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Multiobjective Optimization: When Objectives Exhibit Nasniform Latencies

Richard Allmendingée¥’, Julia Hand?, Joshua Knowlés
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bManchester Business School, University of Manchestetedidingdom
¢School of Computer Science, University of Manchester,edriftingdom

Abstract

Building on recent work by the authors, we consider the mobbf performing multiobjective optimization when
the objective functions of a problem havefdring evaluation times (or latencies). This has generalegice to
applications since objective functions do vary greatlhyhiait latency, and there is no reason to expect equal latencie
for the objectives in a single problem. To deal with this &sswe provide a general problem definition and suitable
notation for describing algorithm schemes that can uffereéint evaluation budgets for each objective. We propose
three schemes for the bi-objective version of the problaciuding methods that interleave the evaluations fiédent
objectives. All of these can be instantiated with existingltiobjective evolutionary algorithms (MOEAS). In an
empirical study we use an indicator-based evolutionargritlym (IBEA) as the MOEA platform to study performance
on several benchmark test functions. Our findings geneshlbyv that the default approach of going at the rate of the
slow objective is not competitive with our more advancedx(ieterleaving evaluations) for most scenarios.

Keywords: Multiobjective optimization, evolutionary computatiatelayed objective functions, closed-loop
optimization, budgeted optimization.

1. Introduction exploration of the optimal choices, and a final solution

o o ) _ to be selected (see Figure 1).
Multiobjective optimization problems require the si-

multaneous optimization of multiple (often conflicting)
objectives over a given space of candidate solutions.
These problems occur in many practical applications,
rather often as bi-objective problems, with typical pairs
of objectives as quality vs cost, strength vs weight, or
accuracy vs complexity (e.g., of a model). A concrete
example of a multiobjective problem is the design of a
bridge', such that it passes one or more strength tests,
and such that its cost of construction is not too high.
Although in tackling such problems, it is possible to
treat one objective as a constraint, or to weight or prior- > - e '
itize objectives to form a scalar optimization problem, 'i€d out. However, given that the objective functions to
a more general approach to multiobjective optimization °€ évaluated could be of quitefiiirent character, this
(and the one we follow here) is to postpone or avoid means these glgonthmg are sqmeyvhat overly-restricted,
the assignment of weights or priorities, and instead to and CO_U|d be mappropngte; or.lfﬁment for cases, un-
seek a representation of all the optimal tradis-of the der a time-budgeted optimization (see Jansen & Zarges

objectives (the Pareto optimal front) to allow posterior (2013)), where the dierent objective functions vary in
evaluation times (or latencies).

The problem that we identify and tackle in this paper
stems from the fact that, to date, almost all such meth-
ods for multiobjective optimization, including the many
methods based on evolutionary algorithms, assume that
each candidate solution is evaluated on all the objec-
tives simultaneously Thus, every candidate solution
explored is associated with its vector of objective val-
ues, it can be plotted in the objective space (as in Fig-
ure 1), and more importantly it can take part in rela-
tive assessments of its multiobjective fitness (or utility)
so that fitness-biased selection (particularly) can be car-

- , _ Consider an extreme example. We wish to optimize
Corresponding author. Teka4 (0)20 7679 7745 the formulation of a washing powder, and our two ob-
Email addressr.allmendinger@ucl.ac.uk (Richard . . .

Allmendinger ) jectives are washing excellence and cost. In this case,

*Which may indeed be made of concrete — no pun intended. it is easy to imagine that assessing washing excellence
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f2 time. In the next section on algorithms we will present
© Non-dominated soluio some such general schemes and indicate how they are

© Dominated solution instantiated on some basic, well-known MOEAs.

0 2.1. Basic Definitions

Definition 2.1 (Multiobjective Optimization Prob-

°© o° o ) lem). The general formulation of the problem is:
“maximize” f(X) subjecttox € X, wherex is ann-
dimensional candidate solution vectdt,is the search
domain and = (fy,..., fy) is a vector objective func-
Figure 1: Solutions to a discrete optimization prob- tionf : X — R™ mapping solutions to am dimen-
lem plotted in bi-objective space. Assuming only that sjonal real-valued objective space. The term ‘maximize’
the decision maker is consistent in her preference for js written in quotes in order to indicate that there are
larger values of each objective over smaller values, she not unique maxima to such a problem in general, and

must prefer the non-dominated solutions (shaded). If 3 further definition is needed to define an ordering on
the set shown is the whole solution space, then the non-candidate solutions (see below).

dominated solutions form the Pareto Front and are the

0p'[|ma| tradeff solutions to the prob|em_ Definition 2.2 (Pareto dominanceponSider two solu-
tionsx; andx,. We say thak; dominatesc,, also writ-
ten asx; > xp, if and only if 3i such thatfi(x;) > fi(x2)
andVj, fj(x1) > fj(x2).

may be a laborious process involving testing the pow-

der, perhaps on fierent materials and atfiérent tem- ~ Definition 2.3 (Pareto optimal front) The Pareto op-

peratures. By contrast, the cost of the particular formu- timal front, also denote®Fyue, is the set of points

lation can be computed very quickly by simply look- {f(X)Ix€ X, By € X,y > x}.

ing up the amounts and costs of constituent ingredi-

ents and performing the appropriate summation. (This

scenario is rather typical of the whole area of closed-

loop optimization, where optimization algorithms di-

rect and obtain results from real physical experiments,

as described elsewhere (Box, 1957; Rechenberg, 2000

Caschera et al., 2010; Small et al., 2011), but, equally,

objective functions may all be computational but still

have widely difering latency (or delay).)

It is not obvious, we think, what a good strategy for
the above scenario would be, given current multiobjec-
tive evolutionary algorithms (MOEAS) and the state of
the field. Nor is it clear how much potential loss of per-
formance comes about by using a basic MOEA going at .
the speed of the slowest objective (a default approach to P&finition 2.5 (Total Budget) The total budget for
the problem). These are the two main questions we seekSC!Ving an optimization problem is the total number of
to answer in the remainder of this paper. For simplicity, ime stepsB available for solving it, under the assump-
we focus mostly on the bi-objective case, although some tion that only solution evaluations consume any time.

of our definitions are general, and we include a discus- pefinition 2.6 (Limited-Capacity Parallel Evaluation
sion of extensions tm > 2 objectives in a later section.  \odel). We assume parallelization of the evaluation of
solutions is available, in two senses. First, a solution
2. Problem Definition may (but need not) be evaluated on one objective in par-
allel to its being evaluated on another objective. Sec-
We define the problem more formally in the follow- ondly, a number of (at most) solutions may be eval-
ing. The notation we introduce here allows us to de- uated at the same time (i.e., as a batch or population)
scribe MOEAs that are suitable for evaluations that are on any objective, provided their evaluation is started at
not necessarily performed on all objectives at the same the same time step, and finishes at the same timestep

2

Definition 2.4 (Approximation Sets and Performance)
Any set of points in the objective space with elements
that are all non-dominated within the set is called an
approximation set. Such sets can be partially ordered
according to thebetter relation (Zitzler et al., 2003),
‘analogously to the dominance order on points. The aim
' of multiobjective optimization can be defined as finding
the best possible approximation set, where best is deter-
mined by this order. As a proxy method for assessing
approximation sets, we use the hypervolume and attain-
ment surfaces, as recommended by Zitzler et al. (2008).

2.2. Budgeted Optimization Definitions



(i.e. batches cannot be interrupted, added to, etc., dur-3.1. Algorithm Schemes

ing evaluation). For sake of simplicity, we assumes
the same for all objectives.

Definition 2.7 (Per-Objective Latency)Assume that
each objectiveé can be evaluated ik € Z* timesteps
(for a whole batch). Here, we consider a bi-objective
case, and for simplicity, we defing = 1 andk, =
ksiow > 1, so that the slower objective kg times
slower than the faster orfe.

Lemma 2.1(Per-Objective Budgets)From definitions
2.5, 2.6, 2.7, it follows that the total budget of evalua-
tionsper objectives different. The budget fof; is AB,
whereas the budget fd is A| B/Ksiow]-

Note, these per-objective budgets are derived and are
the best possible, assuming that solutions are always
evaluated in parallel batches of sizeand new batches
are evaluated immediately after the one just finished
with no timestep unused (both objectives). Assuming
a standard MOEA applied to the problem, by contrast,
one would obtain onlyl| B/kgow] evaluations on both
objectives.

3. Algorithms

In this section, we will describe a number of algo-
rithmic schemes that are able to operate in the model
of budgeted multiobjective optimization defined above.
One approach to the problem, as posed, would be to run
a standard MOEA at the speed of the fast objective but
to use fithessapproximation(or “inheritance”) when-
ever the slow objective function is “busy” with evalu-
ating an earlier batch. Such an approach relies rather
heavily on the fitness approximation scheme, and its
performance will certainly depend on it closely. We
briefly consider methods such as this one, which use
approximation, in Section 5 (and these types of scheme
were also the focus of our previous work (Allmendinger
& Knowles, 2013a)). Our main original contribution in
this paper, in contrast, is to propose and analyze a num-
ber of schemes that do not use approximation for the
slow objective. We define the schemes in general terms,
then provide four concrete strategies (there are two vari-
ants of Scheme 3) based on them. Finally, we indicate
how these can be instantiated on existing generational
MOEAs (and also explain, later in Section 6, how the
schemes can be applied within steady-state MOEAS).

