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The k-dissimilar vehicle routing problem
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Prinsstraat 13, 2000 Antwerp, Belgium

July 2014

In this paper we de�ne a new problem, the aim of which is to �nd a set of k
dissimilar solutions for a vehicle routing problem (VRP) on a single instance. �is
problem has several practical applications in the cash-in-transit sector and in the
transportation of hazardous materials. A min-max mathematical formulation is
proposed which requires a maximum similarity threshold between VRP solutions,
and the number k of dissimilar VRP solutions that need to be generated. An in-
dex to measure similarities between VRP solutions is de�ned based on the edges
shared between pairs of alternative solutions. An iterative metaheuristic to gen-
erate k dissimilar alternative solutions is also presented. �e solution approach is
tested using large and medium size benchmark instances for the capacitated vehi-
cle routing problem.

Keywords: Decision support systems, Combinatorial optimization, Metaheuristic, Lo-
gistics, Risk management.

1. Introduction

In many European countries, cash-in-transit companies must by law determine several alter-
native routes for each of their vehicles when transporting cash. �e aim of this measure is
to allow a �rm to easily change its plans in case of unforeseen circumstances (e.g., accidents,
road works) and to increase security by making the vehicle routes more unpredictable. In this
paper, we de�ne a new vehicle routing problem — the k-dissimilar vehicle routing problem or
kd-VRP — to support this optimization problem.

A solution of this novel problem consists of k feasible solutions of a single capacitated vehicle
routing problem (VRP). Each of these VRP solutions (which we will consistently call alternative
solutions) must obey the traditional constraints of the VRP: all customers are visited exactly
∗Corresponding author: University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium, Tel:+3232654177, E-
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once, all vehicles begin and end at the depot, and the capacity of the vehicle is not exceeded. �e
quality of an alternative solution is measured as the total distance travelled by all vehicles.

Assuming that a similarity metric can be calculated between any pair of alternative solutions, a
feasible solution to thekd-VRP is a set ofk feasible alternative solutions for which the di�erence
between each pair of alternative solutions is larger than a certain threshold. �e objective of
the kd-VRP is to minimize the cost of the worst alternative solution in the set. To the best of
our knowledge, this problem has never been studied before in the literature.

�e kd-VRP is closely related to the m-peripatetic vehicle routing problem (m-PVRP) studied
in Ngueveu et al. (2010a,b). �is problem consists in �nding a set of edge-disjoint routes of
minimal total cost overm periods so that each customer is visited exactly once per period and
the edge between a pair of customers can be used at most once during them periods. “Periods”
in the m-PVRP are essentially the same concept as “alternative solutions” in the kd-VRP. �e
di�erence between the kd-VRP and the m-PVRP is twofold. In a feasible solution of the m-
PVRP, no edge is used twice, while in the kd-VRP the multiple usage of an edge is not explicitly
forbidden, but rather limited by a constraint on the similarity between alternative solutions.
Second, the m-PVRP minimizes the total cost over all periods, while the kd-VRP minimizes
the worst-case cost over all alternative solutions. �e motivation for the kd-VRP is that for
some real-life applications (e.g., money collection, transportation of hazardous materials), the
constraint that imposes k edge-disjoint VRP solutions in which not a single edge is shared
between the alternative solutions might be too stringent. �e min-max objective function of
the kd-VRP is a design choice, that can easily be changed to a total cost objective, in which case
the kd-VRP generalizes them-PVRP.

Figure 1 shows an example of a solution for the kd-VRP with k = 3, for which a set containing
three dissimilar, but not disjoint, alternative solutions (see Figures 1(a), 1(b) and 1(c)) has been
generated.

..............................................................................................

(a)

..............................................................................................

(b)

..............................................................................................

(c)

Figure 1: A solution for the kd-VRP with k = 3, instance F-n45-k4

�ekd-VRP has many practical applications. A �rst application, which provided the motivation
for this work, can be found in the context of money collection and distribution, also known
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as the cash-in-transit sector. In this context, a set of customers (e.g., banks, shops, casinos,
jewellers) needs to be visited to pick up valuables and cash. As mentioned, companies in the
cash-in-transit sector are o�en required by law (see e.g., the Belgian law reported in Service
Public Federal Interieur (2003) for more details) to determine several alternative solutions in
advance. Additionally, the same alternative solution cannot be used more than two consecutive
times. On the other hand, the travel costs of each of these alternative solutions should be
minimized for obvious economic reasons. �e aim is thus to decrease the predictability of
the chosen alternative solution, reducing the risk to be assaulted, while maintaining economic
viability.

A second application can be found in the transportation of dangerous materials (e.g., the rout-
ing of tankers which must serve a set of petrol stations). In this case a limitation of the number
of shared edges between the routes might be required in order to be�er share and mitigate the
risk of accidents and spread the risk equitably among the geographical regions crossed by ve-
hicles along di�erent routes (Gopalan et al., 1990). In addition, supposing that the probability
of an accident increases considerably in case of adverse weather conditions and/or depending
on the type of road segment, it is crucial to have several dissimilar routing plans to reduce the
risk of potential fatalities (Akgün et al., 2000; Sa�ayaprasert et al., 2008).

A third application concerns the design of patrol routes for security agents who must follow
partially di�erent routes over time (Wol�er Calvo and Cordone, 2003). �e design of (spatial
and/or temporal) dissimilar patrol routes, that are not necessarily disjoint, might help compa-
nies to guarantee high security standards, minimizing at the same time their operative costs.

�e contributions of this paper are the following: (1) A new NP-hard combinatorial optimiza-
tion problem is proposed, the k-dissimilar vehicle routing problem or kd-VRP. �e kd-VRP
requires a similarity measure that can calculate the di�erence between alternative solutions.
We de�ne such an index, starting from the similarity index used for the dissimilar k-shortest
path problem. (2) A mathematical formulation for the kd-VRP is presented. (3) A metaheuristic
to solve medium and large instances of the kd-VRP is described, implemented and tested.

