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Abstract

A capital allocation scheme for a company that has a
random total profit Y and uses a coherent risk measure
ρ has been suggested. The scheme returns a unique
real number Λ∗ρ(X ,Y ), which determines the capital
that should be allocated to company’s subsidiary with
random profit X . The resulting capital allocation is lin-
ear and diversifying as defined by Kalkbrener (2005).
The problem is reduced to selecting the “center” of a
non-empty convex weakly compact subset of a Banach
space, and the solution to the latter problem proposed
by Lim (1981) has been used. Our scheme can also be
applied to selecting the unique Pareto optimal alloca-
tion in a wide class of optimal risk sharing problems.

Key Words: capital allocation, risk contribution,
coherent risk measures, risk sharing.

1 Introduction

One of the basic problems in risk management is to
determine the allocation of risk capital among agents
or business units. We make two assumptions: (i) a
company consists of n subsidiaries, each contributing
a random profit Xi, so that the total profit of the com-
pany is Y ∗=∑

n
i=1 Xi, and (ii) the company has decided,

or is required by a regulator, to reserve a risk capi-
tal ρ(Y ∗), to compensate possible loss, where ρ(.) is a
fixed risk measure. The capital allocation problem is
to distribute ρ(Y ∗) among subsidiaries, that is, to as-
sign subsidiary i the capital ki with ∑

n
i=1 ki = ρ(Y ∗).

The numbers ki are called risk contributions of Xi to
the Y ∗.

If ρ(Y ∗)≤ ∑
n
i=1 ρ(Xi), it is possible to find a capital

allocation such that ki ≤ ρ(Xi), i = 1, . . . ,n. This corre-
sponds to the intuition of diversification: the risks pro-
duced by subsidiaries partially compensate each other,
which allows one to reduce the risk contribution of

each of them. If ρ(Y ∗) = ∑
n
i=1 ρ(Xi), such an allo-

cation is unique and given by ki = ρ(Xi), i = 1, . . . ,n.
The capital allocation problem can be formulated as
follows.

Problem I Assume that ρ(Y ∗)< ∑
n
i=1 ρ(Xi), so that a

capital allocation satisfying ki ≤ ρ(Xi), i = 1, . . . ,n is
not unique. Which one to choose?

The capital allocation problem in this or similar
form has been extensively studied in a number of pa-
pers, see eg. Denault (2001), Delbaen (2004), Kalk-
brener (2005), Cherny and Orlov (2011) and refer-
ences therein. We rely on a natural assumption (see
Kalkbrener (2005)), that the risk contribution ki of
subsidiary i depends only on Xi and Y ∗, but not on
the decomposition of Y ∗−Xi among the rest of sub-
sidiaries. In this context, a capital allocation with re-
spect to risk measure ρ(.) is just a function of two ar-
guments Λρ(X ,Y ), such that Λρ(Y,Y ) = ρ(Y ). With
ki = Λρ(Xi,Y ∗), the requirements (i) ∑

n
i=1 ki = ρ(Y ∗)

and (ii) ki ≤ ρ(Xi), i = 1, . . . ,n can now be rewritten as

(i) (Linearity) Λρ(X ,Y ) is a linear functional in the
first argument;

(ii) (Diversification) Λρ(X ,Y )≤ ρ(X) for all X ,Y .

Kalkbrener (2005) proved that a linear diversifying
capital allocation exists if and only if the risk measure
ρ is positively homogeneous and subadditive. He also
proved that it is unique for a fixed Y and ρ(.) if and
only if the directional derivative

lim
ε→0

ρ(Y + εX)−ρ(Y )
ε

(1)

exists for all X . This, however, is not the case in many
natural contexts. Cherny and Orlov (2011) argue that it
might not exists for a popular risk measure CVaR(.) if
the distribution function of Y is not continuous, which
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is typical e.g. in the context of credit portfolios. Ac-
tually, if we denote Y (ρ) to be the set of all Y such
that (1) does not exists for some X , one can prove that
Y (ρ) is non-empty unless ρ(.) is linear (see Propo-
sition 1), and, moreover, one may get Y ∈ Y (ρ) by
solving a natural optimization problem (see Example
3). Problem I can be adapted to this context as follows

Problem II Let ρ be a positively homogeneous and
subadditive risk measure, and assume that Y ∈
Y (ρ), so that a linear diversifying capital allocation
Λρ(X ,Y ) is not unique. Which one to choose?

A possible approach to solve Problem II is to
impose additional assumptions on capital allocation.
Kalkbrener (2005) introduced a “continuity in Y ” ax-
iom, and proved that if a linear, diversifying, and con-
tinuous capital allocation exists, it is unique. However,
Theorem 4.3. in Kalkbrener (2005) states that the ex-
istence of such a capital allocation is equivalent to the
existence of directional derivative in (1), so this ap-
proach makes no progress in Problem II.

Cherny and Orlov (2011) suggested to consider the
capital allocation problem within the framework of co-
herent risk measures of Artzner et al. (1999), and in-
troduced an assumption that Λρ(X ,Y ) is law-invariant,
that is, depends only on the joint law of X and Y . They
proved that the linear diversifying law-invariant capital
allocation exists and is unique for a class of so called
weighted VaR risk measures, defined on an atomless
probability space. However, there are important co-
herent risk measures outside of this class, for which
such a capital allocation does not exist or might not be
unique, see Section 2.

In this paper, we develop an approach of selecting
one linear diversifying capital allocation for every co-
herent risk measure. Our approach can naturally be
extended to other classes of positively homogeneous
and subadditive functionals. We do this by reduc-
ing this problem to selecting a “center” in a convex
weakly compact subset of a Banach space, which is
fixed under affine isometries, and the latter problem
was solved in Lim (1981). If directional derivative in
(1) exists for every X , our capital allocation coincides
with that of Kalkbrener (2005); if ρ belongs to the
class of weighted VaR, it coincides with that of Cherny
and Orlov (2011). We do not assume that probability
space is atomless, and an important special case of dis-
crete probability space is treated separately.

This work is organized into eight sections. Section 2
formulates a capital allocation problem, provides sev-
eral motivating examples, and reduces the problem to
identification of the “center” in a convex weakly com-
pact set. Section 3 suggests a solution in a special but
important case when the underlying probability space
is finite. Section 4 reformulates the concept of law-
invariant capital allocation, suggested by Cherny and
Orlov (2011), in terms of invariance under automor-
phisms of the underlying probability space. Section
5 solves the capital allocation problem in the general
case, while Section 6 discusses an economic interpre-
tation of the obtained solution. Section 7 applies the
results to the optimal risk sharing problem. Section 8
concludes the work.

2 Problem Formulation

Let (Ω,F ,P) be a probability space, where Ω de-
notes the designated space of future states ω, F is
a field of sets in Ω, and P is a probability measure
on (Ω,F ). We will assume that probability space
is standard, that is, isomorphic mod 01 to an inter-
val (0,1) with Lebesgue measure, a finite or count-
able set of atoms2, or a combination (disjoint union)
of both. A random variable (r.v.) is any measur-
able function from Ω to R. The relations between
r.v.’s are understood to hold in the almost sure sense,
e.g., we write X = Y if P[X = Y ] = 1 and X ≥ Y
if P[X ≥ Y ] = 1. We restrict our attention to r.v.’s
from L1(Ω) = L1(Ω,F ,P) (r.v.s with finite expecta-
tions), or from L∞(Ω) = L∞(Ω,F ,P) (bounded r.v.s).
FX(x) = P[X ≤ x] and qX(α) = inf{x|FX(x)> α} will
denote the cumulative distribution function (CDF) and
quantile function of an r.v. X , respectively. The prob-
ability space Ω is called atomless if there exists an r.v.
with a continuous CDF. This implies existence of r.v.’s
on Ω with all possible CDFs (see e.g. Proposition A.27
in Föllmer and Schied (2004)).

