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Abstract

This paper proposes an analysis of the effects of consensus and preference aggregation on the

consistency of pairwise comparisons. We define some boundary properties for the inconsistency

of group preferences and investigate their relation with different inconsistency indices. Some

results are presented on more general dependencies between properties of inconsistency indices

and the satisfaction of boundary properties. In the end, given three boundary properties and

nine indices among the most relevant ones, we will be able to present a complete analysis of what

indices satisfy what properties and offer a reflection on the interpretation of the inconsistency of

group preferences.

Keywords: Pairwise comparison matrix, inconsistency indices, boundary properties, group de-

cision making, analytic hierarchy process.

1 Introduction

In a wide range of decision making problems, it occurs that an expert, or a group of
experts, is asked to rate some alternatives. Selecting the best alternative is trivial when
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the number of considered alternatives is very small, but complexity arises as the num-
ber of alternatives, and criteria with respect to which alternatives are judged, grows.
Techniques based on pairwise comparisons allow the expert to discriminate between
two alternatives at a time, thus decomposing the problem into more simple and easily
tractable sub-problems.
The Analytic Hierarchy Process (AHP) by Saaty (1977, 1980) is probably the best
known among all the methods using pairwise comparisons. In a recent survey by
Ishizaka and Labib (2011) on the latest developments of the AHP, consistency of pref-
erences and group decisions have been considered hot topics, and the possibility of esti-
mating inconsistency been regarded as a valuable asset for techniques adopting pairwise
comparison matrices.

Consistency has been widely regarded as a desirable, yet hardly ever achievable, prop-
erty of preferences in decision making problems. Following the thesis of Irwin (1958),
which links the concepts of preference and discrimination, being consistent in express-
ing preferences means being rational in discriminating between alternatives. Although
one might argue that consistency does not necessarily imply expertise of the decision
maker (consistent preferences could possibly be obtained randomly), it is undebatable
that a good expert should always be able to state his preferences in a non-contradictory
way. Hence, although consistency alone does not guarantee the expertise of a decision
maker, the existence of inconsistencies should be symptomatic of the decision maker’s
scarce preparation or lack of knowledge of the problem. Going back in time, even in the
fundamental contribution by Savage (1972) consistency of preferences was regarded as a
desideratum. More recently, Gass (2005) recalled that also Luce and Raiffa (1957) and
Fishburn (1991) regarded transitivity of preferences, and consequently their consistency,
as an auspicable, but not necessary, condition for the preferences of a decision maker.

Note that the use of the concept of consistency has not been limited to the quan-
tification of inconsistency. For example, just to cite the most recent results, it has
been used to improve consistency of preferences in the framework of a model based on
Hadamard product between matrices (Kou et al., 2014), to detect the most inconsistent
comparisons (Ergu et al., 2011), and to derive the priority vector by means of a geo-
metric similarity measure (Kou and Lin, 2014). On the other hand, also the concept of
group decisions with pairwise comparisons has been studied; for example Altuzarra et al.
(2010) proposed a statistical model for consensus in the AHP including assumptions on
group consistency, and Bernasconi et al. (2014) studied, from the empirical point of view,
different aggregation methods for preferences.

Consistency has been a widely studied research topic in decision sciences, but, in spite
of the growing effort in studying group decisions, most of the research on consistency
of preference relations has focused on the reliable assessment of the degree of incon-
sistency of single pairwise comparison matrices. Only few, and more recent, studies
(Escobar et al., 2004; Grošelj and Zadnik Stirn, 2012; Lin et al., 2008; Liu et al., 2012)
have tried to extend the issue of inconsistency quantification to the case with multi-
ple decision makers by examining single measures of inconsistency but never propos-
ing a more general reasoning on the matter. Furthermore, very few studies have in-
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vestigated the connection between consensus and consistency. In a qualitative study,
Weiss and Shanteau (2004) highlighted how consensus alone does not necessarily lead
to better decisions and, instead, emphasized the fundamental role of the expertise of
decision makers, which they called consistency.

In this paper we will provide further results on the connection between group decisions
and inconsistency, in particular on how the former affects the latter. More specifically
we shall define some general boundary properties for the inconsistency of a group of
decision makers and see whether different inconsistency indices satisfy them or not. In
doing so, we shall be able to derive and use some more general results starting from
some axiomatic properties of inconsistency indices (Brunelli and Fedrizzi, 2013).

The paper is outlined as follows. In Section 2 we recall the definitions of pairwise com-
parison matrices and inconsistency, and we summarize the axioms which were proposed
to characterize inconsistency indices. In Section 3 we define the boundary properties
and, within the same section, in Subsections 3.1 and 3.2 we study the satisfaction of
lower and upper boundary properties. In Section 4 we discuss the implications of the
results, and in Section 5 we draw the conclusions.

