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Abstract  

This paper develops an index for comparing the productivity of Groups of operating units in cost 

terms when input prices are available. In that sense it represents an extension of a similar index 

available in the literature for comparing groups of units in terms of technical productivity in the 

absence of input prices. The index is decomposed to reveal the origins of differences in 

performance of the groups of units both in terms of technical and cost productivity.  The index 

and its decomposition are of value in contexts where the need arises to compare units which 

perform the same function but they can be grouped by virtue of the fact that they operate in 

different contexts as might for example arise in comparisons of water or gas transmission 

companies operating in different countries. 
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1. INTRODUCTION 

Efficiency and productivity are major sources of economic development and a thorough 

understanding of the factors affecting productivity is important for managers, economists and 

policy makers, especially in difficult times of economic crisis where better performance is 

paramount for sustainability and progress. It is not surprising, therefore, that in recent decades 

the measurement and analysis of performance has enjoyed a great deal of interest and has seen 

major developments from a theoretical, methodological and empirical point of view. The 

measurement and analysis of efficiency and productivity evolved for a long time as independent 

scientific fields but in recent years the two have merged in a common framework and in this 

context often efficiency is incorporated in productivity analysis, which is deemed a better 

approach by many.     

 

We address here the case where operating units are using multiple inputs to secure multiple 

outputs and input prices are exogenous and available.  Further, we address the case where the 

units in question perform the same function, using the same types of inputs to secure the same 

kinds of outputs, but are operating in different contexts.  One case in point is the increasing need 

to conduct comparisons across countries. For example see Haney and Pollitt (2012) on the 

international comparison of electricity transmission companies. Clearly companies performing 

the same function but in different countries can be grouped as operating in different contexts 

(e.g. on prices and regulatory regimes).Even within a given country, however, often operating 

units performing the same function can differ by context. For example the branches of a bank 

may differ in terms of scope of activities and types of clientele depending on whether they 

operate in a rural or urban environment.  In such cases input costs, e.g. for labour and capital 

assets, may differ between groups of units as well as within units of a given group. Comparisons 

therefore of units need to isolate and measure the impact of group membership on productivity. 

 

This issue has already been addressed by a number of authors. The concept of ‘metafrontiers’  

has been developed to isolate group membership from ‘managerial’ effects on efficiency and 

productivity (e.g. see Battese et al., 2004, and O’Donnell et al., 2008). These approaches assume 

each group has its own best practice frontier but that there is a metafrontier which envelops all 

individual group frontiers. This allows one to decompose the evaluated unit’s attainment into a 
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part attributable to the unit itself (i.e. its own management) and a part attributable to group 

membership. More recently Brennan et al. (2014) have considered groupings of operating units 

by environmental context and have developed models for estimating an index to capture the 

impact on productivity change attributable to the context of each grouping. They have prior 

notions as to more and less favourable operating contexts. 

 

An alternative to the metafrontier approach for comparing groups of units on performance is put 

forth by Camanho and Dyson (2006).  This approach relies on assessing units within existing 

groupings without recourse to a metafrontier. Recourse to a metafrontier implies that there is an 

expansion of technology by convexification of existing group technologies. The Camanho and 

Dyson (2006) approach does not make this assumption. Further, it does not distinguish between 

more or less favourable operating contexts. Thus the Camanho and Dyson (2006), and therefore 

the approach in this paper too, is less demanding of prior assumptions. 

 

The Camanho and Dyson (2006)  approach compares groups of operating units where the focus 

is on technical efficiency and prices of inputs or outputs either do not exist or are ignored. Our 

paper builds on the Camanho and Dyson (2006) approach to address the case where input prices 

are available and they may differ for units both within and across groups. As in their case we 

make no recourse to the notion of a metafrontier and make no prior assumptions as to whether 

operating in one group as opposed to another is necessarily advantageous and whether that holds 

for all input-output mixes and or scale sizes. The index developed here, as we will see later, 

offers a number of advantages over more traditional metafrontier based approaches for 

comparing groups of DMUs on performance. The advantages stem from the fact that the index 

developed here takes into account both technical and cost efficiency. Further, more than the 

metafrontier approach, it is decomposable both in cost and technical terms at several levels, 

enriching the insights that can be gained into group performance. We return to the advantages 

and drawbacks of the index at the concluding section. 

Turning to measures of productivity, there are alternative approaches to quantifying productivity 

and a very popular one is the Malmquist productivity index. Malmquist’s(1953) seminal work 

stayed unnoticed and without any applications for some time. Caves et al. (1982) reintroduced it 

to productivity measurement and subsequently, Färe and Grosskopf (1992, 1996), Grosskopf 
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(1993), Färe et al. (1989, 1994, 1996, 1997, 1998), Portela and Thanassoulis (2006, 2010) further 

elaborated the approach. A major extension of the index was its decomposition into a measure 

capturing efficiency change and one capturing technical changeover time by Färe et al. (1994). 

We refer to this here as the ‘classical’ Malmquist index.  The part measuring efficiency change 

measures the shift of the individual unit relative to its frontier overtime while technical change 

captures the shift of the production boundary itself over time. The index can be computed in the 

empirical context using DEA models. Under certain conditions the Malmquist index 

approximates other popular indices such as the Törnqvist (1936) and the Fisher (1922) index. 

These two indices are easy to compute and they have been shown to be exact for general forms 

of technology, but in the presence of inefficiency they may provide biased (see Coelliet al. 

(1998)) estimates of productivity and thus the Malmquist index is preferable. 

 

The classical Malmquist index Färe et al. (1994) was generally developed for cases where 

technical efficiency in terms of input-output levels was the focus and input prices either did not 

exist or were ignored. Later a parallel strand of the literature evolved which takes input prices 

into account where they are available.  In this case an important form of efficiency, namely 

allocative, is contributory to productivity change in cost terms. Allocative efficiency captures the 

degree to which an already technically efficient production unit can further reduce its aggregate 

cost of securing its outputs by selecting an optimal mix of inputs given the exogenously fixed  

prices at which it can secure its inputs. Allocative efficiency and its change may affect 

performance significantly and this is important in light of empirical studies which have identified 

frequent instances of allocative inefficiency at production units. In such cases production units 

may improve over time their performance by changing the input mix they employ to produce 

their output. Hence the impact of allocative efficiency change on productivity change should be 

accounted for (Coelliet al. (1998)) when input prices are available.  In this context, Bauer (1990) 

and Balk (1998) decomposed, in the econometric and index number framework respectively, 

productivity change so that allocative efficiency change is captured. Maniadakis and 

Thanassoulis (2000, 2004) developed a cost Malmquist productivity index, computed through 

DEA models, which is decomposed into technical change and overall efficiency change which 

captures costs. The index is defined in terms of cost rather than input distance functions and is 

applicable when producers can be assumed to be cost minimisers and input-output quantity and 
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input price data are available.  This index has seen many applications in various settings 

including health care, banks, electricity units, real estate, forest product industries, and 

educational programmes and it has also seen further extensions (Hosseinzadeh et al. 2007). 

 

Camanho and Dyson (2006) address the case where units can be grouped by operating context. 

They  developed measures, based on the Malmquist index, that enable the decision making unit’s 

internal inefficiencies to be distinguished from those associated with the group (or program) to 

which the unit belongs. The present paper extends this idea to show how the Cost Malmquist 

index of Maniadakis and Thanassoulis (2004) can be used to build on the Camanho and Dyson 

(2006) ideas so as to compare groups of operating units in cost terms. The paper develops an 

overall index that captures the relative productivity in terms of cost between units belonging to 

different groups. The index is then  decomposed to reveal the impact  of technical and allocative 

efficiency at group level.  Information of this type would be useful for managing the 

performance of groups of units. It would enable managers to identify best practice across groups 

and this would be both in terms of technical and cost efficiency. 

 

The remainder of this paper is organized as follows. Section 2 provides a review of literature on 

the classical Malmquist index; the cost Malmquist index and group (technical) Malmquist index.  

Section 3 develops the cost Malmquist index for comparing groups of units on productivity. 

Section 4 develops the decomposition of the index defined in Section 3.  Section 5illustrates the 

index developed by means of a numerical example. Section 6concludes. 