A risk measure is any functional ρ : L∞(Ω)→ R.
A capital allocation with respect to the risk mea-

1Two probability spaces (Ω1,F1,P1) and (Ω2,F2,P2), are iso-
morphic mod 0, if there exist sets Ai ⊂Ωi, i = 1,2, with P1(A1) =
P2(A2) = 0, and an invertible map f : Ω1/A1→ Ω2/A2 such that
both f and f−1 are measurable, and P1(A) = P2( f (A)) for all
A ∈ F1.

2A set A∈F with P[A]> 0 is called atom if P[B] = 0 or P[B] =
P[A] for every B ∈ F such that B⊂ A.
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sure ρ(.) is a functional Λρ : L∞(Ω)×L∞(Ω) → R
satisfying Λρ(Y,Y ) = ρ(Y ). It is called linear if
Λρ(aX1 + bX2,Y ) = aΛρ(X1,Y ) + bΛρ(X2,Y ), for all
X1,X2,Y ∈ L∞(Ω) and a,b ∈ R; it is called diversi-
fying if Λρ(X ,Y ) ≤ ρ(X) for all X ,Y ∈ L∞(Ω). This
paper studies the problem of selection of a linear di-
versifying capital allocation for a given risk measure
ρ(.).

Theorem 4.2. in Kalkbrener (2005) proves that there
exists a linear diversifying capital allocation Λρ(., .) if
and only if ρ(.) is positively homogeneous and subad-
ditive. This suggests that the capital allocation prob-
lem can naturally be considered in the context of co-
herent risk measures in the sense of Artzner et al.
(1999).

Definition 1 (coherent risk measures). A coherent
risk measure is any functional ρ : L∞(Ω)→ R satis-
fying the axioms

(R1) ρ(X)≤ ρ(Y ) if X ≥ Y (monotonicity),

(R2) ρ(λX) = λρ(X) for all X and all λ ≥ 0 (positive
homogeneity),

(R3) ρ(X +Y )≤ ρ(X)+ρ(Y ) for all X and Y (subad-
ditivity),

(R4) ρ(X +C) = ρ(X)−C for all X and constant C.

A risk measure ρ(.) is called continuous from be-
low if lim

n→∞
ρ(Yn) = ρ(Y ) for every non-decreasing se-

quence Yn converging to Y pointwise on Ω. For sim-
plicity of presentation, we first solve the capital allo-
cation problem for the case of coherent risk measures,
which are continuous from below. The extension to
all coherent risk measures, and beyond, is presented in
Section 5.

Corollary 4.35 in Föllmer and Shield (2004) states
that coherent risk measure ρ is continuous from below
if and only if

ρ(Y ) = max
Q∈Q

EQ[−Y ], for all Y ∈ L∞(Ω), (2)

for Q ⊂ F1(P), where F1(P) is the set of all proba-
bility measures which are absolutely continuous with
respect to P. Moreover, Q can be chosen such that the
set of Radon-Nikodym derivatives

S =

{
dQ
dP

,Q ∈ Q
}

(3)

is weakly compact in L1(Ω). Also, without loss in
generality, Q (and thus S ) can be assumed to be con-
vex, otherwise the same representation holds for its
closed convex hull. For a fixed Y ∈L∞(Ω), let S(Y ) be
the non-empty set of elements of S , at which the max-
imum in (2) is attained. For every S = dQ

dP ∈ S(Y ), the
functional Λρ(X ,Y ) := EQ[−X ] = −E[SX ] is a linear
diversifying capital allocation. Theorem 4.3. in Kalk-
brener (2005) states that it is unique (and thus S(Y ) is
a singleton) if and only if the directional derivative (1)
exists for all X . For a given risk measure ρ, let Y (ρ)
be the set of all Y such that S(Y ) is not a singleton
(equivalently, such that (1) does not exist for some X).
We start with the following simple observation.

Proposition 1 For risk measure ρ satisfying (R2) and
(R3), the directional derivative (1) exists at 0 in any
direction X, if and only if ρ is linear. Hence 0 ∈ Y (ρ)
if and only if ρ is not linear.

Proof If ρ is linear, the directional derivative (1) ex-
ists and equal to ρ(X). In the opposite direction, if the
derivative (1) exists for Y = 0, then the right deriva-
tive, which is ρ(X), is equal to the left one, which is
−ρ(−X). Hence, using subadditivity, ρ(X1 + X2) ≤
ρ(X1)+ρ(X2) = −(ρ(−X1)+ρ(−X2)) ≤ −ρ(−X1−
X2) = ρ(X1 + X2), showing ρ(X1 + X2) = ρ(X1) +
ρ(X2) for any X1,X2 ∈ L∞(Ω). 2

Proposition 1 shows that, for every non-linear ρ, set
Y (ρ) contains 0, and therefore, in particular, it is non-
empty. One may argue that the set Y (ρ) is typically
non-empty but the event Y ∈ Y (ρ) is rather excep-
tional. This is supported by Corollary 5.1. in Kalk-
brener (2005), which states that Y (ρ) consists only on
constants for risk measure ρST D(X) = c ·σ(X)−EX ,
where σ(X) = ‖X − EX‖2 is the standard deviation.
However, ρST D is not a coherent risk measure (axiom
R1 fails), and, in applications, is sometimes replaced
by ρMAD(X) = c‖X −EX‖1−EX , which is coherent
for c ∈ [0, 1

2 ], see Rockafellar et al. (2006a).

Example 1 For a coherent risk measure ρMAD(Y ) =
c‖Y − EY‖1 − EY , c ∈ (0, 1

2 ], we have Y (ρ) =
{Y : P(Y = EY )> 0}.

Detail. For ρMAD, the set S in (3) is given by
S = {S : ES = 1, supS− infS≤ 2c}, and, for noncon-
stant Y , S(Y ) = 1 + c(EZ − Z), Z ∈ sign [Y − EY ],

3



where sign [X ] is a set of r.v.s Z such that Z(ω) = 1,
Z(ω) =−1, and Z(ω) ∈ [−1,1] for X(ω)> 0, X(ω)<
0, and X(ω) = 0, correspondingly, see Rockafellar et
al. (2006b). If Y is a constant, S(Y ) = S . Thus,
in any case, S(Y ) is not a singleton if and only if
P(Y = EY )> 0. 2

In the above example, the event {Y ∈ Y (ρ)} =
{P(Y = EY )> 0} may still be considered as almost
negligible for practice. The next examples demon-
strate that this is not the case for some other important
risk measures.

Example 2 For a coherent risk measure given by

ρ(Y ) = max
i∈{1,2}

E[Qi(−Y )], Q1,Q2 ∈ F1(P), Q1 6= Q2,

(4)
we have Y (ρ) = {Y : EQ1 [−Y ] = EQ2 [−Y ]}.