�e remainder of the paper is organized as follows. In Section 2, the literature on the peri-
patetic VRP and similar problems such as the dissimilar k paths problem and the disjoint paths
problem is presented. In Section 3, some indices used to measure the (dis)similarity between
paths and alternative solutions are introduced. In Section 4, the k-dissimilar vehicle routing
problem (kd-VRP) is described in detail and a mathematical formulation is developed. In Sec-
tion 5, an iterative metaheuristic to �nd solutions for the kd-VRP is developed. In Section 6
the solution approach is tested using 51 benchmark instances from the VRP library. Finally,
Section 7 concludes the paper and provides some suggestions for future research.

2. Literature review

�e problem of �nding dissimilar solutions within the transportation sector has received some
a�ention in the literature on shortest path problems and, more recently, on vehicle routing
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problems.

�e �rst a�empt to introduce the concept of similar solutions within shortest path problems is
the k-shortest paths problem (k-SPP) in which the shortest, the second shortest, until the k-th
shortest path from an origin to a destination node are sought, in increasing order of length (see,
e.g., Yen (1971); Hershberger et al. (2007); Go�hilf and Lewenstein (2009); Di Puglia Pugliese
and Guerriero (2013)). However, the k shortest paths are likely to share a large number of
edges, and tend to be very similar to each other. For some applications in which dissimilar
alternatives are needed, a di�erent approach is required.

To �nd dissimilar paths, the disjoint-path problem (DPP), introduced by Suurballe (1974), can be
used. Di�erently from the classical k shortest paths problem, the DPP allows no common edges
(edge-disjoint paths) or shared vertices (vertex-disjoint paths) among alternative paths. How-
ever, for many real-life applications (e.g., hazardous material transportation, couriers, routing
in congested network) the constraint imposing no edges in common among paths may be too
stringent and, due to the impossibility to reuse all the shortest edges employed in the previous
solutions, the resulting disjoint paths may be impractically long (Kuby et al., 1997). In fact, in
the majority of real-life transportation applications, in which a minimum number of dissimilar
solutions, not necessarily disjoint, is required, the cost of each alternative should be as small
as possible. �erefore, a valid alternative to the DPP is represented by the path dissimilarity
problem (PDP) in which a set of dissimilar solutions with minimum costs are generated. �e
PDP is a bi-objective routing problem in which a set of k paths, from an origin to a destination,
must be generated with a minimum length and a maximum dissimilarity (see, e.g., Akgün et al.
(2000) and Dell’Olmo et al. (2005)).

In the PDP a set of k alternative paths from an origin to a destination is generated, by using
speci�c indices to measure the similarity between alternative solutions. In Park et al. (2002)
dissimilarities among alternative paths are analysed by evaluating, from an individual perspec-
tive, multiple a�ributes (e.g., distance, travel time, variability) associated to the edges. In the
domain of hazardous materials transportation, spatially dissimilar paths which minimize the
risk of accidents (distributing the risk over all regional zones to be crossed uniformly) need
to be obtained. However, for routing hazardous materials, the spatial dissimilarity between
alternative paths may depend on how localized the e�ects of a spill are.

Only few papers in the literature address the issue of �nding dissimilar solutions in the context
of vehicle routing problems. �e goal of this paper is to contribute to this research area by
proposing a general model that we named the kd-VRP. It shares several properties with a set
of routing problems called peripatetic. A solution of them-peripatetic vehicle routing problem
(m-PVRP) consists of a set of m di�erent VRP solutions for which it holds that each pair of
alternative solutions is edge-disjoint. In other words, each edge is used at most in one of the
m VRP solutions. �e m-PVRP generalizes two well-known NP-hard problems: the vehicle
routing problem (VRP) and them-peripatetic salesman problem (m-PSP). �e la�er is a special
case of them-PVRP with one single vehicle of in�nite capacity.

An approach suggested in the literature for cash-in-transit applications a�empts to reduce the
risk of being a�acked by generating dissimilar solutions. �ese solutions are most likely to be
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“unpredictable” for criminals and can be obtained by solving a speci�c m-PVRP problem. In
Ngueveu et al. (2010a,b), customers are visited several times during a �xed planning horizon,
but the use of the same arc twice is explicitly forbidden.

In Wol�er Calvo and Cordone (2003); Michallet et al. (2014) the dissimilarity betweenm-PVRP
solutions is enforced by introducing time windows with a minimum and maximum time lag
between two consecutive visits of the same customer. In this way it is possible to generate a
wide variety of solutions, as required for security reasons. In Yan et al. (2012) a speci�c appli-
cation of am-PVRP to the cash-in-transit sector is proposed aimed at reducing operating costs
and ensuring safe cash conveyance. A model, that incorporates a new concept of similarity
by considering both temporal and spatial measures, is developed. In this model, dissimilarities
between them vehicle routes are incorporated into them VRP solutions by imposing di�erent
visit times of the same customer during the planning horizon.

�e m-PVRP can be extended and generalized by making the constraint that two solutions
cannot have any edge in common less stringent. Some a�empts in this direction are followed
in the literature on VRP applications in which speci�c indices have been de�ned and used to
measure similarities between solutions.

For example, in Løkketangen et al. (2012), a multiobjective decision support system tool is de-
veloped to produce a set of k dissimilar VRP solution. �e dissimilarity between the k VRP
solutions is based on an a�ribute distance function. �e distance function includes some mea-
sures typical of the decision process and comprise, for example, road accessibility, type and
amount of load, road length, road quality, vehicle, and driver.

In Sörensen (2006) a multiobjective optimization approach is proposed in order to �nd a set of
k VRP solutions that are “close” (in the solution space) to a given baseline VRP solution and
at the same time have a high quality in the sense that their total distance travelled is small. In
particular a memetic algorithm with population management is implemented in order to o�er
to the decision maker a choice of Pareto-optimal solutions, allowing him to make a trade-o�
between changing his existing solution (i.e., baseline VRP solution) and allowing a longer travel
distance.

3. Similarity indices

In order to measure the dissimilarities between solutions several methods and indices have
been proposed in the literature on shortest path problems in which the concept of dissimilarity
between solutions has been widely studied. �e dissimilarity measure, that is used in this paper,
is discussed in Section 4 and can be found in Eq. (6).

