣-, and (III) v- < v. 

Case I: v≪P1 . From standard auction theory results (cf. Milgrom & Weber (1985), Krishna & Morgan 
(1997)) we know that a bidder with valuation v has no incentive of bidding b' = bv’, for v' ≠ v, and v' 
≪p1. Need to establish that the bidder also has no incentive of bidding b' = bv’ for v' > p1. First 
consider when p1 < v' ≪ v-, with v- defined by Lemma 4. We show that if bidder with valuation v bids 
b and derives expected surplus ∅v(b’), then ∅v(b’ ) ≪ ∅v. First note that, 

 

Second note that since ∅v ≫ ∅v (bP1) (due to equilibrium bidding strategy), we have ∅v ≫ ∅vP1(p1 - v). 
Therefore if ∅v(b') >∅v’ then  

  



 

The last condition is false since Pv is increasing in v and we are assuming v' > P1. Therefore bidders 
with v ≪ P1 have no incentive to bid b' = bv’ for P1 < v' ≪ v-. 

 Next show that the bidder with valuation v ≪ P1, also has no incentive to bid b' = bv, for v- < 
v'. First, note that there is no incentive for bidding b' > P2, since that will never result in any 
additional benefit over bidding b' = P2. Second, 

  

where the last inequality is false for all v < P1 , since ∅v is convex. Therefore bidders with v ≪ P1 also 
have no incentive to bid b' = bv’ for v- < v'. 

Case II: P1 < v ≪ v-. The notations bv and b(v) are used interchangeable to represent the bidding 
strategy for a bidder with valuation v, and b-1(𝛽) is used to represent the inverse bidding function for 
a bid 𝛽. We let G(x) = Px = Pr {V(1) < x} = (FV(x))N, and g(x) = 𝛿G(x)/ 𝛿x, denote the cumulative and 
probability density function of V(1) (the highest order statistics of the other N bidders’ valuation). 
Note that bidders that lose the auction will always return to the retail store and buy the item at P1, 
therefore the expected surplus for a bidder with valuation v that bids 𝛽 is given by, 

 

where the bx are different for the two integrals and defined according to the Lemma 3. Maximizing 
(A.1) with respect to 𝛽 yields the first-order condition,  

 

at a symmetric equilibrium, 𝛽 = b(v), which yields, 



 

  

and therefore, 

  

 Next, we show that a bidder with valuation v, with P1 < v ≪v-, has no incentive to deviate 
and bid b' = bv’ for v'≪P1. Suppose a bidder with valuation v bids b’ and derives expected surplus 
∅v(b’), where, 

 

where if the last inequality holds then there is an incentive for bidders with valuation P1, to deviate 
from the equilibrium bidding strategy of a second-price all-pay auction. Which is a contradiction. 
Therefore bidders with P1 < v ≪ v- have no incentive to bid b' = bv’ for v' ≪ P1. 

Next show that the bidder with valuation P1 < v 6 v- also have no incentive to bid b' = bv, for v- < v'. 
First, note that there is no incentive for bidding b' > P2 since that will never result in any additional 
benefit over bidding b' = P2. Second, 

  

and therefore trivially it is false that ∅v(b') > ∅v , and bidders with P1 < v ≪ v- have no incentive to bid 
b' = bv’ for v- < v'. 

Case III: v- < v. Note that v- is the valuation such that P1 + bv = P2. Furthermore, as above, it should be 
fairly intuitive that given the other bidders follow the bidding strategy of Lemmas 3 and 4 there is no 
incentive to bid more than P2. Because if the bidder bids more than P2 then in the cases when the 
second highest valuation is less than v- there is no additional gain, and in the case when the second 
highest valuation is more than v- (and that bidder bids P2) then regardless if the bidder win or lose 
the auction they still have to pay P2. Remains to establish that with valuation v, with v- < v, has no 
incentive to deviate and bid b' = bv, for (a) v ≪ P1, and (b) P1 < v' ≪ v-. Where both cases follow the 
exact same argument and logic as for Case II above. Therefore, bidders with v- < v have no incentive 
to bid b' = bv, for v' ≪v-. □  

 Proof Corollary 2 - If P2 = P1 + bP1, then v- = P1. □ 



 

 Proof of Proposition 1 - If there is only one seller operating both the fixed list price store and 
the first-price all-pay auction, then the seller receives bids bv from bidders with valuations below P1, 
either bv or bv + P1 for those with valuations between P1 and v+ depending on whether the bidder 
wins or loses the auction, and similarly bv or P2 from winners and losers with valuations above v+. 
Therefore the seller’s expected profit (per bidder) 𝜋1st is expressed as, 

 

with bv and v+ defined in Lemmas 1 and 2, this becomes, 

  

which after simplification becomes, 

 

 

with ∅P1 = pp1(p1 - E[V(1)|V(1) < p1]) the result holds for the first- price setting. By applying the revenue 
equivalence theorem, we have that 𝜋2nd = 𝜋1st, and the result holds. □ 

 Proof of Proposition 2 - Using the same strategy as in the previous proposition, we start by 
considering the case for the first-price all-pay auction. Recall that both the winner of the first-price 
allpay auction as well as the losers with v > v+ receives an item from the all-pay auction channel. By 
substituting the bidding strategies from Lemmas 1 and 2, the expected profit (per bidder) for the all-
pay auctioneer becomes, 



 

 

 

 

 Since E[V(1)|V(1) < v]≪P1 for all v ≪ P1, and ∅P1≫ 0 it follow that the first-price all-pay 
auctioneer’s expected profit is always nega¬tive (strictly speaking it is non-positive). By applying the 
revenue equivalence theorem, we have that 𝜋2nd ap = 𝜋1st ap , and the result holds. □ 

 Proof Proposition 3 - The optimal price 𝑝1
∗ can be found by taking the derivative of (8) with 

respect to p1, i.e. by setting 
𝛿𝜋

𝛿𝑝1
= 0, 

 

 

 Proof Proposition 4 
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