 

2. TECHNICAL BACKGROUNG ON MALMQUIST INDICES 

2.1 Definitions 

Let us assume that in time period t, producers are using inputs, 𝑥𝑡 ∈  𝑅+
𝑚 to produce outputs  

 𝑦𝑡 ∈  𝑅+
𝑠   and the technology of production can be captured in terms of the input distance 

function (Shephard 1953) as: 

 

𝐷𝑖
𝑡(𝑦𝑡, 𝑥𝑡) = 𝑆𝑢𝑝𝜃 {𝜃:

𝑥𝑡

𝜃
∈ 𝐿𝑡(𝑦𝑡), 𝜃 > 0},       (1). 
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where the subscript i denotes input orientation and  𝐿𝑡(𝑦𝑡) is the set of input vectors x
t
 which can 

secure the output vector y
t
. When input prices, 𝑤𝑡 ∈  𝑅+

𝑚 , are available one may define 

technology in terms of the cost function, which is:  

 

𝐶𝑡(𝑦𝑡, 𝑤𝑡) = 𝑚𝑖𝑛𝑥𝑡{𝑤
𝑡𝑥𝑡: 𝑥𝑡 ∈ 𝐿𝑡(𝑦𝑡)}         (2), 

 

where 𝑤𝑡  𝑥𝑡=∑ 𝑤𝑛
𝑡 𝑚

𝑛=1 𝑥𝑛
𝑡  the subscript n denoting the nth input. 𝐶𝑡(𝑦𝑡, 𝑤𝑡) defines the 

minimum cost of producing a given output vector y
t
 given the input prices w

t
 and the technology 

of period t. The set of input vectors x
t
 which correspond to the scalar 𝐶𝑡(𝑦𝑡, 𝑤𝑡) lie on an isocost 

line which defines a cost boundary which is the locus of the input vectors that, given the 

technology and input prices, are capable of securing output y
t
 at the cost of 𝐶𝑡(𝑦𝑡, 𝑤𝑡).   

 

 

2.2 The Classical Malmquist Index 

Caves et al. (1982) adapted to productivity measurement an index that was first proposed by Sten 

Malmquist (1953) in the context of consumer theory. Assuming technical efficiency, the authors 

treated the index as a theoretical one and showed its relation to the Törnqvist (1936) quantity 

index, which under certain conditions is consistent with flexible representations of the 

technology. Färe et al. (1989) relaxed the assumption of technical efficiency and used the index 

for the first time in an empirical context. Assume two time periods t and t+1 respectively and 

define in each one of them technology and production as shown in the previous section. The 

input oriented Malmquist (IM) productivity index is as in (3): 

 

𝐼𝑀 = [
𝐷𝑡(𝑦𝑡+1,𝑥𝑡+1)

𝐷𝑡(𝑦𝑡,𝑥𝑡)
 
𝐷𝑡+1(𝑦𝑡+1,𝑥𝑡+1)

𝐷𝑡+1(𝑦𝑡,𝑥𝑡)
]
1
2⁄

       (3). 

 

The distance functions in the index in (3) are defined as in (1) and with reference to the constant 

returns to scale (CRS) production boundary. For unit j0, the term 1/𝐷𝑜
𝑡(𝑥𝑡, 𝑦𝑡) can be computed 

using models such as that in (4):   
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1

𝐷𝑜
𝑡(𝑥𝑡,𝑦𝑡)

= minφ,λi  𝜑  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝜆𝑗𝑥𝑖𝑗
𝑡𝑛

𝑗=1 ≤ 𝜑𝑥𝑖𝑗𝑜
𝑡 , 𝑖 = 1, … ,𝑚

∑ 𝜆𝑗𝑦𝑟𝑗
𝑡𝑛

𝑗=1 ≥ 𝑦𝑟𝑗𝑜
𝑡 , 𝑟 = 1,… , 𝑠,

𝜑, 𝑓𝑟𝑒𝑒; 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛.

                           (4).  

Färe and Grosskopf (1994), Färe et al. (1997) showed that the constant returns to scale (CRS) - 

based index measures productivity accurately irrespective of whether the true form of the 

technology is CRS or variable returns to scale (VRS). The index is in effect the geometric mean 

of two indexes. The first uses as a reference the production boundary of period t and the second 

that of period t+1. When the productivity index computed by (3) is less than one it indicates 

progress, in the sense that lower input levels are needed to secure given output levels. An index 

score greater than 1 implies productivity regress and constant productivity is signalled by an 

index score of 1. Färe et al. (1989) showed how to decompose the index into technical efficiency 

change and technical change and Färe et al. (1994) showed how to decompose technical 

efficiency change further into a scale and a pure technical efficiency change when the technology 

is VRS. However, the Färe et al. (1994)  decomposition for VRS technologies only captures 

technology change of the CRS frontier rather than the true (VRS) frontier. Ray and Desli (1997) 

develop for VRS technologies a decomposition which captures technology change with reference 

to the true (VRS) frontier on which the unit sits or can be projected. However, some of the 

components defined in the Ray and Desli (1997) decomposition may not be computable for some 

of the units. This happens for those units whose data may not be enveloped by data  in a different 

period (or Group in our case). For more details on how to compute the classical Malmquist Index 

and its components see Thanassoulis (2001, chapter 7). 

 

2.3 A Cost Malmquist Productivity index 

Maniadakis and Thanassoulis (2004) proposed a cost Malmquist index, which is applicable when 

producers are cost minimizers and input prices are known. Specifically, the Cost Malmquist 

(CM) productivity index is as in (5):  

 

𝐶𝑀 = [
𝑤𝑡𝑥𝑡+1

𝐶𝑡(𝑦𝑡+1,𝑤𝑡)⁄

𝑤𝑡𝑥𝑡
𝐶𝑡(𝑦𝑡,𝑤𝑡)⁄

𝑤𝑡+1𝑥𝑡+1

𝐶𝑡+1(𝑦𝑡+1,𝑤𝑡+1)⁄

𝑤𝑡+1𝑥𝑡
𝐶𝑡+1(𝑦𝑡,𝑤𝑡+1)⁄

]

1
2⁄

     (5), 
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Where 𝑤𝑡  𝑥𝑡=∑ 𝑤𝑛
𝑡 𝑚

𝑛=1 𝑥𝑛
𝑡  and the cost functions 𝐶𝑡(𝑦𝑡, 𝑤𝑡) are with reference to the CRS 

technology. The cost ratios in (5) represent distances or inflation (deflation) factors in the 

terminology of Caves et al. (1982). These factors are defined in terms of input quantities in the 

IM index in (3) but they are defined in terms of input costs in the CM index in (5). Just as with 

the IM index, a CM index value less than 1 implies productivity progress, a value greater than 1 

implies regress and a value of 1 indicates constant productivity in terms of aggregate cost of 

inputs controlling for output. The CM index can be decomposed in a similar manner tothe IM 

indexinto overall efficiency change and cost- technical change.  Moreover, both of these 

components can be further decomposed into input quantity and input price components as 

detailed in Maniadakis and Thanassoulis (2004).  

 

DEA can be used to compute the CM index as follows. Let us have in each time period 

production units j=1,2 ,…,n. In period t, the j0th unit employs amount 𝑥𝑖𝑗𝑜
𝑡  (i=1, 2,…, m) 

available at prices 𝑤𝑖𝑗𝑜
𝑡  ( i=1, 2,…, m). For unit j0 the cost of securing its output is 𝑤𝑡𝑥𝑡 =

∑ 𝑤𝑖𝑗𝑜
𝑡𝑚

𝑖=1 𝑥𝑖𝑗𝑜
𝑡 . Similarly the costs denoted  𝑤𝑡+1𝑥𝑡+1, 𝑤𝑡𝑥𝑡+1 are respectively 

∑  𝑤𝑖𝑗𝑜
𝑡+1 𝑥𝑖𝑗𝑜

𝑡+1 𝑚
𝑖=1 and ∑  𝑤𝑖𝑗𝑜

𝑡  𝑥𝑖𝑗𝑜
𝑡+1𝑚

𝑖=1 . For unit j0, the term 𝐶𝑡(𝑦𝑡, 𝑤𝑡) can be computed using 

models such as that in (6):  

 

 

𝐶𝑡(𝑦𝑡, 𝑤𝑡) = minxi,λi ∑ 𝑤𝑖𝑗𝑜
𝑡 𝑥𝑖

𝑚
𝑖=1   

∑ 𝜆𝑗𝑥𝑖𝑗
𝑡𝑛

𝑗=1 ≤ 𝑥𝑖 , 𝑖 = 1,… ,𝑚

∑ 𝜆𝑗𝑦𝑟𝑗
𝑡𝑛

𝑗=1 ≥ 𝑦𝑟𝑗𝑜
𝑡 , 𝑟 = 1,… , 𝑠,

𝜆𝑗 ≥ 0, 𝑥𝑖 ≥ 0, 𝑗 = 1, … , 𝑛, 𝑖 = 1,… ,𝑚.

