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Abstract

The bipartite boolean quadratic programming problem (BBQP) is a generalization of the
well studied boolean quadratic programming problem. The model has a variety of real life ap-
plications; however, empirical studies of the model are not available in the literature, except in
a few isolated instances. In this paper, we develop efficient heuristic algorithms based on tabu
search, very large scale neighborhood (VLSN) search, and a hybrid algorithm that integrates
the two. The computational study establishes that effective integration of simple tabu search
with VLSN search results in superior outcomes, and suggests the value of such an integration in
other settings. Complexity analysis and implementation details are provided along with conclu-
sions drawn from experimental analysis. In addition, we obtain solutions better than the best
previously known for almost all medium and large size benchmark instances.

Keywords: quadratic programming, boolean variables, metaheuristics, tabu search, worst-case
analysis.

1 Introduction

Local search algorithms and their metaheuristic elaborations such as tabu search have become
the methods of choice for solving many complex applied optimization problems. Traditional local
search algorithms use exhaustive search over small neighborhoods while many recent local search
algorithms use neighborhoods of exponential size that often can be searched for an improving
solution in polynomial time. To distinguish between these variations, the former is called simple
neighborhood search (SN search) and the latter is called very large-scale neighborhood search (VLSN
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search)[3]. SN search based local search algorithms are generally faster in exploring neighborhoods
but take a large number of iterations to reach a locally optimal solution. Many VLSN search
algorithms on the other hand take longer to search a neighborhood for an improving solution but
often reach a locally optimal solution quickly within a relatively small number of iterations. In this
paper we consider an integration of SN search and VLSN search within a tabu search framework
to develop enhanced algorithms for an important combinatorial optimization problem called the
bipartite boolean quadratic programming problem (BBQP).

Let Q = (qij) be an m × n matrix, c = (c1, c2, . . . , cm) be a row vector in Rm and d =
(d1, d2, . . . , dn) be a row vector in Rn. Then, the problem (BBQP) can be stated mathematically
as

BBQP: Maximize f(x, y) = xTQy + cx+ dy
subject to x ∈ {0, 1}m, y ∈ {0, 1}n.

An instance of BBQP is completely defined by the matrix Q and vectors c and d and hence it
is represented by P(Q, c, d). BBQP has been studied by many researchers in various applications
including clustering and bioinformatics [17], matrix factorization [4, 15], data mining [10, 15],
solving basic graph theoretic optimization problems [2, 16, 12], and computing approximations to
the cut-norm of a matrix [1]. The problem can also be viewed as a generalization of the well-studied
boolean quadratic programming problem (BQP) [5, 6, 11, 19]

BQP: Maximize f(x) = xTQ′x+ c′x
subject to x ∈ {0, 1}n,

where Q′ is an n × n matrix and c′ is a row vector in Rn. As pointed out in [12] and [13], by
choosing

Q = Q′ + 2MI, c =
1

2
c′ −Me and d =

1

2
c′ −Me, (1)

where I is an n × n identity matrix, e ∈ Rn is an all one vector and M is a very large number,
BQP can be formulated as a BBQP. Thus, systematic experimental study of algorithms for BBQP
is also relevant for all the applications studied in the context of BQP.

Despite its unifying role and various practical applications, BBQP has not been investigated
thoroughly from the experimental analysis point of view. The only systematic study that we are
aware of is by Karapetyan and Punnen [9] who generated a class of test instances and provided
experimental results with various heuristic algorithms. Some limited experimental study using a
specific algorithm, called the alternating algorithm [9, 10] is also available in the context of specific
applications.

This paper focuses on developing efficient heuristic algorithms for solving BBQP. We present
two neighborhood structures, a classic one-flip neighborhood and a new flip-float neighborhood,
and based on them propose a one-flip move based tabu search algorithm, a flip-float move based
coordinate method and a hybrid algorithm that combines the two. While the specific optimization
problem addressed in this paper is BBQP, our approach for integrating tabu search (TS) and VLSN
search is applicable to other settings to obtain hybrid algorithms that inherit individual properties
of these algorithmic paradigms. Computational experiments on a set of 85 benchmark instances
[9] disclose that the hybrid TS/VLSN method shows better performance in terms of both solution
quality and robustness than either of its component methods in isolation. The hybrid method is able
to improve almost all the previous best-known solutions on the medium and large size instances.
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We also compared our algorithms with a ready-made heuristic that solves an integer program-
ming formulation of BBQP using CPLEX [8] with appropriate parameter settings guiding the solver
to emphasize on producing a heuristic solution within a prescribed time limit. This approach pro-
duced solutions comparable to that of our algorithms (but at the cost of additional time) for
small size instances. For medium and large size instances, this approach proved to be impractical,
reinforcing the need for special purpose algorithms to solve BBQP.

We also provide landscape analysis of the benchmark instances to identify the inherent difficulty
of these instances for local search algorithms. Such a study is not available in literature so far and
this provides additional insights into the structure of the benchmark instances.

The rest of the paper is organized as follows. Section 2 presents two neighborhood structures
and describes in detail three heuristic algorithms. Section 3 reports and discusses computational
statistics of the proposed algorithms on the standard benchmark instances. We also discuss land-
scape analysis of the benchmark instances in this section. Finally, concluding remarks are provided
in Section 4.

2 Neighborhoods and heuristics algorithms

This section proposes three heuristic algorithms for solving BBQP. The first algorithm adopts a
classic one-flip neighborhood structure and a tabu search strategy. The second algorithm employs
a new flip-float neighborhood structure and a coordinate ascent strategy. The third integrates the
first and second algorithms to produce a hybrid method.