2 Pairwise comparison matrices and inconsistency indices

The intensity of pairwise preferences of a decision maker can be represented on bipolar
scales. The approach proposed by Fishburn (1991) based on skew symmetric addi-
tive preferences considers the opinions of a decision maker to be expressed on the real
line with the value 0 representing indifference between two alternatives. Conversely,
Luce and Suppes (1965) and part of the fuzzy sets community (De Baets et al., 2006)
studied judgments expressed on the scale ]0, 1[ with the indifference represented by the
value 0.5. Hereafter, due to its popularity, we shall instead consider the approach offered
by Saaty (1977, 1980), where pairwise judgments are expressed as entries of positive re-
ciprocal matrices, often called pairwise comparison matrices. Even so, our conclusions
should not lose in generality as it was proven that all the above mentioned approaches
are group isomorphic to each other (Cavallo and D’Apuzzo, 2009). Given a set of n al-
ternatives, a pairwise comparison matrix is a positive square matrix A = (aij)n×n such
that aijaji = 1∀i, j, where aij is the subjective assessment of the relative importance
of the i-th alternative with respect to the j-th. For instance, aij = 2 means that, for
the decision maker, the i-th alternative is two times better than the j-th. A pairwise
comparison matrix is consistent if and only if

aik = aijajk ∀i, j, k. (1)

Furthermore, if and only if a pairwise comparison matrix A is consistent, there exists a
vector w = (w1, . . . , wn) such that

aij =
wi

wj

∀i, j.
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A possible way of finding vector w from a consistent pairwise comparison matrix is the
geometric mean method

wi =





n∏

j=1

aij





1

n

.

The same method is also commonly used to estimate reliable vectors from inconsistent
pairwise comparison matrices.
For notational convenience, we define the set of all pairwise comparison matrices as

A = {A = (aij)n×n|aij > 0, aijaji = 1 ∀i, j, n > 2} .

Similarly, the set of all consistent pairwise comparison matrices A∗ ⊂ A is defined as

A∗ = {A = (aij)n×n|A ∈ A, aik = aijajk ∀i, j, k}

A very precise definition of consistency was given in (1), but in the literature there is
not a meeting of minds on how inconsistency should be quantified. In fact, inconsistency
is generally regarded as a lack of consistency, i.e. a deviation from (1), but there is not
a unique formula to quantify it. To overcome this problem, inconsistency indices have
been introduced. Inconsistency indices are functions

I : A → R , (2)

where the value I(A) is an estimation of the degree of inconsistency of the pairwise com-
parison matrix A. It is important to note that each inconsistency index is in fact a differ-
ent definition of inconsistency measuring. Establishing if a function returns a reasonable
estimation of inconsistency—i.e. if a function is a good definition of inconsistency—is
a crucial point indeed. In fact, there exist infinitely many functions (2) whose be-
havior is obviously meaningless when it comes to estimate the degree of inconsistency
of a pairwise comparison matrix. This is the reason which motivated the introduc-
tion of some minimal reasonable properties that any inconsistency index should satisfy
(Brunelli and Fedrizzi, 2013). The five axiomatic properties are summarized and justi-
fied in the following and will later be used to derive some results. We refer to the original
paper (Brunelli and Fedrizzi, 2013) for more detailed descriptions and comments.

A1: There exists a unique ν ∈ R representing the situation of full consistency, i.e.

∃!ν ∈ R such that I(A) = ν ⇔ A ∈ A∗.

Hence, every inconsistency index should at least be able to distinguish between
fully consistent and inconsistent matrices.

A2: Changing the order of the alternatives does not affect the inconsistency of prefer-
ences. That is,

I(PAPT ) = I(A)

for any permutation matrix P. Thus, inconsistency remains unchanged when the
names of alternatives are exchanged.
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A3: If preferences of a matrix A are properly intensified obtaining a new matrix which
we denote by A(b), then the inconsistency of A(b) cannot be smaller than the
inconsistency of A. In fact, if all the expressed preferences indicate indifference
between alternatives, it is aij = 1∀i, j, and A is consistent. Going farther from
this uniformity means having sharper and stronger judgments, and this should
not make their possible inconsistency less evident. In other words, intensifying
the preferences (pushing them away from indifference) should not de-emphasize
the characteristics of these preferences and their possible contradictions. More
formally, it was proved by Saaty (1977) that the exponential is the only non-trivial
function preserving reciprocity and consistency (when A is consistent). Thus, the

intensification of preferences is obtained defining A(b) =
(

abij

)

n×n
with b > 1.

Then, the property is as follows

I(A(b)) ≥ I(A) ∀A ∈ A, b > 1.

A4: Given a consistent pairwise comparison matrix and considering a single arbitrary
comparison between two alternatives, then as we push its value far from its original
one, we clearly increase the distance from consistency. Axiom 4 requires that the
inconsistency of the matrix should not decrease. More formally, given a consistent
matrix A ∈ A∗, and considering any arbitrary non-diagonal element apq (and its
reciprocal aqp) such that apq 6= 1, let A(δ) be the inconsistent matrix obtained
from A by replacing the entry apq with aδpq, where δ 6= 1. Necessarily, aqp must be

replaced by aδqp in order to preserve reciprocity. Let A(δ′) be the inconsistent ma-

trix obtained from A by replacing entries apq and aqp with aδ
′

pq and aδ
′

qp respectively.
The property can then be formulated for all A ∈ A∗ as

δ′ > δ > 1 ⇒ I(A(δ′)) ≥ I(A(δ))

δ′ < δ < 1 ⇒ I(A(δ′)) ≥ I(A(δ)).
(3)

A5: Function I is continuous with respect to the entries of A. This is required, as
infinitesimally small variations of the preferences should cause infinitesimally small
changes of the value of the inconsistency.

We remark that all the indices described in this paper measure the inconsistency of
the preferences. Nevertheless, in order to avoid multiple labels, we maintain the original
names for the most popular indices, e.g. ‘Consistency Index’ and ‘Geometric Consistency
Index’.