                          (6). 

In the model above 𝑤𝑖𝑗𝑜
𝑡 is the price of input i for DMU j0 at time period t.  xi, i=1,2,...,m as 

well as λj, j=1,2,...,n are the variables of the model. The cross period  cost C
t
(y

t+1
,w

t
) is computed 

using model (6) after changing t to t+1 in 𝑦𝑟𝑗𝑜
𝑡  (ie using period t+1 output levels for unit j0) while 

the constraints and prices remain as they are, using period t data. The model in (6) relates to CRS 

technologies. For VRS technologies the convexity constraint ∑ 𝜆𝑗
𝑛
𝑗=1  =1 is added to the 

constraints to model (6).  
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2.4 Group performance Malmquist indices   

As noted earlier Camanho and Dyson (2006) developed measures which make it possible to 

compare groups of decision making units (DMUs) on performance in terms of technical rather 

than cost efficiency. In outline, the Malmquist index for measuring Group Performance 

developed by Camanho and Dyson (2006) is as follows. Consider δΑ DMUs in Group A, using 

inputs 𝑋𝛢 ∈  𝑅+
𝑚 to produce outputs, 𝑌𝛢 ∈  𝑅+

𝑠  and δB DMUs in Group B, using inputs 𝑋𝐵 ∈  𝑅+
𝑚 

to produce outputs, 𝑌𝐵 ∈  𝑅+
𝑠 . The DMUs operating in Group A are represented by their input-

output vectors as (𝑋𝑗
𝐴 , 𝑌𝑗

𝐴) for Aj 1 ,2 ,..., . A similar  notation is used for Group B. 

𝐷𝐴(𝑋𝑗
𝐵 , 𝑌𝑗

𝐵) represents the input distance function for DMU j of Group B with respect to the 

frontier of units in Group A.  The Malmquist index for measuring the productivity of DMUs in 

Group A relative to that of DMUs in Group B, 𝐼𝐴𝐵 is defined in (7).  

 

 

 

 

 

 

 

 

(7). 

 

𝐼𝐴𝐵

= [
(∏ 𝐷𝐴(𝑋𝑗

𝐴 , 𝑌𝑗
𝐴)𝛿𝐴

𝑗=1 )
1
𝛿𝐴
⁄

(∏ 𝐷𝐴(𝑋𝑗
𝐵 , 𝑌𝑗

𝐵)𝛿𝐵
𝑗=1 )

1
𝛿𝐵
⁄

(∏ 𝐷𝐵(𝑋𝑗
𝐴 , 𝑌𝑗

𝐴)𝛿𝐴
𝑗=1 )

1
𝛿𝐴
⁄

(∏ 𝐷𝐵(𝑋𝑗
𝐵 , 𝑌𝑗

𝐵)𝛿𝐵
𝑗=1 )

1
𝛿𝐵
⁄
]

1
2⁄

 

 

The superscript AB in I
AB

 is used to indicate that the distance functions of the DMUs in Group A 

are in the numerator of the definition of I
AB

. The numerator of the first fraction within the square 

root (outer) bracket computes the geometric mean of the distance of the DMUs in Group A from 

the efficient frontier of that group. The denominator of that fraction computes the geometric 

mean of the DMUs in Group B again from the Group A frontier.  As the frontier is constant the 

ratio of the geometric means concerned reflects the productivity of the DMUs in Group A 

compared to that of the DMUs in B. The larger the fraction value the larger the distance of the 

DMUs in Group A compared to those in Group B from the referent frontier used and hence the 

worse the productivity of the DMUs in Group A compared to that of the DMUs in Group B. The 

converse is the case if the fraction value is below 1 and if it is 1 then on average the DMUs in the 

two groups have similar productivity.  
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The second fraction in the square root brackets is interpreted in a similar manner, the only 

difference being the referent frontier used is that of the DMUs in Group B.  Thus the overall 

square root value is interpreted in the same way as each one of its individual component  

fractions and so the larger the value of the index I
AB

  the worse the productivity of the DMUs in 

A compared to those in B so that those  in A consume more input than the DMUs in B for the 

same output. 

 

The overall productivity measure in (7) can be decomposed into the following components: 

 

 

 

 

 

 

(                  (8). 

 

𝐼𝐴𝐵 =
(∏ 𝐷𝐴(𝑋𝑗

𝐴, 𝑌𝑗
𝐴)

𝛿𝐴
𝑗=1 )

1
𝛿𝐴
⁄

(∏ 𝐷𝐵(𝑋𝑗
𝐵 , 𝑌𝑗

𝐵)𝛿𝐵
𝑗=1 )

1
𝛿𝐵
⁄

× [
(∏ 𝐷𝐵(𝑋𝑗

𝐴 , 𝑌𝑗
𝐴)𝛿𝐴

𝑗=1 )
1
𝛿𝐴
⁄

(∏ 𝐷𝐴(𝑋𝑗
𝐴 , 𝑌𝑗

𝐴)𝛿𝐴
𝑗=1 )

1
𝛿𝐴
⁄

×
(∏ 𝐷𝐵(𝑋𝑗

𝐵 , 𝑌𝑗
𝐵)𝛿𝐵

𝑗=1 )
1
𝛿𝐵
⁄

(∏ 𝐷𝐴(𝑋𝑗
𝐵 , 𝑌𝑗

𝐵)𝛿𝐵
𝑗=1 )

1
𝛿𝐵
⁄
]

1
2⁄

 

 

The first term in (8) measures the mean distance of the DMUs in A from their own frontier to 

that of the DMUs in Group B from their own frontier. The ratio of these distances reflects the 

relative spread of the DMUs in each group. The larger the value of the first term in the RHS of 

(8) the further on average are the DMUs in A from their own frontier than are those of Group B 

from their own frontier.  The value of this ratio cannot convey a measure of relative productivity 

of units in each group as the referent boundaries differ between the numerator and the 

denominator. The first fraction in the square root bracket in (8) uses the DMUs in Group A as 

referents both in the numerator and the denominator and so it captures the distance between the 

boundaries of groups A and B. The second fraction in the square root captures again the distance 

between the boundaries of the two groups of units, using this time the DMUs in Group B as 

referents.  Thus the square root value is a measure of the distance of the boundaries of the two 

groups akin to the boundary shift in measuring productivity change over time. The larger the 
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value of the square root the less productive the frontier units of Group A compared to those of the 

frontier of Group B. 

 

Thus in effect the Malmquist index is adapted here in order to be used in a single time period and 

to compare the productivity of groups of units. In this context, the Malmquist index is 

multiplicatively decomposed into an index reflecting the efficiency spread among DMUs 

operating in each group, and an index reflecting the productivity gap between the best-practice 

frontiers of the two groups.  

 

 

3. A COST MALMQUIST INDEX FOR COMPARING GROUPS OF UNITS  

We propose in this paper a Malmquist Index for comparing Groups of DMUs on productivity in 

terms of costs for the case where input prices are available and exogenous. That is for the case 

where DMUs are price takers in the sense that the input prices actually paid by the DMU  are 

determined by the market which it cannot influence in any substantial way. To illustrate the 

derivation of this index consider δA  DMUs in Group A, using inputs 𝑋𝐴 ∈  𝑅+
𝑚  to produce 

outputs 𝑌𝐴 ∈  𝑅+
𝑠 , and δB DMUs in Group B, using inputs 𝑋𝐵 ∈  𝑅+

𝑚 to produce outputs 𝑌𝐵 ∈

 𝑅+
𝑠 . DMU j of Group A has input price vector 𝑾𝒋

𝑨 and 𝑾𝒋
𝑩is defined in an analogous manner for 

DMU j of Group B. DMU j operating in Group A is represented by its input-output vector 

(𝑋𝑗
𝐴 , 𝑌𝑗

𝐴) and input prices 𝑾𝒋
𝑨. A similar notation is used for DMUs in Group 

B. 𝐶𝐴(𝑌𝑗
𝐴 ,𝑊𝑗

𝐴) represents the minimum cost at which DMU j of Group A can secure its outputs 

as computed using the model in (6) with reference its input-output levels and input prices in the 

technology defined by DMUs in Group A. For DMUs 𝑗 = 1,2,… , 𝛿𝐴 define now the cost 

efficiency of DMU j as: 

𝐶𝐸𝐴(𝑋𝑗
𝐴 , 𝑌𝑗

𝐴 ,𝑊𝑗
𝐴) =

𝐶𝐴(𝑌𝑗
𝐴,𝑊𝑗

𝐴)

𝑊𝑗
𝐴𝑋𝑗

𝐴      (9). 