2.1 One-flip neighborhood

The classic one-flip move performed on a binary vector consists of changing the value of a component
of the vector to its complementary value (i.e., flipping a component of the vector). Thus, by flipping
the i-th component of vector x = (x1, x2, . . . , xm), we get a new vector x′ = (x1, . . . , xi−1, 1 −
xi, xi+1, . . . , xm). This flip process can be denoted as:

x′ ← x⊕ Flip(i). (2)

For a solution (x, y) of BBQP, we can perform one-flip moves on both x and y and hence the
number of all possible one-flip moves is m+ n.

In local search algorithms, we usually need to rapidly determine the effect of a one-flip move on
the objective function. To achieve this, we adapt a fast incremental evaluation technique, widely
used for the BQP problem [5, 6, 7, 11, 18, 19], to the BBQP problem. Specifically, we use two
arrays to store the contribution of each possible move, and employs a streamlined calculation for
updating the arrays after each move.

Let ∆xi (i = 1, 2, . . . ,m) denote the change in the objective function value caused by flipping
the i-th component of x and let x′ = x⊕ Flip(i), then

∆xi = f(x′, y)− f(x, y) = (x′i − xi)(ci +
n
∑

j=1

yjqij). (3)

Similarly, let ∆yj (j = 1, 2, . . . , n) denote the change in the objective function value caused by
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flipping the j-th component of y and let y′ = y ⊕ Flip(j). Then

∆yj = f(x, y′)− f(x, y) = (y′j − yj)(dj +

m
∑

i=1

xiqij). (4)

In our implementation, we use two arrays to store all the ∆xi and ∆yj values. These arrays can
be initialized using equations (3) and (4) with time complexity O(mn). After a move is performed,
the ∆xi and ∆yj arrays are updated efficiently. Note that we just need to update the elements
affected by the move and the new values can be determined incrementally. A detailed description
of the algorithm for updating the ∆xi and ∆yj values with time complexity O(m+ n) is given in
Algorithm 1.

2.2 One-flip move based tabu search algorithm

Based on the one-flip neighborhood, we can formulate a simple tabu search algorithm as described
in Algorithm 2. When a component of x or y is flipped in the current step, it is declared tabu for
the next TabuTenure steps, i.e., one-flip moves (either from 0 to 1 or from 1 to 0) involving this
component are forbidden for the next TabuTenure iterations. Using a simple default setting, the
TabuTenure for xi (i = 1, 2 . . . ,m) is set tom/20+rand(0, 10), where rand(0, 10) denotes a random
integer between 0 and 10. For yj (j = 1, 2, . . . , n), the TabuTenure is set to n/20 + rand(0, 10).
We also used a simple aspiration criterion, allowing a tabu move to be performed if it leads to
a solution better than the best-found one. Our rudimentary tabu search algorithm starts from a
randomly generated initial solution. In each iteration, it executes the best admissible one-flip move
and repeats until the incumbent (best-found) solution has not been improved in the last TabuDepth
steps.

In the resulting algorithm, depicted as Algorithm 2 below, the time complexity of steps 1 and
2 is respectively O(m + n) and O(mn). Step 4 is realized by scanning the ∆xi and ∆yj arrays
and looking up the TabuList with time complexity O(m+ n). Steps 5 and 6 can be done in O(1)
time. The complexity of Step 7 is O(m + n), as indicated in the previous section. Therefore, for
the one-flip move based tabu search algorithm, the complexity of each search step is O(m+ n).

2.3 Flip-float neighborhood

For a fixed x = (x1, x2, . . . , xm), we choose the best y = y∗(x) which makes f(x, y) maximal by the
following equation [9]:

y∗(x)j =

{

1 if dj +
∑m

i=1 xiqij > 0;
0 otherwise.

(5)

Similarly, we can choose the best x = x∗(y) for a specific y = (y1, y2, . . . , yn) by the equation:

x∗(y)i =

{

1 if ci +
∑n

j=1 yjqij > 0;

0 otherwise.
(6)

The Flip-x-Float-y move consists of flipping one component of x and then choosing the best
(floating) y with respect to the flipped x. Similarly, the Flip-y-Float-x move is defined as flipping
one component of y and then choosing the best (floating) x with respect to the flipped y. The
number of all possible Flip-x-Float-y and Flip-y-Float-x moves is, respectively, m and n.
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Algorithm 1: The ∆xi and ∆yj arrays updating algorithm

1 if the move is xi : 1→ 0 then

2 ∆xi ← −∆xi ;
3 for j ← 1 to n do

4 if yj = 1 then

5 ∆yj ← ∆yj + qij ;
6 else

7 ∆yj ← ∆yj − qij ;
8 end

9 end

10 end

11 if the move is xi : 0→ 1 then

12 ∆xi ← −∆xi ;
13 for j ← 1 to n do

14 if yj = 1 then

15 ∆yj ← ∆yj − qij ;
16 else

17 ∆yj ← ∆yj + qij ;
18 end

19 end

20 end

21 if the move is yj : 1→ 0 then

22 ∆yj ← −∆yj ;
23 for i← 1 to m do

24 if xi = 1 then

25 ∆xi ← ∆xi + qij ;
26 else

27 ∆xi ← ∆xi − qij ;
28 end

29 end

30 end

31 if the move is yj : 0→ 1 then

32 ∆yj ← −∆yj ;
33 for i← 1 to m do

34 if xi = 1 then

35 ∆xi ← ∆xi − qij ;
36 else

37 ∆xi ← ∆xi + qij ;
38 end

39 end

40 end
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Algorithm 2: The one-flip move based simple tabu search algorithm