?In reality, the objectives of a problem may not have latestieat
are exact multiples of each other, of course, and we willudisahis
scenario in more detail in Section 6.

The basis of the proposed schemes is the observation

that the slower objective is only evaluated evégy,
time steps. Then three distinct approaches can be iden-
tified for using the faster objectivefs)

e Scheme I: To go at the rate of the slower objec-
tive (and go at the same rate on the faster objective,
skipping time steps) using a standard MOEA. This
approach uses the full budget of evaluations on the
slow objective, but it does not fully utilize the eval-
uation budgets available for the faster objective.

Scheme II: To go at the rate of the faster objec-
tive using a standard single-objective evolutionary
algorithm (EA), for part of the optimization, and
then switch to a final, evaluation of some selected
solutions on the slower objective at some timestep
tswap Until the time pointswap this approach fully
exploits the budget of evaluations for the fast eval-
uation, but it does not utilize the budget of evalua-
tions available for the slower objective.

Scheme lll: Interleaving the evaluation of the ob-
jectives so that both per-objective budgets are used
to their full extent. Figure 2 illustrates this for the
two-objective case.

Note that all three of these schemes result in a fi-
nal population that has been evaluated on both objec-
tives. It may seem intuitive that Scheme Il is likely
to be the most desirable, as more evaluations are done
per unit time (and time is budgeted), but there remains
the question of how to co-ordinate the additional evalu-
ations done on the fast objective only, with a population
of points that is evaluated on both objectives.

Four strategies based on the above schemes are inves-
tigated in this work: Waiting, Fast-First, Brood Inter-
leaving, and Speculative Interleaving. In the following
each strategy is explained in more detail.

In order to define concrete instantiations of the
schemes, the following notation is introduced: The set
Gi denotes the EA population at time stepn contrast
to this, the search tracg comprises the entire set of
solutions generated by the EA up to time stepThe
setsG™®t and GF°% denote the sets of solutions to be
evaluated on the fast and slow objective at time $tep

SNote that the schemes are defined for two objectives only, but
could also work for the case whene> 2 with just one slower objec-
tive, and the set of faster ones all evaluating at the samedspeor
m > 2 and all objectives having filerent latencies (or delays), we
have not designed a scheme yet.



frast MOEA fow Algorithm 1 Scheme I: Waiting

fast slow
G G G S
: 0 0 ° 1: initialize Gfast;=Gslow ;=G
1 timestep : . I |od 0 d (b):
to evaluate fitness values ! 2: in parallel, do (a) ;3” (b):
| | fsiow takes 3. (a): evaluat&s3®”
Loer Ksiow timesteps 4:  (b): evaluates[est
3 to evaluate 5 =k 'S =G
fitness values _ - 1-=Kslow, =i -= 30
: = 6: while i < B - Kkgjow do
L:T(‘)W_l 7: apply multiobjective (parental) selection with vargati to
H fitness values fitness values 8: g};&liwgilogv:/v.e_ee{/
: : : e T ¢
; 9: in parallel, do (a) and (b):
fast slow : . . slow
: Gkslow Gkslc»w Gkslow ' 10: (a) evaluatési
U ; 11: (b): evaluatesfest
: 12 Sitkgiow = Si U Gi/

13:  apply environmental selection &-,,,,, andG; to giveG;
14: i:=i + Ksiow: Si = Sikgq,, Y Gi”kslow
15: identify and output the set of non-dominated solutianS;i

Figure 2: A sequence diagram of an MOEA using two
objective functions with dferent latencies. (Time in-
creases downwards in the diagram.)

This can be achieved by going, for most of the op-
timization duration, at the rate of the faster objective

respectively. Note that these can be distinct from each SO @S 0 optimize the faster objective only, and then by
other and from the currentispring population — the switching to the slower objective at the latest possible

need for this will become clear later in this section. The point (i.e.tswap = B — ksiow, Which allows for a final

setsG!, G/, andG!” represent auxiliary sets of solutions round of eval'uatilons on the slc.>w. objecti've) (Line 5).
at time step, such as theféspring population or parents The faster objective can be optimized using a standard

selected for reproduction, amd andK’ the current and single-objective EA. In the simplest case (considered

offspring interleaving population devoted for optimiz- here), _the subsequent S.W'tCh to. the slower objgctlve
ing the fast objective function by Speculative Interleav- would involve the evaluation of a diverse set of solutions

ing, respectively. (here the b.est3 distinatsolutions foqnd yvith respect to
the fast objective) on the slower objective.
. Again, it is clear that this strategy can be easily em-
3.1.1. Waiting _ _ bedded into a standard single-objective EA. The main
The most straightforward strategy to deal with de- mogification required is the maintenance of the search
layed objectives is an implementation of Scheme |, as trace; required for the final filtering step (Line 12).
shown in Algorithm 1. This strategy deals with de- The approach bears some resemblance to the previ-
layed objectives by maintaining a single population (for gys use of diversity-preserving MOEAs in applications

both objectives) that goes at the rate of the slow objec- here additional objectives become available at the end
tive on both objectives. In other words, evolution waits  of the optimization only (Chmielewski, 2013).

for all evaluations to be completed before continuing,
thus losing evaluation time on the fast objective (Lines4 3 1 3.
and 11).

We call this strategyVaiting and it can be easily em-
bedded into a standard MOEA. This approach can be
seen as a repr esentative of the stapdarc! approach use rategies discussed above. Unlike Waiting and Fast-
in the MOEA Ilteraturg, where possibleftéirences pe- First, strategies in Scheme Ill attempt to utilize the full
tween the delay of objectives have not been ConSIdered'budget of evaluations available under both the fast and

the slow objectives. The two strategiestei between

Interleaving strategies

The final two strategies, Brood and Speculative In-
terleaving, are implementations of Scheme lll, and are
Igetss straightforward than the Waiting and the Fast-First

3.1.2. Fast-First each other in the way the results from fast and slow eval-
A simple strategy for the implementation of Scheme uations are integrated. Let us first present the general
Il is as follows (see Algorithm 2): The stratedpast- idea of strategies in Scheme IIl before explaining the

First aims to maximize the number of fast evaluations, strategies Brood and Speculative Interleaving in more
while ensuring that a final set af solutions has been  detail.
evaluated on all objectives. The pseudocode given in Algorithm 3 presents a gen-



Algorithm 2 Scheme II: Fast-First

Algorithm 3 Scheme IlI: A general template

1: initialize Gt := Go
2: evaluateGfast
3: update objective values 1By based on the values obtained for
Gfastonly
4: i:=1;S; :=Gp
5: while i < B — kgjow dO
6: apply single-objective (parental) selection with véaoia to
Gi-1to giveG|
7. Gkst=g
8 evaluateG®st
9: update objective values & based on the values obtained for
Gfestonly
10: apply environmental selection -1 andG; to giveG;
11: i=i+1;S:=S1UG]_,;
12: select the best, distingtsolutions inS; (wrt the fast objective)

and assign these %"

13: evaluate and outp@s'o”

eral Scheme Il strategy, which we divided into several
modules: Afteiinitializing the populatiorsg and evalu-
ating it in parallel on the slow and fast objective, (a) and
(b), aninner (single-objective) EAs initialized with the
current generation on the fast objecti@gasﬁ and ap-
plied to optimize the fast objective for the remainder
of the interleaving period (i.eksow — 1 generations).
The main loopfirst creates a parent population based
on multiobjective selection applied to the current popu-
lation Gi_,,,, and then enters thiaterleaving module
to create the new populatiol&® and G, These
populations are then evaluated in parallel, andran
ner (single-objective) EAs used to optimize the fast
objective for the remainder of the interleaving period.
Finally, environmental selection is applied to the cur-
rent populatior_y,,, and the current generation on the
slow objectiveGS°" to give the new populatio®;. The
main loop is repeated until the buddgis used before
non-dominated solutions on both objectives are identi-
fied and returned to the user.

Brood Interleaving: The idea oBrood Interleavings

to use the fast objective function to look ahead at pos-
sible dtspring of the current generation being evaluated
on the slow objective. This looking ahead can then be

1: // Initialization:

2: initialize a populatiorg of solutions and seﬁg"s‘ ::Gcs]"’W :=Gop
3: in parallel, do (a) and (b):

(a): evaluatesgo

(b): evaluatfﬁg"s‘, followed by an

inner (single-objective) EAdoksjow— 1 generations of an EA
initialized with Gg"s‘ on the fast objective

: increment time countér=Kkgow, and updats;

6
7:
8: // Main loop:
9: while i < B - Kkgjow do
0

10: apply multiobjective (parental) selection Gy, to pro-
duce new parent populatids

11:

12: // Interleaving module:

13:  This module creates the two new populati(ﬁ]%‘,’w andGifas‘,
as follows:

14: GiS'OW is composed of solutions from the last inner EA run
that improved on their paren@/ on the fast objective plus,
if insufficiently many, some newfispring of the parent pop-
ulationG/

15: Gi“"SI is composed of fispring ofGiS'OW

16:

17:  inparallel, do (a)and (b):

18: (a): evaluat&$ov

19: (b): evaluat@fasﬁ followed by an

inner (single-objective) EAdo k0w — 1 generations of a
EA initialized with GifaSt on the fast objective

20:  apply environmental selection @ _k,,, andG® to give
new populatiorG;

21: increment time counter=i + kgjow, and update;

22: identify and output the set of non-dominated solutionS;i

filtering on the brood. In the case 8food Interleav-
ing, the fast objective is used to filter out prospective
offspring of the generation currently under evaluation
for the slow objective that perform worse than their par-
ent(s) on the fast objective. This filtering should have
the dfect of avoiding the evaluation offispring domi-
nated by its parents. However, it also prevents the evalu-
ation of those solutions that outperform their parents on
the slow objective only, and it is unclear to what extent
this biases the search.