3 The effects of consensus on the consistency of preferences

In the typical group decision framework, there are m (m ≥ 2) decision makers, each
associated with a set of preferences. Hence, there exists m pairwise comparison matrices

in the form A1 = (a
(1)
ij )n×n, . . . ,Am = (a

(m)
ij )n×n.
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In our opinion, it would be interesting to study if, and how, the inconsistency of the
pairwise comparisons changes under some circumstances. When studying the connection
between consensus and inconsistency, some natural questions could be the following:

• How does the inconsistency of the preferences of the single decision makers react
when they negotiate and their preferences converge to a consensual solution?

• Is the group inconsistency of the aggregated preferences a weighted mean of the
inconsistencies of the original preference relations or systematically higher/lower?

In some recent papers, the problem of computing an upper bound for group inconsis-
tency has been addressed only for a couple of inconsistency indices. In particular, Xu
(2000) allegedly proved that Saaty’s Consistency Index CI of a combination of pairwise
comparison matrices cannot be greater that the maximum CI of the single pairwise
comparison matrices. However, Lin et al. (2008) showed that the proof was not satisfac-
tory and that Xu’s result was a conjecture. Finally, Liu et al. (2012) provided a proof
showing that Xu’s conjecture was, in effect, true. Grošelj and Zadnik Stirn (2012) noted
that the whole controversy was based on the unawareness that a more general problem
had already been solved before by Elsner et al. (1988). Some studies have been proposed
for another inconsistency index; Escobar et al. (2004) investigated the upper boundary
of the Geometric Consistency Index, GCI.

The question of how the pairwise comparison matrices of different decision mak-
ers should be aggregated was answered when Aczel and Saaty (1983) proved that the
weighted geometric mean is the only reasonable function to do so. Hence, when it comes
to synthesize m pairwise comparison matrices into a single one A⋆ = (a⋆ij)n×n, then its
entries should be obtained as the weighted geometric means of the corresponding entries
of the decision makers’ pairwise comparison matrices, e.g.

a⋆ij =

m∏

h=1

a
(h)
ij

λh

(4)

where λ = (λ1, . . . , λm) such that λh ≥ 0 ∀h and
∑m

h=1 λh = 1 is the weight vector
of relative importances of the decision makers. We use Lm to denote the set of all the
weight vectors with m components. That is,

Lm =

{

(λ1, . . . , λm)

∣
∣
∣
∣
λh ≥ 0 ∀h,

m∑

h=1

λh = 1

}

. (5)

Let us then define some properties which will play a pivotal role in the rest of the paper.

Definition 1 (Boundary properties). Let A⋆ be the aggregated pairwise comparison
matrix as in (4). A function I : A → R is lower bounded (w.r.t the geometric mean) if:

I (A⋆) ≥ min {I (A1) , . . . , I (Am)} ∀A1, . . . ,Am ∈ A, λ ∈ Lm (6)

and upper bounded (w.r.t. the geometric mean) if

I (A⋆) ≤ max {I (A1) , . . . , I (Am)} ∀A1, . . . ,Am ∈ A, λ ∈ Lm (7)
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A function I : A → R is strongly upper bounded (w.r.t the geometric mean) if and only
if

I(A⋆) ≤
m∑

h=1

λhI(Ah) ∀A1, . . . ,Am ∈ A, λ ∈ Lm (8)

Note that, even if not specified, the previous definition is for all n,m ≥ 2. Furthermore,
Figure 1 provides a graphical interpretation of these properties in the case of two pairwise
comparison matrices.

λ

I(B)

I(A)

I(A⋆)

(a) Lower boundary property

λ

I(B)

I(A)

I(A⋆)

(b) Upper boundary property

λ

I(B)

I(A)

I(A⋆)

(c) Strong upper boundary prop-
erty

Figure 1: Interpretations of boundary properties in the case of two decision makers with
pairwise comparison matrices A and B. We use the convention λ1 = λ and
λ2 = 1− λ.

Remark 1. Given a set of m matrices A1, . . . ,Am, if a function I is strongly upper
bounded, then it is also convex w.r.t. the variables (λ1, . . . , λm) ∈ Lm. In fact, if a
function I is not convex, then, there exists a subset {A1, . . . ,As} ⊂ A and a vector
(λ

′

1, . . . , λ
′

s) ∈ Ls such that I(A⋆) >
∑s

i=1 λiI(Ai), which contradicts the definition of
strongly upper bounded inconsistency index.

We believe that it is important to study the phenomenon of inconsistency in the wider
context of group decisions and raise the level of the discussion from single indices to
their properties A1–A5. In fact, at this point some questions may arise concerning the
connection between the axiomatic properties A1–A5, here recalled in Section 2, and
the boundary properties of Definition 1. Namely, before trying to prove whether or
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not each single inconsistency index satisfies the boundary properties, we shall use the
axiomatic framework A1–A5 to derive more general results. For instance, one type of
more general result would be that, if some axiomatic properties hold for one index I,
then it is guaranteed that also some of the boundary conditions in Definition 1 must
hold/not hold for I.

3.1 Lower boundary of inconsistency indices

If an inconsistency index is lower bounded, then it is impossible to achieve a group incon-
sistency lower than the lowest inconsistency of all the decision makers, by aggregating
their preferences. With the following proposition, we shall show that an inconsistency
index satisfying the simple axiom A1 cannot be lower bounded. Perhaps due to the
previous lack of an axiomatic framework which allowed the derivation of general results,
to our best knowledge, this result has never been explicitly spelled out.