Following the Malmquist-type index developed by Maniadakis and Thanassoulis (2004) and the 

group comparison index of Camanho and Dyson (2006), we define a cost Malmquist index for 

comparing Groups A and B of DMUs on costs of output production, as follows.  
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𝐶𝐼𝐴 = (

 
 
∏

𝑊𝑗
𝐴𝑋𝑗

𝐴

𝐶𝐴(𝑌𝑗
𝐴,𝑊𝑗

𝐴)
⁄

𝛿𝐴
𝑗=1

)

 
 

1
𝛿𝐴
⁄

(

 
 
∏

𝑊𝑗
𝐵𝑋𝑗

𝐵

𝐶𝐴(𝑌𝑗
𝐵,𝑊𝑗

𝐵)
⁄

𝛿𝐵
𝑗=1

)

 
 

1
𝛿𝐵
⁄
=
(∏ 𝐶𝐸𝑗

𝐴,𝐵𝛿𝐵
𝑗=1

)
1/𝛿𝐵

(∏ 𝐶𝐸𝑗
𝐴𝛿𝐴

𝑗=1
)
1/𝛿𝐴

                       (10). 

 

The notation 𝑪𝑨  denotes the referent technical frontier for  computing the minimum cost for an 

output bundle is that defined by the DMUs in Group A. 𝑪𝑬𝑨,𝑩similarly denotes that the  referent 

technical  frontier  for computing the cross-group cost efficiency of a DMU in Group B is that 

defined by the DMUs in Group A.  

 

The within-group cost efficiency 𝑪𝑬𝑨of DMU j of Group A is computed using the model in (6) 

as noted above. The cross-group inverse of cost efficiency𝑪𝑬𝒋
𝑨,𝑩

 is 
𝑾𝒋
𝑩𝑿𝒋

𝑩

𝑪𝑨(𝒀𝒋
𝑩,𝑾𝒋

𝑩)
⁄ . 

The denominator  𝐶𝐴(𝑌𝑗
𝐵 ,𝑊𝑗

𝐵) is computed using the model in (6) modified as in (11): 

 

𝐶𝐴 (𝑦𝑗
𝐵 , 𝑤𝑗

𝐵) = minxi,λj ∑ 𝑤𝑗𝑜
𝐵𝑥𝑖

𝑚
𝑖=1   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝜆𝑗𝑥𝑖𝑗
𝐴𝑛

𝑗=1 ≤ 𝑥𝑖 , 𝑖 = 1, … ,𝑚

∑ 𝜆𝑗𝑦𝑟𝑗
𝐴𝑛

𝑗=1 ≥ 𝑦𝑟𝑗𝑜
𝐵 , 𝑟 = 1,… , 𝑠,

𝜆𝑗 ≥ 0, 𝑥𝑖 ≥ 0, 𝑗 = 1,… , 𝑛, 𝑖 = 1, … ,𝑚.

                                             (11). 

 

 

The numerator of the rightmost ratio in (10) captures the geometric mean of the cost efficiencies 

of the DMUs in Group B relative to a cost frontier based  for each DMU of Group  B on its own 

input prices applied to the technical frontier of the DMUs in Group A. The denominator of the 

rightmost ratio in (10) captures the geometric mean of the cost efficiencies of the DMUs in 

Group A relative to their own cost frontier based on their own technical frontier. Thus, since the 

same technical frontier (that of the DMUs in Group A) is used for the numerator and the 

denominator the index labelled CI
A 

in (10) captures the productivity in cost terms of the DMUs 

in Group B relative to that of the DMUs in Group A given each the input prices it faces. The 

larger the value of CI
A
 the higher on average the cost efficiency of the DMUs in Group B 
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compared to that of the DMUs in Group A. When CI
A> 1 it means in percentage terms  DMUs  

in Group B  have lower scope for cost savings than DMUs in Group A. As we have used the 

same referent technology boundary in computing CI
A
  for both groups of DMUs, had the DMUs 

in the two Groups had identical input prices (all DMUs and both Groups) CI
A> 1 would signal 

that for given output level the DMUs in Group B incur a lower cost and that would be due to 

their better productivity in technical terms. However, as the input prices may differ both in 

absolute terms and in the ratio they are to each other, we can only at this stage conclude that in 

percentage terms  DMUs  in Group B  have lower scope for cost savings than DMUs in Group A 

when CI
A> 1 . We turn later to a decomposition of indices of this type  and to the issue of 

absolute input price differences between the Groups in order to gain a better insight into their 

relative performance in cost terms.  

 

An index similar to that of CI
A 

in (10) can be defined with respect to the cost frontier of the 

DMUs in B. The index is labelled CI
B 

and is defined in (12). 

𝐶𝐼𝐵 = (

 
 
∏

𝑊𝑗
𝐴𝑋𝑗

𝐴

𝐶𝐵(𝑌𝑗
𝐴,𝑊𝑗

𝐴)
⁄

𝛿𝐴
𝑗=1

)

 
 

1
𝛿𝐴

(

 
 
∏

𝑊𝑗
𝐵𝑋𝑗

𝐵

𝐶𝐵(𝑌𝑗
𝐵,𝑊𝑗

𝐵)
⁄

𝛿𝐵
𝑗=1

)

 
 

1
𝛿𝐵

=
(∏ 𝐶𝐸𝑗

𝐵𝛿𝐵
𝑗=1

)

1
𝛿𝐵

(∏ 𝐶𝐸𝑗
𝐵,𝐴𝛿𝐴

𝑗=1
)

1
𝛿𝐴

                       (12). 

 

The interpretation of the index CI
B 

is similar to that of CI
A
. That is a value greater than 1 would 

mean that given the input prices of each DMU, the DMUs in Group B are more productive in 

cost terms than those in Group A, in the sense that in percentage terms they are closer to their 

minimum achievable costs than are the DMUs in Group A. A value below 1 for CI
A 

or CI
B 

means the converse in that the DMUs in Group A are more productive in cost terms than those in 

Group B, in the sense outlined. Finally either index having a value of 1 would suggest the two 

groups of units have approximately the same productivity in cost terms. 

 
As the choice of referent technical frontier is arbitrary, in the tradition of the Malmquist index 

we use the geometric mean of CI
A 

and CI
B
 as in (13) to capture the productivity in cost terms  of 
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the DMUs in Group A relative to that of the DMUs in Group B. Thus the cost Malmquist index 

for two groups A and B is as follows: 

𝑪𝑰𝑩𝑨 = (𝑪𝑰𝑨 × 𝑪𝑰𝑩)𝟎.𝟓 = [
(∏ 𝑪𝑬𝒋

𝑩𝜹𝑩
𝒋=𝟏 )

𝟏
𝜹𝑩

(∏ 𝑪𝑬𝒋
𝑩,𝑨𝜹𝑨

𝒋=𝟏 )

𝟏
𝜹𝑨

×
(∏ 𝑪𝑬𝒋

𝑨,𝑩𝜹𝑩
𝒋=𝟏 )

𝟏
𝜹𝑩

(∏ 𝑪𝑬𝒋
𝑨𝜹𝑨

𝒋=𝟏 )

𝟏
𝜹𝑨

]

𝟎.𝟓

    (13).  

We have used in CI
BA 

in (13) the superscript BA to indicate that the cost efficiencies of DMUs in 

Group B are in the numerator and those of Group A are in the denominator. With this definition 

of  CI
BA

 a  value greater than 1 would indicate that the DMUs in Group B are more productive in 

cost terms than those in Group A in terms of percentage of potential savings needed to reach 

minimum cost. A value below 1would indicate the converse and a value equal to 1 would suggest 

equal cost productivity of the DMUs in the two groups.  