In Lombard and Church (1993) the concept of “area under the path” is introduced. If the net-
work is assumed to be representable on a plane, the “area under the path” is the area between
the path and the x-axis. �erefore, the dissimilarity between two paths is measured by the
absolute di�erence between the areas under the paths. In Martı́ et al. (2009) the dissimilarity
Dis (Pi ,Pj ) between two paths Pi and Pj , is computed as the average of the distances between
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each vertex in Pi to the path Pj plus the average of the distances between each vertex in Pj to
the path Pi . �e dissimilarity measure is given by the formula:

Dis (Pi ,Pj ) =
1
2

[∑
vl ∈Pi ϕ (vl ,Pj )

|Pi |
+

∑
vl ∈Pj ϕ (vl ,Pi )

|Pj |

]
(1)

where the value ϕ (v,Pj ) represents the Euclidean distance from a vertex v to a path Pj =
{v1,v2, . . . ,vn } expressed as:

ϕ (v,Pj ) = min
vl ∈Pj

ϕ (v,vl ) (2)

�e similarity index in Eq. (1) considers spatial information hence the resulting paths will be
dispersed to each other from a spatial point of view. In Akgün et al. (2000) and Vanhove (2012)
the dissimilarity is measured in terms of shared edges between paths, without considering
spatial information concerning the physical location of the vertices. �e expression to compute
the dissimilarity between two paths Pi and Pj , considering only the length (denoted by le�er
L) of the shared edges, is as follows:

Dis (Pi ,Pj ) = 1 − 1
2

[
L(Pi ∩ Pj )

L(Pi )
+
L(Pi ∩ Pj )

L(Pj )

]
(3)

In Dell’Olmo et al. (2005) the concept of “bu�er zone” is included in Eq. (3) to embed spatial
information in the measure of similarity. �e “bu�er zone” is an area determined by moving
a circle along the path, whose center is the vehicle on the path itself and whose radius is
proportional to the impact area due to a possible accident.

In �yagarajan et al. (2005) an extension of the dissimilarity measure in Eq. (3) is proposed
considering the time context. �is is useful in military missions, in which the time di�erence
between routes must be considered. Other works include the temporal dimension into the
similarity index (see, e.g., Yan et al. (2012); Wol�er Calvo and Cordone (2003); Michallet et al.
(2014)). Supposing that each customer must be visited several times during a given time hori-
zon, the hours of any two visits to the same customer, over the planning horizon, must be
spread in the customer’s time window.

In order to �nd k dissimilar alternative solutions a distance measure to calculate the di�erence
(or similarity) between two given solutions is required. Besides measuring the dissimilarity
between two alternative solutions based on the number (or the length) of the common edges,
the edit distance might be adopted (Levenshtein, 1966). �e edit distance can be used for per-
mutation problems i.e., problems of which the solutions are most naturally represented as a
permutation of a set of items (i.e., problem a�ributes), representing the order in which the
items appear in each solution. For example a VRP solution can be represented as a set of
permutations, one for each trip. Each trip is determined by the order in which the customers
appear in it. �is distance measure is based on the idea that the distance between two solutions
is equal to the “cost” required to transform the �rst solution into the second one.

A comparison between these distance measures is beyond the scope of this paper. For a more
elaborate discussion of some issues related to distance measures, including some other dis-
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tance measures for permutation problems, we refer to Sörensen (2007) and Løkketangen et al.
(2012).

4. Problem description

In this section a mathematical formulation of the kd-VRP is proposed, based on an MIP formu-
lation for the VRP. �e VRP is seen as a subproblem, the solutions of which are the input of a
master problem in which the k dissimilar alternative solutions are selected.

�e VRP is de�ned on a graph G = (V ,E) with vertex set V = {0, . . . ,n} and edge set E.
Vertices {1, . . . ,n} correspond to the customers, while vertex 0 corresponds to the depot. A
non-negative cost di j is associated with each edge (i, j ) ∈ E. �e cost structure is assumed
to be symmetric, i.e., di j = dji ∀i, j ∈ V . Moreover with each customer i ∈ V \ {0} a known
demand mi > 0 is associated, which represents the quantity of goods to be delivered. A set N
of identical vehicles, each with capacityC , is available at the depot. It is assumed thatmi 6 C ,
∀i ∈ {1, . . . ,n}.

A general MIP formulation of the VRP (see, e.g., Van Leeuwen and Volgenant (1983) for more
details) is presented in Eq. (4a)–(4f). �is formulation uses a three-index decision variable xhi j ,
which assumes value 1 if edge (i, j ) is traversed by vehicle h, and 0 otherwise.

min
∑
h∈N

∑
(i,j )∈E

di j x
h
i j (4a)

s.t.∑
j ∈V \{0}

xh0j =
∑

i ∈V \{0}
xhi0 = 1 ∀h ∈ N (4b)∑

h∈N

∑
j ∈V

xhi j =
∑
h∈N

∑
j ∈V

xhji = 1 ∀i ∈ V \ {0} (4c)∑
i ∈V

∑
j ∈V \{0}

mj x
h
i j ≤ C ∀h ∈ N (4d)∑

h∈N

∑
i ∈Q

∑
j<Q

xhi j ≥ 1 ∀Q ⊂ V ;Q , ∅ (4e)

xhi j ∈ {0,1} ∀(i, j ) ∈ E;∀h ∈ N (4f)

�e objective function (4a) minimizes the total travel costs of all vehicles combined. Con-
straints (4b) force each vehicle to start and �nish its route at the depot, visiting at least one
vertex along its tour. Constraints (4c) state that every vertex must be visited exactly once, im-
plying that only one vehicle may arrive at a given vertex and depart from it. Constraints (4d)
impose a restriction on the maximum load of each vehicle. Finally Constraints (4e) ensure that
no subtour occurs in the solution. Constraints (4f) limit the domain of the decision variables.
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�e output of the VRP subproblem in Eq. (4a)–(4f) is the input of the master problem in Eq. (5a)–
(5c). �e la�er requires two more parameters to be set: the value of the similarity thresholdTS
and the number of alternative solutions (k > 1). TS represents the maximum similarity between
alternative solutions and it is a parameter of the problem that should be de�ned as an input by
the user. We also de�ne a similarity index δ (yi ,yj ) that measures the similarity between pairs
(yi ,yj ) of VRP solutions.