Proposition 1. If an inconsistency index satisfies A1, then it cannot be lower bounded.

Proof. It is sufficient to consider a matrix A /∈ A∗ and its transpose AT . Since
they are both inconsistent, A1 implies I(A) > 0 and I(AT ) > 0, but the new ma-
trix obtained as their element-wise geometric mean

(√
aijaji

)

n×n
is always consistent.

As an inconsistency index respects A1, then the result that I
((√

aijaji
)

n×n

)

= 0 <

min{I(A), I(AT )} ∀A /∈ A∗ concludes the proof.

Let us remark the importance of this result: for any inconsistency index satisfying the
extremely weak axiom A1, it is possible that, given some pairwise comparison matri-
ces, the inconsistency index calculated on their geometric mean-based combination be
smaller than the minimum of their inconsistencies. This suggests that negotiation and
convergence towards consensus might have a good effect on consistency of preferences.
Furthermore, it can happen that two decision makers, initially completely inconsistent
could, by negotiating, converge towards a consensual and fully consistent solution. Con-
sider, for instance, the case

A1 =





1 1/9 9
9 1 1/9

1/9 9 1



 A2 =





1 9 1/9
1/9 1 9
9 1/9 1



 , (9)

whose combination with weights λ1 = λ2 = 0.5 is the matrix

A⋆ =





1 1 1
1 1 1
1 1 1



 ∈ A∗. (10)

This should make clear that, if the reliability of a decision should depend on the expertise
of the decision makers, the evaluation of inconsistency of a consensual matrix should not
be considered as a substitute for the evaluation of single pairwise comparison matrices.

8



Therefore, if what we want to asses by means of inconsistency tests is the ability of a
decision maker, then the inconsistency of their initial preferences is more appropriate
than the inconsistency of their modified/aggregated preferences. Clearly, moving towards
consensus, or to an ever greater extent having his preferences aggregated with someone
else’s, does not make the decision maker a better and more capable expert.

To further dwell on this topic, we shall now focus on upper boundaries of inconsistency
indices.

3.2 Upper boundaries of inconsistency indices

We start examining the properties of upper boundary and strong upper boundary by
considering their connections with the five axioms A1–A5.

Proposition 2. If an index satisfies A1 but not A3 or A4, then the index is not upper
bounded.

Proof. Let us assume that index I satisfies A1 but not A3. Then there exists a matrix
A such that I(A(b′)) < I(A(b)) > I(A(b′′)) for some b′ < b < b′′. On the other side,
A(b) can be written as the weighted geometric mean of A(b′) and A(b′′), i.e.

A(b) =
(

abij

)

=
(

a
(λb′+(1−λ)b′′)
ij

)

=
(

ab
′

ij

λ
ab

′′

ij

1−λ
)

,

for a suitable λ ∈]0, 1[ as in (4). Then it is I(A(b)) > max{I(A(b′)), I(A(b′′))} and (7)
is violated. Therefore, I is not upper bounded.
The proof for the case of A1 holding and A4 not holding is similar, and thus omitted.

In other words, Proposition 2 states that axioms A3 and A4 are necessary conditions
for an index to be upper bounded. Moreover, considering that the strong upper boundary
property is tighter than the upper boundary property, we can formulate the following
corollary.

Corollary 1. If an index satisfies A1 but not A3 or A4, then the index is not strongly
upper bounded.

Building on Proposition 2, and drawing on previous results showing that a number of
indices do not satisfy A3 or A4 (see Brunelli and Fedrizzi, 2013), we can formalize the
fact that these same indices are not upper bounded. For brevity, their definitions are
omitted and the reader can refer to the original works as well as to a survey paper by
Brunelli et al. (2013a).

Corollary 2. Indices GW (Golden and Wang, 1989), HCI (Stein and Mizzi, 2007),
NIσn (Ramı́k and Korviny, 2010) and RE (Barzilai, 1998) are not upper bounded.

Example 1. Consider two decision makers and the corresponding two pairwise compar-
ison matrices

A =





1 4 1
1/4 1 1
1/1 1 1



 B =





1 2 1
1/2 1 7
1 1/7 1



 .

9



Their preferences are aggregated according to (4) obtaining the aggregated pairwise

comparison matrix A⋆(λ) =
(

aλijb
1−λ
ij

)

. Then, the index RE proposed by Barzilai (1998)

is computed for λ ∈ [0, 1]. In Figure 2 is reported the plot of this inconsistency index,
i.e. RE (A⋆(λ)), as a function of λ. It can be noted, for example, that the inconsistency
of the aggregated preferences RE (A⋆(0.5)) is greater than the inconsistency of A and
greater than the inconsistency of B, i.e. RE (A⋆(0.5)) > max{RE(A), RE(B)}. Thus,
in this example, group preferences can be more inconsistent than the preferences of all
decision makers, as index RE is not upper bounded.

Figure 2: Example of a index which is not upper bounded: RE.

Hereafter, until the end of the section, we shall analyze the upper boundaries of some
other inconsistency indices. Saaty’s CI remains the most popular inconsistency index
in the literature and thus any analysis which does not take it into account, would be
incomplete.

Definition 2 (Consistency Index CI). Given a pairwise comparison matrix A of order
n, its Consistency Index (CI) is defined as:

CI(A) =
λmax(A)− n

n− 1
. (11)

where λmax(A) is the maximum eigenvalue of A.