Detail. Let Y be such that EQ1 [−Y ] = EQ2 [−Y ]. Be-
cause Q1 6= Q2, we have Q1(A) < Q2(A) for some set
A∈F , and EQ1 [−X ]>EQ2 [−X ] for the indicator func-
tion X = IA of this set. Then ρ(Y + εX) = EQ1 [−(Y +
εX)] for ε > 0, and ρ(Y + εX) = EQ2 [−(Y + εX)] for
ε < 0, whence the right and left directional derivatives
in (1) are EQ1 [−X ] and EQ2 [−X ], correspondingly. 2

The risk measure (4) has the following interpreta-
tion: a company may consider two possible probabilis-
tic scenarios with Radon-Nikodym derivatives Q1 and
Q2, and the risk of every random profit Y is just the
worst-case expected loss. Now, assume that the com-
pany can choose a policy from a set of admissible poli-
cies, leading to a set of possible profits Y ⊂ L∞(Ω),
that is, to the optimization problem

inf
Y∈Y

ρ(Y ). (5)

We will call problem (5) reducible, if an optimizer in
(5) solves also optimization problem infY∈Y EQ1 [−Y ]
or infY∈Y EQ2 [−Y ] (that is, one of the scenarios can be
neglected), and irreducible otherwise.

Example 3 Let ρ be given by (4), and let Y ⊂ L∞(Ω)
be a convex set such that problem (5) is irreducible.
Then any minimizer Y ∗ in problem (5), if it exists, be-
longs to Y (ρ).

Detail. Because problem (5) is irreducible, set Y
contains r.v.s Y1,Y2 such that EQi [−Yi]< EQi [−Y ∗], i=

1,2. For every λ∈ (0,1), λY ∗+(1−λ)Y1 ∈Y , whence

EQ1 [−Y ∗]≤ ρ(Y ∗)≤ ρ(λY ∗+(1−λ)Y1)

= max
i∈{1,2}

λEQi [−Y ∗]+ (1−λ)EQi [−Y1].

But EQ1 [−Y ∗] = λEQ1 [−Y ∗] + (1 − λ)EQ1 [−Y ∗] >
λEQ1 [−Y ∗]+ (1−λ)EQ1 [−Y1], whence

EQ1 [−Y ∗]≤ λEQ2 [−Y ∗]+(1−λ)EQ2 [−Y1], ∀λ∈ (0,1).

Taking λ→ 1, we get EQ1 [−Y ∗] ≤ EQ2 [−Y ∗]. The re-
verse inequality can be proved similarly. 2

Example 3 demonstrates that the total profit Y ∗ of a
company might belong to Y (ρ) as a result of natural
risk-minimization policy of the company, confirming
the practical significance of Problem II. The example
can be extended to risk measures ρ of the form

ρ(Y )= max
i∈{1,...,k}

E[Qi(−Y )], Q1, . . . ,Qk ∈F1(P). (6)

Representation of risk measures based on finite num-
ber of scenarios (6) is often used for simulation of co-
herent risk measures in practice, see [25].

The following problem is a version of Problem II
for coherent risk measures, continuous from below.

Problem III Let ρ be a coherent risk measure, con-
tinuous from below, and let Y ∈ L∞(Ω). For every
S ∈ S(Y ), the functional Λρ(X ,Y ) := −E[SX ] is a
linear diversifying capital allocation. Which one to
choose?

Set Q in (2) can be interpreted as a set of (Radon-
Nikodym derivatives of) possible probabilistic scenar-
ios Q, considered by a company. Then S(Y ) is a set of
Radon-Nikodym derivatives of the “worst-case” sce-
narios (that is, those ones, for which an equality in (2)
holds for a given Y ). Then, capital allocation problem
III is interpreted as a problem of choosing the unique
probabilistic scenario from a set of worst-case ones,
and then assign the capital allocation according to the
chosen scenario.

Let T be the set of all non-empty convex weakly
compact subsets of L1(Ω). On an abstract level, Prob-
lem III is just a problem of choosing the unique ele-
ment from every T ∈ T . A map f : T → L1(Ω) will
be called CA-solution (capital-allocation-solution), if
f (T ) ∈ T, ∀T ∈ T . We will call f (T ) the selector
from a convex set T . Given any CA-solution f , the
capital allocation can be estimated as

Λρ(X ,Y ) :=−E[ f (S(Y ))X ], ∀X ,Y ∈ L∞(Ω). (7)
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3 Centroid Capital Allocation

First, we suggest a CA-solution for the important spe-
cial case when the probability space Ω is discrete. Let
Ω = {ω1, . . . ,ωn}, with P(ωi) = pi > 0, i = 1, . . . ,n.
Then any r.v. X is just a vector (x1, . . . ,xn) ∈ Rn with
xi = X(ωi), i = 1, . . . ,n. A discrete probability space
typically arise when xn are empirical or Monte Carlo
realizations of X . In this case, every positively homo-
geneous and subadditive risk measure ρ (not neces-
sary coherent or continuous from below) can be repre-
sented in the form

ρ(Y ) = max
Q∈Q

E[Q(−Y )], ∀Y ∈ Rn, (8)

for a non-empty convex compact set Q ⊂ Rn. A CA-
solution f is a map which assigns a point f (T ) ∈ T to
every non-empty convex compact set T in Rn.

Example 4 Let f (T ) be the center of mass (centroid)
of set T given by

f (T ) =
∫
Rn xIT (x)dx∫
Rn IT (x)dx

, (9)

where IT (x) is the characteristic function of T . With
f (T ) given by (9), formula (7) defines the capital allo-
cation for every positively homogeneous and subaddi-
tive risk measure ρ. We will call it the centroid capital
allocation.

Because T is the set of Radon-Nikodym derivatives
of the “worst-case” scenarios, the centroid (9) can be
interpreted as the “average”, or “expected” element of
T , assuming that they are “equally probable”.

Example 5 For a risk measure ρ given by

ρ(Y ) = max
i∈{1,...,k}

E[Qi(−Y )], ∀Y ∈ Rn, (10)

where Q1, . . .Qk are affinely independent vectors in
Rn, the centroid capital allocation is given by

Λρ(X ,Y ) :=E

[(
1
|I(Y )| ∑

i∈I(Y )
Qi

)
(−X)

]
, ∀X ,Y ∈Rn,

(11)
where I(Y )⊂{1, . . . ,k} is the set of indexes i such that
E[Qi(−Y )] = ρ(Y ).

Detail. In this case, the S(Y ) in (7) is the convex hull
of affinely independent vectors {Qi|i ∈ I(Y )}, and its
centroid is given by 1

|I(Y )| ∑i∈I(Y ) Qi. 2

Example 6 For a coherent risk measure ρ given by

ρ(Y ) =− infY =− min
i∈{1,...,n}

Y (ωi), ∀Y ∈ Rn, (12)

the centroid capital allocation is given by

Λρ(X ,Y ) := E [−X |Y = infY ] , ∀X ,Y ∈ Rn. (13)

Detail. In Example 5, let k = n, and Qi(ω j) is 1/p j for
i = j and 0 otherwise, i = 1, . . . ,n; j = 1, . . . ,n. Then
ρ(Y ) in (10) takes the form (12), and the centroid cap-
ital allocation in (11) takes the form (13). 2

Next sections discuss what are the desirable prop-
erties we want CA-solution to possess, show that the
centroid capital allocation satisfies these properties,
and also suggest a capital allocation scheme for an ar-
bitrary probability space Ω.

4 Law-invariant Capital Allocation

Cherny and Orlov (2011) suggested that the capital
allocation should be law-invariant, that is, Λρ(X ,Y )
should depend only on the joint law of (X ,Y ), and
have studied such capital allocations for the case when
ρ can be represented as

ρ(Y )=WVaRµ(Y )=
∫ 1

0
CVaRα(Y )µ(dα), Y ∈L∞(Ω),

(14)
where µ is a probability measure on (0,1] and

CVaRα(Y ) =−
1
α

∫
α

0
qY (β)dβ, Y ∈ L∞(Ω). (15)

Theorem 2.3 in Cherny and Orlov (2011) states that,
if the probability space is atomless, and ρ is given by
(14), then there exists a unique linear diversifying law-
invariant capital allocation, which is continuous in X .
In this form, Theorem 2.3 is not applicable for proba-
bility spaces with atoms.