A mathematical formulation of the kd-VRP is:

min max
i ∈{1, ...,k }

f (yi ) (5a)

s.t.
δ (yi ,yj ) ≤ TS ∀i, j ∈ {1, . . . ,k }; i , j (5b)
yi ∈ Ω ∀i ∈ {1, . . . ,k } (5c)

A feasible solution for the kd-VRP consists of a set S = {y1, . . . ,yk } containing k alternative
solutions y1, . . . ,yk ∈ Ω with Ω being the set of all the feasible VRP solutions that satisfy con-
straints in Eq. (4b)–(4f). �e objective function (5a) minimizes the cost of the worst alternative
solution in S . Constraints (5b) impose that all the pairs of alternative solutions in S are dis-
similar. More speci�cally, similarities among alternative solutions can be at most equal to the
thresholdTS . In the remainder of the paper we refer to constraints (5b) as similarity constraints.
Since the concepts of similarity and dissimilarity are perfectly complementary, for the sake of
clarity, from here on, we will adopt the point of view of similarity. �e dissimilarity between
alternative solutions can be trivially derived from the similarity measure if required. Finally
constraints (5c) restrict the domain of the decision variables.

In principle, if the objective function in Eq. (5a) is replaced with the minimization of the total
cost of the alternative solutions (∑i ∈{1, ...,k } f (yi )) then the kd-VRP can be considered as the
generalization of the k disjoint VRP problem. In addition, when the similarity threshold in
Eq. (5b) is equal to zero the kd-VRP is reduced to a standard m peripatetic vehicle routing
problem (m-PVRP). For this reason, the same considerations about the feasibility of the m-
PVRP are also valid for the kd-VRP. More speci�cally, for each alternative solution, the total
minimal number of routes necessary to satisfy the total demand of customers inV \ {0} is equal
to τ = d∑i ∈V \{0}

mi
C e. Given a complete graph, any instance of the kd-VRP with n customers

may admit a feasible solution if k 6 n
2τ . �e reader is referred to Ngueveu et al. (2010b) for

further details.

Both the mathematical model in Eq. (5a)–(5c) and the solution approach (developed in Sec-
tion 5) are independent of the speci�c similarity index used. Hence, all of the similarity indices
discussed in Section 2 could be used in both the formulation and the heuristic optimization
algorithm.

�e similarity index used in this paper is derived from Eq. (3) described in Section 3. �is index
can be used to measure similarities between alternative solutions by comparing the structure
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of the routes contained in these solutions. Given two alternative solutions yi and yj , this index
compares each route of yi with each route of yj . Let r lyi and rmyj be the l-th route of yi and the
m-th route of yj respectively, the similarity between these routes is calculated as follows:

δ (yi ,yj ) = max
l,m∈N

1
2



cs (r
l
yi ,r

m
yj )

c (r lyi )
+
cs (r

l
yi ,r

m
yj )

c (rmyj )


(6)

�e term cs (r
l
yi ,r

m
yj ) represents the cost of the edges shared between routes r lyi and rmyj , while

c (r lyi ) (or c (rmyj )) is the cost of route r lyi (or rmyj ).

According to Eq. (6), the similarity between two VRP solutions δ (yi ,yj ) is a value between 0
and 1. For this reason, TS should also be chosen in the interval [0,1]. If TS = 0, the alternative
solutions are forbidden to have any shared edge like in the m-PVRP. If TS = 1, identical k
alternative solutions may be generated. It would be also possible to de�ne a multi-objective
version of thekd-VRP in which the similarity threshold represents an objective to be minimized.
In Section 6.3 we tested various scenarios considering di�erent values of Ts .

�e cost values used to compute δ (yi ,yj ) rely on the cost di j that is de�ned for each edge
(i, j ) ∈ E. �e value of di j is commonly interpreted in the literature on VRP as either a time,
a cost, or a distance. However, the measure used to calculate the objective function and that
to calculate δ (yi ,yj ) does not necessarily have to be the same. In other words, an additional
a�ribute not related to di j may be assigned to each edge in G and used to compute the value
δ (yi ,yj ). For example, the similarity between alternative solutions could be calculated based on
the distance between edges, while the objective function could use the travel costs. A di�erent
option (which is not considered in the remainder of this paper) could consider the number of
shared edges between routes instead of their cost.

For the sake of simplicity we computed the similarities between alternative solutions on a
graph G = (V ,E). We are aware that in real-life vehicles do not travel on this graph but on
a road network, where arcs between nodes do not always correspond to independent road
segments. �erefore, it may happen that two di�erent edges in graph G correspond to almost
the same path on the road network, which may be problematic from a security point of view.
To overcome this problem, the similarity between any couple of routes r lyi and rmyj should be
computed by �rst analysing the corresponding physical paths on the street network and then
evaluating function cs (r

l
yi ,r

m
yj ) with respect to these paths. �is would correctly account for

the real overlap between routes r lyi and rmyj . An alternative approach consists in exploiting the
freedom degree in the de�nition of the path corresponding to each arc of graph G so as to
reduce the overlapping, though increasing the arc cost.

Another potential problem is highlighted by Martı́ et al. (2009), who found that the similarity
measure in Eq. (3), from which Eq. (6) is derived, might generate routes that are not spatially
dispersed. �is may represent a problem in applications such as hazmat transportation, where
the e�ects of a disastrous event may spread over a relatively large area. In cash-in-transit ap-
plications, however, this issue does not present a problem since an a�ack on a vehicle is a
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localized event the consequences of which do not spread out. For applications in the chemical
sector, it may be appropriate to incorporate spatial or/and temporal information into the sim-
ilarity index in order to adequately evaluate the exposure to accidents of the population that
lives in the areas traversed by the routes (see, e.g., Martı́ et al. (2009); �yagarajan et al. (2005);
Dell’Olmo et al. (2005)).