To avoid possible confusion, we remark that the symbol λmax has been used here, as
usual, to denote the largest eigenvalue and should not be confused with the coefficients
λh.
Liu et al. (2012) already proved that CI is upper bounded. Here we extend their findings
and show that it is strongly upper bounded. Let us first recall, in the following Lemma,
a result by Elsner et al. (1988).

Lemma 1 ((Elsner et al., 1988)). Given m matrices M1, . . . ,Mm ∈ R
n×n
+ and a vector

λ ∈ Lm, then

ρ(M⋆) ≤
m∏

h=1

ρ(Mh)
λh (12)
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where ρ denotes the spectral radius, and M⋆ is the weighted geometric mean of M1, . . . ,Mm

as in (4).

Taking into account Lemma 1, and the inequality between arithmetic and geometric
means, one derives that

ρ(A⋆) ≤
m∑

h=1

λhρ(Ah). (13)

Since the Perron-Frobenius theorem guarantees that the spectral radius of a positive
matrix equals its maximum eigenvalue, ρ(A) = λmax(A), by noting that CI(A) is a
positive affine transformation of λmax(A), the following corollary, stating the strong
upper boundedness of CI, can be derived.

Corollary 3. Index CI is strongly upper bounded, i.e. the pairwise comparison matrix
A⋆ as in (4) satisfies

CI(A⋆) ≤
m∑

h=1

λhCI(Ah) ∀A1, . . . ,Am ∈ A, λ ∈ Lm. (14)

Among other indices, the Geometric Consistency Index (GCI) has probably been the
most widely studied.

Definition 3 (Geometric Consistency IndexGCI (Crawford and Williams, 1985)). Given
a pairwise comparison matrix A of order n, its Geometric Consistency Index (GCI) is
defined as:

GCI(A) =
2

(n− 1)(n − 2)

n−1∑

i=1

n∑

j=i+1

ln2

(

aij
(
∏n

k=1 ajk)
1

n

(
∏n

k=1 aik)
1

n

)

. (15)

Escobar et al. (2004) proved that index GCI is upper bounded. Nevertheless, here we
shall prove that GCI is strongly upper bounded.

Proposition 3. Index GCI is strongly upper bounded, i.e. the pairwise comparison
matrix A⋆ as in (4) satisfies

GCI(A⋆) ≤
m∑

h=1

λhGCI(Ah) ∀A1, . . . ,Am ∈ A, λ ∈ Lm. (16)

Proof. As observed by Brunelli et al. (2013b), GCI(A) is proportional to the following
quantity

n∑

i<j<k

(ln aijajkaki)
2 . (17)
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Therefore, by expanding and rearranging (16) in the form (17) one obtains

n∑

i<j<k

(

ln

(
m∏

h=1

a
(h)
ij

λh

m∏

h=1

a
(h)
jk

λh

m∏

h=1

a
(h)
ki

λh

))2

≤
n∑

i<j<k

m∑

h=1

λh

(

ln
(

a
(h)
ij a

(h)
jk a

(h)
ki

))2
.

(18)
If we analyze a single transitivity (i, j, k), then we shall drop

∑n
i<j<k and, for notational

convenience, use xh := a
(h)
ij a

(h)
jk a

(h)
ki . Then, we can rewrite it as

(

ln

m∏

h=1

xλh

h

)2

≤
m∑

h=1

λh (lnxh)
2 (19)

Considering that ln a+ ln b = ln ab and ln ab = b ln a, it becomes
(

m∑

h=1

λh lnxh

)2

≤
m∑

h=1

λh (lnxh)
2 .

Now by putting yh := lnxh, we can rewrite it as
(

m∑

h=1

λhyh

)2

≤
m∑

h=1

λhy
2
h.

which holds thanks to the convexity of the quadratic function. Thus, (19) is satisfied.
Extending it to the sum for all the transitivity is straightforward as we know that, as it
holds for all transitivities, then it must hold for their sum too.

Another index, CI∗, was proposed by Peláez and Lamata (2003) and used to improve
the consistency of judgments.

Definition 4 (CI∗ (Peláez and Lamata, 2003)). Given a pairwise comparison matrix
A of order n, CI∗ is defined as:

CI∗(A) =
n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

(
aijajk
aik

+
aik

aijajk
− 2

)/(
n

3

)

. (20)

The validity of such an index has been corroborated by the fact that Shiraishi et al.
(1998) independently suggested another inconsistency index (c3) which was in effect
proved to be proportional to CI∗ by Brunelli et al. (2013b). Notably, both indices CI∗

and c3 were also used as an objective function in order to estimate missing elements
in incomplete pairwise comparison matrices (Shiraishi et al., 1999). With the following
proposition we prove that CI∗, and consequently also c3, are strongly upper bounded.

Proposition 4. Index CI∗ is strongly upper bounded, i.e. the pairwise comparison
matrix A⋆ as in (4) satisfies

CI∗(A⋆) ≤
m∑

h=1

λhCI∗(Ah) ∀A1, . . . ,Am ∈ A, λ ∈ Lm. (21)
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Proof. By expanding and rearranging (21) one obtains

n∑

i<j<k





m∏

h=1

a
(h)
ij

λh

m∏

h=1

a
(h)
jk

λh

m∏

h=1

a
(h)
ki

λh

+
1

∏m
h=1 a

(h)
ij

λh∏m
h=1 a

(h)
jk

λh∏m
h=1 a

(h)
ki

λh

− 2



 ≤

m∑

h=1

n∑

i<j<k

λh



a
(h)
ij a

(h)
jk a

(h)
ki +

1

a
(h)
ij a

(h)
jk a

(h)
ki

− 2



 .

