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Universidad Santo Tomás, Concepción, Chile

ppinacho@santotomas.cl

Abstract

The minimum common string partition problem is an NP-hard combinatorial optimiza-
tion problem with applications in computational biology. In this work we propose the first
integer linear programming model for solving this problem. Moreover, on the basis of the
integer linear programming model we develop a deterministic 2-phase heuristic which is
applicable to larger problem instances. The results show that provenly optimal solutions
can be obtained for problem instances of small and medium size from the literature by
solving the proposed integer linear programming model with CPLEX. Furthermore, new
best-known solutions are obtained for all considered problem instances from the literature.
Concerning the heuristic, we were able to show that it outperforms heuristic competitors
from the related literature.

1 Introduction

Optimization problems related to strings—such as protein or DNA sequences—are very com-
mon in bioinformatics. Examples include string consensus problems such as the far-from most
string problem [20, 19], the longest common subsequence problem and its variants [14, 22],
and alignment problems [12]. These problems are often computationally very hard, if not
even NP -hard [9]. In this work we deal with the minimum common string partition (MCSP)
problem, which can be described as follows. We are given two related input strings that have
to be partitioned each into the same collection of substrings. The size of the collection is
subject to minimization. A formal description of the problem will be provided in Section 1.1.
The MCSP problem has applications, for example, in the bioinformatics field. Chen et al. [2]
point out that the MCSP problem is closely related to the problem of sorting by reversals
with duplicates, a key problem in genome rearrangement.
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In this paper we introduce the first integer linear program (ILP) for solving the MCSP
problem. An experimental evaluation on problem instances from the related literature shows
that this ILP can be efficiently solved, for example, by using any version of IBM ILOG
CPLEX. However, a study on new instances of larger size demonstrates the limitations of
the model. Therefore, we additionally introduce a deterministic 2-phase heuristic which is
strongly based on the original ILP. The experimental evaluation shows that the heuristic is
applicable to larger problem instances than the original ILP. Moreover, it is shown that the
heuristic outperforms competitor algorithms from the related literature on known problem
instances.

1.1 Problem Description

The MCSP problem can technically be described as follows. Given are two input strings s1
and s2, both of length n over a finite alphabet Σ. These two strings are required to be related,
which means that each letter appears the same number of times in each of them. Note that
this definition implies that s1 and s2 have the same length. A valid solution to the MCSP
problem is obtained by partitioning s1 into a set P1 of non-overlapping substrings, and s2
into a set P2 of non-overlapping substrings, such that P1 = P2. Moreover, we are interested
in finding a valid solution such that |P1| = |P2| is minimal.

Consider the following example. Given are DNA sequences s1 = AGACTG and s2 =
ACTAGG. Obviously, s1 and s2 are related because A and G appear twice in both input
strings, while C and T appear once. A trivial valid solution can be obtained by partitioning
both strings into substrings of length 1, that is, P1 = P2 = {A,A,C,T,G,G}. The objective
function value of this solution is 6. However, the optimal solution, with objective function
value 3, is P1 = P2 = {ACT,AG,G}.

1.2 Related Work

The MCSP problem has been introduced by Chen et al. [2] due to its relation to genome
rearrangement. More specifically, it has applications in biological questions such as: May
a given DNA string possibly be obtained by rearrangements of another DNA string? The
general problem has been shown to be NP -hard even in very restrictive cases [10]. Other
papers concerning problem hardness consider, for example, the k-MCSP problem, which is
the version of the MCSP problem in which each letter occurs at most k times in each input
string. The 2-MCSP problem was shown to be APX-hard in [10]. When the input strings
are over an alphabet of size c, the corresponding problem is denoted as MCSPc. Jiang et
al. proved that the decision version of the MCSPc problem is NP -complete when c ≥ 2 [15].