Input: An initial solution (x, y)
Output: The best solution found so far

1 Initialize TabuList ;
2 Initialize the ∆xi and ∆yj arrays using Eq.3 and Eq.4;
3 repeat

4 Determine the best admissible move mv by scanning the ∆xi and
∆yj arrays and looking up the TabuList ;

5 Perform mv ;
6 Update TabuList ;
7 Update ∆xi and ∆yj arrays using Algorithm 1 ;

8 until the best-found solution has not been improved in the last
TabuDepth iterations;

9 return The best solution found so far

Let Fy∗(x) = f(x, y∗(x)), Fx∗(y) = f(x∗(y), y). Then the change of objective function value
caused by flipping the i-th component of x and floating y is given by:

∆Flip-x-Float-y(i) = Fy∗(x⊕ Flip(i)) − Fy∗(x). (7)

Similarly, the change in the objective function value caused by flipping the jth component of y and
floating x is given by

∆Flip-y-Float-x(j) = Fx∗(y ⊕ Flip(j)) − Fx∗(y). (8)

In the local search, we need to find a fast way to identify the value of ∆Flip-x-Float-y(i)
and ∆Flip-y-Float-x(j). In the following, we only describe how to determine ∆Flip-x-Float-y(i).
Computation of ∆Flip-y-Float-x(j) can be done in an analogous way by simply exchanging the
symbols (1) x and y, (2) i and j, (3) ci and dj , and (4) m and n.

Let

Sum(x, j) = dj +

m
∑

i=1

xiqij . (9)

Then we have

Fy∗(x) =

m
∑

i=1

cixi +

n
∑

j=1

max(0, Sum(x, j)) (10)

Let x′ = x⊕ Flip(i) (i = 1, 2, . . . ,m). Then

Fy∗(x
′)− Fy∗(x) =

m
∑

k=1

ckx
′
k +

n
∑

j=1

max(0, Sum(x′, j))

−

m
∑

k=1

cixk −

n
∑

j=1

max(0, Sum(x, j))

= ci(x
′
i − xi) +

n
∑

j=1

(max(0, Sum(x′, j)) −max(0, Sum(x, j))). (11)
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From Eq.11, we observe that computing the value of ∆Flip-x-Float-y(i) requires knowledge
of the Sum(x, j) values. Thus, in our calculations we use an array of size n to store Sum(x, j)
(j = 1, 2, . . . , n). From Eq.9, the Sum(x, j) array can be initialized with O(mn) time complexity.
In each search step, we use the following algorithm (Algorithm 3) of complexity O(n) to compute
∆Flip-x-Float-y(i). After performing move Flip-x-Float-y(i), the Sum(x, j) array can be updated
by adding (x′i−xi)∗qij to each element. It’s clear that each updating requires O(n) time complexity.
Note that before applying Flip-x-Float-y(i), we make sure that y = y∗(x). Likewise, before applying
Flip-y-Float-x(j), we make sure x = x∗(y).

Algorithm 3: Algorithm to compute ∆Flip-x-Float-y(i)

Input: i, x, Sum(x, j)(j = 1, 2, . . . , n)
Output: ∆Flip-x-Float-y(i)

1 ∆F ← (x′i − xi) ∗ ci ;
2 for j ← 1 to n do

3 ∆Sum ← (x′i − xi) ∗ qij ;
4 newSum ← Sum(x, j) + ∆Sum;
5 if ∆Sum > 0 and newSum > 0 then

6 ∆F ← ∆F + min(∆Sum, newSum) ;
7 else

8 if ∆Sum < 0 and Sum(x, j) > 0 then

9 ∆F ← ∆F−min(−∆Sum, Sum(x, j)) ;
10 end

11 end

12 end

13 return ∆F ;

2.4 Flip-float move based coordinate method

Based on the Flip-float neighborhood, we get a coordinate method as described in Algorithm 4
which alternatively uses Flip-x-Float-y and Flip-y-Float-x moves to improve a solution. Starting
from a given initial solution, the algorithm first chooses the optimal y for the given x. Then it
progressively uses the Flip-x-float-y moves to improve the incumbent solution. At each search step,
the algorithm scans all possible Flip-x-Float-y moves. Once it encounters an improving move with
∆Flip-x-Float-y (i) > 0, it performs that move. If all Flip-x-Float-y moves can not improve the
incumbent solution, the algorithm tries to improve the incumbent solution using the Flip-y-Float-x
move in a similar manner as described above. If the solution has been improved by Flip-y-Float-
x move, it will go back to the beginning and tries to improve it using the Flip-x-Float-y moves
again. The algorithm terminates when the solution can not be improved by both Flip-x-Float-y
and Flip-y-Float-x moves.