Example 7 Let Ω = {ω1,ω2,ω3}, pi = P(ωi), i =
1,2,3, p1 < p2 < p3, ρ(.) = CVaRp1(.), Y (ω1) =
Y (ω2)<Y (ω3). Then Λρ(X ,Y )= a ·X(ω1)+b ·X(ω2)
is a linear diversifying law-invariant and continuous
in X capital allocation, for any a≤ 0, b≤ 0, such that
a+b =−1.
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Detail. Λρ(X ,Y ) is a valid capital allocation at Y
for ρ(.), because Λρ(Y,Y ) = a ·Y (ω1) + b ·Y (ω2) =
−Y (ω1) = CVaRp1(Y ). Linearity and continuity is
obvious. Also, Λρ(X ,Y ) ≤ (a+ b) infX = − infX =
CVaRp1(X), thus it is diversifying. Now, at a given
probability space, if (X1,Y1) and (X2,Y2) have the
same joint law, then actually X1 = Y1 and X2 = Y2,
whence Λρ(X1,Y1) = Λρ(X2,Y2), and the capital allo-
cation is law-invariant. 2

However, it follows from the proof of Theorem 2.3
in Cherny and Orlov (2011), that the “law-invariance”
condition can be reformulated as follows.

Proposition 2 Let ρ be a coherent risk measure, con-
tinuous from below, Y ∈ L∞(Ω), S ∈ S(Y ), and
Λρ(X ,Y ) := −E[SX ]. The following statements are
equivalent.

(i) Λρ(X ,Y ) = Λρ(E[X |Y ],Y ), ∀X ∈ L∞(Ω)

(ii) S = f (Y ) a.e. for some measurable f : R→R. In
other words, S is Y -measurable.

Both these conditions imply that

(iii) Λρ(X1,Y ) = Λρ(X2,Y ) whenever pairs (X1,Y )
and (X2,Y ) have the same joint law.

Moreover, if Ω is atomless, conditions (i)− (iii) are
equivalent.

Proof (ii) → (i): Λρ(X ,Y ) = −E[ f (Y )X ] =
−E(E[ f (Y )X |Y ]) = −E[ f (Y )(E[X |Y ])] =
Λρ(E[X |Y ],Y ).

(i) → (ii): E[SX ] = −Λρ(X ,Y ) =
−Λρ(E[X |Y ],Y ) = E[S(E[X |Y ])] =
E[(E[S|Y ])X ], ∀X ∈ L∞(Ω). This implies S = E[S|Y ],
whence S is Y -measurable.
(i) → (iii): Let X1,X2,Y be any r.v.’s such

that (X1,Y ) and (X2,Y ) have the same joint
law. Then E[X1|Y ] = E[X2|Y ], hence, Λρ(X1,Y ) =
Λρ(E[X1|Y ],Y ) = Λρ(E[X2|Y ],Y ) = Λρ(X2,Y ).

The proof of the direction (iii)→ (ii) for an atom-
less probability space can be extracted from the proof
of Theorem 2.3 in Cherny and Orlov (2011). 2

Equivalent conditions (i)-(ii) in Proposition 2 can be
interpreted as the “correct” analogue of law-invariance
axiom for capital allocations for general probability
space Ω. Condition (i) also has the following financial

interpretation: the states of natures ω1 and ω2 such that
Y (ω1) = Y (ω2) are indistinguishable from the com-
pany point of view, and only average value of X over
all such states is taken into account for capital alloca-
tion. Theorem 6.3 in Cherny (2006) implies that the
corresponding capital allocation exists and unique for
the family (14) on general Ω.

Proposition 3 Let ρ be given by (14). Then for every
Y ∈ L∞(Ω), there exists a unique Y -measurable ele-
ment S∗ ∈ S(Y ). Moreover, S∗ = E[S|Y ], ∀S ∈ S(Y ).

Proof See Theorem 6.3 in Cherny (2006). 2

Proposition 3 can be interpreted as a version of
Theorem 2.3 in Cherny and Orlov (2011) for gen-
eral Ω. In particular, in Example 7, there are many
law-invariant capital allocations, but only one of them,
namely Λρ(X ,Y ) = − p1

p1+p2
· X(ω1)− p2

p1+p2
· X(ω2),

can be represented as Λρ(X ,Y ) = −E[SX ], where S ∈
S(Y ) is Y -measurable.

Next, we argue that law-invariant capital allocations
can be interpreted as ones invariant under automor-
phisms of the underlying probability space. A bijec-
tion g : Ω/A1→ Ω/A2 is called mod 0 automorphism
of Ω, if (i) P(A1) = P(A2) = 0, (ii) A ∈ F if and only
if g(A) ∈ F and (iii) P(g(A)) = P(A) for all A ∈ F .
Let A be the set of all mod 0 automorphisms of Ω.
Every g ∈ A defines a map Bg : L1(Ω)→ L1(Ω) by
(Bg(X))(ω) = X(g(ω)), ω ∈ Ω/A1. Obviously, r.v.s
X and Bg(X) have the same distribution. The con-
verse, in general, does not hold: for Ω = (0,1) with
Lebesgue measure, X(ω) = ω, and Y (ω) = |2ω− 1|,
X and Y have the same distribution, but Y 6= Bg(X) for
any g ∈ A . However, [21, Lemma A.4] implies that a
risk measure ρ : L∞(Ω)→ R, defined on an atomless
probability space Ω, and continuous from below, is
law-invariant3 if and only if ρ(Bg(X))= ρ(X), ∀g∈A .

This section aims to prove the following result.

Proposition 4 Let Ω be atomless, and f : T →L1(Ω)
be a CA-solution such that

(*) Bg( f (T )) = f (T ) whenever Bg(T ) = T, g ∈ A .

Then

3that is, ρ(X) = ρ(Y ) whenever X and Y have the same distri-
bution function
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(i) If ρ is a law-invariant coherent risk mea-
sure, continuous from below, then f (S(Y )) is
Y -measurable for every Y ∈ L∞(Ω), whence
Λρ(X ,Y ) := −E[ f (S(Y ))X ] is a law-invariant
capital allocation.

(ii) In particular, if ρ is given by (14), Λρ(X ,Y ) co-
incides with the unique linear diversifying law-
invariant continuous in X capital allocation, de-
scribed in Theorem 2.3 in Cherny and Orlov
(2011).

The proof of Proposition 4 requires some prepa-
ration. For a fixed Y ∈ L1(Ω), let Ainv(Y ) =
{g ∈ A |Bg(Y ) = Y}.

Proposition 5 Let Ω be atomless, and ρ : L∞(Ω)→R
be a law-invariant coherent risk measure, continu-
ous from below. Then Bg(S(Y )) = S(Bg(Y )), ∀g ∈
A , for every Y ∈ L∞(Ω). In particular, Bg(S(Y )) =
S(Y ), ∀g ∈ Ainv(Y ).