 
Clearly the  CI

BA
  index does not reflect in absolute terms the cost differences between the DMUs 

in each Group. For example an index value of say 1.1 would indicate that controlling for output 

quantity and input prices, on average DMUs in Group A have 10 percentage points more scope 

for savings than do DMUs in Group B. Yet, in absolute terms the DMUs in Group A may be 

delivering a given output quantity at lower cost than those in Group B if the levels of input prices 

at Group A are sufficiently lower than those at Group B. In the context where units are price 

takers we can still deem the DMUs in Group B more ‘cost effective’ than those in Group A 

because given the input prices they face  they perform better than do the DMUs in Group A. (For 

the case where units are not strictly price takers notions of price efficiency arise reflecting an 

additional component for a unit to save on aggregate costs by achieving a more favourable set of 

input prices. E.g. see Tone (2002), Tone and Tsutsui (2007), Camanho and Dyson (2008), and 

Portela and Thanassoulis (2014).) 

 
We can, however, in the context of the units being price takers readily, adjust the CI

BA
 indexto 

account for absolute input price differences between Groups. For example let the mean price of 

input i in Group A be 𝑾𝒊
𝑨 and 𝑾𝒊

𝑩 be analogously defined for Group B. We can compute an 

index  

𝑃𝐴𝐵=(∏
𝑊𝑖
𝐴

𝑊𝑖
𝐵

𝑚
𝑖=1 )

1
𝑚⁄  
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whose value reflects the absolute magnitudes of input prices in Group A relative to those at B. 

For example a value of 1.1 for  𝑷𝑨𝑩would indicate that on average input prices in Group A are 

about 10% higher than in Group B.  

 
We can now adjust the CI

BA 
index to take account of the relative magnitudes of the input prices 

in the two Groups so as to gain a view of the potential for cost savings  of DMUs in each Group 

in absolute terms. Thus define 

 

Adj CI
BA 

= CI
BA 𝑷𝑨𝑩 . 

 

Adj CI
BA

 reflects the comparative potential for savings between Groups A and B in absolute 

terms. To see this note that if two DMUs one in Group A  and the other in Group  B have 

identical input-output levels and each input price of the DMU in Group A is a multiple P
AB

 of the 

corresponding one at the  DMU in Group  B then in the  technology of either Group as used to 

compute CI
BA

, the two DMUs will have the same technically efficiency point in terms of input 

levels. If we denote these inputs levels eff  and use P
A
 and  P

B
  for the vector of input prices at 

the DMU in Group A and B respectively, then at DMU level we can re-write either one of the 

components of CI
BA

 in (13) as

𝒆𝒇𝒇 𝑷𝑩

𝑶𝒃𝒔 𝑪𝒐𝒔𝒕 𝑩

𝒆𝒇𝒇 𝑷𝑨

𝑶𝒃𝒔 𝑪𝒐𝒔𝒕 𝑨

  . Thus we have Adj CI
BA 

=CI
BA 𝑷𝑨𝑩  = 

𝒆𝒇𝒇 𝑷𝑩

𝑶𝒃𝒔 𝑪𝒐𝒔𝒕 𝑩

𝒆𝒇𝒇 𝑷𝑨

𝑶𝒃𝒔 𝑪𝒐𝒔𝒕 𝑨

𝟏
𝟏

𝑷𝑨𝑩

which 

reduces to 

𝒆𝒇𝒇 𝑷𝑩

𝑶𝒃𝒔 𝑪𝒐𝒔𝒕 𝑩

𝒆𝒇𝒇 𝑷𝑩

𝑶𝒃𝒔 𝑪𝒐𝒔𝒕 𝑨

 =
𝑶𝒃𝒔 𝑪𝒐𝒔𝒕 𝑨

𝑶𝒃𝒔 𝑪𝒐𝒔𝒕 𝑩
 . This shows that AdjCI

BA
 reflects as we would expect the 

potential savings at DMU A relative to those at  DMU B when all that differs between the two 

are the input prices. 

 

A value  above 1 for AdjCI
BA

  would indicate that when we take into account the relative 

efficiencies and magnitudes of the input prices, the DMUs in Group A have higher scope for 

efficiency savings than do the DMUs in Group B. The converse is the case when AdjCI
BA

  has a 

value below 1. The DMUs in the two groups have similar scope for efficiency savings in 

absolute terms when Adj CI
BA

  has a value of 1 or close. 

 
However, we should use with caution the adjusted index AdjCI

BA
. This is for a number of 

reasons. One is that the inputs may not be totally homogeneous across the two Groups of DMUs 

and so input price differences may reflect differences in quality or functionality of inputs. 
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Another is that mean input prices as used to compute the  index 𝑷𝑨𝑩can be significantly affected 

by some unusually high or low prices at certain DMUs. Above all, however, in computing both 

the geometric and the arithmetic means  all inputs are given equal weight in 𝑷𝑨𝑩 irrespective of 

how much the corresponding input contributes to aggregate input costs. Notwithstanding these 

reservations, however, the adjusted CI
BA

 index does provide an indication of the relative 

aggregate cost levels of DMUs of equal cost efficiency in each Group.  

 
 
4. DECOMPOSITION OF THE COST MALMQUIST INDEX FOR COMPARING 

GROUPS OF DMUs 

 
The CI

BA 
index can be decomposed into overall efficiency change- group (OECG

BA
) and cost 

technical Change- group ( CTCG
AB

) as follows:  

 

𝑂𝐸𝐶𝐺𝐵𝐴 =
(∏ 𝐶𝐸𝑗

𝐵𝛿𝐵
𝑗=1

)

1
𝛿𝐵

(∏ 𝐶𝐸𝑗
𝐴𝛿𝐴

𝑗=1
)

1
𝛿𝐴

  and 𝐶𝑇𝐶𝐺𝐴𝐵 = [
(∏ 𝐶𝐸𝑗

𝐴𝛿𝐴
𝑗=1

)

1
𝛿𝐴

(∏ 𝐶𝐸𝑗
𝐵,𝐴𝛿𝐴

𝑗=1
)

1
𝛿𝐴

×
(∏ 𝐶𝐸𝑗

𝐴,𝐵𝛿𝐵
𝑗=1

)

1
𝛿𝐵

(∏ 𝐶𝐸𝑗
𝐵𝛿𝐵

𝑗=1
)

1
𝛿𝐵

]

0.5

 

so that we have 

 

𝐶𝐼𝐵𝐴 = 𝑂𝐸𝐶𝐺𝐵𝐴 × 𝐶𝑇𝐶𝐺𝐴𝐵     (14). 

The ratio OECG
BA 

compares within-group cost efficiency spreads, the superscript BA indicating 

that the cost efficiencies of the DMUs in B are in the numerator and those of A in the 

denominator . The larger the value of this ratio the closer the DMUs in Group B to their own cost 

frontier compared to the DMUs in Group A and their own cost frontier.  A value below 1 

suggests the opposite and a value of 1 suggests on average we have a similar spread of units 

around their cost frontiers in both groups. The value of the ratio does not tell us which ones are 

more productive in cost terms as the cost frontiers are different for the two groups. 

 

The superscript AB in CTCG
AB 

indicates that the technology boundary of the DMUs of Group A 

is in the numerator of the ratios within CTCG
AB

. The numerator of the first ratio in the RHS of 

the equation defining CTCG
AB 

in (14) captures the geometric mean of the cost efficiency of the 

DMUs in Group A relative to their own cost frontier. The denominator captures the geometric 

mean of the cost efficiency again of the DMUs in Group A but relative to a cost frontier of the 

DMUs in Group B, using again each its own input prices. Thus as the group of DMUs is the 

same (Group A) the ratio of the numerator to the denominator captures the distance between the 
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cost frontier  of the DMUs in A from that of the DMUs in B. As the same input prices are used 

both in the numerator and denominator for each DMU, the distance of the cost frontiers will 

reflect a combination of technical boundary shift and allocative efficiency change between the 

two Groups as illustrated in Figure 1. 

 

 

Figure 1 shows a two input, single normalised output scenario in which the technical frontier of 

DMUs in Group A is denoted G_A and that of the DMUs in Group B G_B.  The unit being 

assessed is A and the isocost frontiers are “isocost B” and “isocost A” relative to technical 

frontier  G_B and G_A respectively.  