Pseudocode for Brood Interleaving is given in Algo-
rithm 4. A population of individualsGo, is initialized
and this becomes the generation zero for both the slow

used to bias the next generation on the slow objective and fast objectives. Evaluations are done in parallel (in-

(hopefully in a positive way) so that the slow objective
is used asféiciently as possible.

The way in which the look ahead is achieved is via
something reminiscent of (soft) brood selection (Al-
tenberg, 1994; Tackett & Carmi, 1994; Walters, 1998).
In brood selection, morefispring are created by vari-
ation than will pass into the next generation, and this
surplus (or brood) is then reduced by performing some

5

terleaved) on the slow and fast objectives (Lines 3 to 6).
While the slow one is evaluating the zeroth generation,
the fast one finishes, and subsequent generations for the
fast objective are constructed and evaluated. These sub-
sequent generations aréfgpring (i.e., genetic variants)
of generation zero (Line 6).

When the slow objective function finishes, it is time
to construct the next generation for the slow objective,



Algorithm 4 Scheme IlI(i): Brood Interleaving

1: initialize Gt :=G§oW :=Gg
2: in parallel, do (a) and (b):
3 (a): evaluat&gow

4:  (b): evaluates[est

5: for j = 1 tokgow — 1do

6: apply uniform selection with variation tB(sJ'OW to generate

G, and evaluat&/*™"

7t i=Ksjow; Si 1= GoUGI*tU ... U GL";‘S‘ i
. low

8: while i < B - Kkgjow do

9: apply multiobjective (parental) selection without zion to
Gi—kgoy 10 OiVEG]

10:  find ofspring ofG/ in GE?(;OWH,. .. Glestand assign t&’

11: select fronG{” those dfspring that improved on one of their
parents’ (inG{) evaluation on the fast objective function and
assign taG;”

12 GPst=9

13: while |G{”’| > 2 do

14: remove a solution selected at random fIG(fi

15: while |G{”’| < 2 do

16: create fispringo from uniform selection and variation ap-

plied toG/; G/ := G/” U {0}; G[*st:= GlastU (o}

17: GSow:= G

18:  while |G < 1 do

19: create fispringo from uniform selection and variation ap-

plied toGow; Gast = Gfasty {o}

20:  in parallel, do (a) and (b):

21: (a): evaluat&$ow

22: (b): evaluatesfest

23: for j = 1 tokgow — 1 do

24: apply uniform selection with variation tBiS"’W to gen-

erateGifi?‘, and evaluaté;ifi?I

25: apply environmental selection @y, and GiS'OW to give
Gi

260 i:=i 4+ ksiow; Si = Sickge, UG, Y Giféfjslowﬂ U...uGHst

27: identify and output the set of non-dominated solutionS;i

Gis'OW, upon performing multiobjective parental selec-
tion on the current EA populatio®;_y,, to give (the
parent population§s; (Line 9). The next generation on
the slow objectiveGiS'OW, is then made up (partially) of
those dfspring of G/ (already evaluated on the fast ob-
jective) whose parents (one or both of them) improved
over at least one of their parents’ fast objective function
evaluations (Line 10 and 11).

At this point the next generation can be smaller or
larger than the batch size(e.g. if only few or many
offspring improved upon their parents, respectively). In

jective, GifaSt. The remaining spots for evaluation un-
derGfstare filled with solutions resulting from uniform
selection fromG$°" and subsequently applying varia-
tion (Line 19). After evaluating the generations for the
slow and fast objective, and the interleaving populations
(Lines 21 to 24), environmental selection is applied to
the current EA populatio®;_y,,, and the set of solu-
tions evaluated on the slow objecti\@f,'o‘”, to give the

EA population of the next iteratio; (Line 25).

Speculative Interleaving: The strategy ofSpecula-
tive Interleaving(see Algorithm 5) is similar to Brood
Interleaving except that it aims to maintain selection
pressure at all time steps. Prior to the return of slow
evaluations, only partial information about solutions is
available. This means that a single-objective selection
scheme needs to be used during the wait for slow evalu-
ations, which will only account for solution evaluations
under the fast objective. This single-objective scheme
is embedded into a single-objective EA that has the task
to drive the evolution of the generations on the fast ob-
jective. Itis clear that this may introduce a bias towards
the optimization of the fast objective, yet it is unclear
to what extent this will outweigh the advantages gained
from increased selection pressure.

Increased selection pressure is achieved by creating
the interleaving populationﬁsifisj't, j=1..., Ksjow— 1,
by applying a single-objective EA (i.e. single-objective
selection, variation, and potentially elitism) kg, j =
1,...,ksow— 1 (Lines 6 to 8, and Lines 26 to 28). Since
the interleaving populations evolve whilst the slow ob-
jective is evaluated, we need to record all the solutions
or ancestors (i;'°") used to create a solution &3,
j = 1,...,kgow — 1; note, assuming that a solution is
created from two parents, then the number of distinct
ancestors associated with a solution may vary between
2 and %o~1  Subsequently, anfispring is included
into GiS'OW if its ancestors (one or multiple) are selected
by multiobjective parental selection (Lines 11 and 12)
and it outperforms at least one of them with respect to
the fast objective (Line 13).

This strategy resembles principles of speculative par-
allelization used in some parallel simulated annealing
methods (Marchesi et al., 1994).

the latter case, solutions are removed at random from 3 5 |nstantiations on Generational-Based MOEAsS

the generation (Line 14). In the former case, the gen-

eration is filled with solutions resulting from uniform
selection fromG] and subsequently applying variation

When augmenting the algorithm schemes introduced
in the previous section on a generational-based MOEA,

(Line 16); note that these solutions need to be evaluatedthen the environmental and multiobjective parental se-
on both the fast and slow objective, occupying some of lection scheme, and the variation mechanism (crossover
the spots available in the next generation for the fast ob- andor mutation), need to be replaced with the ones used

6



Algorithm 5 Scheme IlI(ii): Speculative Interleaving

1: initialize Gt :=G§oW :=Gg
2: in parallel, do (a) and (b):
3 (a): evaluat&gow
(b): evaluatesast
Ky = GBaSI
for j = 1 tokgow — 1do
apply single-objective (parental) selection with véoia
to K| to generat&/*!, and evaluat&/*™"
8: apply environmental selection Ky andejaSt to giveKj1
9: i:=ksjow; Si := Go UGSty . uGfast
I 1 ksiow—1
10: while i < B — kgjow dO
11: apply multiobjective (parental) selection withoutig#ion to
Gi—kgoy 10 giVEG/
12:  find dfspring ofG{ in G{ﬁi;(wl, ...,Gl*and assign &/’
13: select fronG{” those dfspring that improved on one of their
parents’ (inG/) evaluation on the fast objective function and

Noa kA

assign taG{”
14:  GPst=9
15: while |G{”’| > 1 do
16: remove a solution selected at random fiG(ff
17: while |G{”’| < A do
18: create fispringo from uniform selection and variation ap-

plied toG/; G/ := G/ U {0}; G*st:= GlastU {o)

19:  GSow:=G”

20:  while |G} < 1 do

21: create fispringo from uniform selection and variation ap-
plied toGoW; Gast = Gfasty {o}

22:  in parallel, do (a) and (b):

23: (a): evaluat&sov

24: (b): evaluatesfast

25: Ky = Gt

26: for j = 1tokgow— 1do

27: apply single-objective (parental) selection with &ari
tion to K| to generatés'>, and evaluat&'>"

28: apply environmental selection K and ijaSt to give
Kj+l

29: apply environmental selection @_y,, and GiS'OW to give

Gi
. P Q. _ Q. 1" f; f;
30: =i+ Ksiow; Si i= Sickggy Y Gi’kslnw U Giﬁsk‘smwﬂ u...uGks

31: identify and output the set of non-dominated solutionS;i

by the MOEA selected (e.g. in Lines 7 and 13 in Al-
gorithm 1, and Lines 6, 9, 16 and 19 in Algorithm 4).
For Fast-First (Line 6 in Algorithm 2) and the process
of creating interleaving populations within Speculative
Interleaving (Lines 6 to 8, and Lines 26 to 28, in Al-
gorithm 5), we would replace these operators with the
ones used by the single-objective EA selected.

4. Empirical Study

To understand the relative performance of the above
strategies, we conduct an empirical study on a variety
of problem instances with delayed objectives. In partic-
ular, we focus on the analysis of the following aspects:
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1. The optimization performance of Waiting, Fast-

First and Interleaving strategies compared to the
optimization performance obtained in an unde-
layed environment, in general terms.

2. The relative optimization performance of the more

advanced methods of Fast-First and the two In-
terleaving strategies compared to the optimization
performance of a standard (Waiting) strategy, in
general terms.