Proof Let g ∈ A and S ∈ S(Y ). Because S and Bg(S)
have the same distribution, Bg(S)∈ S by [10, corollary
4.3]. Because

ρ(Bg(Y )) = ρ(Y ) =−E[SY ] =−
∫

Ω

S(ω)Y (ω)dP(ω)

=−
∫

Ω

S(g(ω))Y (g(ω))dP(ω) =−E[Bg(S)Bg(Y )],

this implies Bg(S) ∈ S(Bg(Y )), or Bg(S(Y )) ⊆
S(Bg(Y )). Thus,

S(Y ) = Bg−1(Bg(S(Y )))⊆ Bg−1(S(Bg(Y )))

⊆ S(Bg−1(Bg(Y ))) = S(Y ),

where the first and last equalities follows from the
fact that g is a bijection. This shows that actually
Bg(S(Y )) = S(Bg(Y )). 2

Proposition 6 Let Ω be atomless, and ρ : L∞(Ω)→R
be a law-invariant coherent risk measure, continuous
from below, Y ∈ L∞(Ω), and X ∈ S(Y ). Then X and
Y are comonotone, that is, there exists a set E ⊆ Ω

such that P[E] = 1 and (X(ω1)− X(ω2))(Y (ω1)−
Y (ω2))≥ 0 for all ω1,ω2 ∈ E.

Proof [10, Lemma 4.3] implies that there exists an r.v.
Z with the same distribution as X which is comonotone

with Y . Then Z ∈ S , where S defined in (3), by [10,
corollary 4.3]. Thus E[ZY ] ≤ ρ(Y ) = E[XY ], whence
X is comonotone with Y by [15, Theorem A.24]. 2

Proposition 7 Let Ω be atomless, and X ,Y ∈ L1(Ω)
be comonotone r.v.s. Then X is Y -measurable if and
only if Ainv(Y )⊆ Ainv(X)

Proof If X is Y -measurable, X = f (Y ) for some f :
R→ R, and (Bg(X))(ω) = X(g(ω)) = f (Y (g(ω))) =
f ((Bg(Y ))(ω)) = f (Y (ω)) = X(ω), ∀g ∈ Ainv(Y ) for
almost all ω ∈ Ω, and “only if” follows. Let us prove
the “if” direction. Let E = {ω ∈Ω|P[Y =Y (ω)]> 0}.
Because X and Y are comonotone, it is sufficient to
show that X is Y -measurable on E. If not, there exists
constants x,y ∈ R such that P[I<] > 0 and P[I>] > 0,
where I< = {ω ∈ Ω|X(ω) < x, Y (ω) = y} and I> =
{ω ∈ Ω|X(ω) > x, Y (ω) = y}. Because the probabil-
ity space is atomless, we can find two subsets I1 ∈ I<
and I2 ∈ I> such that P[I1] = P[I2] > 0. Let us show
that there exists an g ∈ A such that g(I1) = I2 a.s. and
g(ω) = ω ∀ω 6∈ I1∪ I2, which would imply g∈Ainv(Y )
but g 6∈ Ainv(X), a contradiction. Because Ω is atom-
less (and standard), we can assume that Ω=(0,1) with
Lebesgue measure. Then I1, I2 are Lebesgue measur-
able, and, ignoring the sets of measure 0, we may as-
sume that they are Borel sets. Then for almost ev-
ery ω ∈ I1 we can find g(ω) ∈ I2 defined by relation
P((0,ω)∩ I1) = P((0,g(ω))∩ I2). 2

Proof of Proposition 4 If ρ is a law-invariant co-
herent risk measure, continuous from below, then
Bg(S(Y )) = S(Y ), ∀g∈Ainv(Y ) by Proposition 5. This
implies that Bg( f (S(Y ))) = f (S(Y )), ∀g ∈ Ainv(Y ),
which is equivalent to saying that f (S(Y )) is Y -
measurable by Propositions 6 and 7, and (i) follows.
Now (ii) follows from Theorem 2.3 in Cherny and
Orlov (2011). 2

Condition (*) in Proposition 4 reformulates the
“law-invariance” axiom of Cherny and Orlov (2011)
as follows: the selector f (T ) from any convex set T
should be a fixed point of any map from the family
Bg, g ∈ A , mapping T into T . The interpretation of
this condition is straightforward: if the risk measure
ρ is law-invariant, then the corresponding set S(Y )
is invariant under any automorphism of an underly-
ing probability space, and we require that the resulting
capital allocation should also be invariant under such
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automorphisms. However, some popular law-invariant
coherent risk measures, including ρMAD from Example
1, can not be represented in the form (14), and a law-
invariant capital allocation may still be non-unique,
see Cherny and Orlov (2011) for more examples. Also,
a law-invariance axiom for capital allocation does not
make sense if ρ is not law-invariant (which is typically
the case in Example 2). In the next sections, we de-
velop an approach to capital allocation, valid for all
coherent risk measures, by extending the condition (*)
to a larger family of maps, called affine isometries.

5 Capital Allocation and Center of a
Convex Set

Let X be a Banach space with norm ||.||. A map B :
X → X is called an isometry if ||B(x)−B(y)||= ||x−
y||, ∀x,y ∈ X . A map B is called linear, if B(x+ y) =
B(x) +B(y), ∀x,y ∈ X , and B(α · x) = α ·B(x), ∀x ∈
X , α ∈ R. A map B is affine if B(x)−B(y) = A(x−
y), ∀x,y ∈ X for some linear map A. Equivalently, a
map B is affine if and only if it preserves the centers of
mass:

B

(
n

∑
i=1

αixi

)
=

n

∑
i=1

αiB(xi),

∀x1, . . . ,xn ∈ X , α1, . . . ,αn ∈ R,
n

∑
i=1

αi = 1.

(16)

It is straightforward to verify, that for every A ∈A , the
map BA defined as (BA(X))(ω) = X(A(ω)), ω∈Ω is a
linear (and hence affine) isometry over Banach space
L1(Ω). Thus, condition (*) in Proposition 4 is just a
special case of the following one.

Definition 2 (AI-preserving CA-solution). An CA-
solution f : T → L1(Ω) will be called AI-preserving
(affine-isomerty-preserving), if B( f (T )) = f (T ) for
every affine isometry B such that B(T ) = T . In other
words, f is an AI-preserving CA-solution, if the selec-
tor f (T ) from any convex set T is a fixed point of any
affine isometry, mapping T into T . In this case, we will
call f (T ) the center of convex set T .

For a finite probability space, AI-preserving CA-
solution is presented in Example 4.

Proposition 8 If probability space Ω is a finite set,
then the centroid capital allocation, defined in Exam-
ple 4, is an AI-preserving CA-solution.

Proof It follows from (16) that the centroid (9) is a
fixed point of any affine isometry, mapping T into T .
2

From now, we assume that Ω is an infinite set.
In this case, the notion of centroid for subsets of
L1(Ω) does not exist in the form (9), because there
is no analogue of Lebesgue measure on an infinite-
dimensional separable Banach space. More precisely,
every translation-invariant measure on such space that
is not identically zero assigns infinite measure to all
open subsets, see Hunt et al. (1992). For this rea-
son, the construction of the “natural” center for every
convex weakly compact subset T of a Banach space is
a non-trivial and well-known problem. Brodskii and
Milman (1948) developed a method for assigning cen-
ter to every set T with “normal structure”, see their
paper for definition. The construction which works in
general case and returns a unique center was suggested
33 years later in Lim (1981).

To be self-contained, we repeat the construction
here. It defines Cα for all ordinals α by transfinite in-
duction. Let C0 = T . Let β be an ordinal and suppose
that Cα has been defined for α < β. If β is a limit or-
dinal, let Cβ =

⋂
α<βCα. Otherwise, let Cβ be a closed

convex hull of the set

{z ∈Cγ : z =
1
2
(x+ y),

for some x,y ∈Cγ with ||x− y||= 1
2

diamCγ},

where γ is the predecessor of β, and diamCγ =
supx,y∈Cγ

||x− y||. Lim proved that, for sufficiently
large ordinals β, Cβ are identical, and consist of ex-
actly one point, which he called the center of T . This
construction defines the CA-solution, which we denote
f ∗, and the corresponding capital allocation in (7) will
be denoted Λ∗ρ(X ,Y ).