The MCSP has been considered quite extensively by researchers dealing with the ap-
proximability of the problem. Cormode and Muthukrishnan [4], for example, proposed an
O(lognlog∗n)-approximation for the edit distance with moves problem, which is a more gen-
eral case of the MCSP problem. Shapira and Storer [21] extended on this result. Other
approximation approaches for the MCSP problem have been proposed in [18]. In this con-
text, Chrobak et al. [3] studied a simple greedy approach for the MCSP problem, showing
that the approximation ratio concerning the 2-MCSP problem is 3, and for the 4-MCSP
problem the approximation ratio is Ω(log(n)). In the case of the general MCSP problem, the
approximation ratio is between Ω(n0.43) and O(n0.67), assuming that the input strings use an
alphabet of size O(log(n)). Later Kaplan and Shafir [16] raised the lower bound to Ω(n0.46).
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Kolman proposed a modified version of the simple greedy algorithm with an approximation
ratio of O(k2) for the k-MCSP [17]. Recently, Goldstein and Lewenstein proposed a greedy
algorithm for the MCSP problem that runs in O(n) time (see [11]). He [13] introduced a
greedy algorithm with the aim of obtaining better average results.

Damaschke [5] was the first one to study the fixed-parameter tractability (FPT) of the
problem. Later, Jiang et al. [15] showed that both the k-MCSP and MCSPc problems admit
FPT algorithms when k and c are constant parameters. Finally, Fu et al. [8] proposed a
O(2nnO(1)) time algorithm for the general case and an O(n(logn)2) time algorithm applicable
under some constraints.

To our knowledge, the only metaheuristic approaches that have been proposed in the
related literature for the MCSP problem are (1) the MAX -MIN Ant System by Ferdous
and Sohel [6, 7] and (2) the probabilistic tree search algorithm by Blum et al. [1]. Both works
applied their algorithm to a range of artificial and real DNA instances from [6].

1.3 Organization of the Paper

The remaining part of the paper is organized as follows. In Section 2, the ILP model for solving
the MCSP is outlined. Moreover, an experimental evaluation is provided. The deterministic
heuristic, together with an experimental evaluation, is described in Section 3. Finally, in
Section 4 we provide conclusions and an outlook to future work.

2 An Integer Linear Program to Solve the MCSP

In the following we present the first ILP model for solving the MCSP. For this, the definitions
provided in the following are required. Note that an illustrative example is provided in
Section 2.3.

2.1 Preliminaries

Henceforth, a common block bi of input strings s1 and s2 is denoted as a triple (ti, k1i, k2i)
where ti is a string which can be found starting at position 1 ≤ k1i ≤ n in string s1 and
starting at position 1 ≤ k2i ≤ n in string s2. Moreover, let B = {b1, . . . , bm} be the (ordered)
set of all possible common blocks of s1 and s2.

1 Given the definition of B, any valid solution
S to the MCSP problem is a subset of B—that is, S ⊂ B—such that:

1.
∑

bi∈S |ti| = n, that is, the sum of the length of the strings corresponding to the common
blocks in S is equal to the length of the input strings.

2. For any two common blocks bi, bj ∈ S it holds that their corresponding strings neither
overlap in s1 nor in s2.

Moreover, any (valid) partial solution Spartial is a subset of B fulfilling the following conditions:
(1)

∑
bi∈Spartial |ti| < n and (2) for any two common blocks bi, bj ∈ Spartial it holds that their

corresponding strings neither overlap in s1 nor in s2. Note that any valid partial solution
can be extended to be a valid solution. Furthermore, given a partial solution Spartial, set
B(Spartial) ⊂ B denotes the set of common blocks that may be used in order to extend Spartial

such that the result is again a valid (partial) solution.