3. The dfect of problem type on the relative opti-

mization performance of the strategies. Specifi-
cally, we expect this to be influenced by the corre-
lation between objectives, the length of the delay,
and the ruggedness of the fithess landscape being
optimized.

4. Time budget fiects: the relative optimization per-

formance of the dferent strategies as a function of
total optimization time.

4.1. Theoretical considerations

Given the design of the algorithms, we can set out the

following rough expectations regarding their individual
and relative performance:

1. In most scenarios, the performance of an MOEA
in the absence of delays would be expected to pro-
vide us with an estimated “upper bound” on the
optimization performance of any of the alterna-
tive strategies (embedded within the same MOEA).
This is because a delay has thiéeet of reduc-
ing the per-objective budgets available within these
strategies. Any further increase in the length of the
delay has theféect of reducing these budgets fur-
ther. Therefore, any performance gap between the
three strategies and this “upper bound” may be ex-
pected to increase as a function of the length of the
delay.

2. Similarly, the Waiting strategy can be seen to pro-
vide an estimated “lower bound” on the optimiza-
tion performance of angensiblestrategy that we
could design to account for the presence of delays.
This is because Waiting is equivalent to a scenario
with the same delay length on both objectives. As a
consequence, the per-objective budget for the fast
objective is not fully used, and the gap between
the available and the used evaluations increases as
a function of the length of the delay. Clearly, an
improved strategy should attempt to fully utilize
unused portions of the per-objective budgets. As-
suming that the size of the evaluation budget has



a tangible &ect on optimization performance (in-
creasing monotonically in the number of evalua-
tions), any performance advantage of such a strat-
egy (compared to Waiting) should then be expected
to increase with the length of the delay.

It is interesting to note that the overall number of
evaluations (summing across all objectives) per-
formed by the Fast-First strategy may indeed be
smaller than the overall number of evaluations used
by Waiting (e.g. if 1< kgow < 2), as Fast-First ef-
fectively abandons large parts of the per-objective
budget for the slow objective. In terms of main-
taining a ‘minimum number of overall evaluations’
(as defined by the Waiting strategy), a Fast-First
strategy is, arguably, not particularly sensible for
small delays (roughl¥siow < 2, unless objectives
are highly correlated).

. The Fast-First strategy performs a “focused”
(single-objective) optimization on the fast objec-
tive, followed by a final round of evaluations on the
slow objective. This makes optimal use of the per-
objective budget for the fast objective. On the other
hand, the per-objective budget for the delayed ob-
jective is not used until the very end of the opti-
mization. Hence, such a strategy could be con-
sidered to be optimal in the presence of a perfect
correlation between objectives (in which case the
evaluation of the slower objective would result in
the duplication of information at all times). The
extent to which Fast-First can cope with objectives
that are less highly correlated is doubtful, but may
be dfected somewhat by the mechanisms of diver-
sity maintenance within the underlying EA.

. In contrast to Fast-First, both Speculative Inter-
leaving and Brood Interleaving make full use of the
per-objective budgets for each objective. In order
to do so, the time lag until the return of the de-
layed objectives needs to be used to partially eval-
uate an additional(kgjow — 1) solutions. The two
schemes diier in the way these additional solutions
are obtained. Brood Interleaving simply generates
Aksiow— 1) offspring, which are partially evaluated
on the fast objective. Once results from the delayed

jective EA (once the delayed evaluations return).
Out of the two Interleaving strategies, Brood In-
terleaving may be expected to be leskeeted by
the presengabsence of correlation between objec-
tives, and the ruggedness of the fithess landscape,
as its bias towards the fast objective is less pro-
nounced (a preference for the fast objective is only
introduced during the filtering step evegy,y time
steps). On the other hand, the reduction of selec-
tion pressure (no selection pressure is applied dur-
ing waits for the delayed objective) will likely hin-
der convergence, especially for larger delays.

In contrast, Speculative Interleaving maintains se-
lection pressure during all generations, which may
help in driving the search — promoting quick con-
vergence to local optima on rugged fitness land-
scapes. On the other hand, selection pressure may
be too biased towards the fast objective, particu-
larly so for large delays (which will increase the
ratio of fast compared to slow evaluations). This
effect will be undesired for problems with little (or
anti-)correlation between objectives.

4.2. Experimental setup

The following subsection describes in detail the bi-
nary test functions (all functions are to be maximized),
the parameter settings, the MOEAs and the evaluation
measures used to provide empirical investigation of the
performance dferences.

Test functions: The first test function, anapped bi-
objective OneMax problemwhich is inspired by the
generalized OneMax problem (Droste et al., 2006), is
a family of functions that allows us to control the cor-
relation between objectives. Assumingx) to be the
number of 1s in a candidate solution vecxpn;(y) the
number of 1s iry, wherey is a mapped version of so-
lution vectorx, then the mapped bi-objective OneMax
problem can be defined as

f = (f1, f2) = (N1(X), N1 (),
wherey;, = (% + map)mod2 i =1,...,n.

The mapped value of a decision variablenap €
{0, 1} and is set independently for eack 1,...,n by

objectives are returned, the results obtained on the flipping a coin biased by the degree of correlaionr €

fast objective are employed to inform selection of
the next population. In contrast to this, Specula-
tive Interleaving uses a greedy strategy that corre-
sponds to a temporary switch to a single-objective
EA (optimizing several generations on the fast ob-
jective only). The dierence to Fast-First is that
these episodes of single-objective optimization are
then interleaved within generations of the multiob-
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[-1, 1] desired. For instance, for a problem with no cor-
relation between the objectivesafr = 0), the proba-
bility of map = 1 or 0 is 0.5. For a maximal positive
correlation ¢orr = 1), we setmap = 0,i = 1,...,n,
whilst for a maximal negative correlatiosdrr = —1)
we setmap = 1,i = 1,...,n. For an intermediate cor-
relation ofc, we set a map bit to zero with a probability
of (1.0+ ¢)/2.



The second test function used in this study is the Table 1: EA parameter settings.
leading ones trailing zerodOTZ) function (Laumanns
et al., 2004), which can be defined as

Parameter Setting
n I n n

_ _ , v Parent population size 50
f=(fr )= ; ]]1 % 2, 1;1(1 X) | Offspring population size 50
Per-variable mutation probabilitym, 1/n

The Pareto front of this problem consists of solutions of Crossover probability, 0.6
the form B0P with a+ b = n. The LOTZ problem has Fitness scaling factok, 0.05
often been used to investigate theoretical properties of #Time steps (generationB) 40

MOEA algorithms, such as running times (Laumanns

et al., 2004). Since the problem is well-understood it

should also aid the process of understanding the impact o

of delayed objectives on performance. of the landscape optimized.

The third test function we use is the family of multi- Search algorithms: To test the delay-handling strate-
objectiveNK landscapes, ovINK landscapes (Aguirre  gies described in Section 3 we augment them onto the
& Tanaka, 2007)MNK landscapes extend K&man’s indicator-based EA (IBEA) (Zitzler & Kiinzli, 2004), a
NK model (Kadfman, 1993) to multiple objectives by  generational MOEA maximizing (in this case) the hy-
associating a dierentNK landscape instance to each pervolume indicator (Zitzler, 1999).
objective. AnNK landscape instance can be used to  The algorithm uses binary tournament selection
model epistatic interactions between bits so as to control (with replacement) for parental selection, uniform
the ruggedness (number and density of local optima) of crossover (Syswerda, 1989), bit flip mutation, and does
the fitness landscape being optimized. More formally, not check whether a solution has been evaluated previ-

an MNK landscape witim objectives (we fixn = 2 in ously, i.e. identical solutions may be evaluated multiple
this work) can be defined as times. The parameter settings of the MOEA are given
in Table 1. For Fast-First, and the process of generating

f=(f..., fm), interleaving populations within Speculative Interleav-

1N o , ing, a single-objective EA with the same parental selec-
wheref; = N Zgj(Xj,Z(l]),Z(zj),...,Zs(])), i=L....m tion and variation operators is employed (note, in this
=1 case tournament selection is based on a single objective
only); environmental selection is done usingua+ 1)-
ES (evolution strategy) reproduction scheme. Note, for

. . - . IBEA we are using the adaptive version, involving scal-
tion g; the fitness contribution of; and theK bits (also : g the acap . gsc
ing the hypervolume indicator values in combination

called neighbors)z(l’), Zél)’ ..., 20, interacting with bit with a fitness scale factor af= 0.05 (as recommended
Xj. Typically, theK neighbors are selected at random, by Zitzler & Kuinzli (2004))5

and the fitness contributiorg initialized uniformly in
the range [0;1) (i.e.fi € [0;1)). These settings are

In this equationN defines the number of bits (in our
notation this variable is denoted a¥ and the func-

If not otherwise stated we use a budget®t 40,
) ) ! i a search space of size= 20, and assume that objec-
set independently for each objective functién The e 1, is the slow objective. For the mapped OneMax
value of K can vary between the qugctlve funphons problem andVINK landscapes, we create a new prob-
to tune the ruggedness of each objective function sep-|gn jnstance at random for each algorithmic run assum-
arately (with larger values o resulting more rugged
landscapes), whilst, of course, the number of hitse-
mains constant. For the sake of gaining a better under-  4Recently, MNK landscapes have been extended to control the
standing of the fect of delayed objectives on perfor- correlation between objectives (Verel et al., 2011). We dbaon-
mance, in this work we focus on the simple case where sider this problem here but investigate the impact of cati@hs be-