Proposition 9 [Theorem 1 in Lim (1981)] Let T be a
nonempty weakly compact convex subset of a Banach
space. The center f ∗(T ) is a fixed point of every affine
isometry mapping T into T .

In other words, Proposition 9 states that f ∗ is an AI-
preserving CA-solution.

We summarize the discussion above as follows.
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- Λ∗ρ(X ,Y ) is linear and diversifying.

- Λ∗ρ(X ,Y ) coincides with the directional derivative
(1), provided that it exists.

- If ρ is law-invariant, Λ∗ρ(X ,Y ) is law-invariant. In
particular, it coincides with the capital allocation
described in Theorem 2.3 of Cherny and Orlov
(2011), if Ω is atomless, and ρ belongs to the fam-
ily (14).

- However, Λ∗ρ(X ,Y ) is defined for every coherent
risk measure ρ, continuous from below (and for
all X ,Y ∈ L∞(Ω)).

In particular, we are now able to solve the capital
allocation problem for the risk measures in Examples
1 and 2 in the “difficult” case Y ∈ Y (ρ). We remark
that, although the original construction of the center
uses ordinals and is not explicit, Proposition 9 can be
used to derive the formulas for Λ∗ρ(X ,Y ) easily, at least
in the examples below.

Example 8 Let ρ be a coherent risk measure given by
(4), and Y be such that EQ1 [−Y ] = EQ2 [−Y ]. Then

Λ
∗
ρ(X ,Y ) = E(Q1+Q2)/2[−X ], ∀X ∈ L∞(Ω). (17)

Detail. In this case, S(Y ) = {Sα|α ∈ [0,1]}, where
Sα = α

dQ1
dP +(1−α)dQ2

dP . The map Sα → S1−α is an
affine isometry, mapping S(Y ) to S(Y ), thus the center
is the fixed point of this isometry, S1/2. 2

Example 9 Let ρ(Y ) = c‖Y −EY‖1−EY , c ∈ [0, 1
2 ],

see Example 1. For any nonconstant Y ∈ L∞(Ω),

Λ
∗
ρ(X ,Y ) = E[−X ]+ cE[X−EX |Y > EY ]P[Y > EY ]

− cE[X−EX |Y < EY ]P[Y < EY ], ∀X ∈ L∞(Ω).
(18)

Detail. For c ∈ (0, 1
2 ] and nonconstant Y , S(Y ) =

1+ c(EZ−Z), Z ∈ sign [Y −EY ], see Example 1. Let
BY be a set of maps B : L∞(Ω)→ L∞(Ω), such that
B(X) = 1+A(X − 1), where (A(X))(ω) = −X(ω) if
Y (ω) = EY , and (A(X))(ω) = X(ω) otherwise. Then
B ∈ BY are affine isometries, which maps S(Y ) into
itself. Indeed, A(Z) ∈ sign [Y − EY ] if and only if
Z ∈ sign [Y−EY ], whence B(S)= 1+c(EZ−Z)= 1+
A(c(EZ− Z)) = 1+ c(EA(Z)−A(Z)) ∈ S(Y ) for all
S ∈ S(Y ). Thus, the center S∗ ∈ S(Y ) is a fixed point

of every B ∈ BY , which implies S∗ = 1+ c(EZ− Z)
for the unique Z ∈ sign [Y −EY ] such that Z(ω) = 0 if
Y (ω) = EY , and (18) follows. 2

If Y = C is a constant, the capital allocation in Ex-
ample 9 is given by

Λ
∗
ρ(X ,C) = E[−X ]. (19)

Relation (19) is a corollary from Proposition 4 (i),
and remains valid for every law-invariant coherent risk
measure ρ, which is continuous from below and can be
defined on an atomless probability space.

Next, we remark that our methodology can be easily
extended to wider families of risk measures. Corol-
lary 5.1. in Kalkbrener (2005) solves the capital al-
location problem for nonconstant Y for risk measure
ρST D(X) = c ·σ(X)−EX , which is not coherent (R1
fails). Similarly, R1 fails for ρ(Y ) = c‖Y −EY‖1−EY
in Example 9 if c > 1

2 . Rockafellar et al. (2006a)
showed that every continuous risk measure satisfying
R2-R4 can still be represented in the form

ρ(Y ) = max
S∈S

E[S(−Y )], for all Y ∈ L∞(Ω), (20)

where S is nonempty, closed, convex set such that
ES = 1,∀S∈ S (ρ is coherent if and only if S≥ 0,∀S∈
S ), whence the capital allocation problem reduces to
the choice of the center in a set S(Y ) of maximizers in
(20). In case ρ = ρST D, S(Y ) is a singleton for non-
constant Y , and S(Y ) = S for constants. In the latter
case, allocation formula (19) remains valid, comple-
menting Corollary 5.1. in Kalkbrener (2005). Sim-
ilarly, capital allocation (18) in Example 9 remains
valid for c > 1

2 .
A coherent risk measure ρ(Y ) = − infY , which, in

general, is not continuous from below, can be repre-
sented in the form (2), but with sup instead of max,
and the supremum is not attained. However, Proposi-
tion 4.14 in Föllmer and Shield (2004) states that every
coherent risk measure ρ can be represented in the form

ρ(Y ) = sup
Q∈Q

EQ[−Y ], (21)

for some subset Q of the Banach space ba(Ω) =
ba(Ω,F ,P) of finitely additive set functions on (F ,P)
with bounded variation, absolutely continuous with re-
spect to P, see eg. appendix A.6 in Föllmer and Shield
(2004) for definitions and the meaning of EQ[−X ]. Ac-
tually, for coherent ρ, Q ⊂ ba1(Ω), where ba1(Ω) ⊂
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ba(Ω) is a set of nonnegative set functions Q normal-
ized as Q(Ω) = 1. Moreover, Q can be chosen as a
convex set for which the supremum in (21) is attained.
Thus, one can find the capital allocation as

Λ
∗
ρ(X ,Y ) = EQ∗ [−X ], for all X ∈ L∞(Ω), (22)

where Q∗ is the center of the set Q (Y ) of maximizers
in (21).

Actually, representation (21) remains valid for every
positively homogeneous and subadditive ρ, which is
lower-semicontinuous, that is, set {Y ∈L∞(Ω)

∣∣ρ(Y )≤
C} is closed for all C ∈ R, see eg. Rudloff (2006). In
addition to coherent risk measures, there are other in-
teresting families of functionals with these properties
(see Grechuk and Zabarankin (2012b)).

Definition 3 (deviation measures and error mea-
sures). A positively homogeneous, subadditive, and
lower-semicontinuous functional ρ : L∞(Ω) → R is
called

- a deviation measure, if ρ(Y ) = 0 for constant Y ,
but ρ(Y )> 0 otherwise;

- an error measure, if ρ(0) = 0, but ρ(Y ) > 0 for
Y 6= 0.