2.5 Hybrid method

The one-flip move based tabu search algorithm and the flip-float move based coordinate method
represent two kinds of algorithmic paradigms. For the one-flip move based tabu search algorithm,
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Algorithm 4: The flip-float move based coordinate method

Input: An initial solution (x, y)
Output: A locally optimal solution w.r.t. flip-float move

1 repeat

2 Initialize Sum(x, j) array according to Eq.9;
3 y ← y∗(x) ;
4 for i← 1 to m do

5 Determine ∆Flip-x-Float-y(i) using Algorithm 3 ;
6 if ∆Flip-x-Float-y (i) > 0 then

7 xi ← 1− xi ;
8 Update Sum(x, j) array ;
9 y ← y∗(x) ;

10 goto Step 4 ;

11 end

12 end

13 Initialize Sum(y, i) array according to Eq.10;
14 x← x∗(y) ;
15 for j ← 1 to n do

16 Determine ∆Flip-y-Float-x(j) similar to Algorithm 3 ;
17 if ∆Flip-y-Float-x (j) > 0 then

18 yj ← 1− yj ;
19 Update Sum(y, i) array ;
20 x← x∗(y) ;
21 goto Step 15 ;

22 end

23 end

24 until the solution can not be improved by both Flip-x-Float-y and
Flip-y-Float-x moves;

25 return (x, y)
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each move is simple and fast, but the tabu search strategy is very powerful, making it possible to
escape from small local minimum traps and iterate for large number of steps . In the flip-float move
based coordinate method, each move examines a large number of candidate solutions and therefore
is more powerful and more expensive, but the coordinate ascent strategy is simple and allows only
a few number of iterations in each local search.

The hybrid method integrates the one-flip tabu search algorithm and the flip-float coordinate
method to yield the schema given in Algorithm 5. The integrating strategy is simple. It alterna-
tively uses the one-flip tabu search algorithm and the flip-float coordinate method to improve the
incumbent solution, until no improvement can be achieved using both methods.

Algorithm 5: The hybrid algorithm

Input: An initial solution (x, y)
Output: A best-found solution

1 λ← 1 ;
2 while λ = 1 do

3 λ← 0 ;
4 (x, y)← Improve the solution (x, y) using the one-flip move based

tabu search algorithm ;
5 (x, y)← Improve the solution (x, y) using the flip-float move based

coordinate method ;
6 if the solution was improved by the flip-float move based coordinate

method then

7 λ← 1 ;
8 end

9 end

10 return (x, y)

3 Experimental analysis

This section provides experimental results of the described algorithms on a set of 85 benchmark
instances. We analyze their computational statistics in the aim of assessing their performance and
disclosing their individual properties.

3.1 Test instances and experimental protocol

We adopt the standard testbed generated by Karapetyan and Punnen [9] in our experiments.
This testbed consists of 85 test instances which can be classified into five categories according to
their application background: Random instances, Max Clique instances, Max Induced Subgraph
instances, Max Cut instances and Matrix Factorization instances. Each category contains three
kinds of instances: small instances of size from 20 × 50 to 50 × 50, medium instances of size from
200× 1000 to 1000× 1000, and large instances of size from 1000× 5000 to 5000× 5000. A detailed
description of the problem generator can be found in [9]. All these instances are available in public
from the website http://www.sfu.ca/~dkarapet/.

9

http://www.sfu.ca/~dkarapet/


The algorithms are coded in C++ and complied using GNU GCC. All the computational
experiments are carried out on a PC with two 3.1GHZ Intel Xeon E5-2687W CPUs and 128G
Memory. The computer can run 32 computing threads at the same time, so we use multiple
threads to compute multiple instances. No parallel computing techniques are used.

The algorithms are run in a multi-start fashion with randomly generated initial solutions to
allow diversification. A time limit is set for each small, medium and large instance respectively
at 100, 1000 and 10000 seconds. The experiments are carried out without special tuning of the
parameters, i.e., all the parameters used in the algorithms are fixed for all instances considered.
To capture the performance of each algorithm on each instance, we record the following values:
the best-found solution, the number of initial solutions tried, the number of times the best-found
solution is repeatedly hit, and the average elapsed time for detecting the best-known solution
(calculated as dividing the number of hit times into the elpased time the best-found solution is last
detected).

3.2 Computational results and discussion

Tables 1, 2 and 3 respectively present the computational statistics of the three algorithms on the
small, medium and large instances. In each table, columns 1 and 2 give the instance name and the
previous best-known solution obtained by Karapetyan and Punnen [9]. Columns 3-14 report the
computational statistics of the three algorithms: the deviation between our best-found solution and
the previous best-known solution is listed in column 2 (Deviation), the number of initial solutions
tried (#Init), the number of times our best-found solution is repeatedly detected (#Hit), and the
average time needed to reach the best-found solution (Time).

Table 1 reports the computational statistics on the 35 small instances. For all the instances,
each algorithm can reach the best-known solutions efficiently and consistently. For each small
instance, the needed computing time is usually less than 1 millisecond. We also conjecture that for
all these 35 small instances the current best-known solutions are already optimal. (Each of them
usually is repeatedly hit more than 100,000 times.)

Table 1 also reveals some individual properties of each algorithm. For the 7 Biclique instances,
the performance of the hybrid method and the flip-float coordinate ascent method is roughly the
same. They have significantly higher success rate (#Hit/#Init) than the one-flip tabu search
algorithm. For the other 28 instances, the performance of the hybrid method and the one-flip tabu
search algorithm are at the same level and are better than the flip-float coordinate method in terms
of success rate (approximately 100% v.s. 50%). These observations show that the hybrid method
inherits good properties from both the one-flip tabu search algorithm and the flip-float coordinate
method.