1The way in which B is ordered is of no importance.
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2.2 The Integer Linear Program

First, two binary m × n matrices M1 and M2 are defined as follows. In both matrices, row
1 ≤ i ≤ m corresponds to common block bi ∈ B. Moreover, a column 1 ≤ j ≤ n corresponds
to position j in input string s1, respectively s2. In general, the entries of matrix M1 are set
to zero. However, in each row i, the positions that string ti (of common block bi) occupies
in input string s1 are set to one. Correspondingly, the entries of matrix M2 are set to zero,
apart from the fact that in each row i the positions occupied by string ti in input string s2
are set to one. Henceforth, the position (i, j) of a matrix M is denoted by Mi,j . Finally, we
introduce for each common block bi ∈ B a binary variable xi. With these definitions we can
express the MCSP in form of the following integer linear program, henceforth referred to by
Ilporig.

min
m∑
i=1

xi

subject to:
m∑
i=1

|ti| · xi = n

m∑
i=1

M1i,j · xi = 1 for j = 1, . . . , n

m∑
i=1

M2i,j · xi = 1 for j = 1, . . . , n

xi ∈ {0, 1} for i = 1, . . . ,m

(1)

(2)

(3)

(4)

Hereby, the objective function minimizes the number of selected common blocks. Con-
straint (2) ensures that the sum of the length of the strings corresponding to the selected
common blocks is equal to n. Finally, constraints (3) make sure that the strings correspond-
ing to the selected common blocks do not overlap in input string s1, while constraints (4)
make sure that the strings corresponding to the selected common blocks do not overlap in
input string s2.

2.3 Example

As an example, consider the small problem instance from Section 1.1. The complete set of
common blocks (B) as induced by input strings s1 = AGACTG and s2 = ACTAGG is as
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follows:

B =



b1 =(ACT, 3, 1)
b2 =(AG, 1, 4)
b3 =(AC, 3, 1)
b4 =(CT, 4, 2)
b5 =(A, 1, 1)
b6 =(A, 1, 4)
b7 =(A, 3, 1)
b8 =(A, 3, 4)
b9 =(C, 4, 2)
b10 =(T, 5, 3)
b11 =(G, 2, 5)
b12 =(G, 2, 6)
b13 =(G, 6, 5)
b14 =(G, 6, 6)


Given set B, matrices M1 and M2 are the following ones:

M1 =



0 0 1 1 1 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1



M2 =



1 1 1 0 0 0
0 0 0 1 1 0
1 1 0 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1


The optimal solution to this instance is S = {b1, b2, b14}. It can easily be verified that this

solution respects constraints (2-4) of the ILP model.

2.4 Experimental Evaluation

In the following we will provide an experimental evaluation of model Ilporig. The model was
implemented in ANSI C++ using GCC 4.7.3 for compiling the software. Moreover, the model
was solved with IBM ILOG CPLEX V12.1. The experimental results that we outline in the
following were obtained on a cluster of PCs with ”Intel(R) Xeon(R) CPU 5130” CPUs of 4
nuclei of 2000 MHz and 4 Gigabyte of RAM.

2.4.1 Problem Instances

For testing model Ilporig we chose the same set of benchmark instances that was used by
Ferdous and Sohel in [6] for the experimental evaluation of their ant colony optimization
approach. This set contains, in total, 30 artificial instances and 15 real-life instances consisting
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of DNA sequences. Remember, in this context, that each problem instance consists of two
related input strings. Moreover, the benchmark set consists of four subsets of instances.
The first subset (henceforth labelled Group1) consists of 10 artificial instances in which the
input strings are maximally of length 200. The second set (Group2) consists of 10 artificial
instances with input string lengths between 201 and 400. In the third set (Group3) the input
strings of the 10 artificial instances have lengths between 401 and 600. Finally, the fourth set
(Real) consists of 15 real-life instances of various lengths.

