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Dynamic inventory rationing is considered for systems with multiple de-
mand classes, stationary stochastic demands, and backordering. In the lit-
erature, dynamic programming has been often applied to address this type
of problems. However, due to the curse of dimensionality, computation is
a critical challenge for dynamic programming. In this paper, an innova-
tive two-step approach is proposed based on an idea similar to the certainty
equivalence principle. First the deterministic inventory rationing problem
is studied, where the future demands are set to be the expectation of the
stochastic demand processes. The important properties obtained from solv-
ing the problem with the KKT conditions are then used to develop e�ective
dynamic rationing policies for stochastic demands, which gives closed-form
expressions for dynamic rationing thresholds. These expressions are easy to
calculate and are applicable to any number of demand classes. Numerical
results show that the expressions are close to and provide a lower bound for
the optimal dynamic thresholds. They also shed light on important manage-
rial insights, for example, the relation between di�erent parameters and the
rationing thresholds.
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1. Introduction

Customers of a product or service often have di�erent penalty costs of shortage or service
level requirements. To reduce cost or improve service, many �rms classify customers into
several classes with di�erent shortage costs and provide a di�erent service level to each
class based on certain inventory rationing policy. Examples of inventory rationing can
often be found in practice. For instance, Dekker et al. (1998) considered a spare part
used by di�erent machines in a large petrochemical plant and the breakdown of these
machines will bring di�erent losses to the �rm. Hence, when the inventory of the spare
part is low, the system may reject demands from less important machines with lower
loss of breakdown to reserve stock for potential future demands from more important
machines. Another example is presented in Deshpande et al. (2003), which considered a
consumable part used by US Navy and Army. As this part has di�erent importance to
Navy and Army, the demands are assigned with di�erent service level requirements.
Due to the importance of inventory rationing, the problem has been well addressed

since 1960's. Topkis (1968) showed that the optimal inventory rationing policy is a
dynamic threshold policy for discrete-time periodic review systems with zero lead time.
Under such a policy, for any time in the planning horizon, there is a threshold of on-
hand inventory for each demand class such that the demand of a certain class is satis�ed
immediately if and only if the on-hand inventory is above the threshold of this class.
With some additional conditions, the thresholds are shown to be nondecreasing with
respect to the remaining time in the planning horizon. Evans (1968) and Kaplan (1969)
obtained similar result for two demand classes.
Since then, progress has been made in di�erent perspectives. For example, Nahmias

and Demmy (1981), Cohen et al. (1988), Dekker et al. (1998), Moon and Kang (1998)
analyzed service levels under a static rationing policy and a given ordering policy. Mel-
chiors et al. (2000) introduced an approach to evaluate the cost associated with a static
threshold policy for an (R,Q) inventory model with two demand classes in a lost sales
environment. Deshpande et al. (2003) investigated an (R,Q) system with two demand
classes and backorders, and developed an approach to optimize the static thresholds and
the parameters of ordering policy. Arslan et al. (2007) studied a similar problem and al-
lowed any number of demand classes in the proposed model. Mollering and Thonemann
(2008) considered a periodic review model with two demand classes and found the opti-
mal static thresholds under the optimal backordering clearing mechanism. Fad�lo§lu and
Bulut (2010b) proposed a method using embedded Markov chain to analyze an (S−1, S)
inventory system with two demand classes, Poisson demand, and backordering.
The above-mentioned papers focus on static threshold policies, where the thresholds

are assumed to be invariant over time. Dynamic inventory rationing models have been
investigated more recently. Assuming an (R,Q) inventory policy, Melchiors (2003) in-
troduced a dynamic threshold policy for a lost sales model with Poisson demand and
multiple demand classes, where di�erent threshold levels are allowed for di�erent time
slots. Fad�lo§lu and Bulut (2010a) studied a dynamic rationing policy using the informa-
tion of outstanding orders for an (R,Q) inventory system with two demand classes and
Poisson demand, complemented with simulation to investigate the bene�t of the dynamic
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rationing policy for both lost sales and backordering models.
For a system with two demand classes, Poisson demands, and backordering, Teunter

and Haneveld (2008) considered dynamic inventory rationing policy over a single period
and developed a set of formulas to determine the optimal dynamic thresholds, which
are in general not applicable to more than two demand classes. Chew et al. (2011)
generalized the problem to multiple demand classes. They developed a one-dimensional
dynamic programming model to eliminate the curse of dimensionality and embedded it
to the multiple period systems with positive lead time. Bounds on the optimal costs
are established and the costs of the proposed dynamic policies are veri�ed to be close to
those of the optimal policies. Hung et al. (2012) extended the results to general demand
processes and proposed a method to sequentially obtain the dynamic thresholds and the
parameters of the ordering policies.
Besides inventory systems, the issue of rationing also occurs in production. Ha (1997a,b,