. . L . tween objectives using the mapped OneMax problem, whichoigm
the value ofK is identical for each objective function Straightfojn,\,ard to ana?yze. PP P

(but theK neighbors and the fitness contributiansre 5All strategies have been coded up in Java within the jMesaht-
set anew and at random for each objective function). work (Durillo & Nebro, 2011). The code to run the strategidithin
Unlike the mapped OneMax and LOTZ probleMNK IBEA and other generational MOEAs, such as NSGA-II (Deb &t al

- . . 2002), as well as steady-state MOEAs, such as SEMO (Laumanns
landscapes will allow us to investigate the performance ¢ 4 2004) and SMS-EMOA (Beume et al., 2007), is availatile

of the diferent strategies as a function of the ruggednessnttp: //www.ucl.ac.uk/~ucberal/.
9
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Figure 3: Median and interquartile ranges of the hyperva@achieved on the mapped OneMax problem lt§edent
strategies embedded within IBEA after 40 generations usipgpulation size of 50. The correlation between the two
objectives was varied from -1 to 1, in steps of 0.25. Resuétshown for a latency of 5 (left) and 20 (right) generations
on the slow objective (her®). For every setting marked by a point in the line graphs, edfnan test (significance
level of 5%) has been carried out. In the left plot, Waitingfpams best out of the four strategies farr = —0.5. In

the right plot, Speculative Interleaving performs bestafuhe four strategies in the rangd < corr < 0.5. There is

no clear winner for the other settings.

ing a fixed level of correlation (the problem instances across the algorithmic runs. To investigate significant
are the same for each strategy investigated). Any resultsdifferences between algorithms with respect to the hy-
shown are average results across 30 independent algopervolume, we use a repeated-measures statistical test,
rithm runs. We use paired comparison by employing a the Friedman test (Friedman, 1937). This test does not
different seed for the random number generator for eachassume an underlying distribution of the data (i.e. is
EA run but the same seeds for all strategies describednon-parametric).
above. The second approach is based attainment sur-
faces(Fonseca & Fleming, 1996). Attainment surfaces
Evaluation measures: We use two approaches to as- express graphically the performance of an MOEA in
sess the performance of a multiobjective optimizer sub- terms of the surface in the objective space that can be
ject to delayed objectives. The first is based onhize attained in a fraction of algorithmic runs. For each strat-
pervolume indicato(Zitzler, 1999; Zitzler et al., 2003).  egy, we show the surfaces that can be attained in 50%
This indicator assesses the size of the bounded regionof the runs, also known as median attainment surface.
(in the objective space) dominated by a set of points
(vectors of objective function values of non-dominated 4.3. Experimental Results
solutions). The region dominated is bounded on one In the following, we explore the empirical results
side by a set of non-dominated solutions, and on the on the mapped OneMax, LOTZ, aMINK landscapes
other side by a bounding point. If the bounding point problem, and discuss the extent to which they meet the
is set appropriately and kept the same when comparingexpectations from our theoretical considerations above.
multiple sets of non-dominated solutions, then larger in-
dicator values indicate that a solution set is better than 4.3.1. Correlation between objectives
another one in terms of various desirable aspectsinclud- The empirical results confirm some of the key ex-
ing diversity, extent and proximity to the Pareto opti- pectations regarding the sensitivity offférent strate-
mal front. As, for the problems considered here, the gies to the correlation between objectives. Results are
value ranges of the objectives are known, the bounding given in Figure 3, which analyzes optimization perfor-
point is set to the worst possible point in the objective mance on the mapped OneMax problem. The graphs
space shifted by 1 in each objective. To compare the show the average hypervolume obtained by the strate-
hypervolume obtained by fierent algorithms, we run  gies as a function of the correlation between objectives.
each algorithm multiple times on a problem and report For the LOTZ problem an®/NK landscapes, the cor-
the median and interquartile ranges of the hypervolume relation between objectives cannot be controlled so no

10
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Figure 4: Median and interquartile ranges of the hyperva@achieved on the mapped OneMax problem li§edent
strategies embedded within IBEA after 40 generations uaipgpulation size of 50. Results are shown for a corre-
lation of -0.5 (left) and 0.5 (right) between the two objees, for diferent latencies. For each setting shown on the
abscissa, a Friedman test (significance level of 5%) has t&eied out. In the left plot, Speculative Interleaving
performs best out of the four strategies kak,, = 20. There is no clear winner for the other settings.

results are shown. The following key observations can 4.3.2. Length of the delay
be made from these figures: We further investigate how theftiérent strategies are
affected by increases in the delay period. Figure 4 shows
e For problem instances with a negative correlation the average hypervolume obtained by the strategies as a

between objectives, Waiting can be considered an function of the delay in the slow objective. Results are
appropriate strategy. In fact, in the presence of neg- shown for the mapped OneMax problem for the case of
ative correlations and only short delays, Waiting correlated and anti-correlated objectives. Equivalent re
emerges as the preferred strategy (see the resultsults for the LOTZ problem anMNK landscapes are

obtained foksiw = 5 and correlations in the range  included in the Appendix (see Figure A.1). The follow-
[-1,0]). This can be explained by the fact that all ing key observations can be made from these figures:

three alternative strategies bias the search towards
the fast objective — albeit to varying degrees.
It appears that this bias is ffigiently strong to

be detrimental to optimization performance (when
there is anti-correlation between objectives) and is
not offset by the increased number of evaluations
afforded by these strategies.

For problem instances with a positive correlation
between objectives, Fast-First, Brood Interleaving
and Speculative Interleaving tend to perform as
well or better than the Waiting strategy. As ex-
pected, the strategies start to gain an advantage as
the correlation between objectives increases. Over-
all, Speculative Interleaving emerges as the most
robust performer. The performance of Brood In-
terleaving is more varied and appears influenced by
the length of the delay (explored in more detail in
the following section). The performance of Fast-
First in all settings is disappointing and becomes
competitive for very high levels of correlation only.
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e For small delays of the slow objective, Waiting is
the preferred strategy. This is the case independent
of a positive or negative correlation between objec-
tives.

e For larger delays, the interleaving strategies start
to become competitive, particularly so in the case
of positive correlations. In the case of positive
correlations, Brood Interleaving emerges as the
preferred strategy for medium-length delays, with
Speculative Interleaving becoming the most com-
petitive for long delays. This confirms our prior
expectation that a lack of selection pressure may
cause problems for Brood Interleaving in combi-
nation with long delay periods.

e The performance of Fast-First is generally poor,
but almost unfiected by the delay length, which
could potentially make it a reasonable strategy in
the case of very long delays.
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Figure 5: Median attainment surface on the mapped OneMaxlgmoobtained by dierent strategies embedded
within IBEA after 40 generations using a population size @f Results are shown for a correlation of -0.5 (left) and
0.5 (right) between the two objectives, and a latency of p)(émd 20 (bottom) generations on the slow objective (here
f2).

We further use median attainment surfaces to provide for problems combining a positive correlation between
a more detailed investigation of the convergence behav- objectives with long delays (bottom right plot), where
ior of the diferent strategies. Figure 5 shows results strategies with a high selection pressure, such as Fast-
obtained by the dierent strategies for delay lengths of First and Speculative Interleaving, do well. There is
ksiow = 5 (top plots) andksiow = 20 (bottom plots) time  evidence of this expected bias for all other three strate-
steps on a mapped OneMax problem with a correlation gies (see plots on the left-hand side with a correlation of
of 0.5 (right plots) and -0.5 (left plots). Equivalent re- corr = —0.5), with a trade-& between the optimization
sults on the LOTZ problem anINK landscapes are  of the non-delayed objective (i.e. identifying fit solu-
included in the Appendix (see Figures A.2 and A.3). tions on the bottom right part of the Pareto front) and a
uniform approximation of the Pareto front. As expected,
Fast-First has the most pronounced bias and it performs
best with respect to the fast objective (detecting reliably
the optimal solution with respect ), although almost
no other parts of the Pareto front are found. Brood Inter-
leaving shows the least bias towards the fast objective,
but the results do indicate a lack of convergence towards
the Pareto front. Thisftect is more pronounced for
large delays, and is a direct consequence of the reduced

The figures confirm the intuition that, compared to
a search in an undelayed environment, all strategies
would be d@fected more severely for longer delay pe-
riods. Looking at the strategies in turn, it can be seen
from Figure 5 that generally Waiting is able to main-
tain the most diverse set of non-dominated solutions
among the strategies as it is not subject to any search
bias arising from the preferential evaluation of the fast
objective. As observed above, an exception is apparent

12
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Figure 6: Proportion of attainable hypervolume (as derivedn undelayed environment) achieved by a strategy
when embedded within IBEA on the mapped OneMax problem dflegenerations using a population size of 50.
The color coding shows the performance ratio associatddesith strategy as a function of the latengyaxis) and

the correlation between the objectivesaxis).