(22)

Now, similarly to what was done in the previous proof, we consider the single transitivity

(i, j, k) and rename the comparisons as follows: xh := a
(h)
ij a

(h)
jk a

(h)
ki . Thus, we obtain

(
m∏

h=1

xλh

h +
1

∏m
h=1 x

λh

h

− 2

)

≤
m∑

h=1

λh

(

xh +
1

xh
− 2

)

(23)

which can be rewritten as

m∏

h=1

xλh

h

︸ ︷︷ ︸

I

+

m∏

h=1

(
1

xh

)λh

︸ ︷︷ ︸

II

≤
m∑

h=1

λhxh

︸ ︷︷ ︸

III

+

m∑

h=1

λh
1

xh
︸ ︷︷ ︸

IV

. (24)

Then, it is sufficient to prove that I ≤ III and II ≤ IV. Namely, the following two
inequalities must hold simultaneously.

m∏

h=1

xλh

h ≤
m∑

h=1

λhxh and
m∏

h=1

(
1

xh

)λh

≤
m∑

h=1

λh
1

xh
.

The fact that they hold derives from the inequality between the geometric and the arith-
metic mean. At this stage it is proved that inequality (23) is true for single transitivities,
but its extension for the sum

∑n
i<j<k is straightforward.

More recently, another index, here denoted by ICD, was proposed and grounded in
the theory of Abelian linearly ordered groups (Cavallo and D’Apuzzo, 2009, 2010). This
index can be equivalently formulated for different types of preference relations where
judgments are expressed on different scales.

Definition 5 (ICD (Cavallo and D’Apuzzo, 2009)). Given a pairwise comparison matrix
A of order n, ICD is defined as:

ICD(A) =

n−2∏

i=1

n−1∏

j=i+1

n∏

k=j+1

(

max

{
aijajk
aik

,
aik

aijajk

}) 1

(n3) . (25)

With the following proposition, we state that also index ICD is strongly upper bounded.
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Proposition 5. Index ICD is strongly upper bounded, i.e. the pairwise comparison
matrix A⋆ as in (4) satisfies

ICD(A
⋆) ≤

m∑

h=1

λhICD(Ah) ∀A1, . . . ,Am ∈ A, λ ∈ Lm. (26)

Proof. If we neglect the exponent, then we can expand and rearrange (26) as follows:

n∏

i<j<k

max







m∏

h=1

a
(h)
ij

λh

m∏

h=1

a
(h)
jk

λh

m∏

h=1

a
(h)
ki

λh

,
1

∏m
h=1 a

(h)
ij

λh∏m
h=1 a

(h)
jk

λh∏m
h=1 a

(h)
ki

λh






≤

m∑

h=1

λh

n∏

i<j<k

max






a
(h)
ij a

(h)
jk a

(h)
ki ,

1

a
(h)
ij a

(h)
jk a

(h)
ki






.

(27)

Now, by dropping
∏n

i<j<k we consider the single transitivity (i, j, k). Moreover, by

means of xh := a
(h)
ij a

(h)
jk a

(h)
ki we briefly obtain

max

{
m∏

h=1

xλh

h ,

m∏

h=1

(
1

xh

)λh

}

≤
m∑

h=1

λhmax

{

xh,
1

xh

}

. (28)

Now, in order to prove the previous inequality, we conjecture that there exists a quantity
as follows

max

{
m∑

h=1

λhxh,
m∑

h=1

λh
1

xh

}

(29)

whose value is always bounded by the left and right hand sides of (28), i.e.

max

{
m∏

h=1

xλh

h ,

m∏

h=1

(
1

xh

)λh

}

≤ (29) ≤
m∑

h=1

λhmax

{

xh,
1

xh

}

.

Hence, it is sufficient to prove the following two inequalities,

max

{
m∏

h=1

xλh

h ,

m∏

h=1

(
1

xh

)λh

}

≤max

{
m∑

h=1

λhxh,

m∑

h=1

λh
1

xh

}

, (30)

max

{
m∑

h=1

λhxh,

m∑

h=1

λh

1

xh

}

≤
m∑

h=1

λhmax

{

xh,
1

xh

}

. (31)

Inequality (30) holds thanks to the inequality between arithmetic and geometric mean
and arguments similar to those used in the proof of (24). Conversely, (31) holds since
it can be verified that both the arguments of the max operator in the left hand side of
(31) cannot be greater than the right hand side of the same inequality.
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Another index was introduced by Koczkodaj (1993) and later studied (Duszak and Koczkodaj,
1994) and compared with other indices, for example with CI (Bozóki and Rapcsák,
2008).

Definition 6 (Index K (Duszak and Koczkodaj, 1994)). Given a pairwise comparison
matrix A or order n, the inconsistency index K is defined as:

K(A) = max
i<j<k

{

min

{∣
∣
∣
∣
1− aijajkaki

∣
∣
∣
∣
,

∣
∣
∣
∣
1− 1

aijajkaki

∣
∣
∣
∣

}}

. (32)

Proposition 6. The inconsistency index K is upper bounded, i.e. the pairwise compar-
ison matrix A⋆ as in (4) satisfies

K(A⋆) ≤ max{K(A1), . . . ,K(Am)} ∀A1, . . . ,Am ∈ A, λ ∈ Lm.