Table 2 gives the computational statistics of the three algorithm on the 25 medium sized in-
stances. The hybrid method and the one-flip tabu search algorithm successfully improve the pre-
vious best-known solutions on 11 instances and 10 instances respectively. The flip-float coordinate
method fails to reach the previous best-known solutions on most instances within the given time
limit. However, on the 5 Biclique instances where the one-flip tabu search performance is rela-
tively poor, the flip-float coordinate method can improve the previous best-known solutions on
4 instances, demonstrating that it has some complementary property with respect to the one-flip
tabu search algorithm. Compared with the one-flip tabu search method, the hybrid method usually
find better solutions on the 10 Biclique and BMaxCut instances. For the other 15 instances, the
best-found solutions are the same on each instance. However, the hybrid method is generally more
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Table 1: Computational statistics of the three algorithms on the 35 small instances

Instance Name Best-known
Hybrid Method One-flip Tabu Search Flip-float coordinate method

Deviation #Init #Hit Time (ms) Deviation #Init #Hit Time (ms) Deviation #Init #Hit Time (ms)
Biclique20x50 18341 0 178594 178351 0 0 384859 1623 61 0 1116063 280506 0
Biclique25x50 24937 0 152478 145875 0 0 380436 1838 54 0 812083 782547 0
Biclique30x50 27887 0 150193 18399 5 0 348283 1464 68 0 685472 156750 0
Biclique35x50 32515 0 117354 103561 0 0 298058 4914 20 0 414726 118298 0
Biclique40x50 33027 0 94380 52725 1 0 237547 3041 32 0 420982 216525 0
Biclique45x50 37774 0 79341 78924 1 0 226604 1950 51 0 288844 288844 0
Biclique50x50 30124 0 84527 30712 3 0 213764 1240 80 0 337932 337431 0
BMaxCut20x50 9008 0 181658 105868 0 0 281593 121145 0 0 906202 322188 0
BMaxCut25x50 10180 0 176712 104961 0 0 251272 118318 0 0 647870 289626 0
BMaxCut30x50 13592 0 149703 114921 0 0 190134 145242 0 0 490369 119412 0
BMaxCut35x50 14024 0 138000 52490 1 0 172827 65710 1 0 377840 33659 2
BMaxCut40x50 17610 0 115954 48123 2 0 147998 57850 1 0 310749 15441 6
BMaxCut45x50 15252 0 106119 37982 2 0 127375 45431 2 0 249277 30217 3
BMaxCut50x50 19580 0 95127 33228 3 0 118656 40511 2 0 208773 32492 3
MatrixFactor20x50 114 0 221042 221042 0 0 286354 286354 0 0 670962 583384 0
MatrixFactor25x50 127 0 197375 197375 0 0 253512 253512 0 0 467549 438994 0
MatrixFactor30x50 148 0 158794 158794 0 0 204559 204559 0 0 366402 23789 4
MatrixFactor35x50 139 0 146580 146580 0 0 190794 190794 0 0 285900 166926 0
MatrixFactor40x50 210 0 135328 135328 0 0 175257 175257 0 0 220070 41211 2
MatrixFactor45x50 191 0 119706 119706 0 0 155124 155124 0 0 194567 74289 1
MatrixFactor50x50 217 0 108330 108330 0 0 144053 144053 0 0 158088 20158 4
MaxInduced20x50 6983 0 246453 208710 0 0 314245 263979 0 0 758467 485882 0
MaxInduced25x50 8275 0 186863 118483 0 0 244527 152919 0 0 540122 112608 0
MaxInduced30x50 10227 0 155943 150971 0 0 198937 192187 0 0 379252 106475 0
MaxInduced35x50 11897 0 156777 156777 0 0 200934 200934 0 0 343184 285156 0
MaxInduced40x50 14459 0 145671 145671 0 0 185726 185726 0 0 238934 229789 0
MaxInduced45x50 13247 0 108385 107353 0 0 138255 136921 0 0 200974 52996 1
MaxInduced50x50 15900 0 105508 105292 0 0 131545 131239 0 0 153775 102837 0
Rand20x50 13555 0 240731 240731 0 0 317500 317500 0 0 657434 382499 0
Rand25x50 13207 0 170476 107664 0 0 214032 135163 0 0 485003 111240 0
Rand30x50 15854 0 180159 180159 0 0 230848 230848 0 0 334042 269158 0
Rand35x50 14136 0 147259 145766 0 0 184884 183014 0 0 276747 64591 1
Rand40x50 18778 0 136871 136871 0 0 170684 170684 0 0 214272 116800 0
Rand45x50 22057 0 123368 123366 0 0 160725 160724 0 0 169020 25816 3
Rand50x50 23801 0 117483 117483 0 0 148970 148970 0 0 147063 123409 0
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robust because it usually has a smaller #Init value but a larger #Hit value.
As shown in Table 3, the hybrid method and the one-flip tabu search algorithm can improve

most of the previous best-known solutions within the given time limit on the 25 large instances.
The flip-float coordinate method performs best on the 5 Biclique instances; improving 4 previous
best-known solutions. However, it fails to improve 19 out of the other 20 instances. Compared with
the one-flip tabu search algorithm, the hybrid method usually has a smaller #Init value on each
instance but is able to find better solutions on 20 out of all 25 instances. In addition, we conjecture
that for the 25 large instances, most of the current best-found solutions are not optimal, because
the #Hit value is usually 1. If we set the time limit to larger values, we may find better solutions.

In summary, our experimental results reveal that the one-flip tabu search algorithm performs
well on most of the instances except for the Biclique instances (as opposed to our hybrid method
incorporating the TS approach, which does well on all problems). The flip-float coordinate method
is generally inferior to one-flip tabu search algorithm but performs significantly better on the
Biclique instances . The hybrid method which integrates the one-flip tabu search algorithm and
the flip-float coordinate ascent method shows better performance than both of them in the following
three aspects: (1) It has good performance regardless of the problem instance; (2) it is more robust;
(3) its solution quality is generally better.