2.4.2 Results

The results are shown in Tables 1-4, in terms of one table per instance set. The structure
of these tables is as follows. The first column provides the instance identifiers. The second
column contains the results of the greedy algorithm from [3] (results were taken from [6]).
The third column provides the value of the best solution found in four independent runs per
problem instance (with a CPU time limit of 7200 seconds per run) by the Aco approach by
Ferdous and Sohel [6, 7].2 The fourth column provides the value of the best solution found in
10 independent runs per problem instance (with a CPU time limit of 1000 seconds per run)
by the probabilistic tree search algorithm (henceforth labelled TreSea) by Blum et al. [1].
TreSea was run on the same machines as the ones used for the current work. Finally, the
last four table columns are dedicated to the presentation of the results provided by solving
model Ilporig. The first one of these columns provides the value of the best solution found
within 3600 CPU seconds. In case the optimality of the corresponding solution was proved by
CPLEX, the value is marked by an asterix. The second column dedicated to Ilporig provides
the computation time (in seconds). In case of having solved the corresponding problem to
optimality, this column only displays one value indicating the time needed by CPLEX to
solve the problem. Otherwise, this column provides two values in the form X/Y, where X
corresponds to the time at which CPLEX was able to find the first valid solution, and Y
corresponds to the time at which CPLEX found the best solution within 3600 CPU seconds.
The third one of the columns dedicated to Ilporig shows the optimality gap, which refers to
the gap between the value of the best valid solution and the current lower bound at the time
of stopping a run. Finally, the last column indicates the size of set B, that is, the size of the
complete set of common blocks. Note that this value corresponds to the number of variables
used by Ilporig. The best result (among all algorithms) for each problem instance is marked
by a grey background, and the last row of each table provides averages over the whole table.

The following conclusions can be drawn when analyzing the results. First, CPLEX is able
to solve all instances of Group1 to optimality. This is done, on average, in about 13 seconds.
Moreover, none of the existing algorithms was able to find any of these optimal solutions.
Second, CPLEX was also able to find new best-known solutions for all remaining 35 problem
instances, even though it was not able to prove optimality within 3600 CPU seconds, which
is indicated by the positive optimality gaps. An exception is instance 1 of set Real which
also could be solved to optimality. Third, the improvements over the competitor algorithms
obtained by solving Ilporig with CPLEX are remarkable. In particular, the average improve-
ment (in percent) over TreSea, the best competitor from the literature, is 4.8% in the case
of Group1, 9.2% in the case of Group2, 9.7% in the case of Group3, and 9.8% in the case

2In this context, note that the experiments for Aco were performed on a computer with an ”Intel(R) 2
Quad” CPU with 2.33 GHz and 4 GB of RAM.
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Table 1: Results for the 10 instances of Group1.
id Greedy Aco TreSea Ilporig

value best best value time (s) gap |B|
1 46 42 42 ∗41 1 0.0% 4299
2 56 51 48 ∗47 3 0.0% 6211
3 62 55 56 ∗52 30 0.0% 8439
4 46 43 43 ∗41 2 0.0% 4299
5 44 43 41 ∗40 1 0.0% 4718
6 48 42 41 ∗40 3 0.0% 4435
7 65 60 60 ∗55 38 0.0% 8687
8 51 47 45 ∗43 3 0.0% 4995
9 46 45 43 ∗42 2 0.0% 4995

10 63 59 58 ∗54 50 0.0% 9699

avg. 52.7 48.7 47.7 45.5 13.3 0.0% 6029.3

Table 2: Results for the 10 instances of Group2.
id Greedy Aco TreSea Ilporig

value best best value time (s) gap |B|
1 119 113 111 98 66/1969 2.9% 37743
2 122 118 114 106 129/1032 7.5% 47174
3 114 111 107 97 55/1216 2.7% 36979
4 116 115 111 102 63/949 4.9% 40960
5 135 132 127 116 146/3299 6.7% 52697
6 108 105 102 93 56/1419 5.6% 35650
7 108 98 96 88 41/2776 6.0% 30839
8 123 118 114 104 101/2980 5.1% 42668
9 124 119 113 104 81/1630 5.2% 42998

10 105 101 98 89 32/1458 3.6% 31169

avg. 117.4 113.0 109.3 99.7 77/1873 5.0% 39887.7

Table 3: Results for the 10 instances of Group3.
id Greedy Aco TreSea Ilporig

value best best value time (s) gap |B|
1 182 177 171 155 733/1398 7.5% 110973
2 175 175 168 155 553/869 7.7% 102670
3 196 187 185 166 746/2183 8.5% 119287
4 192 184 179 159 731/1200 6.9% 114975
5 176 171 163 150 485/886 9.7% 99775
6 170 160 162 147 399/764 9.1% 88839
7 173 167 161 149 524/990 9.8% 95765
8 185 175 169 151 492/3584 6.7% 97400
9 174 172 169 158 571/1186 10.9% 104186

10 171 167 161 148 547/1446 9.1% 98237

avg. 179.4 173.5 168.8 153.8 578/1451 8.6% 103211.0

of Real.