Proof. Here again we consider the case with only one transitivity (i, j, k). Then we can
start by writing

min







∣
∣
∣
∣
1−

m∏

h=1

a
(h)
ij

λh

m∏

h=1

a
(h)
jk

λh

m∏

h=1

a
(h)
ki

λh

∣
∣
∣
∣
,

∣
∣
∣
∣
1− 1

∏m
h=1 a

(h)
ij

λh∏m
h=1 a

(h)
jk

λh∏m
h=1 a

(h)
ki

λh

∣
∣
∣
∣






≤

max
h

min







∣
∣
∣
∣
1− a

(h)
ij a

(h)
jk a

(h)
ki

∣
∣
∣
∣
,

∣
∣
∣
∣
1− 1

a
(h)
ij a

(h)
jk a

(h)
ki

∣
∣
∣
∣






,

(33)

now with xh := a
(h)
ij a

(h)
jk a

(h)
ki , we have

min

{∣
∣
∣
∣
1−

m∏

h=1

xλh

h

∣
∣
∣
∣
,

∣
∣
∣
∣
1− 1

∏m
h=1 x

λh

h

∣
∣
∣
∣

}

≤ max
h

min

{∣
∣
∣
∣
1− xh

∣
∣
∣
∣
,

∣
∣
∣
∣
1− 1

xh

∣
∣
∣
∣

}

. (34)

By using the following notational change, f(x) := min
{∣
∣1− x

∣
∣,
∣
∣1− 1

x

∣
∣
}
, it is possible

to rewrite the previous inequality as

f

(
m∏

h=1

xλh

h

)

≤ max {f(x1), . . . , f(xm)} . (35)

Now we shall prove it by contradiction. Let us suppose that the proposition is wrong
and that there exist x1, . . . , xm and λ1, . . . , λm such that

f

(
m∏

h=1

xλh

h

)

> max {f(x1), . . . , f(xm)} .

Then, by examining the function f(x) one can see that it is decreasing for x ∈]0, 1[ and
increasing for x ∈]1,∞[ with a minimum in 1 and then deduce that either

∏m
h=1 xh

λh >
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max{x1, . . . , xm} or
∏m

h=1 xh
λh < min{x1, . . . , xm}. However, this cannot be possible,

as we know that the weighted geometric mean is an averaging aggregation function, i.e.
min{x1, . . . , xm} ≤ ∏m

h=1 x
λh

h ≤ max{x1, . . . , xm}. Having proved (33) for each triplet
(i, j, k), the original inequality in the proposition holds in particular for the maximum,
since the maximum of quasiconvex functions is quasiconvex.

Remark 2. Although index K is upper bounded, it is not strongly upper bounded.
Namely, given a pairwise comparison matrix A⋆ as in (4) the following property does
not hold

K(A⋆) ≤
m∑

h=1

λhK(Ah) ∀A1, . . . ,Am ∈ A, λ ∈ Lm. (36)

In order to prove that (36) does not hold in general, let us present the following counterex-
ample. Consider two decision makers and the corresponding two pairwise comparison
matrices

A1 =





1 1/9 9
9 1 1/9
1/9 9 1



 A2 =





1 3 9
1/3 1 3
1/9 1/3 1



 .

As in Example 1, the preferences are aggregated according to (4) obtaining matrix A⋆(λ).
Then, the index K(A⋆(λ)) is computed for λ ∈ [0, 1]. As illustrated in Figure 3, K is
not strongly upper bounded. For instance, taking λ = 0.5 ,

K(A⋆(0.5)) ≈ 0.96 > 0.5K(A1) + 0.5K(A2) ≈ 0.5.

Thus, in this example, the inconsistency of the aggregated preferences is greater than the
average inconsistency of the decision makers, as index K is not strongly upper bounded.

Figure 3: Index K is upper bounded but not strongly upper bounded.

4 Discussion

In the previous section we analyzed some boundary properties and whether they are
respected or not by some well-known inconsistency indices. To do so, we also related

16



these new properties with the axioms A1–A5 introduced by Brunelli and Fedrizzi (2013)
and discussed some implications. One result is that the inconsistency of a combination
of pairwise comparison matrices cannot be lower bounded by the value of inconsistency
of the least inconsistent matrix. We have in fact shown that an inconsistency index
satisfying A1 is never lower bounded with respect to the aggregation of the preferences
of different decision makers. Moreover, results show that, more often than not, incon-
sistency indices are, instead, upper bounded. Table 1 summarizes the results obtained
in the previous section.

Index / Property LB UB S-UB

CI ✗ ✓ ✓

RE ✗ ✗ ✗

CI∗, c3 ✗ ✓ ✓

GCI ✗ ✓ ✓

HCI ✗ ✗ ✗

GW ✗ ✗ ✗

ICD ✗ ✓ ✓

K ✗ ✓ ✗

NIσn ✗ ✗ ✗

Table 1: Summary table. LB = lower bounded, UB = upper bounded, S-UB = strongly
upper bounded, ✓= the property is satisfied, ✗= the property is not satisfied.
The underlined results were already known in the literature.

Comparing the results summarized in Table 1 with the satisfaction of the axioms
A1–A5, it appears that all the indices which satisfy the axioms A1–A5 are also upper
bounded. From this, it is only natural to hypothesize that the axioms A1–A5 mathe-
matically imply the satisfaction of the upper boundary condition. However, this is not
true and can be formalized in the following proposition.