selection pressure. The bias of Speculative Interleaving lay does not fiect the performance significantly, except
is more pronounced than that of Brood Interleaving, but for Fast-First, when compared with the performance
it does appear to strike the best balance between biasachieved in an undelayed environment. Comparing the

and convergence over all. strategies against each other it is apparent that Waiting
The strategies behave symmetrically when the delay and Brood Interleaving perform similarly for almost all
is put on objectivef; instead off. correlation and delay values. A slight performance ad-
vantage of Brood Interleaving (compared to Waiting) is
4.3.3. Combined view visible for positive correlations and medium to long de-
In order to provide a more comprehensive picture of lays. Overall, for this setting, Speculative Interleaving
the interaction of correlation and delay length foffeli- and Fast-First perform best. However, comparing Spec-

ent search strategies, Figure 6 shows the ratio of the av-ulative Interleaving (top right plot) with Fast-First (bot
erage hypervolume achieved between each of the stratetom right plot), it can be seen that the performance of
gies and an undelayed search as a function of the cor-Fast-First degrades significantly as the correlation be-
relation between objectivearr and of the delay length  tween objectives reduces. Speculative Interleaving is
ksiow- FOr the LOTZ problem anMNK landscapes, the  only inferior to Brood Interleaving for problems with
correlation between objectives cannot be controlled so little or no correlation between objectives and a delay
no results are shown. of medium length. Overall, Speculative Interleaving
From Figure 6 it can clearly be seen that a highly neg- emerges as the most promising strategy.
ative correlation between objectives amda short de-
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Figure 7: Proportion of brood members dominating (at leastaf) their parents in terms of the fast objective (top) and
proportion of brood members inserted into the populati@tt(im) as a function of the generation counter obtained by
Brood and Speculative Interleaving on the mapped OneMabi@no. Left plots show the two metrics for a correlation
of -0.5, and right plots for 0.5 between the two objectives.

4.3.4. Analysis of the interleaving strategies the beginning of the search when the population has not

To understand the population dynamics of Brood and converged yet.
Speculative Interleaving, we investigate in more detail
the impact that the brood has offspring generation.
Figure 7 gives insights into the contribution of partially 4-3.5. Impact of problem size
evaluated solutions for both Brood and Speculative In-  In this section we consider the impact of problem size
terleaving (on the mapped OneMax problem). Unsur- on the performance of the fiiérent strategies. The re-
prisingly, increasing the delay leads to a higher prob- sults obtained for the LOTZ problem are shown in Fig-
ability that brood members dominate at least one of ure 8. Equivalent results for the mapped OneMax prob-
their ancestors (top plots) and thus are inserted into thelem andMNK landscapes are included in the Appendix
population for evaluation on the slow objective (bot- (see Figures A.4 and A.5). The results show an increas-
tom plots). Due to the convergence of the population, ing performance gap between the strategies and an un-
both probabilities reduce as the optimization progresses,delayed search for larger problem sizes. In particular,
though the reduction is smaller for shorter delays. Due the performance of Brood Interleaving quickly deterio-
to the guided optimization of the fast objective, Specu- rates for increasing search space sizes, and those strate-
lative Interleaving is able to create fitter brood members gies with higher level of selection pressure (Fast-First
than Brood Interleaving that are also more likely to be and Speculative Interleaving) show a higher level of ro-
inserted into the population. This is particularly true at bustness.
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Figure 8: Median and interquartile ranges of the hyperv@achieved on the LOTZ problem byfidirent strategies
embedded within IBEA after 40 generations using populasize of 50. Results are shown for a latency of 10
generations on the slow objective (hdggas a function of problem size, which is varied from 5 bits @ i steps of

5. For every setting marked by a point in the line graphs, edfnian test (significance level of 5%) has been carried
out. Brood Interleaving performs best out of the four sgage forn = 10, and Fast-First fan = 30. There is no clear

winner for the other settings.

4.3.6. Impact of fitness landscape ruggedness
Finally, we investigate the impact of fithess land-

scape ruggedness, as can be be controlled WithirK

landscapes, on theftirent strategies. Figure 9 shows

fashion to the methods of ours that employ interleaving.
In the constraint dominance method (Deb, 2000), for
example, the idea of checking feasibility before invest-
ing in fitness function evaluation of a solution is used,

the ratio of the average hypervolume achieved between partly, to improve éiciency of search. (This has proved
each of the strategies and an undelayed search as a funca valuable idea in constrained EAs, including multiob-

tion of the delay and number of neighbols, each bit
is interacting with. From the figure it can be seen that

jective EAs.) Although our method of Brood Interleav-

ing derives more directly from other ideas (see below),

changing the ruggedness of the landscape, controlledthere is a similarity to constraint dominance, since a

here byK, impacts performance. For Fast-First (bottom

cheaper evaluation is being used to assess the worthi-

right plot) it can be seen that increasing the ruggednessness of a more expensive one. Constraint dominance is
of the landscape tends to reduce the performance gap toperhaps more straightforward, though, as in Brood In-

an undelayed search. For the other strategiesterdit

terleaving (and Speculative Interleaving) it is less cer-

pattern is observed: the performance tends to degradetain that evaluating on the fast objective will provide

with increasingK until a value of aroun&K = 5, and
then again improves for larger valueskof As observed
previously, the strategies, Waiting and Brood Interleav-
ing, behave similarly. Overall, Speculative Interleaving
performs most robustly for varying valuesigf

5. Related Work

Our work on handling delayed objectives has been
informed and inspired by a number of other studies in
the literature. In the following we briefly consider some

a guide for solutions worthy of evaluation on a slower

objective, and is more dependent on the structure of
the problem, particularly the correlation between objec-
tives.

Delta-evaluation in local search (see e.g. Ross et al.
(1994) and Bianchi et al. (2005)) and in hybrid EAs
provides another parallel to our work. Delta-evaluation
refers to the use of a fast computation of the objec-
tive value of a solution by basing the computation on a
“delta” (a small change) from another previously evalu-
ated solution; this is often possible when neighborhood

of these parallels, and provide some further context and search is being used. With the use of delta-evaluation

justification for the methods investigated herein.
We may begin by noticing that certain types of con-
straint handling in the EA literature operate in a similar
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there remains the question about hoffiod should be
shared between the faster local moves, and more expen-
sive but more global ways of generating new solutions.
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Figure 9: Proportion of attainable hypervolume (as derivedn undelayed environment) achieved by a strategy
when embedded within IBEA oMNK landscapes after 40 generations using a population siz@.ofTe color
coding shows the performance ratio associated with eaategir as a function of the latency-éxis) and number of
neighborsK, each bit is interacting withxtaxis).

In contrast, our interleaving methods are more restricted in Section 3.1.3. It is interesting to note that a similar
since the choice of how often the faster objective can be approach to brood selectimacombination was recently
used relative to the slow one is determined more by the rediscovered by Doerr et al. (2013) when attempting
problem itself: the time lag, and the relative sizes of to design an algorithm for OneMax with running time
the populations (or batches) for the slow and fast ob- equal to the lower bound. Overproduction followed by
jective (assumed here to be equal for simplicity). We culling, if culling can be guided by the objective func-
also note here that delta evaluation itself can be further tion without its full cost, is proving to be anffecient
related to the idea of using a hierarchy of successively method to obtain progress. Similar motivations apply in
more accurate but more costly functions for evaluating a our use of the same mechanism.
solution, sometimes employed in engineering optimiza-
tion, but we have left this promising vein of researchout ~ Speculative Interleaving, as the name suggests, is in-
of our considerations here as it falls under the category spired by speculative parallelization (Marchesi et al.,
of metamodeling approaches, which is not in our scope 1994), a method that can be used to speed up individual-
(but see the Discussion section). based (as opposed to population-based) optimizers by
evaluating all or some future search paths to some
Staying with our interleaving methods, we note that depth. Although speculative parallelization has not al-
Brood Interleaving is inspired by the idea of brood se- ways proved to be the mosffective way to parallelize
lection, as first proposed by Tackett & Carmi (1994), algorithms like simulated annealing (Chandy et al.,
and developed subsequently by Walters (1998), as statedl997), our comparison to Brood Interleaving showed
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that in some important cases flattening future genera- resourcing issue to pass, and not evaluate any solutions

tions into the present one is affective way to guide  in the meantime. Although this wastes time steps (and

search. often a time budgetis imposed), the method has two key
As pointed out in (Allmendinger & Knowles, 2013a), virtues: (i) its simplicity of implementation; and, (ii) it

methods for dimensionality reduction of the objective
space (Brockhfd & Zitzler, 2009) may prove to be a

fruitful direction also for delayed objectives. The usual
rationale for dimensionality reduction is of course dif-
ferent; it is that many-objective problems are inher-
ently difficult, or difficult for some existing MOEAS,

and so removing of ‘unnecessary’ objectives, if any can
be identified, is rational. But equally a similar argu-

avoids introducing a search bias which might have hap-
pened had solutions in only a restricted part of the so-
lution space been evaluated. We found that this method
was a good baseline method in our studies on ERCs,
and was surprisinglyféective in many cases. Similarly,
here, we found that waiting for the slow objective, and
not using the faster one, is worthy of consideration, and
provides an excellent baseline.