2000), de Véricourt et al. (2002), and Gayon et al. (2009) proved the optimality of static
threshold policies in a variety of make-to-stock production systems. By allowing multiple
production channels, Bulut and Fadilo§lu (2011) showed that the rationing thresholds
and the production base stock levels are state-dependent. For a make-to-stock system
with advance demand information and two demand classes, Iravani et al. (2007) estab-
lished that the optimal production and rationing policies are threshold-type policies.
More recently, Piplani and Liu (2014) extended the concept of rationing to a make-to-
order production system.
The studies in inventory rationing are mainly based on dynamic programming. There-

fore, the thresholds obtained from these models convey very few insights about the quan-
titative relations with respect to the input parameters such as the demand rates, the
penalty costs and the remaining time. It is also di�cult to evaluate the e�ect on the
cost when a parameter can not be estimated accurately. Moreover, the dynamic pro-
gramming approach usually encounters computational di�culties because of the curse of
dimensionality.
Aimed to �ll the existing gaps by developing closed-form expressions for the dynamic

thresholds, this paper proposes an innovative approach to dynamic inventory rationing
based on an idea similar to the certainty equivalence principle (CEP) developed by Simon
(1956) and Theil (1957) for linear systems with quadratic cost. The certainty equivalence
principle shows that for certain systems with stochastic variables for the future process,
e.g., linear systems with quadratic costs, the optimal decision at any given time is equal
to the optimal decision of a deterministic system whose input parameters are set to the
expectation of the random variables in the stochastic counterpart.
For a system where this property does not hold, intuitively, such an approach may still

obtain e�ective solutions. In particular, the idea of CEP has been applied to inventory
models and achieved closed-to-optimal solutions. For an (R,Q) inventory system, Zheng
(1992) showed that the cost incurred by using the economic order quantity (EOQ) so-
lution is at most 1.125 times of the optimal cost, while numerical experiments indicate
that the performance of the EOQ solution is signi�cantly better than the worst-case
bound. Furthermore, if the expected values are the only available information about the
stochastic inputs at the time of decision making, there are few choices except for building
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a deterministic model using the expectations.
Based on this idea, we develop a method to address the dynamic inventory rationing

problem. First, at any decision time, constant demand rates are used to replace stationary
stochastic demand processes and a deterministic model is considered for inventory ra-
tioning. In this way, the original decision problems with stochastic demands are changed
into a sequence of decision problems with deterministic demands, one at every customer
arrival. Each deterministic decision problem is then solved using the KKT conditions.
From the solution to the deterministic decision problem, we obtain the dynamic inven-
tory rationing thresholds for the stochastic model, which are characterized by closed-form
expressions.
The main contribution of this paper is to propose a new method for dynamic inventory

rationing problems with stochastic demands. This method yields near-optimal closed-
form expressions for the dynamic thresholds from which important managerial insights
are obtained. It is applicable to a wide range of demand processes without restric-
tions on the number of demand classes, whereas most existing models, especially those
with backordering, consider only two demand classes due to the complexity of dynamic
inventory rationing problems. It can also be implemented in both discrete-time and
continuous-time inventory systems. These properties distinguish our work from those
based on dynamic programming, e.g., the seminal work of Topkis (1968), which consider
discrete-time systems, require complete demand distributions, assume independent de-
mands across time periods, su�er from the curse of dimensionality, and lack managerial
insights. In addition, the closed-form expressions are optimal for deterministic demands.
The remainder of this paper is organized as follows. �2 describes the dynamic inventory

rationing problem. In �3, we formulate and solve the deterministic rationing problem as-
suming future demand is known. �4 employs the insights from the deterministic decision
problem to develop closed-form expressions for dynamic thresholds. We present a nu-
merical study in �5 to investigate the accuracy of these expressions. �6 summarizes the
results and concludes the paper. Proofs of theorems are given in the appendix.