Deviation measures introduced in Rockafellar et al.
(2006a) to measure the non-constancy, inherent in an
r.v. Y . If ρ is a deviation measure, Λ∗ρ(X ,Y ) should be
interpreted as deviation contribution (rather than risk
contribution), that is, it measures the contribution of
nonconstancy of X to the nonconstancy of Y . The cap-
ital allocation problem with deviation measures natu-
rally arises in the context of cooperative portfolio in-
vestment, see Grechuk et al. (2013). The solution of
the form Λρ(X ,Y )=EQ[−X ], Q∈Q (Y ) was proposed
in Grechuk and Zabarankin (2012a), but the issue that
Q (Y ) might not be a singleton was ignored.

Error measures are designed to measure non-
zeroness of an r.v., with the prominent example ρ(X)=
||X ||2, see Rockafellar et al. (2008). If ρ is an error
measure, a natural interpretation for Λ∗ρ(X ,Y ) is er-
ror contribution. For example, assume that there are n
sources of random noise X1,X2, . . . ,Xn, with total noise
Y = ∑

n
i=1 Xi, and we need to estimate the contribution

of each source to the total noise in the system. This
may be useful e.g. for deciding which source of noise
should be removed/reduced first.

6 Discussion

We argue that the problem of selection the unique lin-
ear diversifying capital allocation (Problem II) is es-
sentially a problem of selection the unique probabilis-
tic scenario from a set of worst-case ones (Problem
III), and then the capital should be allocated accord-
ing to the selected scenario via (7). The most straight-
forward approach would be assume that all these sce-
narios are “equally probable”, and then calculate the
“average” one. If Ω is finite, this leads to the centroid
capital allocation (9).

The assumption that Ω is finite is not as unrealis-
tic as it seems, because discrete distributions naturally
arise when historical data is used to estimate the fu-
ture outcomes. For example, assume that the company
makes an investment to the stock market, and solves
a (one period) portfolio optimization problem in the
form

min
X∈V

ρ(X) subject to EX ≥ π, (23)

where π is a desired expected return, and V is a feasi-
ble set of portfolio returns X , given by

V =

{
X

∣∣∣∣∣X =
m

∑
j=0

r jx j,
m

∑
j=0

x j = 1, (x0, . . . ,xm) ∈ Rm+1

}
,

(24)
where r0, r1, . . . , rm are the rates of return of m+1 as-
sets, of which asset 0 is risk-free, x j is the fraction of
capital invested into asset j (with x j < 0 correspond-
ing to short selling), and ∑

m
j=0 x j = 1 is the budget con-

straint. Obviously, future rates of return are unknown,
and can be estimated using Monte-Carlo simulation or
historical data. As a result, one get T ≥ 2 (usually
equiprobable) scenarios with the return r ji for r j un-
der scenario i. In this model, each Y ∈ V is a discrete
r.v. assuming values y1, . . . ,yT with equal probabili-
ties, and the probability space can be assumed to have
T elements.

Now, if a company, consisting of n subsidiaries, in-
vests in a portfolio Y ∗ ∈ V , each subsidiary investing
to portfolio Xi, with Y ∗ = ∑

n
i=1 Xi, the capital alloca-

tion problem arises, and the centroid capital allocation
(Example 4) presents a solution: risk contribution of
subsidiary i is given by ki = Λρ(Xi,Y ), where Λρ is
given by (7) with f defined in (9).

If the underlying distributions are continuous, and
Ω cannot be modelled as finite probability space, the
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set of (the Radon-Nikodym derivatives of) worst-case
probabilistic scenarios S(Y ) is infinite-dimensional,
and we cannot say that these scenarios are “equally
probable”, because there is no reasonable way to in-
troduce a probability measure on S(Y ).

If the underlying risk measure (and whence the set
S(Y )) has any kind of “symmetry” (which we mathe-
matically formalised as invariance under affine linear
transformations), we suggest that the capital allocation
scheme Λ should possess the same kind of symmetry.
For example, if ρ is law-invariant, Λ should be law-
invariant, consistently with Cherny and Orlov (2011).
As another example, risk measure ρMAD (see Exam-
ple 9) equally penalises ups and downs comparing to
mean, in sense that ρMAD(X) = ρMAD(Y ) if EX = EY
and X −EX = EY −Y ; in particular heavy down tails
in penalized to the same extend as heavy up tails. We
require that the same property should be reflected in
the capital allocation scheme, that is, heavy down tail
should not be a reason for extra capital allocation,
comparing to heavy up tail. All this kind of informal
reasoning is summarised, formalised, and generalised
in Definition 2: if an affine isometry does not change
the risk measure, it also should not change the capital
allocation. A construction of Lim (1981) returns the
capital allocation with this property.

This construction, however, is not explicit, and can-
not be used directly in practical applications. Example
9 shows how the use of a particular affine isometries
may lead to a quick solution. In case when such isome-
tries are not available, one may approximate the under-
lying distributions with the discrete ones, and use the
centroid capital allocation (9), which can be efficiently
computed.

Example 10 (numerical illustration) A company in-
vests its capital in a portfolio with m = 4 risky assets:
Lloyds Banking Group PLC, BT Group PLC, COCA-
COLA HBC N, and Imperial Tobacco Group PLC. We
identify T = 52 scenarios with assets’ weekly rates of
returns from 9-September-2013 to 8-September-2014,
that is, r ji, j = 1,2,3,4, i = 1, . . . ,52, is the histori-
cal rate of return of asset j during week i. With risk
measure ρ(X) = 1

2‖X −EX‖1−EX, see Example 9,
and π = 0.003, the optimal portfolio in (23) is Y ∗ =
∑

m
j=1 x∗jr j ≈ 0.166r1 + 0.351r2 + 0.037r3 + 0.446r4.

In this case, P[Y ∗ = EY ∗] = 2
52 > 0, hence Y ∗ ∈ Y (ρ),

see Example 1, and linear diversifying capital allo-

cation is not unique. In contrast, the capital allo-
cation defined in Section 5 is unique and is given
by (18). In particular, with n = 4, and X j = x∗jr j,
j = 1, . . . ,4, (18) implies that relative risk contribu-
tions Λ∗ρ(X j,Y ∗)/ρ(Y ∗) of assets j = 1,2,3,4 into the
portfolio are about 23%, 33%, 8%, 36%, correspond-
ingly.

7 An Application to Optimal Risk
Sharing

This section applies the developed capital allocation
technique to a related problem of optimal risk shar-
ing, an old and classical problem originated by Borch
(1962), Arrow (1963), and others. There are n agents,
indexed by I = {1,2, . . . ,n}. Agent i ∈ I has an initial
endowment Yi ∈ L∞(Ω) and associated risk measure
ρi : L∞(Ω)→ R. The total endowment Y = ∑

m
i=1Yi

is then redistributed among agents in attempt to re-
duce their risk. An allocation ~X = (X1,X2, . . . ,Xn),
where Xi is the share of agent i ∈ I, is called attain-
able if ∑

m
i=1 Xi = Y . An attainable allocation is called

Pareto optimal if there are no attainable allocation
~Z = (Z1,Z2, . . . ,Zn) with ρi(Zi) ≤ ρi(Xi), i ∈ I, with
at least one inequality being strict. The optimal risk
sharing problem can be divided into two steps.

S1. Find all Pareto optimal allocations;

S2. If there are many, choose a “fair” one.

We will restrict our attention to S2. A classical ap-
proach (see eg. Aase (2002) for a survey) is to allow
agents to trade and reach the equilibrium. A price is a
linear continuous functional P : L∞(Ω)→R, such that
P(1) = 1 and P(X) ≥ 0 whenever X ≥ 0. Any price
can be represented in the form P(X) = EQ[X ], ∀X ∈
L∞(Ω), for some Q ∈ ba1(Ω), which is called pricing
rule. For agent i ∈ I, let Xi(Q) be an optimal endow-
ment of agent i under Q, that is, a minimizer in the
problem

min
Xi∈L∞(Ω)

ρi(Xi) s.t. EQ[Xi]≤ EQ[Yi], i ∈ I.