ment applies, only more so, if one of the unnecessary
objectives is more costly to evaluate than its proxy (a ) )
highly correlated objective). Nevertheless, there is a 6- Discussion
caveat which applies in both cases: although objectives . o
may be correlated, they are usually supposed to be in- Our study above is _necessanly !|m|ted and Ieavgs
dependent functions. Hence, the correlation between an®P€n & number of questions concerning how to deal with
expensive to evaluate objective and its proxy is only a Problems subject to delays of objectives. This section
statistical observable, which may not hold all over the Priefly considers some of these questions.
search space and in particular may not hold crucially at How well do approximation-free strategies fare
or near optimality, i.e. the tradéis may be apparent against approximation-based strategies? Having
only near the Pareto front. Thus removal of objectives looked at both, approximation-free strategies in this
on statistical grounds could be unwise; for these reasonswork and approximation-based strategies in our previ-
we have chosen to investigate other methods that retainous work (Allmendinger & Knowles, 2013a), it would
evaluation on the slow objective, but still exploit corre- be interesting and helpful to know which type of ap-
lation between objectives where it exists. proach is best suited for a given problem. We have done
Amongst the methods we investigated, Fast-First some preliminary experiments on the problems consid-
does not interleave objectives, but rather concentratesered here using the approximation-based strategy that
on one objective for some time before changing to the performed best and most robustly in our previous study.
others. This is rather reminiscent of the two-phase lo- In brief, this strategy maintains an unlimited population
cal search (TPLS) method introduced by Paquete & (or archive) and submits the most recently generated so-
Stitzle (2003) for bi-objective combinatorial optimiza- lutions for evaluation on the slow objective(s). Miss-
tion problems. Paquete cites the connectedness andng objective values, i.e. values of the slow objective
‘global convexity’ of the Pareto front in many multiob-  of solutions that have been evaluated on the fast objec-
jective combinatorial optimization problems as the mo- tive only, are approximated using a fitness inheritance-
tivation behind this approach. The TPLS first optimizes based method. This method fills the missing objective
one objective before optimizing a series of weighted value of a solution with the objective value of the genet-
sum programs with the weights gradually changing ically closest solution that has been evaluated on both
from the first objective (alone) to favoring the second the fast and slow objective. After completing the batch
objective. The solution to the previous program is used of evaluations on the slow objective, the approximated
as the starting solution for the successive one. solution values are replaced with the true (slow objec-

Earlier work by two of us orephemeral resource
constraints(ERCs) (Allmendinger & Knowles, 2011;
Allmendinger, 2012; Allmendinger & Knowles, 2013b)
was the main driver for the proposed method that we

call here Waiting. ERCs are not standard constraints,
but are restrictions on the set of solutions that are actu-

ally evaluable at a given time during optimization, aris-
ing due to resourcing issues. In considering how EAs

tive function) values. (Then, rather than relying on evo-
lution alone to update the population and search direc-
tion upon observing the new objective function values,
potentially, we could accelerate this process using the
“guardian dominator” approach of Fieldsend & Everson
(2014).)

Figure 10 shows several plots comparing this strat-
egy with the approximation-free strategies introduced in

should be applied in such problems, a straightforward this work on the LOTZ problem. In general, the issue

solution, which can usually be applied, is to wait for the
17
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Figure 10: Selection of plots comparing the performanceppfaeximation-free strategies against an approximation-
based strategy for various problem scenarios: convergdoten the LOTZ problem using a latency of 5 generations
on the slow objective (her®) (top left), relative performance of the approximatiorséd strategy compared to the
undelayed problem on the mapped OneMax problem (top rigttinment surfaces obtained on the LOTZ problem
using a latency of 5 generations on the slow objective (ligréottom left), and median and interquartile ranges of
the hypervolume achieved on the LOTZ problem as a functighefatency (bottom right). For every setting marked
by a point in the bottom right line graph, a Friedman testrgigance level of 5%) has been carried out. In the top
left plot, the approximation-based strategy peforms basbbthe five strategies for 1& #Generations 60. In the
bottom right plot, the approximation-based strategy genfobest out of the five strategies in the rangeow < 10,

and Fast-First fokgow = 20. There is no clear winner for the other settings.

without reducing convergence speed significantly exists affected by search bias towards the fast objective (i.e. is
with approximation-based strategy too. The top left plot less likely to converge to a population where many so-
shows the convergence behavior of the approximation- lutions are of high quality wrt the fast objective only)

based strategy in comparison to the approximation-free than Speculative Interleaving and Fast-First. In fact, as
strategies introduced in this study. It can be seen from can be observed from the bottom left plot, the strategy
the plot that the approximation-based approach con- converges (quickly) to the middle of the Pareto-front,

verges even faster than Speculative Interleaving at thesimilar to Waiting, but then stagnates there (due to a
beginning of the search but then stagnates in perfor- loss of diversity in the population as many solutions are
mance to be eventually overtaken by Brood Interleav- copies of each other). Finally, it is important to note

ing and Waiting. Looking at the attainment surfaces that the performance of the approximation-based strat-
obtained after 40 generations (see top right plot), it is egy depends heavily on the accuracy of objective value
apparent that the approximation-based strategy is lessapproximations made. It is easy to see that this accu-
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racy reduces as the number of solutions evaluated on theegy is to first rank objectives according to their laten-
slow objective reduces. The bottom right plot confirms cies, and then apply a nested approach where the faster
this assumptions, indicating a significant degradation in objectives are used as look ahead for slower objectives,
the performance of the strategy with increasing latency and, in turn, these objectives as look ahead for even
ksiow- On the mapped OneMax problem and multiobjec- slower objectives, and so on. Clearly, the application of
tive NK landscapes, the approximation-based strategy approximation-based approaches could be of great ben-
is afected similar to Speculative Interleaving for dif- efit in such challenging scenarios, replacing the need of
ferent objective function correlations aidvalues, re- evaluating all objective functions.

spectively. The main élierence between both strategies
was observed on the mapped OneMax problem for pos-
itive correlations and long latencies (see Figure A.6 in
the Appendix); here Speculative Interleaving performs
significantly better.

Instantiations of delay-handling strategies on
steady-state  MOEAs: Unlike generational-based
MOEAs, which evaluate a set (population) &f> 1
solutions at any time, steady state MOEASs create (and
evaluate) one solution at a time (and thus are not usable
Generalization of strategies to a pair of objectives  off-the-shelf in the case where several solutions can be
where Ksjow iS not an exact multiple ofKyast. In Def- evaluated in parallel). This does ndfect the Waiting
inition 2.7 we defined the latencies associated with the and First-First strategy, which can be used in the same
objectives to be exact multiples of each other. Of course, way as within a generational-based MOEA (though
in reality, this may not be the case. However, this defini- we might want to use the Waiting strategy to create an
tion simplifies things greatly to synchronize the objec- unbiased initial population in the case of First-First and
tives in this way, and more generally this can be done asthe two Interleaving strategies). Slight modifications
follows. Let’s say the fast objective takes 1 unitand the are, however, necessary for Brood and Speculative
slow one 1.7. Then we could just approximate the slow |nterleaving to account for the fact that oriyo fast

one as taking 2 timesteps for synchronization purposesevaluations are performed during each “interleaving
(and we would have to put in a fier delay on the sec-  period”, compared toksgow x A fast evaluations in
ond objective to make the synchronization work). How- a generational MOEA. Consequently, to simulate
ever, if the fast objective took one unit of time and the the performance of Brood Interleaving obtained in a
slow objective took 1.5, then it would be ideal to define generational MOEA, the interleaving populations for a
the first as being 2 timesteps, and second as 3, so that theteady state-based MOEA can be created by applying
amount of bifering is kept small. We have not consid-  selection and variation to the current EA populat@n
ered this second way of synchronizing, but believe that (which is of size1) instead of the current generation on
the algorithms could be altered to do it without much the slow objectiver'OW (which is also of sizel in the
additional work. case of a generational MOEA). Similarly, to simulate

Generalization of strategies tom > 2 objectives: Our the performance of Speculative Interleaving obtained in
experimental study investigated multiobjective prob- a gen'eratlona}l M,OEA’ which involves the.appllcatlon
lems withm = 2 objectives of which one was fast and ©f @ Single-objective EA foksio, — 1 generations, each
one slow. A pressing question is whether the strategies ©f the interleaving populations of a steady-state MOEA
can be generalized to problems with> 2 objectives ~ can represent a (single) mutant created by allpplymg
and multiple objectives with @ierent latencies. The Variation to the single solution (parent) formiy®";
strategies, Waiting and Fast-First, are readily applica- the single best mutant (in telrms of the fast objective)
, : L ow st
ble to other problem setups by simply going at the rate ¢@n then be selected to giGF®" assuming it is better

of the slowest and fastest objective, respectively. To be than its parent, otherwise a smgléfs_cprlng can llae.
able to apply the two Interleaving strategies we could created by random (parental) selection and variation

split the objectives into two groups based on their la- 2PPlied to the interleaving populations (mutants) to

tencies, i.e. a group containing rather slow objectives give GF*".