In order to study the limits of solving Ilporig with CPLEX we randomly generated larger
DNA instances. In particular, we generated one random instance for each input string size
from {800, 1000, 1200, 1400, 1600, 1800, 2000}. CPLEX was stopped when at least 3600 CPU
seconds had passed and at least one feasible solution had been found. However, if after
12 CPU hours still no feasible solution was found, the execution was stopped as well. The
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Table 4: Results for the 15 instances of set Real.
id Greedy Aco TreSea Ilporig

value best best value time (s) gap |B|
1 95 87 86 ∗78 972 0.0% 22799
2 161 155 154 139 432/752 9.2% 80523
3 121 116 113 104 125/3580 5.6% 45869
4 173 164 158 144 577/1730 6.5% 91663
5 172 171 165 150 778/2509 7.9% 108866
6 153 145 143 128 257/3578 6.5% 70655
7 140 140 131 121 359/2187 6.9% 73502
8 134 130 128 116 275/3365 6.8% 65560
9 149 146 142 131 399/613 8.8% 75833

10 151 148 144 131 311/1771 7.2% 69560
11 126 124 121 110 205/3711 4.8% 56160
12 143 137 138 126 299/793 9.8% 70861
13 180 180 171 156 784/1130 7.1% 115810
14 152 147 146 134 370/2456 9.7% 73449
15 157 160 152 139 560/1762 7.7% 91060

avg. 147.1 143.3 139.5 127.1 409/2131 7.0% 74163.9

Table 5: Results of applying CPLEX to Ilporig in the context of larger instances.
length value time (s) gap |B|

800 210 3228 10.7% 214622
1000 304 2922 26.4% 334411
1200 342 6220 22.6% 480908
1400 401 12124 24.9% 653401
1600 442 20616 24.1% 854500
1800 486 37304 24.0% 1084533
2000 n.a. n.a. n.a. 1335893

results are shown in Table 5. The first column of this table provides the length of the
corresponding random instance. The remaining four columns contain the same information
as already explained in the context of Tables 1-4, just that column time (s) simply provides
the computation time (in seconds) at which the best solution was found. Analyzing the results
we can observe that the application of CPLEX to Ilporig quickly becomes unpractical with
growing input string size. For example, the first valid solution for the instance with string
length 1400 was found after 20616 seconds. Concerning the largest problem instance, no valid
solution was found within 12 CPU hours.

3 A MIP-Based Heuristic

As shown at the end of the previous section, the application of CPLEX to Ilporig reaches
its limits starting from an input string size of about 1200. However, if it were possible to
considerably reduce the size of the set of common blocks (B), mathematical programming
might still be an option to obtain good (heuristic) solutions. With this idea in mind we
studied the distribution of the lengths of the strings of the common blocks in B for all 45
problem instances. This distribution is shown—averaged over the instances of each of the
four instance sets–in Figure 1. Analyzing these distributions it can be observed, first of all,
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(d) Instances of set Real.

Figure 1: Distribution of the string lengths corresponding to the complete set of common
blocks. The distributions are shown averaged over all instances for each of the four sets of
problem instances.

that the distribution does not seem to depend on instance size.3 However, the important
aspect to observe is that around 75% of all the common blocks contain strings of length
1. Moreover, only a very small portion of these common blocks will form part of an optimal
solution. In comparison, it is reasonable to assume that a much larger percentage of the blocks
corresponding to large strings will form part of an optimal solution. These observations gave
rise to the heuristic which is outlined in the following.