Another potential disadvantage of the similarity index in Eq. (6) is that it theoretically allows
the same edge to appear in all the alternative solutions. If this is unacceptable, a di�erent mea-
sure should be used. However in cash-in-transit applications alternative solutions presenting
all a certain edge in common are considered admissible as long as: (a) the edge is traversed by a
di�erent vehicle, (b) the edge is traversed by the same vehicle in a di�erent time frame, (c) the
routes with the common edge contain di�erent customers to be visited (or the same customers
in a di�erent order). Moreover it should be noticed that the penalty function adopted inside
the solution approach, described in Section 5, discourage the selection of edges already used
in other alternative solutions. In so doing the use of the same edge within all the alternative
solutions is unlikely to happen.

In the remainder of the paper we use the similarity index in Eq. (6) because of its advantages
such as: (a) it does not require extra parameters, and (b) it is easy to compute. �e algorithm
developed in the next section, however, does not depend in any way on the chosen distance
measure.

5. Metaheuristic description

In this section an iterative metaheuristic to solve the kd-VRP is presented. �e metaheuristic
developed in this paper is similar to the iterative penalty method used in Johnson et al. (1992)
and Barra et al. (1993) to �nd k dissimilar shortest paths. We call this method the Iterative
Penalty Method for the kd-VRP (IPM kd).

Our version of the iterative penalty method di�ers from the one proposed in Johnson et al.
(1992); Barra et al. (1993) because at each iteration alternative solutions are selected under the
conditions of a maximum degree of similarity. To this end the metaheuristic examines solution
cost and solution overlaps simultaneously while searching for k alternative solutions. �e
IPM kd metaheuristic is schematically shown in Algorithm 1.

�e IPM kd algorithm sequentially generates k alternative solutions, forming together a so-
lution S for the kd-VRP. At the end of each iteration, the current solution S is compared
with the best solution found so far (S∗). �is comparison is done by evaluating the costs
of solutions S and S∗ following the objective function described in Eq. (5a) and denoted by
F = min maxi ∈{1, ...,k } f (yi ). At the end of the algorithm, a�er I iterations, S∗ is reported.

�e generation of each alternative solution is done in two consecutive steps. In the �rst
step an iterative local search approach is used. An initial solution (yi ) is generated by the
Lin–Kernighan heuristic followed by the Prins spli�ing procedure (see Section 5.1). �is solution
is then improved by using the Variable Neighbourhood Descent (VND) heuristic (see Section 5.3)
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that is repeated P times starting from a new solution obtained a�er a diversi�cation mechanism
(see Section 5.4) to escape from local optima.

�e best alternative solution (y∗i ) found during this step represents the input of the second stage
of the procedure. If S is emptyy∗i is added directly to S otherwise a similarity check is performed
following the similarity constraints in Eq. (5b). Ify∗i does not satisfy the similarity constraints a
penalization function is used to increase the cost of the edges thaty∗i shares with the previously
generated alternative solutions (y∗h , ∀h ∈ 1, . . . ,i − 1). Subsequently a VND heuristic replaces
costly edges with edges that have a lower cost, guiding the algorithm towards an alternative
solution that satis�es the similarity constraints. When the best alternative solution y∗i is added
to S , the cost matrix of the underlying VRP is updated, by penalizing all edges that have been
used in y∗i . �e procedure is repeated until k alternative solutions are added in S .

Algorithm 1: IPM kd metaheuristic
Read instance and initialize both kd-VRP and Heuristic parameters k , Ts , I , P , α , β and ω;
Let S∗ be the best set containing k alternative solutions found so far and F (S∗) its cost;
S∗ ← ∅, F (S∗) ← ∞, l ← 0;
while (l < I ) do

Let S be the current candidate set containing k alternative solutions and F (S ) its cost;
S ← ∅, F (S ) ← ∞;
while ( |S | < k ) do

i ← |S |, p ← 0;
Let y∗i be the best i-th alternative solution found so far and f (y∗i ) its cost;
Let yi be the current i-th alternative solution and f (yi ) its cost;
y∗i ← ∅, yi ← ∅, f (y∗i ) ← ∞, f (yi ) ← ∞;
while (p < P ) do

if (p == 0) then
yi ← Splittinд(Lin–Kerniдhan());

else
yi ← Perturbation(y∗i ,α ,ω);

yi ← VND (yi );
if ( f (yi ) < f (y∗i )) then

y∗i ← yi ;
p + +;

if (i > 0) then
while (δ (y∗i ,y

∗
h ) > Ts ∀h ∈ 1, . . . ,i − 1) do

PenalizationFunction(y∗i ,β );
y∗i ← VND (y∗i );

add y∗i to S ;
PenalizationFunction(y∗i ,β );

if (F (S ) < F (S∗)) then
S∗ ← S ;

l + +;
Return S∗

�e internal parameters used by the IPM kd algorithm (referred to as heuristic parameters) as
well the kd-VRP key controls (referred to as kd-VRP parameters) are summarized in Table 1.

Four basic heuristic components, described in the following sections, are applied in the solu-
tion approach: (1) �e Lin–Kernighan heuristic followed by the Prins spli�ing procedure; (2) a
Penalization function; (3) aVariable Neighbourhood Descent (VND) heuristic; (4) a Perturbation.
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Table 1: Heuristic and kd-VRP parameters
Parameter Description

kd-VRP parameters

k Number of alternative solutions to be generated
Ts Maximum similarity threshold

Heuristic parameters

I Number of restarts of the algorithm
P Number of times the Perturbation heuristic is applied
α Number of closer neighbour vertices to be considered in the Perturbation heuristic
β Penalty factor used in the Penalization function
ω Maximum percentage number of routes to be destroyed

5.1. Lin-Kernighan heuristic plus Prins spli�ing procedure

To �nd an initial alternative solution yi the algorithm implements the
Lin-Kernighan heuristic, followed by the Prins spli�ing procedure, both using the current cost
matrix.

�e Lin-Kernighan heuristic described in Lin and Kernighan (1973) is a deterministic approach
generally considered to be one of the most e�ective methods to generate optimal or near-
optimal solutions for the symmetric travelling salesperson problem (TSP). �e Lin-Kernighan
heuristic employed in this paper uses the modi�ed version as implemented in Helsgaun (2000).