and a group with fast objectives, and use somggel The performance of the delay-handling strategies
ing (waiting) within each group to synchronize the eval- when embedded to a steady-state MOEA, as described
uations. In the case where the group with the slow above, seems to be similar to the performance ob-
objectives contains multiple elements (objectives), we tained for a generational MOEA. The mainfdrence
would use a MOEA (instead of a single-objective EA) we observed is that Brood Interleaving and Waiting per-
to drive the optimization during the interleaving peri- form better within a steady-state MOEA than a gener-
ods. An alternative and probably more complex strat- ational MOEA for problem with high correlations be-
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Figure 11: Median and interquartile ranges of the hypemwawachieved on the mapped OneMax problem by dif-
ferent strategies embedded within a steady-state EMOAe ther Simple Evolutionary Multiobjective Optimizer
(SEMO) (Laumanns et al., 2004), after 40 generations usipgpaulation size of 50. In the left plot, the latency
was set to 5 generations on the slow objective (Hereand the correlation was varied from -1 to 1, in steps of 0.25
In the right plot, the correlation was set to 0.5 betweenwedbjectives and the latency was varied. For every setting
marked by a point in the line graphs, a Friedman test (sigmifie level of 5%) has been carried out. In the left plot,
Speculative Interleaving performs best out of the fourteti@s in the rangel < corr < 0. There is no clear winner
for the other settings.

tween objectives, especially when combined with long (see below).
delay lengths. This observation can also be made from
Figure 11 where results are shown for an example of
a steady-state MOEA, in this case the Simple Evolu-
tionary Multiobjective Optimizer (SEMO) (Laumanns How to select an appropriate strategy for dealing
et al., 2004). This pattern may be due to the relatively with delayed objectives in the absence of knowledge
higher selection pressure of a steady-state MOEA (com- about the problem at hand?1f the experimentalist (i.e.
pared to a generational MOEA, such as IBEA). How- an expert on the problem domain at hand) is unaware
ever, a more thorough investigation is needed to confirm about correlations between objectives /amdstructure
the performance dierences between these two repro- of the fitness landscape, then some knowledge about
duction schemes. these aspects might be obtained from evaluating a set
of random solutions on the problem. The knowledge
Relationship to problems with asynchronous evalua-  gained might be used to select an appropriate strategy,
tions: Asynchronous evaluation in optimization in the and the solution set evaluated could form the initial pop-
context of grid computing was considered in [12,16]. ulation of the MOEA within which the strategy is em-
The problem overlaps but is distinct from ours in that bedded. Alternatively, if this approach is not feasible
the cloud computing resource is assumed to be hetero-(e.g. because it is too expensive) or does not yield use-
geneous andr unreliable, and the asynchrony happens ful insights into the problem, one might select an ap-
across the population rather than across objectives. (Inpropriate strategy based on the latencies of the objec-
contrast, we assume for the moment a rather reliable tives. In this work we have shown that a strategy with
and homogeneous process for evaluating a whole pop-high selection pressure, such as Speculative Interleav-
ulation en masse, and are concerned only with the facting, is well-suited for small budgets and long latencies,
that some objectives can be evaluated faster than oth-whilst a Waiting strategy is more appropriate for large
ers.) Although the context is a bitftgrent, we think budgets. Finally, confidence in the strategy selected can
that as Lewis et al.[12] found, a strategy based on a be increased by designing problem functions that simu-
moderate amount of waiting for slower evaluations may late the problem at hand as closely as possible, and then
be competitive in some settings, and we also consider to test several strategiegiine on these functions and
the efect of diversity maintenance might be important use the best one for the real-world problem.
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7. Conclusion mization of the fast objective, and that, with increas-
ing budgets, both strategies become increasingly com-
Continuing our previous work (Allmendinger &  petitive. They perform similarly in several settings, but
Knowles, 2013a), we have considered a multiobjective Brood Interleaving outperforms Waiting for long delays
optimization scenario in which the objective functions and large problem sizes. Furthermore, Brood Interleav-
of a problem require dierent evaluation times. This ing turns out to perform significantly better when used
kind of problem can be encountered in closed-loop op- in combination with a steady state-based MOEA (here
timization scenarios, where physical experiments may SEMO) rather than a generational-based MOEA (here
be of difering temporal durations, as well as problems IBEA).
in which objective functions are evaluated on the com-  Qur study has shown that, for most scenarios, smart
puter but have diering latency (e.g. due to lengthy approximation-free strategies are more competitive than
computer simulations). We considered scenarios with simple approaches, such as Waiting, to deal with multi-
two objectives, a fast and a slow objective, and, un- objective problems where objectives havéating eval-
like to our previous work, proposed and analyzed sev- uation times. In particular, EA performance depends
eral approximation-free strategies to deal such scenar-on the mechanism used to creatéspring (interleav-
ios: Waiting, Fast-First, Brood Interleaving, and Specu- ing populations) during the periods the slow objective is
lative Interleaving. We showed how these strategies can evaluated. Hence, future research could look at merg-
be augmented on generational and steady state—baseqhg the strategies proposed here (e.g. for creatifiig o
MOEAs, and assessed them on three well-known bi- spring) with the approximation-based strategies we con-
nary test functions: (i) the well-understood LOTZ prob-  sidered in our previous work (e.g. for estimating their
lem, (ii) a family of mapped OneMax problemsto inves- gbjective values). To improve the approximation-based
tigate the impact of correlation between objectives on strategy itself, or, more precisely, the way a popula-
strategy performance, and (iii) multiobjectiXK land-  tion is updated after observing the true values of the
scapes MINK landscapes) to investigate the impact of slow objective function, we could experiment with the
varying fitness landscape ruggedness on strategy perfor“guardian dominator” approach of Fieldsend & Everson
mance. (2014). We believe that there is also scope for improve-
The experimental study revealed that the performance ment on the strategy Fast-First. For example, one could
of all strategies is féected by the presence of delayed |earn (using a reinforcement learning-based approach as
objectives. In general, the degree to which performance done e.g. in (Allmendinger & Knowles, 2011)) when to
is affected depends on how well a strategy is able to switch during the search between single-objective op-
control search bias towards solutions that are fit on the timization of the fast objective and multiobjective op-
fast objective without degrading population diversity timization of both the fast and slow objective. To im-
and convergence speed severely. Based on the experiprove the applicability of the strategies proposed here,
mental study, we can conclude tentatively that a strat- it is also important to extend and investigate them for
egy with relatively high selection pressure towards opti- multiobjective problems wittm > 2 objectives where
mizing the fast objective, such as Speculative Interleav- possibly all objectives may haveftérent latencies. Fi-
ing, performs well if little optimization time is available  nally, we can look into merging our strategies with
andor delays are long, objectives are positively corre- surrogate-assisted evolutionary optimization (Ong et al.
lated, and fitness landscapes are rugged. 2005; Jin, 2011) for coping with delayed environments,
A strategy that focuses on optimizing the fast ob- as well as get inspiration from asynchronous evolution
jective only, such as Fast-First, has shown to perform techniques (Lewis et al., 2009; Harada & Takadama,
well for problems with highly positively correlated ob-  2014), which account for latencies across individual so-
jectives. Furthermore, Fast-First was also fiected lutions rather than objectives.
by the length of delays, and performed better within a
generational MOEA than a steady state-based MOEA.
In fact, when embedded within a generational-based References
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Appendix A. Supplementary Experimental Results
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Figure A.1: Median and interquartile ranges of the hypamm achieved on the LOTZ problem (left) and IiNK
landscapes (foN=20 andK=2) (right) by diferent strategies embedded within IBEA after 40 generatisitgy a
population size of 50. Results are shown fdfelient latencies. For every setting marked by a point in treedraphs,

a Friedman test (significance level of 5%) has been carriedthe left plot, Speculative Interleaving performs best
out of the four strategies for & ksjow < 10, and Fast-First foksiow = 20. In the right plot, Speculative Interleaving
performs best out of the four strategies kaew = 20. There is no clear winner for the other settings.
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Figure A.2: Median attainment surface on the LOTZ probleraivied by diferent strategies embedded within IBEA
after 40 generations using a population size of 50. Reswdtsteown for a latency of 5 (left) and 20 (right) generations
on the slow objective (herg).
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Figure A.3: Median attainment surface NK landscapes (foN=20 andK=2) obtained by dferent strategies
embedded within IBEA after 40 generations using a populatine of 50. Results are shown for a latency of 5 (left)
and 20 (right) generations on the slow objective (higje
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Figure A.4: Median and interquartile ranges of the hypamu achieved by tlierent strategies embedded within
IBEA on the mapped OneMax problem after 40 generations usipgpulation size of 50. Results are shown for a
latency of 10 generations on the slow objective (higjes a function of problem size, which is varied from 5 bits to
50, in steps of 5. For every setting marked by a point in thediraphs, a Friedman test (significance level of 5%) has

been carried out. In theleft plot, Speculative Interlegyierforms best out of the four strategiesfias 20. There is
no clear winner for the other settings.
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Figure A.5: Median and interquatrtile ranges of the hypamw achieved oMNK landscapes (fol=20 andK=2)

by different strategies embedded within IBEA after 40 generatisitey a population size of 50. Results are shown
for a latency of 10 generations on the slow objective (Heyas a function of problem size, which is varied from 5
bits to 50, in steps of 5. For every setting marked by a poitihénline graphs, a Friedman test (significance level of
5%) has been carried out. Speculative Interleaving peddyest out of the four strategies for> 20. There is no
clear winner for the other settings.
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Figure A.6: Proportion of attainable hypervolume (as dmiivin an undelayed environment) achieved by an
approximate-based strategy on the mapped OneMax problem4d generations using a population size of 50.
The color coding shows the performance ratio associatddesith strategy as a function of the latengyaxis) and
the correlation between the objectivesaxis).
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