Since BBQP can be formulated as a mixed integer program (MIP), one can use any MIP solver
as a heuristic by restricting its running time. To compare the performance of our heuristics to this
ready-made heuristic algorithm we used the general purpose MIP solver CPLEX [8]. The results
are summarized in Tables 4 and 5. The tables clearly establish that our metaheuristic algorithms
possess significant advantages over this ready-made general purpose heuristic in terms of efficiency
as well as solution quality. In our experiments, we set the time limit of CPLEX the same as the
time limit given to the three metaheuristic algorithms. We also tested CPLEX as a heuristic by
doubling this time limit. It may be noted that based on the experiments reported by Karapetyan
and Punnen [9] the CPLEX solver failed to find optimal solutions on most instances of size larger
than 40× 50 in 5 hours. In our experiments, we set the CPLEX parameter MIPEmphasis to 1, so
that CPLEX put more emphasis on finding good feasible solutions and less emphasis on proof of
optimality.

For small instances, CPLEX obtained optimal solutions within the allowed time (with proof
of optimality) for 14 out of 35 problems and obtained the best known solutions for 27 out of 35
instances. For this class of instances, all our heuristics obtained the best known solutions for all
problems (including guaranteed optimal ones) and hit the first such solution in almost negligible
time. By doubling the allowed running time, CPLEX matched the best known solutions for two
additional instances.

For medium size instances, CPLEX obtained only the trivial solutions x = 0, y = 0 in 18
out of 25 cases and by doubling the allowed running time, it obtained non-trivial solutions for
two additional instances. The quality of all these solutions is significantly lower than the quality
obtained by our heuristics. For large scale instances, CPLEX reached allowed memory limit very
quickly and hence we discontinued experiments with large instances.

3.3 Landscape analysis of problem instances

The computational experiments demonstrate that the one-flip tabu search algorithm’s performance
is significantly worse on the Biclique and BMaxCut instances than on the other instances. In
order to obtain some insight into this phenomena, we employ a fitness distance analysis on some
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Table 2: Computational statistics of the three algorithms on the 25 medium instances

Instance Name Best-known
Hybrid Method One-flip Tabu Search Flip-float coordinate method

Deviation #Init #Hit Time (s) Deviation #Init #Hit Time (s) Deviation #Init #Hit Time (s)
Biclique200x1000 2150201 -3360 3653 3653 0 -1943566 12904 8 86 0 6821 1 917
Biclique400x1000 4051884 -171828 1342 1342 1 -3748430 6676 1 129 -5669 844 1 370
Biclique600x1000 5465191 -44342 657 5 179 -4782833 3603 1 788 -11303 453 43 23
Biclique800x1000 6651165 -23568 443 443 2 -6066520 2352 1 66 36602 291 126 8
Biclique1000x1000 8601552 64393 329 158 6 -3453555 2562 1 170 47798 255 255 4
BMaxCut200x1000 616810 -2634 3521 1 144 -10724 7637 1 695 -2534 5818 1 745
BMaxCut400x1000 940944 8858 1729 1 879 9396 2334 1 515 -2028 1182 1 790
BMaxCut600x1000 1520214 -282972 1089 1 241 -281540 1371 1 982 -309568 456 1 473
BMaxCut800x1000 1215160 329390 756 1 667 327402 1020 1 574 288664 216 1 393
BMaxCut1000x1000 1771726 41174 599 1 818 40076 807 1 265 -11084 134 1 650
MatrixFactor200x1000 6283 0 7340 130 8 0 9902 142 7 -2 7524 1 947
MatrixFactor400x1000 9862 0 2862 899 1 0 3869 558 2 -21 1546 1 146
MatrixFactor600x1000 12898 4 1950 355 3 4 2556 266 4 -20 601 1 830
MatrixFactor800x1000 15437 29 1247 138 7 29 1602 95 10 -42 289 1 4
MatrixFactor1000x1000 18792 21 1122 47 21 21 1510 25 40 -9 158 1 270
MaxInduced200x1000 513081 0 5041 252 4 0 8605 241 4 0 4310 29 34
MaxInduced400x1000 777028 0 2401 91 11 0 3559 92 11 -74 861 1 423
MaxInduced600x1000 973711 0 1265 456 2 0 1953 93 11 -1676 354 1 450
MaxInduced800x1000 1204745 788 1034 9 107 788 1530 15 64 -1009 169 1 846
MaxInduced1000x1000 1414743 879 828 77 13 879 1288 60 17 -1376 110 1 118
Rand200x1000 612947 0 4908 84 12 0 8828 50 20 0 3511 18 55
Rand400x1000 951950 0 2256 565 2 0 3761 277 4 0 762 1 257
Rand600x1000 1345690 58 1555 84 12 58 2418 30 33 -375 299 1 627
Rand800x1000 1604746 179 1192 51 19 179 1713 31 32 -878 161 1 577
Rand1000x1000 1828902 1334 963 121 8 1334 1413 66 15 -4348 92 1 23

13



Table 3: Computational statistics of the three algorithms on the 25 large instances

Instance Name Best-known
Hybrid Method One-flip Tabu Search Flip-float coordinate method