To transform this TSP solution into a VRP solution the Prins spli�ing procedure is used. �is
algorithm generates a feasible VRP solution by spli�ing the giant TSP tour into feasible routes
for which the capacity of the vehicle is not violated. For a more detailed explanation of this
procedure we refer to Prins (2004).

5.2. Penalization function

�e Penalization function is employed to update the cost matrix of the VRP, using a multiplica-
tive penalty structure, i.e., the new cost of each edge is based on the current cost (which may
have been penalized before) multiplied by (1 + β ) where β represents a penalty factor. �e aim
of the Penalization function is twofold:

(1) Once the best alternative solutiony∗i is added to set S , the Penalization function increases the
cost of all edges used in y∗i . In doing so, the search process is forced to move to a di�erent
part of the search space. In order to speed up the search for a new feasible (with regards to
the similarity constraints) alternative solution yi+1 (with i < k), the Penalization function
also penalizes the edges that can be obtained by combining the vertices which are in each
route of y∗i by half of the penalty (i.e., the cost of these edges is multiplied by (1 + β/2)).

(2) If the alternative solution y∗i does not respect the similarity constraints, the Penalization
function penalizes the use of the edges which are in common betweeny∗i and the alternative
solutions that are already contained in S (y∗h ∀h ∈ 1, . . . ,i − 1). �is operation forces the

12



algorithm to discard the shared edges, guiding the VND heuristic (see Section 5.3) towards
a feasible solution.

It should be noted that if a relatively large value of β is chosen, edges that appear in the alter-
native solutions already contained in S are discouraged more heavily, while a smaller penalty
allows for more frequent recurrence of edges in the k alternative solutions.

5.3. Variable Neighbourhood Descent (VND) heuristic

�e VND heuristic has a dual purpose. First, it is used every time a current alternative solution
is generated in order to improve it. Second, it is applied a�er the Penalization function to guide
the algorithm towards a best alternative solution that satis�es the similarity constraints. Our
implementation of the VND heuristic uses seven di�erent local search operators:

• Intra Route Local Search Operators which a�empt to improve a single route: Internal Or-
Opt and Internal Relocate, Internal 2-Opt (shown in Figure A.1 contained in Appendix A).

• Inter Route Local Search Operators which change more than one route simultaneously:
External Exchange, External Relocate, External 2-Opt and External Cross-Exchange (shown
in Figure A.2 in Appendix A).

�e VND heuristic, shown in Algorithm 2, stops when the current solution cannot be further
improved by any of the local search operators, and thus a local optimum has been reached.
Each local search operator uses a �rst-improvement descent strategy, accepting a move that
improves the current solution as soon as it is found and restarting the VND heuristic from the
new current solution.

Finding the right order in which the local search operators are used in a deterministic VND
heuristic may be of considerable importance for the quality of the solution. We tested di�erent
con�gurations and on average, the most promising order of neighbourhoods is reported in
Table 2.

Algorithm 2: VND heuristic
Let yi be the current i-th alternative solution and f (yi ) its cost;
Let y ′ be a neighbouring solution of yi and f (y ′) its cost;
Let λ be the index used for the local search operator;
λ ← 1;
while (λ 6 7) do

y ′ ← Nλ (yi );
if ( f (y ′) < f (yi )) then

yi ← y ′;
λ ← 1;

else
λ + +;

Return yi
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Table 2: Order of the local search operators used inside the VND heuristic
Nλ Local Search Operator

N1 Internal Or-Opt
N2 Internal Relocate
N3 Internal 2-Opt
N4 External Exchange
N5 External Relocate
N6 External Cross-Exchange
N7 External 2-Opt

5.4. Perturbation

�e perturbation heuristic is used inside the IPM kd algorithm as a diversi�cation mechanism
to escape from local optima, while looking for the best i-th alternative solution. During the
perturbation heuristic a destroy-and-repair operator, similar to the one described in Talarico
et al. (2013), is used.

First, the best alternative solution found so far (y∗i ) is partially destroyed and then it is repaired
obtaining a new current solution (yi ). �e destroy-and-repair operator takes ω as a parameter,
which is the number of routes to be destroyed from y∗i , as a percentage of the total number
of routes. �e solution is then repaired with new routes that are generated by using a greedy
randomized nearest neighbourhood heuristic. In this heuristic parameterα controls the balance
between greediness and randomness. During the generation of a new route r , the next vertex
to be added in r is randomly selected from a restricted candidate list. �is list contains the
�rst α closest unvisited vertices passing all a feasibility check with respect to the capacity
constraint.

A�er the application of the destroy-and-repair operator, the newer generated solution yi is
saved as the current alternative solution and is improved by using the VND heuristic.

6. Computational experiments

�e IPM kd metaheuristic, described in Section 5, has been coded in Java language. In this
section we report the results of the experiments performed using a machine with an Intel core
i7-2760QM 2.40GHz processor with 4GB RAM. �e test instances used to run the experiments
are described in Section 6.1.

�e results of the experiments are carried out in three di�erent phases. In the �rst phase we
tune the IPM kd metaheuristic by identifying the best se�ings for the heuristic parameters (see
Section 6.2). In the second phase we examine the e�ects of the kd-VRP parameters on the
solutions (see Section 6.3). In the third phase (see Section 6.4) we analyse the performance of
the IPM kd metaheuristic by solving all the test instances.
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6.1. Test instances

Since the kd-VRP has not been studied before, no test instances are available in the litera-
ture. Real-life problem instances could be generated by using the publicly accessible informa-
tion (e.g., the geographical information system) to locate potential customers. However, since
no benchmark solutions (or satisfactory upper/lower bounds) are known, the analysis of the
IPM kd metaheuristic, based on the quality of the obtained solutions, could not be performed.
Moreover, real problems faced by cash-in-transit companies, whether available, might unlikely
be made publicly available due to security and non-disclosure reasons.