3.1 Heuristic

The proposed heuristic works in two phases. In the first phase, a subset of B (the complete
set of common blocks) must be chosen. For this purpose, let B≥l (where l ≥ 1) denote the
subset of B that contains all common blocks bi from B with |ti| ≥ l, that is, all blocks whose
corresponding string is longer or equal than l. Note, in this context, that B≥1 = B. Moreover,
note that |B≥1| ≥ |B≥2| ≥ |B≥3| ≥ . . . ≥ |B≥∞|. Let lmax be the smallest value for l such that
|B≥lmax | > 0. Observe that B≥lmax only contains the common blocks with the longest strings.
Having chosen a specific value for l from [2, lmax], the following ILP, henceforth referred to as
Ilpph1, may be solved.

3Most probably the distribution would change in some way when changing the size of the alphabet.
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max
∑

bi∈B≥l

(C · |ti| − 1) · xi

subject to:∑
bi∈B≥l

|ti| · xi ≤ n

∑
bi∈B≥l

M1i,j · xi ≤ 1 for j = 1, . . . , n

∑
bi∈B≥l

M2i,j · xi ≤ 1 for j = 1, . . . , n

xi ∈ {0, 1} for bi ∈ B≥l

(5)

(6)

(7)

(8)

Ilpph1 is based on a binary variable xi for each common block bi ∈ B≥l. Moreover,
matrices M1 and M2 are the same as the ones introduced in Section 2.2, that is, they are
defined over the whole set B. The objective function basically maximizes the sum of the
lengths of the strings corresponding to the chosen common blocks. However, the length of
the string corresponding to each block is multiplied by a large-enough constant C, and the
result is decremented by one. This has the following effect. In case of several solutions for
which the sum of the lengths of the strings corresponding to the selected common blocks
is equal, the program prefers the solution that reaches this sum with fewer common blocks.
The constraints (6-8) are the same as in Ilporig (see Section 2.2), apart from the fact that all
equality symbols are replaced by the ≤-symbol. In short, the idea of Ilpph1 is to produce a
partial solution for the original MCSP that covers as much as possible of both input strings,
while choosing as few common blocks as possible.

Solving Ilpph1 will henceforth be referred to as phase 1 of the proposed heuristic. Let
us denote by Sph1 the solution provided by phase 1.4 Due to the constraints of Ilpph1 this
solution is a valid partial solution to the original MCSP problem. The idea of the second
phase is then to produce the best complete solution possible that contains Sph1. This is done
by solving the following ILP, henceforth referred to as Ilpph2.

min
∑

bi∈Bph2

xi

subject to:∑
bi∈Bph2

|ti| · xi = n

∑
bi∈Bph2

M1i,j · xi = 1 for j = 1, . . . , n

∑
bi∈Bph2

M2i,j · xi = 1 for j = 1, . . . , n

xi = 1 for bi ∈ Sph1
xi ∈ {0, 1} for bi ∈ Bph2

(9)

(10)

(11)

(12)

(13)

4Remember that solutions are subsets of B.
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Hereby, Bph2 := B(Sph1) ⊂ B is the set of common blocks that may be added to Sph1
without violating any constraints.5 Note that model Ilpph2 is the same as model Ilporig,
just that Ilpph2 only considers common blocks from Bph2 and that it forces any solution to
contain all common blocks from Sph1; see constraints (13). This completes the description of
the heuristic.

3.2 Experimental Evaluation

Just like model Ilporig, the heuristic was implemented in ANSI C++ using GCC 4.7.3 for
compiling the software. The two ILP models were solved with IBM ILOG CPLEX V12.1,
and the same machines as for the experimental evaluation of Ilporig were used for running the
experiments.

As mentioned before, the heuristic may be applied for any value of l from the interval
[2, lmax]. In fact, we applied the heuristic to each of the 45 problem instances from sets
Group1, Group2, Group3, and Real, with all possible values for l. In order not to spend
too much computation time the following stopping criterion was used for each call to CPLEX
concerning any of the two involved ILP models. CPLEX was stopped (1) in case a provenly
optimal solution was obtained or (2) in case at least 50 CPU seconds were spent and the
first valid solution was obtained. The overall result of the heuristic for a specific problem in-
stance is the value of the best solution found for any value of l. Moreover, as computation time
we provide the sum of the computation times spend for all applications for different value of l.