Deviation #Init #Hit Time (s) Deviation #Init #Hit Time (s) Deviation #Init #Hit Time (s)
Biclique1000x5000 38489329 -130572 545 545 18 -37445214 3690 1 6931 -227214 192 3 1258
Biclique2000x5000 64124897 409442 166 111 90 -62615159 1799 1 7941 551466 77 5 935
Biclique3000x5000 96735826 -285670 83 83 121 -94271142 1209 2 2017 832798 48 48 209
Biclique4000x5000 125690937 2241269 49 42 239 -123684458 783 1 833 2534335 31 31 331
Biclique5000x5000 161974406 1541091 33 18 562 -156946737 858 1 9289 1541091 23 23 447
BMaxCut1000x5000 6531128 -34322 585 1 6509 -157860 1417 1 9788 -47464 331 1 1988
BMaxCut2000x5000 10085616 128586 385 1 1724 101198 619 1 7888 -107548 59 1 3174
BMaxCut3000x5000 13505722 396512 283 1 9315 406968 440 1 537 -71262 21 1 2515
BMaxCut4000x5000 16358716 623990 192 1 9248 617426 325 1 4832 23588 11 1 2082
BMaxCut5000x5000 19348266 739490 154 1 8464 746954 279 1 7697 -76772 7 1 5211
MatrixFactor1000x5000 71470 0 1745 1 2138 -8 2480 1 790 -560 672 2 1793
MatrixFactor2000x5000 107939 94 1011 1 1569 66 1495 1 4880 -461 127 1 2823
MatrixFactor3000x5000 143886 333 667 1 7435 319 1097 1 2910 -327 44 1 9231
MatrixFactor4000x5000 178967 481 497 1 3325 502 782 1 657 -346 19 1 6077
MatrixFactor5000x5000 210390 629 386 1 6368 644 657 1 8202 -293 10 1 9774
MaxInduced1000x5000 5463868 446 1274 2 4997 -323 2533 1 9941 -2588 228 1 3293
MaxInduced2000x5000 8256468 8736 743 1 2839 7890 1517 1 4505 -5374 45 1 8704
MaxInduced3000x5000 11070646 18920 481 1 4083 18672 1060 1 4256 -13790 18 1 2867
MaxInduced4000x5000 13447665 47209 330 1 3117 45511 773 1 1302 -5592 9 1 5955
MaxInduced5000x5000 15975303 44639 257 1 1721 44659 659 1 7019 1085 6 1 10896
Rand1000x5000 7182386 471 1334 1 7018 -356 2858 1 4076 -4323 219 1 1426
Rand2000x5000 11087619 8499 778 1 4404 6480 1635 1 6321 -16577 46 1 2942
Rand3000x5000 14403998 29890 509 1 9829 28443 1173 1 8026 -3511 18 1 8361
Rand4000x5000 18034574 33346 399 1 1004 29090 935 1 3159 -12670 9 1 7399
Rand5000x5000 20946066 46635 336 1 1897 42930 721 1 2946 -36659 5 1 2067
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Table 4: Computational results of the CPLEX on the small instances

Instance Name
Time Limit = 100 s Time Limit = 200 s

Value Time (ms) Optimality Value Time (ms) Optimality
Biclique20x50 18341 225 optimal 18341 250 optimal
Biclique25x50 24937 490 optimal 24937 520 optimal
Biclique30x50 27887 1310 optimal 27887 1170 optimal
Biclique35x50 32515 1205 optimal 32515 1146 optimal
Biclique40x50 33027 3631 optimal 33027 3391 optimal
Biclique45x50 37774 10136 optimal 37774 10086 optimal
Biclique50x50 30124 44155 optimal 30124 42505 optimal
BMaxCut20x50 9008 4385 optimal 9008 4243 optimal
BMaxCut25x50 10180 47590 optimal 10180 49015 optimal
BMaxCut30x50 13592 100026 feasible 13592 200009 feasible
BMaxCut35x50 13084 100021 feasible 14024 200007 feasible
BMaxCut40x50 16916 100026 feasible 17392 200039 feasible
BMaxCut45x50 14422 100036 feasible 14662 200025 feasible
BMaxCut50x50 18766 100026 feasible 18788 200041 feasible
MatrixFactor20x50 114 30405 optimal 114 28345 optimal
MatrixFactor25x50 127 100030 feasible 127 200023 feasible
MatrixFactor30x50 148 100027 feasible 148 200039 feasible
MatrixFactor35x50 139 100027 feasible 139 200039 feasible
MatrixFactor40x50 210 100012 feasible 210 200039 feasible
MatrixFactor45x50 188 100012 feasible 191 200023 feasible
MatrixFactor50x50 213 100027 feasible 212 200039 feasible
MaxInduced20x50 6983 967 optimal 6983 936 optimal
MaxInduced25x50 8275 4197 optimal 8275 4212 optimal
MaxInduced30x50 10227 65254 optimal 10227 62322 optimal
MaxInduced35x50 11897 57142 optimal 11897 56659 optimal
MaxInduced40x50 14459 100027 feasible 14459 99075 optimal
MaxInduced45x50 13229 100027 feasible 13247 200023 feasible
MaxInduced50x50 15900 100027 feasible 15890 200023 feasible
Rand20x50 13555 1701 optimal 13555 1731 optimal
Rand25x50 13207 88546 optimal 13207 87656 optimal
Rand30x50 15854 100011 feasible 15854 200023 feasible
Rand35x50 14039 100011 feasible 14039 200023 feasible
Rand40x50 18778 100027 feasible 18778 200039 feasible
Rand45x50 22057 100011 feasible 22044 200039 feasible
Rand50x50 23801 100043 feasible 23720 200039 feasible

* The results are obtained by CPELX with the following parameter settings: Threads = 1,
MIPEmphasis = 1, MIPDisplay = 0, TreLim = 1000.