For these reasons the IPM kd metaheuristic has been extensively tested using a large set of
benchmark instances taken from the VRP library. We used 51 medium and large instances
from di�erent sources (Augerat et al., 1998; Christo�des et al., 1979; Fisher, 1994; Taillard, 1993;
Golden et al., 1998)1 ranging from 45 to 484 nodes. �e characteristics of the instances are
reported in Table 3. As mentioned, given a similarity measure between alternative solutions,
an instance of the VRP can easily be transformed into an instance of the kd-VRP by adding
only two parameters: the number of alternative solutions k and the similarity threshold Ts .

�e computational experiments performed on the VRP instances are aimed at validating our
proposed metaheuristic in a general se�ing. Further studies can be addressed at involving com-
panies in the cash-in-transit and/or in the chemical sectors in order to incorporate additional
sector speci�c insights into the kd-VRP and into the related solution approach.

6.2. Impact of the heuristic parameters

In the �rst phase of the computational experiment the heuristic parameters of the IPM kd are
tuned by running a full factorial experiment on a subset of the benchmark instances called
sample set2. �e heuristic parameters are tuned to obtain on average, the best possible solutions
(lower values of the objective functions measured by the cost of the worst solution in the set
of k alternative solutions where k has been chosen equal to 3 and TS = 0.2) over the sample
set. A summary of the heuristic parameters, as well as the tested values, the number of tested
values, and the best parameter con�guration is given in Table 4.

As shown in Figure 2, if both the number of times that the IPM kd algorithm is restarted (I )
and the number of times that the Perturbation heuristic is applied (P ) are increased, the quality
of the solutions improves, but at the expense of increasing the running time. However, there
is a point from which the marginal reduction of the objective function due to the increasing of
these parameters diminishes while the running time increases. An analysis of convergence has
been performed using the sample set showing that a�er a value of I = 50 and P = 10 the results
are stable. Moreover the running time increases with higher values of I , while for values of P
smaller than 10 the running time appears stable.

1�e instances are available at http://neo.lcc.uma.es/vrp.
2�is subset contains 10% of all the test instances. In particular one instance has been randomly selected from

each source. �e resulting sample set is made by the following instances: A-n53-k7 ; vrpnc1; F-n72-k4; tai100a
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Table 3: VRP instances. �e solutions marked with an asterisk are known to be optimal
Author Name # Nodes Best known VRP

Solution

Augerat et al

A-n53-k7 53 1010.0*
A-n65-k9 65 1177.0*
A-n80-k10 80 1763.0*
A-n69-k9 69 1159.0*
B-n56-k7 56 707.0*
B-n68-k9 68 1272.0*
B-n78-k10 78 1221.0*
B-n63-k10 63 1496.0*

Christo�des et al.

vrpnc1 51 524.6
vrpnc2 76 835.26
vrpnc3 101 826.14
vrpnc4 151 1028.42
vrpnc5 200 1291.29
vrpnc11 121 1042.11
vrpnc12 101 819.56

Fisher
F-n45-k4 45 724.0*
F-n72-k4 72 237.0*
F-n135-k7 135 1162.0*

Taillard

tai75a 76 1618.36
tai75b 76 1344.62
tai75c 76 1291.01
tai75d 76 1365.42
tai100a 101 2041.34
tai100b 101 1940.61
tai100c 101 1406.2
tai100d 101 1581.25
tai150a 151 3055.23
tai150b 151 2656.47
tai150c 151 2341.84
tai150d 151 2645.39
tai385 386 24431.44

Golden et al.

kelly1 241 5627.54
kelly2 321 8447.92
kelly3 401 11036.23
kelly4 481 13624.52
kelly5 201 6460.98
kelly6 281 8412.88
kelly7 361 10195.56
kelly8 441 11663.55
kelly9 256 583.39
kelly10 324 742.03
kelly11 400 918.45
kelly12 484 1107.19
kelly13 253 859.11
kelly14 321 1081.31
kelly15 397 1345.23
kelly16 481 1622.69
kelly17 241 707.79
kelly18 301 998.73
kelly19 361 1366.86
kelly20 421 1821.15

Table 4: Heuristic parameters
Parameter Values # Best setting

I 50 1 50
P 10 1 10
ω 20, 30, 40, . . . , 90, 100% 9 40%
α 1, 2, 3,. . . ,9, 10 10 4
β 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 1 7 0.05

�e penalty factor β presents a signi�cant impact on both the quality of the solutions and
the running times. On the one hand, smaller values of β encourage alternative solutions with

and kelly5.
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Figure 2: Impact of I and P on the average solution quality (a) and on the running time (b)

lower costs to be generated. However, given that edges which are already used may still be
selected, the similarity between the alternative solutions may be close toTs . On the other hand,
larger values of β discourage the selection of already used edges, supporting lower similarities
between the alternative solutions at the expense of generating solutions with higher cost. �e
lower the penalty, the longer the search for feasible solutions and the be�er the quality of the
solutions (see Figure 3 on the le�). Higher penalties might allow to escape from infeasible
solutions in shorter time by strongly penalizing edges already used in the current alternative
solutions. Given a �xed computational time (8 seconds) the best solutions are obtained with
β = 0.05. It should be noted that on average the quality of solutions is really similar for values
of β between 0.025 and 0.20 as shown in the right panel of Figure 3.
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Figure 3: Impact of the heuristic parameter β , while k = 3 and Ts = 0.2.

6.3. Impact of the kd-VRP parameters

In the second step of the computational experiments, by using the best con�guration of the
heuristic parameters, we test the IPM kd algorithm on the sample set (described before), using
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di�erent values of the kd-VRP parameters: (1) k (number of alternative solutions to be gen-
erated) and (2) Ts (similarity threshold). Parameters k and Ts are part of the problem input
data and on a tactical level, their related values can be changed to test a di�erent scenario by
generating a di�erent instance (less or more constrained) with a di�erent optimal solution.