 

The component of the first ratio in the RHS of the equation defining CTCG
AB 

in (14) in relation 

to DMU A in Figure 1 would be 
𝑂𝐵/𝑂𝐴

𝑂𝐷/𝑂𝐴
 = OB/OD. This ratio reflects the distance between the 

cost frontiers drawn on the two technical frontiers, using the same input prices.  The distance  

between the cost frontiers reflects the shift, if any, between the technical frontiers G_A and G_B 

and the difference in allocative efficiency of   DMU A in relation to the two Groups of DMUs, 

depicted by the difference between BC and DE in Figure 1. 

 

 

 

 

 

The larger the value of first ratio in the RHS of the equation defining CTCG
AB 

in (14) the closer 

are the isocost lines of the Group A compared to those of Group B, to the ‘referent’ DMUs of 

Group A. As the input prices used are the same irrespective of technical boundary, this would 

imply that for given input prices the isocost hyperplanes on Group B define a more demanding 

target in cost terms for a DMU than do the corresponding hyperplanes on Group A.  

 

The second ratio in the RHS of the equation defining CTCG
AB 

in (14) is interpreted in a similar 

manner but is using the DMUs in Group B as ‘referent’ to capture the distance of the isocost 

hyperplanes drawn on the two Group technical boundaries. Thus the geometric mean of the two 

ratios forming CTCG
AB

 reflects the mean distance between the cost frontiers of groups A and B, 

akin to the boundary shift in the traditional Malmquist index where the frontiers are of the same 

group of units at two different points in time. Where in the traditional Malmquist index the same 

DMUs are differentiated by time period here the DMUs are differentiated by grouping on 
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context. Further, the shift as pointed out above, now reflects a combination of technical and 

allocative differences between the two Groups of DMUs. 

 

 

G_A  

Input 2  

E 

D G_B  
C 

Input 1  

A 

O 

B 

Isocost A 

Isocost B 

 

 

Figure 1: Illustration of the CTCG
AB 

Component of the Cost Malmquist Index 

 

 

 

The OECG
BA

 and CTCG
AB

 components of the CI
BA

 index can themselves be decomposed.  

 

The OECG
BA

 component in (14) can be decomposed into technical efficiency change – group 

(TECG
AB

) and allocative efficiency change-group (AECG
BA

) as follows: 

 

𝑂𝐸𝐶𝐺𝐴𝐵 =
(∏ 𝐷𝐴(𝑌𝑗

𝐴,𝑋𝑗
𝐴)

𝛿𝐴
𝑗=1

)

1
𝛿𝐴
⁄

(∏ 𝐷𝐵(𝑌𝑗
𝐵,𝑋𝑗

𝐵)
𝛿𝐵
𝑗=1

)

1
𝛿𝐵
⁄
×
(∏ 𝐶𝐸𝑗

𝐵×𝐷𝐵(𝑌𝑗
𝐵,𝑋𝑗

𝐵)
𝛿𝐵
𝑗=1

)

1
𝛿𝐵
⁄

(∏ 𝐶𝐸𝑗
𝐴×𝐷𝐴(𝑌𝑗

𝐴,𝑋𝑗
𝐴)

𝛿𝐴
𝑗=1

)

1
𝛿𝐴
⁄
= 𝑇𝐸𝐶𝐺𝐴𝐵 × 𝐴𝐸𝐶𝐺𝐵𝐴

 (15). 

 

The first component on the (first) right-hand side of (15) captures the spread of DMUs in Group 

A relative to those in Group B each one relative to their own technical as opposed to cost 

frontier. The spread is as found as a factor in the decomposition of the Camanho and Dyson 
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(2006),- see its interpretation earlier within index I
AB 

in (8).  In a similar fashion, the second 

component in the first RHS in (15) captures allocative efficiency change - group, denoted 

AECG
BA

. This can be readily seen from the fact that each component of the product in the 

numerator and the denominator is an allocative efficiency measure. (It is recalled the allocative 

efficiency of a DMU is the ratio of its overall cost efficiency to its technical efficiency, and the 

distance function 𝐷𝐵(𝑋𝑗
𝐵 , 𝑌𝑗

𝐵) is the inverse of the technical (Farrell) efficiency of DMU j.)  

Thus, 𝐶𝐸𝑗
𝐵𝐷𝐵(𝑋𝑗

𝐵 , 𝑌𝑗
𝐵) is the allocative efficiency of DMU j in Group B. In view of the 

definition of AECG
BA

 in (15) when its value is above 1 the DMUs in Group B are on average 

more allocatively efficient than those in Group A in the sense that the input prices are better 

aligned with the mix of inputs used by DMUs in Group B rather than in Group A. The converse 

is the case when the value of AECG
BA 

is below 1.  

 

The CTCG
AB

component of CI
BA

 can be decomposed into a technical change- Group (TCG
BA

) 

and a price-technical effect- Group (PEG
AB

) component. These are defined as follows 

𝑇𝐶𝐺𝐵𝐴 = [
(∏ 𝐷𝐵(𝑋𝑗

𝐴,𝑌𝑗
𝐴)

𝛿𝐴
𝑗=1

)

1
𝛿𝐴
⁄

(∏ 𝐷𝐴(𝑋𝑗
𝐴,𝑌𝑗

𝐴)
𝛿𝐴
𝑗=1

)

1
𝛿𝐴
⁄
×
(∏ 𝐷𝐵(𝑋𝑗

𝐵,𝑌𝑗
𝐵)

𝛿𝐵
𝑗=1

)

1
𝛿𝐵
⁄

(∏ 𝐷𝐴(𝑋𝑗
𝐵,𝑌𝑗

𝐵)
𝛿𝐵
𝑗=1

)

1
𝛿𝐵
⁄
]

1
2⁄

and, 

𝑃𝐸𝐺𝐴𝐵 = [
(∏ 𝐶𝐸𝑗

𝐴𝐷𝐴(𝑋𝑗
𝐴,𝑌𝑗

𝐴)
𝛿𝐴
𝑗=1

)

1
𝛿𝐴
⁄

(∏ 𝐶𝐸𝑗
𝐵,𝐴𝐷𝐵(𝑋𝑗

𝐴 ,𝑌𝑗
𝐴)

𝛿𝐴
𝑗=1

)

1
𝛿𝐴
⁄
×
(∏ 𝐶𝐸𝑗

𝐴,𝐵𝐷𝐴(𝑋𝑗
𝐵,𝑌𝑗

𝐵)
𝛿𝐵
𝑗=1

)

1
𝛿𝐵
⁄

(∏ 𝐶𝐸𝑗
𝐵𝐷𝐵(𝑋𝑗

𝐵,𝑌𝑗
𝐵)

𝛿𝐵
𝑗=1

)

1
𝛿𝐵
⁄
]

1
2⁄

. 

 

 

Thus we have 𝐶𝑇𝐶𝐺𝐴𝐵 = 𝑇𝐶𝐺𝐵𝐴 × 𝑃𝐸𝐺𝐴𝐵       (16). 

 

The superscript BA in TCG
BA

 indicates that the technology of Group B is in the numerator and 

that of  A in the denominator. The reverse is the order of technologies in PEG
AB

. 

The TCG
BA 

in (16) is as found in the decomposition of the Camanho and Dyson (2006), index I
AB 

in (8). That is it is a measure of the distance of the technical (non cost) boundaries of the two 

groups. The larger the value of the component the less productive in technical rather than cost 

terms the frontier units of Group A compared to those of the frontier of Group B. 

 

The PEG
AB

 component in (16) captures a form of ‘allocative shift’ which parallels the measure 

of boundary shift in the classical Malmquist index. This can be seen by noting that for example 

the geometric mean of the terms 𝐶𝐸𝑗
𝐵𝐷𝐵(𝑋𝑗

𝐵 , 𝑌𝑗
𝐵)in the denominator in the second ratio of the 

expression for PEG
AB

 in (16), is the mean allocative efficiency of the DMUs in Group B. The 

numerator into which this mean allocative efficiency divides is a similar mean ‘allocative’ 

efficiency measure again of the DMUs in B but relative to the technical frontier of the DMUs in 
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Group A, using an isocost line based on the respective input prices of the DMUs in Group B. As 

the same DMUs (Group B) are used both in the numerator and the denominator the ratio of the 

mean allocative efficiencies reveals the change or difference is the distance between the cost and 

technical frontiers of the DMUs in Group A in the numerator compared to the corresponding 

distance of the DMUs in Group B. In Figure 1 the distances compared in PEG
AB 

are illustrated 

by the segments BC and DE between the technical and isocost frontiers.  