15



Table 5: Computational results of the CPLEX on the medium instances

Instance Name
Time Limit = 1000 s Time Limit = 2000 s

Value Time (s) Optimality Value Time (s) Optimality
Biclique200x1000 0 1002 feasible 0 2002 feasible
Biclique400x1000 0 1003 feasible 0 2003 feasible
Biclique600x1000 0 1005 feasible 0 2005 feasible
Biclique800x1000 0 1006 feasible 0 2006 feasible
Biclique1000x1000 0 1009 feasible 0 2009 feasible
BMaxCut200x1000 0 1002 feasible 0 2002 feasible
BMaxCut400x1000 0 1003 feasible 0 2004 feasible
BMaxCut600x1000 0 1005 feasible 0 2005 feasible
BMaxCut800x1000 0 1006 feasible 0 2007 feasible
BMaxCut1000x1000 0 1008 feasible 0 2008 feasible
MatrixFactor200x1000 0 1001 feasible 792 2001 feasible
MatrixFactor400x1000 292 1004 feasible 292 2003 feasible
MatrixFactor600x1000 0 1005 feasible 0 2004 feasible
MatrixFactor800x1000 0 1006 feasible 0 2006 feasible
MatrixFactor1000x1000 0 1008 feasible 0 2008 feasible
MaxInduced200x1000 61130 1002 feasible 61130 2002 feasible
MaxInduced400x1000 25642 1003 feasible 25642 2004 feasible
MaxInduced600x1000 4963 1005 feasible 4963 2005 feasible
MaxInduced800x1000 8940 1007 feasible 8940 2006 feasible
MaxInduced1000x1000 31662 1007 feasible 31662 2009 feasible
Rand200x1000 0 1002 feasible 40315 2001 feasible
Rand400x1000 0 1003 feasible 0 2004 feasible
Rand600x1000 120682 1005 feasible 120682 2005 feasible
Rand800x1000 0 1006 feasible 0 2006 feasible
Rand1000x1000 0 1008 feasible 0 2008 feasible

* The results are obtained by CPELX with the following parameter settings: Threads = 1, MIPEm-
phasis = 1, MIPDisplay = 0, TreLim = 1000.

representative instances to show their different landscape properties.
This analysis is performed on 5 medium instances: Biclique1000x1000, BMaxCut1000x1000,

MatrixFactor1000x1000, MaxInduced1000x1000, Rand1000x1000. For each instance, we run the
one-flip tabu search 1000 times from randomly generated starting points and obtain 1000 local
minima. We get a sample point from each solution by calculating the gap between its objective
value and the corresponding best-known value, and also the Hamming distance from the best-
known solution. For each instance, we then plot the 1000 sampled points in a figure to estimate
the distribution of local optima.

Fig.1 gives the fitness distance scatter plots for the five representative instances. Fig.1 shows
that, for the Biclique and BMaxCut instances, all the sampled local minima are far away from
the corresponding best-known solutions. This phenomenon suggests that the best-known solutions
may be located in a very narrow valley and therefore hard to detect. Especially for the Biclique
instances, it seems that all the sampled points fall within two distinct regions. For the other three
instances, the best-known solution is usually surrounded by many local optima whose objective
value deteriorate with the increase of distance from the optimum. This kind of property makes the
best-known solution relatively easier to detect, because the one-flip tabu search algorithm is able
to escape from small local optimum traps and this property enables the algorithm to reach the
best-known solution through a sequence of local minima with ascending objective value.
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Figure 1: Fitness distance scatter plots on five representative instances
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(a) Biclique 1000x1000
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(b) BMaxCut 1000x1000
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(c) MatrixFactor 1000x1000
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(d) MaxInduced 1000x1000
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(e) Rand 1000x1000
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4 Conclusion

In this work, we developed three heuristic algorithms for BBQP. The first algorithm employs a
classic one-flip neighborhood and a simple tabu search strategy. The second one is based on a
new powerful flip-float neighborhood and a simple coordinate ascent method. The third algorithm
integrates the first and second algorithms to create a hybrid method with the aim of inheriting
good properties from each.

To assess the performance characteristics of the proposed algorithms, we have conducted sys-
tematic computational experiments on a set of 85 test instances. Our findings demonstrate that the
hybrid method outperforms both the one-flip tabu search algorithm and the flip-float coordinate
method: It generally finds better solutions than either component method on a wide range of test
instances, and overall is more robust. In addition, the hybrid method is able to improve most of the
previous best-known solutions on instances of medium and large size. We also compared our algo-
rithms with CPLEX running in heuristic mode and all our algorithms generated superior outcomes
in terms solution quality and running time compared to this ready-made heuristic approach. In
addition to the development and comparison of heuristics, we also performed a landscape analysis
to compare the relative difficulty levels of the benchmark instances. This study revealed interesting
properties of the structure of these problems.

Our findings suggest the potential value of algorithmic enhancements for future research: (1)
introducing 2-flip moves in the procedures currently studied; (2) combining the resulting methods
to produce new hybrids; (3) using more advanced forms of tabu search for the direct 1-flip and
2-flip methods; (4) likewise using tabu search to exploit the flip-float neighborhood(in both 1-flip
and 2-flip versions).
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[18] Y. Wang, Z. Lü, F. Glover and J. K. Hao. Backbone guided Tabu Search for solving the UBQP
problem. Journal of Heuristics , (2011) 1-17.
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