The results are shown in Table 6, which contains one subtable for each of the four instance
sets. Each subtable has the following format. The first column provides the instance identifier.
The second column contains the value of the best solution found in the literature. Finally,
the last two table columns present the results of our heuristic. The first one of these columns
contains the value of the best solution generated by the heuristic, while the second column
provides the total computation time (in seconds). The last row of each subtable presents
averages over the whole subtable. Moreover, the best result for each instance is marked by a
grey background, and those cases in which the result of applying CPLEX to Ilporig could be
matched are marked by a ”+” symbol.

The results allow to make the following observations. First, our heuristic is able to improve
the best-known result from the literature in 37 out of 46 cases. In further six cases the best-
known results from the literature are matched. Finally, in two remaining cases the heuristic
is not able to produce a solution that is at least as good as the best-known solution known
from the literature. Overall, the heuristic improves by 3.4% (on average) over the best known
results from the literature. On the downside, the heuristic is only able to match the results
of applying CPLEX to model Ilporig in three out of 45 cases. However, this changes with
growing instance size, as we will show later in Section 3.4.

3.3 Gaining Insight into the Behavior of the Heuristic

With the aim of gaining more insight into the behavior of the heuristic with respect to the
choice of a value for parameter l, the following information is presented in graphical form in
Figure 2. Two graphics are shown for each of the four chosen problem instances. More pre-
cisely, we chose to present information for the largest problem instances from each of the four

5See Section 2.1 for the definition of B(·).
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Table 6: Results of the heuristic. Each of the four subtables deals with one of the four problem
instance sets.

(a) Instances of Group1.

id Best Heuristic
Known value time (s)

1 42 42 7
2 48 48 30
3 55 53 60
4 43 43 1
5 41 +40 15
6 41 +40 6
7 60 57 22
8 45 44 1
9 43 46 6

10 58 58 92

avg. 47.7 47.1 24.0

(b) Instances of Group2.

id Best Heuristic
Known value time (s)

1 111 103 207
2 114 110 214
3 107 99 299
4 111 105 261
5 127 120 270
6 102 97 252
7 96 91 166
8 114 108 223
9 113 109 160

10 98 94 158

avg. 109.3 103.6 221.0

(c) Instances of Group3.

id Best Heuristic
Known value time (s)

1 171 172 1030
2 168 165 671
3 185 180 1186
4 179 171 970
5 163 163 610
6 160 155 660
7 161 160 242
8 169 166 276
9 169 169 969

10 161 160 538

avg. 168.6 166.1 715.2

(d) Instances of Real.

id Best Heuristic
Known value time (s)

1 86 80 142
2 154 144 680
3 113 112 232
4 158 157 667
5 165 161 499
6 143 139 453
7 131 126 482
8 128 120 500
9 142 +131 437

10 144 136 542
11 121 117 412
12 137 130 355
13 171 163 1165
14 146 142 530
15 152 145 456

avg. 139.4 133.5 503.0

instance sets (see subfigures (a) to (d) of Figure 2). The left graphic of each subfigure has to
be read as follows. The x-axis ranges over the possible values for l, while the y-axis indicates
the size of the set of common blocks that is used for solving models Ilpph1 and Ilpph2. The
graphic shows two curves. The one with a black line concerns solving model Ilpph1 in phase 1
of the heuristic, while the other one (shown by means of a grey line) concerns solving model
Ilpph2 in phase two of the heuristic. The dots indicate for each value of l the size of the set
of common blocks used by the corresponding models. Moreover, in case the interior of a dot
is light-grey (yellow in the online version) this means that the corresponding model could
not be solved to optimality within 50 CPU seconds, while a black interior of a dot indicates
that the corresponding model was solved to optimality. Finally, the bars in the background
of the graphic present the values of the solutions that were generated with different values of
l. The graphics on the right hand side present the corresponding computation times required
by solving the different models.