 

Looking now at the first ratio in the RHS of the definition of PEG
AB

 when the value of this ratio 

is above 1 the allocative efficiency of the DMUs in A relative to their own boundary and input 

prices is larger than relative to the boundary of the DMUs in B.  This would suggest the input 

prices of the DMUs in A are more in line with the technical boundary of the DMUs in Group A 

rather than with that of the DMUs in Group B.  

 

Thus overall the value of the expression for PEG reflects the change in the distance between 

technical and cost frontiers between the two groups of DMUs. When PEG is larger than 1 the  

DMUs have larger allocative efficiency relative to the Group A rather the than to the Group B  

technical boundary, using each one its own input prices. This in practical terms means that on 

average the DMUs have lower scope for cost savings by adjusting their input mix once they 

attain technical efficiency within Group A than they would had they been operating in Group B, 

each with its own input prices. The reverse would be the case when the value of PEG is below 1 

and when it is 1 it means the distances between cost and technical boundaries are similar in the 

two groups.  

 

 

 

Thus, in summary the overall CI
BA 

index can be decomposed as follows: 

𝐶𝐼𝐵𝐴 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑐𝑛𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 (𝑂𝐸𝐶𝐺𝐵𝐴)

× 𝑐𝑜𝑠𝑡 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 (𝐶𝑇𝐶𝐺𝐴𝐵)
= 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑐𝑛𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 (𝑇𝐸𝐶𝐺𝐴𝐵)

× 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑐𝑛𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 (𝐴𝐸𝐶𝐺𝐵𝐴)
× 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 (𝑇𝐶𝐺𝐵𝐴) × 𝑝𝑟𝑖𝑐𝑒 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙
− 𝑒𝑓𝑓𝑒𝑐𝑡 𝑔𝑟𝑜𝑢𝑝 (𝑃𝐸𝐺𝐴𝐵)
= 𝐼𝐴𝐵 × 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑐𝑛𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 (𝐴𝐸𝐶𝐺𝐵𝐴)

× 𝑝𝑟𝑖𝑐𝑒 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 − 𝑒𝑓𝑓𝑒𝑐𝑡 𝑔𝑟𝑜𝑢𝑝 (𝑃𝐸𝐺𝐴𝐵) 
 (17)  or 

 

𝐶𝐼𝐵𝐴 = 𝑂𝐸𝐶𝐺𝐵𝐴 × 𝐶𝑇𝐶𝐺𝐴𝐵 = [𝑇𝐸𝐶𝐺𝐴𝐵 × 𝐴𝐸𝐶𝐺𝐵𝐴] × [𝑇𝐶𝐺𝐵𝐴 × 𝑃𝐸𝐺𝐴𝐵]
= 𝐼𝐴𝐵 × 𝐴𝐸𝐶𝐺𝐵𝐴 × 𝑃𝐸𝐺𝐴𝐵  

 (18) 
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The decomposition in (18) has been derived for the case of CRS technologies. In VRS 

technologies it is possible to derive components  reflecting the shift in the VRS boundaries 

between Groups and also the impact of scale efficiency differences on the relative cost 

productivities of  DMUs in the two Groups. This would be achieved by computing CI
BA

 using 

the VRS versions of models (6) and (11) and then modifying the first stage decomposition  

𝐶𝐼𝐵𝐴 = 𝑂𝐸𝐶𝐺𝐵𝐴 × 𝐶𝑇𝐶𝐺𝐴𝐵 in (14) using the Ray and Desli (1997) decomposition of the 

Malmquist index for VRS technologies. In the interests of simplicity we do not address in this 

paper VRS technologies.Similarly, in the interests of simplicity we have not carried through the 

adjustment by P
AB

 of any one of the components of   CI
BA

.  

 
 
5. NUMERICAL EXAMPLE  

In this section, we use a numerical example to illustrate the information that can be gleaned 

through the Cost Malmquist Group index and its decomposition. Consider two groups of 

DMUsA and B where Group A has 6 DMUs and Group B has 5DMUs. Each DMU uses two 

inputs to deliver two outputs. The data are in Table 1 and Table 2 for Group A and B 

respectively.  

Insert Table 1 and 2 here please 

 

The Group Cost Malmquist Index CI
BA

, defined in (13) is found to have a value of 1.05. This 

suggests that on average, if we control for output and input prices the DMUs in Group B are 

more productive in cost terms than those in Group A. Specifically, given observed input prices, 

and recalling that cost efficiency is defined as minimum achievable to observed aggregate cost of 

output, then in round figures the DMUs in Group A would need to reduce their observed 

aggregate costs by just under 5% (i.e. 1/1.05) in order to attain the same level of cost efficiency 

as the DMUs in Group B.  It is recalled that this is contrasting for each group minimum 

achievable relative to observed aggregate costs rather than absolute costs of output in each 

group.  

 

The relative price index 𝑃𝐴𝐵  is 0.548. This means that on average input prices at DMUs in 

Group A are about 55% of those in Group B. So the adjusted index Adj𝐶𝐼𝐵𝐴 is 0.548 x 1.05 = 

0.575.  Thus though DMUs in Group A are on average less cost efficient than those in B, 

because in absolute terms input prices at Group A are so much lower than those in Group B a 
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DMU in Group B would need to lower to 57.5% its observed  aggregate costs to match an 

equally efficient DMU in Group A in terms of aggregate cost, controlling for output. 

 

We need to look into the decomposition of the index in CI
BA 

in order to understand what lies 

behind the relative cost efficiency of the DMUs in each Group. 

 

 

The first stage decomposition of the CI
BA

 index (see components in Table 3) gives the following 

picture:  

 

CI
BA

 = OECG
BA

× CTCG
AB

=0.69×1.53=1.05.     (19) 

 

The component OECG
BA

 in the decomposition in (19) being 0.69 suggests the DMUs in A in 

cost efficiency terms are clustered closer than the DMUs in B to their own cost frontier and so 

perform closer to their own boundary than do the DMUs in B.  That is on average the DMUs in 

Group A are  some 45% (i.e. 1/0.69) closer to their respective minimum attainable costs for their 

output than are the DMUs in Group B. The value of 1.53for the component CTCG
AB 

suggests 

that on average the cost boundaries drawn  on the technical boundary of DMUs in Group B are 

more demanding in terms of percent of  observed costs to be cut for a  DMU to attain cost 

efficiency than is the case for cost boundaries drawn on the technical boundary of the Group A 

DMUs.  On average the efficient cost level set by Group B would be about 65% (i.e. 1/1.53) of 

what would be the case if the DMUs in Group A were to be the benchmark. This could be 

because the technical efficient boundary of Group B is more productive (i.e. lower input levels 

being needed for given output levels) and/or DMUs having generally input prices that necessitate  

bigger adjustments to input mix to reach allocative efficiency if the benchmarks are taken from 

Group B.  

 

 

To better understand the performance of the DMUs in the two Groups we look further into the 

decompositions of the two components in (19).Table 3 shows the individual components of the 

overall index  CI
BA 

=1.05while Table 4 shows the alternative decompositions of the index. 

 

They are as follows: 
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OECG
BA

= TECG
AB

×AECG
BA

=0.71× 0.97. 

 

The component of 0.71 for TECG
AB

suggests that in technical efficiency terms the DMUs in A 

are substantially closer to their own frontier than are the DMUs in B (see expression (15) for the 

definition of TECG
AB

).  The value of 0.97 of the AECG
BA

 component suggests that the allocative 

efficiency of the DMUs in A is on average slightly higher than that of the DMUs in B. Thus we 

have the DMUs in A closer to their own technical frontier with allocative efficiency close if 

better than that of the DMUs in B.  So the dominant effect is the fact that the DMUs in A are 

closer to their own technical frontier than are those of Group B. So of critical significance in the 

comparative cost performance of the two groups will be the relative productivity of the Group A 

versus the Group B technical frontier.  We found above that the CTCG
AB 

component of the CI
BA

 

index is 1.53.  This as noted above strongly suggests technical boundary units in Group B 

perform much better than those in Group A which along with the allocative efficiency 

adjustments noted above set lower cost targets for efficiency, controlling for input prices and 

outputs. 