Proposition 7. If an inconsistency index satisfies the axiomatic system A1–A5, then
it is not necessarily upper bounded.

To prove the proposition, it is sufficient to show a counterexample; that is, an index
satisfying A1–A5 which is not upper bounded. The following index is an example:

IM (A) = min
i<j<k

∣
∣
∣
∣
ln

aijajk
aik

∣
∣
∣
∣
+

n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

∣
∣
∣
∣
ln

aijajk
aik

∣
∣
∣
∣
. (37)

It is easy to check that IM satisfies the five axioms but, when applied to the following
two matrices

A =







1 4 1 1
1/4 1 1 1
1 1 1 1
1 1 1 1







, B =







1 1 1 1
1 1 1 1
1 1 1 4
1 1 1/4 1







,
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we obtain IM (A) = IM(B) ≈ 2.77, but if we consider that IM (a0.5ij b0.5ij ) ≈ 3.46574,
it appears that the proposition is correct. A graphical representation of this case is
presented in Figure 4.

Figure 4: Index IM satisfies A1–A5 but is not upper bounded.

Another matter, this time of a more qualitative debate, relates with the meaning
attached to the consistency of group preferences. If inconsistency indices are used to
estimate the rationality of decision makers and detect those which are too irrational,
then the meaning of the inconsistency of the aggregated preferences vanishes. This is
due to the fact that the link between rationality of a decision maker and consistency of
preferences, which is generally assumed in the practice of the AHP, holds only for the
initial preferences of a decision maker and breaks down as the preferences are aggregated,
as already discussed in Subsection 3.1. We believe that we can learn a lot from the
boundary properties: for instance we know, a priori, that when evaluated by an upper
bounded inconsistency index, if the pairwise preferences of the most inconsistent decision
maker move towards a consensual solution, at least at the beginning, they become more
consistent. Nevertheless, we refrain—and we advise other researchers to do the same—
from considering the inconsistency of the group preferences as a global measure of the
inconsistency of various decision makers.

5 Conclusions

From our investigation on the connection between consensus and inconsistency, we can
summarize some relevant findings. First, the effect of the preference aggregation among
different decision makers on the inconsistency of the group preferences depends crucially
on the inconsistency index that is used. More precisely, we proved that a certain num-
ber of already known indices satisfy the upper boundary property and/or the strong
upper boundary property. As a consequence, for some indices the inconsistency of the
aggregated preferences is always lower than a weighted mean of the inconsistencies of
the original preference relations. This effect can be synthesized by saying that prefer-
ence aggregation is consistency improving. On the other hand, if the inconsistency is
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evaluated by means of other indices, then the opposite result can be obtained. There-
fore, as pointed out in Brunelli and Fedrizzi (2013), a suitable choice of an inconsistency
index is a crucial phase in decision-making processes, since the use of different methods
for measuring consistency can lead to different conclusions and can affect the decision
outcome in practical applications. Interestingly, some more general results have been
derived from the axiomatic system proposed by Brunelli and Fedrizzi (2013). If it is
true that one of the merits of an axiomatic system is its fertility, i.e. the capacity to
produce propositions, then Propositions 1 and 2 and Corollaries 1 and 2 are positive
signs in this direction and seem to indicate that the axiomatic system can be used to
derive interesting results. Hence, we believe that future research on inconsistency of
pairwise comparisons (i) can build upon the axiomatic system A1–A5 and (ii) further
investigate the relation between consensus and consistency, perhaps clarifying the open
issues exposed in the previous section.
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Bozóki, S. & Rapcsák, T. (2008). On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison
matrices. Journal of Global Optimization, 42, 157–175.

Brunelli, M., Canal, L., & Fedrizzi, M. (2013a). Inconsistency indices for pairwise comparison matrices:
a numerical study. Annals of Operations Research, 211, 493–509.

Brunelli, M., Critch, A. & Fedrizzi, M., (2013b). A note on the proportionality between some consistency
indices in the AHP. Applied Mathematics and Computation, 219(14), 7901–7906.

Brunelli, M., & Fedrizzi, M. (2013). Axiomatic properties of inconsistency indices for pair-
wise comparisons, Journal of the Operational Research Society. Advance online publication.
doi:10.1057/jors.2013.135

19



Cavallo, B., & D’Apuzzo, L. (2009). A General unified framework for pairwise comparison matrices in
multicriterial methods. International Journal of Intelligent Systems, 24, 377–398.

Cavallo, B., & D’Apuzzo, L. (2010). Characterizations of consistent pairwise comparison matrices over
Abelian linearly ordered groups. International Journal of Intelligent Systems, 25, 1035–1059.

Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgement matrices. Journal
of Mathematical Psychology, 29, 387–405.

De Baets, B., De Meyer, H., De Schuymer, B., & Jenei, S., Cyclic evaluation of transitivity of reciprocal
relations. Social Choice and Welfare, 26, 217–238.

Duszak, Z. & Koczkodaj, W. W. (1994). Generalization of a new definition of consistency for pairwise
comparisons. Information Processing Letters, 52, 273–276.

Elsner, L., Johnson, C. R., & Dias da Silva, J. A. (1988). The Perron root of a weighted geometric mean
of nonnegative matrices. Linear and Multilinear Algebra, 24, 1–13.

Ergu, D., Kou, G., Peng, Y. & Shi, Y. (2011). A simple method to improve the consistency ratio of the
pair-wise comparison matrix in ANP. European Journal of Operational Research, 213, 246–259.
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