�e computational time needed to generate an additional alternative solution increases with
k , and depending on the similarity threshold, the cost of the k-th alternative solution increases
as well. If TS assumes higher values, the cost of the k-th alternative solution decreases, as
well as the computational time (see Figure 4). In fact, the higher the similarity threshold, the
less constrained the problem. If TS is set equal to zero, the kd-VRP problem is reduced to �nd
k disjoint alternative solutions. If TS assumes values close to 1, the resulting k alternative
solutions will share a high number of edges and the cost of the k-th alternative solution will
tend to the cost of the best known VRP solution.
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Figure 4: Relationship between the average solution cost (a) and the average computational
time (b) for di�erent values of TS , while k = 3

A �nal remark concerns thekd-VRP problem described in Eq. (5a)–(5b) where a min-max objec-
tive function, aimed at reducing the cost of the worst alternative solution, is used. �e impact
of such an objective on the solutions is shown in Figure 5 where the quality of the best, the av-
erage and the worst alternative solution among the set of k alternative solutions is represented
for di�erent values of k . �ese results have been averaged over all the solved instances and
the percentage gaps are computed considering the best, the average and the worst alternative
solution within the set of k alternative solutions and the best known solution for the underly-
ing VRP instance. As expected, when k increases the quality of the best alternative solution in
the set of k alternative solutions remains stable, while the values of the average and the worst
alternative solutions worsen due to a higher number of alternative solutions in the set.

6.4. Results

In the third step of the computational experiments, using the best con�guration for the heuristic
parameters (see Table 4), we solve the benchmark instances described in Section 6.1. For each
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instance we execute 15 runs �xing the similarity thresholdTS = 0.20 (and thus the k alternative
solutions must be di�erent from each other by at least 80%).

�e results obtained are summarized in Table 5, where for each value of k and for each instance
we report: the percentage gap between the best kd-VRP solution (i.e., the worst alternative
solution with the highest cost within the set of k alternative solutions) obtained a�er 15 runs
and the best known VRP solution (column % BestGap); the percentage gap between the average
cost of the kd-VRP solution obtained over 15 runs and the best known VRP solution (column
% AvgGap); the average computational time in seconds (column AvgTime).

In order to evaluate the e�ectiveness of our solution approach we also reported the results
obtained for k = 1 (see Table 5). In this case the kd-VRP is reduced to a standard capacitated
vehicle routing problem for which the IPM kd appears to be a competitive solution approach.
On average the optimal gap from best known VRP solutions is only 1.79% with an average run-
ning time of 1.283 seconds. Moreover if we focus on the VRP instances for which the optimal
solutions are known (instances denoted with an asterisk in Table 5), we obtained 2 optimal
solutions (highlighted in bold) over 11 instances, with an average optimal gap of 0.58%.

As shown in Table 5, instances having a smaller number of vertices present higher gaps be-
tween the cost of the k-th alternative solution (with k > 1) and the best known VRP solution
than bigger instances. In fact, when the number of vertices increases, the number of potential
edges (E = V ×V ) increase even more. Hence the possibility to select non-shared edges, with
a relative low cost, is much higher for larger instances.

As expected, the average computational time grows with k (see Figure 6 on the right). �e
average running times needed to solve an instance in the benchmark set, when k = 5 and
Ts = 0.20, is below 16 seconds. �e relationship between the quality of solutions and k is
shown in Figure 6 on the le�.

Considering all the 51 benchmark instances, the average percentage gap from the best known
VRP solutions is only 22.8% when 5 alternative solutions (that di�er by 80% from each other) are
generated. �e algorithm also presents a good level of robustness since the average di�erence
between the costs of the best and the average kd-VRP solutions remains limited to 3.8%.

Finally, given the best se�ing for the IPM kd metaheuristic, the e�ect of the di�erent compo-
nents of the algorithm on the solutions is investigated. We observed that on average the VND
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Figure 6: Best (% BestGap) and average (% AvgGap) percentage gaps (a) from the best known
VRP solutions and average computing time (b) for di�erent values of k

heuristic is able to improve the quality of the current alternative solutions by 26% while the per-
turbation heuristic is shown to be an e�ecting way to escape from local optima by improving
the quality of the initial alternative solutions by on average 3%.
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7. Conclusions

In this paper we have presented a new combinatorial optimization problem, including a math-
ematical formulation the aim of which is to generate a set of k alternative solutions of a single
vehicle routing problem instance, in such a way that each alternative solution di�ers from all
the others by at least a given threshold. A distance metric between alternative solutions has
also been de�ned. A min-max objective function minimizes the cost of the worst solution in
this set.

�e kd-VRP is applicable in several practical situations. In the cash-in-transit sector, the kd-
VRP can be used to de�ne a set of alternative routes to collect or deliver cash and valuables,
something which is o�en required by law as a preventive measure to add variability and in-
crease unpredictability for crime organizations.

Other applications can be found in the fuel distribution or in the transportation of dangerous
goods, in which all customer must be served and for speci�c reasons (e.g., accidents, unavail-
ability of some route edges, security reasons), several alternative routes need to be generated.

To solve this problem, we have developed an iterative method (IPM kd) based on a similar
method for the k dissimilar shortest paths problem. �e IPM kd metaheuristic has been tested
using 51 VRP benchmark instances varying the number of alternative solutions that need to
be generated. �e results obtained are encouraging. In a limited computational time we have
generatedk alternative solutions also for large and medium VRP instances, beingk ∈ {1, . . . ,5}.
In particular, for k = 5 and a maximum similarity threshold Ts = 0.20, the VRP alternative
presenting the highest cost is, on average, only 22.7% worse than the best known solutions of
the original VRP problems.

In the future, we plan to investigate extensions of the kd-VRP, e.g., by including more so-
phisticated similarity indices (that include spatial and temporal information) and/or additional
real-life constraints such as time windows, route length restrictions, and precedence relations
between vertices. In addition, more robust metaheuristics which use complex inter-solution
local search operators can be developed and compared with the iterative algorithm that is pre-
sented in this paper. �e development of exact methods based e.g., on a column generation
approach and the de�nition of optimal solutions and bounds for the kd-VRP problem, both
present promising research avenues.
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A. Local search operators used inside the VND heuristic

Here we report some illustrative examples of the intra route (Figure A.1) and inter route (Fig-
ure A.2) local search operators that are used inside the VND heuristic. Each �gure shows a VRP
solution before (le� side) and a�er (right side) the application of the corresponding local search
operator. �e depot is represented by a black square while black circles denote the customers.
�e length of the edges is proportional to their cost.
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valeurs. Moniteur Belge, 7 April 2003.
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