 

To see this we look at the decomposition of the CTCG
AB 

component (see Table 3). It is found 

that  

 

CTCG
AB 

= TCG
BA

×PEG
AB 

=1.33× 1.15 = 1.53. 

 

The value of 1.33 for TCG suggests the boundary units in B are considerably more productive in 

technical (non cost) terms than those in A (i.e. 33% more output from boundary DMUs in Group 

B compared to boundary DMUs in Group A for given input levels). This combined with the 

finding earlier that the units in Group A are clustered closer to their technical efficient frontier 

reinforces the expectation that the units in Group B would perform better than those in A (i.e. we 

have efficient and non efficient Group A units clustered together in a less productive locus than 

the boundary units in Group B). The component of 1.15 on the other hand for PEG
AB 

suggests 

DMUs have lower scope to save cost once technically efficient relative to the Group Arather 

than the Group B boundary (with their own input prices) reinforcing again the fact that the Group 

B cost boundary is more demanding of performance in cost terms than that of Group A. 
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Thus in overall terms we conclude that the DMUs in Group B perform better in technical 

efficiency terms and have a more demanding cost boundary and so the overall effect is that the 

Group B units is more cost efficient if we treat prices as exogenous. Of course as we saw earlier 

Group B does suffer substantially more than Group A from high exogenous prices in absolute 

terms, and would need to lower input prices (if feasible) to match Group A in overall costs for 

given output levels.  

 

Insert Table 3 and Table 4 please 

 

 

6. CONCLUSION 

This paper has put forward a new index for comparing groups of operating units on their 

productivity in aggregate cost terms when they use multiple inputs to secure multiple outputs and 

input prices are exogenous and available. The units perform the same function using the same 

inputs and outputs but they may differ in contextual terms, e.g. operating in different cultural or 

geographical areas and under different prevailing input prices.  For example in the case of police 

forces they may be grouped respectively into those serving rural, small town, large town or cities 

of very large size. Though the forces may have the same objectives, the type of crime and public 

they face may be different by type of area as may be the input prices, including salaries for 

similar skilled staff.  In such cases part of the performance of a unit may be attributable to its 

own management and operating practices while another part may be inherent to the context in 

which the unit operates. In particular groups of units may face different input prices, for example 

by geographic location within a country or indeed price differences across countries, and 

performance of units relative to the input prices they face is an important component of 

productivity to be isolated.  

 

The index developed in the paper can be seen as an amalgamation of the index developed in 

Camanho and Dyson (2006) for comparing groups of units on technical efficiency terms and the 

cost Malmquist-type index developed by Maniadakis and Thanassoulis (2004) for capturing 

productivity change in cost terms when input prices are available. In this sense the index 

developed in this paper reflects in summary form the scope for savings at one Group of DMUs 

relative to another, given the input prices they each face. The index can also be adjusted to 
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reflect the scope for savings at one Group relative to another when we also take into account the 

absolute levels of the input prices the DMUs in each group face.  

 

The unadjusted index is decomposed multiplicatively at two levels. The first level decomposition 

consists of two components. The first one of these reflects how far or close to their own efficient 

(in cost terms) boundary are the units of each set or group. The second component reflects a 

combination of technical boundary shift and allocative efficiency change between the two 

Groups of DMUs.  The second level decomposition consists of four components. The first one of 

these reflects the spread of the units of one group around their own technical efficient frontier 

compared to the similar spread of the second group of DMUs. This component was also part of 

the decomposition of the index developed by Camanho and Dyson (2006) for comparing groups 

of DMUs on technical efficiency. The second component captures the mean allocative efficiency 

of the DMUs of one group against that of another. The third component reflects the relative 

productivity in technical (non cost) terms of the boundary units of one group relat ive to that of a 

second group. This component is also found in the decomposition of the index developed by 

Camanho and Dyson (2006), where input prices are not available. It is akin to the boundary shift 

in the classical Malmquist index of productivity change albeit in terms of boundaries of groups 

of DMUs rather than shift over time of the frontier of the same group of DMUs. A final 

component of the second stage reflects the comparative distance between the cost and technical 

efficient frontiers in each Group of DMUs.  

 

Hitherto the method of choice for assessing group membership impact on performance has been 

the ‘metafrontier’ one. In this approach units are assessed within group, projected to the group 

efficient boundary, and then the distance between the group boundary and the boundary of the 

projected units of all groups (the metafrontier) identifies the impact of group membership on 

performance. Summary measures of this impact are normally computed by averaging in some 

manner the distances between the group and metafrontier, across the units. (For some 

applications using this approach see Portela and Thanassoulis (2001), Thanassoulis and Portela 

(2002) and Jones (2006).) The index developed in this paper offers the following advantages 

over the metafrontier approach: 
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- it compares groups both from the technical and cost perspective while the metafrontier 

comparisons have so far focused only on technical efficiency; 

 

- unlike the metafrontier approach our indexrequires no assumption that it is possible to 

create feasible in principle DMUs through convex combinations of units (or of their 

efficient projections) across groups of DMUs;  

 

- our index can be decompsoed so that Groups can be compared on overall performance in 

cost terms as well as on components of performance such as technical, allocative and 

price effects. These components have not been explored, to our knowledge, in the 

tarditional metafrontier approach.  

 

The index developed on the other hand does have some disadvantages: 

- The comparison is at Group level only while the metafrontier approach gives results both 

at group as well as at unit (DMU) level; 

- Our comparisons are based on averages (geometric) of DMU efficiencies and such 

efficiencies do not reflect the relative sizes of the DMUs. That iscertain DMUs may be 

much bigger than others within a given Group and yet their efficiencies have the same 

weight as those of smaller DMUs.  (This drawback would generally affect the 

metafrontier approach too,if averages are used for comparing Groups rather than units 

within Groups); 

 

- The index as developed here uses radial (Farrell) efficiency measures which do not 

reflect any slack values of inputs or outputs.  However, this drawback can be overcome 

by using measures of efficiency which do capture slack effects. This would require a 

fuller development of a related index which is not within the scope of this paper. 

 

In conclusion the index developed enables the user to compare groups of DMUs on technical and 

cost productivity deriving both an overall index and components which identify at group level 

the origins of any differences in cost productivity. Such information makes it possible to target 

interventions at group level to improve performance.  There remain, however, further 



26 
 

possibilities for enhancing the approach developed in this paper. One area concerns the 

decomposition of the main index (expression 13) for the case where the technology involved is 

VRS. This would make it possible to compare the Groups of DMUs not only in the areas covered 

in the decomposition developed in this paper, but also to identify the impact, if any, of scale size 

on the relative cost and indeed technical productivity of the units of each Group.  Another area 

for further research is the exploration of whether bootstrapping or other approaches can be used 

to estimate confidence intervals on the main index in (13) and its components.  
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Table 1. Input and Output data for Group A 

DMU Input 1 Input 2 Input price Input 1 Input price Input 2 Output 1 Output 2 

1 
6 5 3 2 8 11 

2 
4 7 2 2.5 9 12 

3 
3 6 4 2 8 15 

4 
5 2 3 2.5 7 10 

5 
4 7 4 2 6 13 

6 
8 5 2 1 5 14 

 

 
Table 2.Input and Output data for Group B 

DMU Input 1 Input 2 Input price Input 1 Input price Input 2 Output 1 Output 2 

1 
4 3 4 4.5 4 7 

2 
5 6 3 5 2 10 

3 
7 4 5 4.5 5 6 

4 
3 3 4 5 10 14 

5 
2 2 4 6 8 6 

 
 

 
Table 3. I

AB
 and CI

AB
 index and component values for two groups 

I
AB

 TCG
AB

 TECG
AB

 CI
BA

 OECG
AB

 CTCG
AB AECG

AB
 PEG

AB
 

0.95 1.33 0.71 1.05 0.69 1.53 0.97 1.15 

 

 

 

Table 4.I
AB

 and CI
AB

 index and component values for two groups 
OECG

AB
× 

CTCG
AB

 

[TECG
AB

×AECG
AB

]×[TCG
AB

×PEG
AB

] 

 

I
AB

×AECG
AB

× 

PEG
AB

 

0.69×1.53=1.05  

[0.71×0.97]×[1.33×1.15]=1.05 

0.95×0.97×1.15=1.05 
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