The following observations can be made. When the value of l is close to the lower or
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(d) Instance 13 of Real, results (left) and computation time (right)

Figure 2: Detailed information on the results of the proposed heuristic for four chosen problem
instances. The description of the information content of the graphics is provided in the text.
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Table 7: Results of applying the heuristic in the context of larger instances.
length CPLEX Heuristic

value value time (s) |B≥5| |Bph2| % of B

800 210 225 16 801 13138 6.5%
1000 304 279 54 1385 12714 4.2%
1200 342 326 70 1785 27852 6.2%
1400 401 378 61 2535 20628 3.5%
1600 442 413 65 3244 24708 3.3%
1800 486 473 99 4416 44139 4.5%
2000 n.a. 518 126 5132 61731 5.0%

the upper bound—that is, either close to 2 or close to lmax—one of the two involved sets of
common blocks is quite large, and, therefore, the computation time needed for solving the
corresponding ILP may be large, in particular when the input instance is rather large. On
the contrary, for intermediate values of l, the size of both involved sets of common blocks is
moderate, and, therefore, CPLEX is rather fast in providing solutions, even if the optimal
solution is not found (or can not be proven) within 50 CPU seconds. Moreover, the best results
are usually obtained for intermediate values of l. This is with the exception of instance 10 of
Group1, which might be an anomaly caused by the rather small size of the problem instance.

3.4 Results of Heuristic for Larger Instances

Based on the findings of the previous subsection the heuristic was applied with an intermediate
value of l = 5 to all problem instances from the set of larger instances described at the end of
Section 2.4.2. The results are shown in Table 7. The first table column provides the length
of the input strings of the corresponding random instance. The second column indicates the
result of applying CPLEX with a computation time limit of 3600 CPU seconds to Ilporig.

6

The remaining five columns contain the results of heuristic. The first one of these columns
provides the value of the solution generated by the heuristic, while the second column shows
the corresponding computation time. The next two columns provide the size of the sets
of common blocks used in phase 1, respectively phase 2, of the heuristic. Finally, the last
column gives information about the number of common blocks considered by the heuristic in
comparison to the size of the complete set of common blocks (which can be found in Table 5).
In particular, summing the common block set sizes from phases 1 and 2 of the heuristic and
comparing this number with the size of the complete set of common blocks, the percentage
of the common blocks considered by the heuristic can easily be calculated. This percentage
is given in the last table column. As in all tables of this paper, the best result per table row
is marked by a grey background.

The following observations can be made. First, apart from the smallest problem instance,
the heuristic outperforms the application of CPLEX to model Ilporig. Moreover, this is
achieved in a fraction of the time needed by CPLEX. Finally, it is reasonable to assume that
the success of the heuristic is due to an important reduction of the common blocks that are
considered (see last table column). In general, the heuristic only considers between 3.3% and
6.5% of all common blocks. This is why the computation times are rather low in comparison
to CPLEX.

6Remember that the results of applying CPLEX to Ilporig were described in detail in Section 2.4.2.
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4 Conclusions and Future Work

In this paper we considered a problem with applications in bioinformatics known as the min-
imum common string partition problem. First, we introduced an integer linear programming
model for this problem. By applying the IBM ILOG CPLEX solver to this model we were
able to improve all best-known solutions from the literature for a problem instance set con-
sisting of 45 instances of different sizes. The smallest ones of these problem instances could
even be solved to optimality in very short computation time. The second contribution of the
paper concerned a 2-phase heuristic which is strongly based on the developed integer linear
programming model. The results have shown that, first, the heuristic outperforms competitor
algorithms from the literature, and second, that it is applicable to larger problem instances.

Concerning future work, we aim at studying the incorporation of mathematical program-
ming strategies based on the introduced integer linear programming model into metaheuristic
techniques such as GRASP and iterated greedy algorithms. Moreover, we aim at identify-
ing other string-based optimization problems for which a 2-phase strategy such as the one
introduced in this paper might work well.
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