(25)
If ∑

m
i=1 Xi(Q) =Y , Q is called equilibrium pricing rule

(EPR), and ~X(Q)= (X1(Q),X2(Q), . . . ,Xn(Q)) is equi-
librium allocation. The classical First Welfare Theo-
rem, see eg. Becker (1991), states that, under very
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general conditions on risk measures, every equilibrium
allocation ~X(Q) is Pareto optimal. Thus, if EPR Q∗ ex-
ists and unique, ~X(Q∗) is a natural solution of S24. If,
however, EPR is not unique, S2 reduces to the follow-
ing problem.

Problem IV Let P = {ρ1,ρ2, . . . ,ρn,Y1,Y2, . . . ,Yn} be
a risk sharing problem, and EP ⊂ ba1(Ω) be the set
of all EPRs. Assume that EP is non-empty, but not a
singleton. Which Q ∈ EP to choose?

Recently, optimal risk sharing problem has been
intensively studied in the case when ρi are coherent
(see Burgert and Ruschendorf (2008)), or, more gener-
ally, convex5 risk measures, see Heath and Ku (2004),
Jouini et al. (2008), Filipovic and Kupper (2008),
Dana and Le Van (2010). In these papers, the exis-
tence of Pareto optimal and equilibrium allocation has
been investigated, but the Problem IV has not been ad-
dressed.

We argue that there is a close connection between
Problem IV and capital allocation problem, formulated
in the introduction, at least in coherent case. First, if
ρi satisfy R4, and ~X is Pareto optimal, then, for any
constants Ci ∈ R, with ∑

m
i=1Ci = 0, the allocation

(X1 +C1,X2 +C2, . . . ,Xn +Cn) (26)

is also Pareto optimal (see eg. Jouini et al. (2008)), and
S2 reduces to choosing a C = (C1,C2, . . . ,Cn) ∈ Rn,
which can be called capital reallocation. Ci can be
considered as fair premium for investor i for taking
share Xi of a total risk X , which is, intuitively, very
close to risk contribution of Xi to X .

This intuition can be made precise if ρi are coherent
risk measures, given in the form (21) for Q i ⊂ ba1(Ω),
i ∈ I. In this case, the risk sharing problem P will be
called coherent. Theorem 2.8 in Burgert and Ruschen-
dorf (2008) states, that, for coherent P , an equilib-
rium exists if and only if Q ∗ =

⋂n
i=1 Q i is non-empty.

The coherent risk measure ρ∗, corresponding to Q ∗ via
(21), can be written as infimal convolution

ρ
∗(Y ) = min

~X :∑Xi=Y
(ρ1(X1)+ . . .+ρn(Xn)) , (27)

4Formally, different equilibrium allocations ~X(Q∗) may cor-
respond to the same EPR Q∗. We will call allocations
~X1 = (X1

1 ,X
1
2 , . . . ,X

1
n ) and ~X2 = (X2

1 ,X
2
2 , . . . ,X

2
n ) equivalent, if

ρi(X1
i ) = ρi(X2

i ), i ∈ I; the “unique” solution to S2 should be un-
derstood as “unique up to equivalence”.

5A ρ : L∞(Ω)→R is a convex risk measure if it is convex and
satisfies R1 and R4 in Definition 1

and describes the optimal total risk with respect to
all attainable allocations. Theorem 3.13 in Filipovic
and Kupper (2008) states that, for every Pareto op-
timal ~X , allocation (26) is an equilibrium for Ci =
EQ[Yi−Xi], i ∈ I, for every Q ∈ Q (Y ), where Q (Y ) is
the set of maximizers in (21) for ρ∗. Thus, in this case,
EP = Q (Y ), and the Problem IV is exactly equivalent
to choosing an element Q ∈ Q (Y ), that is, to capital
allocation problem with risk measure ρ∗. In particular,
the equilibrium is unique if and only if the directional
derivative (1) exists for ρ = ρ∗.

Thus, for every coherent risk sharing problem P ,
such that Q ∗ is non-empty, our capital allocation
scheme returns the unique equilibrium given by (26)
with

Ci = EQ∗ [Yi−Xi] = Λ
∗
ρ∗(Xi−Yi,Y ), Q∗ = f ∗(EP ),

(28)
where f ∗ and the corresponding Λ∗ are defined in Sec-
tion 5.

In general, by solution of Problem IV we mean
the scheme returning the unique EPR Q(P ) for ev-
ery risk sharing problem P such that EP 6= /0. We
call the solution consistent, if Q(P1) = Q(P2) when-
ever EP1 = EP2 . A natural extension of (28) to general
case is the solution given by

Q(P ) = f ∗(EP ), ∀P , (29)

where f ∗ is defined in Section 5.

Proposition 10 (29) is a consistent solution of Prob-
lem IV, coinciding with (28) for coherent P . It returns
the unique equilibrium (and whence the unique Pareto
optimal allocation) for any (not necessary coherent)
risk sharing problem P with non-empty and weakly
compact EP .

Proof An r.v. λXi(Q)+ (1−λ)Xi(Q2) is a minimizer
in (25) for Qλ = λQ1 +(1− λ)Q2, whence Qλ ∈ EP
whenever Q1,Q2 ∈EP , thus EP is convex, and f ∗(EP )
is well-defined. 2

The set EP is non-empty, if, for example, Ω is atom-
less and all ρi are law-invariant convex risk measures,
see Corollary 3.8 in Filipovic and Kupper (2008).

Example 11 Let n = 2, P = {ρ1,ρ2,Y1,Y2}, where
ρ1 is given by (15) for some α ∈ (0,1), ρ2(X) :=
−EX +λE

[
[X−EX ]p−

]1/p
, λ ∈ [0,1], p ∈ [1,∞], and

12



Y = Y1 +Y2 is continuous (here [X ]− = max{0,−X}).
Proposition 3.2 in Jouini et al. (2008) states that
all Pareto optimal allocations in P are given by
(X1 +C,X2−C),C ∈R, where X1 =−[Y −K]−, X2 =
max{Y,K}, for some constant K =K(α,λ, p). Accord-
ing to (28), the constant C should be chosen as

C =Λ
∗
ρ∗(X1−Y1,Y )= lim

ε→0

ρ∗(Y + ε(X1−Y1))−ρ∗(Y )
ε

(30)
where ρ∗(X) := min

Z1+Z2=X
(ρ1(Z1)+ρ2(Z2)).

Detail. In this case, the directional derivative in (30)
exists due to continuity of Y . 2

8 Conclusions

We have reduced the problem of identifying the unique
linear diversifying risk contribution Λρ(X ,Y ) to the
problem of selecting the unique center of a convex
weakly compact set in a Banach space. The latter
problem has a natural solution (centroid) in finite-
dimensional case, which corresponds to the case when
probability space Ω is finite. In the general case, we
have used the construction of Lim (1981), which has
the advantage that the resulting center is a fixed point
of every affine isometry mapping the set into itself.
This construction produces the unique risk contribu-
tion, defined for all X ,Y ∈ L∞(Ω), and for every co-
herent risk measure ρ, as well as for other classes of
functionals, such as deviation measures or error mea-
sures. Our solution is consistent with those derived
in Kalkbrener (2005) and Cherny and Orlov (2011) in
cases the latter exist and unique. It can also be applied
to selecting the unique Pareto optimal allocation in a
wide class of optimal risk sharing problems.
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