2. The problem

Similar to Topkis (1968) and Teunter and Haneveld (2008), we consider a single-period
inventory system, which contains K(≥ 2) customer classes di�ering in penalty cost of
shortage. Let TP be the length of the period. The time points in the period are labeled
backward, i.e., the beginning of the interval is labeled as time TP whereas the end of the
interval is labeled as time 0. The amount of on-hand inventory is monitored constantly.
The demands of any class i, i ∈ {1, ...,K} follow a stationary stochastic process with

an expected rate di, i.e., the expected amount of demand for any time interval of unit
length is di. When a demand from class i occurs, the system needs to decide whether
to satisfy the demand immediately. If it is not immediately ful�lled, the demand is
backordered and a penalty cost πi, i ∈ {1, ...,K} per unit per unit time is incurred. The
on-hand inventory also bears a holding cost h per unit per unit time. At the end of
the period, i.e., time 0, the system reorders the inventory with zero lead time and the
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outstanding backorders are ful�lled. Note that the zero lead time assumption does not
limit the applicability of this model. As Teunter and Haneveld (2008) pointed out, there
are indeed some cases of zero lead time in practice. Following an approach similar to the
one outlined in Chew et al. (2011), the assumption can be relaxed as well.
Without loss of generality, assume that πi > πj for i < j. As the penalty costs of

di�erent classes are di�erent, it is natural to backlog some demands from lower priority
classes with lower penalty costs to reserve stock for future demands from higher priority
classes. One type of rationing policies is to set a threshold for each class at any time.
The demands of this class will be satis�ed at that particular time if and only if the on-
hand inventory is above the corresponding threshold. Otherwise, the demands will be
backordered. This threshold-type policy has already been proved to be optimal under
various conditions, e.g., Topkis (1968). In this paper, we target to �nd well-performing
thresholds with closed-form expressions.

3. Inventory rationing assuming deterministic demands

This section considers a deterministic rationing problem assuming future demands for
any class i, i ∈ {1, ...,K}, are constant with rate di, i.e., the stochastic future demands
are replaced with deterministic processes with the same expected values. Given the on-
hand inventory at any time point, the optimal decision rule at that time is characterized
by closed-form expressions.

3.1. Model formulation

Consider an arbitrary time T ∈ [0, TP ], i.e., the remaining time from this time point to
the end of the period is T . Let s denote the amount of on-hand inventory at time T .
First, we show the optimal rationing policy has the following structural property:

Proposition 1. Given the on-hand inventory s at time T , for any demand class i,
i ∈ {1, ...,K}, there exists some ti ∈ [0, T ] such that it is optimal to satisfy the demands

of class i at any time t ≥ ti and to backorder the demands at any time t < ti. Moreover,

ti ≤ tj for any i < j and the on-hand inventory at time t1 must be zero if t1 > 0.

Proof. See the appendix.

Proposition 1 shows that the time interval to backorder the demands from class i
is [0, ti), which implies that ti is the threshold in time for deciding whether to satisfy
demands of class i. We refer to such a rationing policy as the Time Threshold Policy
(TTP). Note that the threshold levels are applied to on-hand inventory in the threshold
policies in the literature. Without special noti�cation, threshold policy in this paper
refers to on-hand inventory threshold policy. For models with deterministic demands, we
can obtain an equivalent static threshold policy from a given TTP, i.e., given the time
thresholds ti and the initial stock s, the TTP is equivalent to an inventory threshold policy
with constant on-hand inventory rationing thresholds. For stochastic demand models,
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obviously, the TTP is di�erent from the classical threshold policy whose optimality has
been proved in Topkis (1968).
In the remainder of this paper, we refer to ti as the backordering time for demand class

i. Note that ti also determines the �ll rate of class i given the inventory s at time T , i.e.,
FRi(s) = 1 − ti/T , which is an important measure of the service level provided by the
inventory system.
Proposition 1 also implies that the demand classes with higher shortage costs will be

backordered at a later time. In particular, the demands of the most important class, i.e.,
class 1, are backordered only when the system runs out of inventory.
Also note that it is straightforward to generalize the results in Proposition 1 to systems

with deterministic and non-stationary demand rates.
Figure 1 demonstrates the inventory variation and the backordering times ti, i = 1, 2

for a system with two demand classes. The system has initial stock s at time T . For each
demand class i, the demands are satis�ed i� the remaining time is greater than ti. The
system �rst satis�es demands of both classes and the inventory decreases from point A
to B at a rate of d1 + d2. From point B to point C, the demands of class 1 are satis�ed
whereas the demands of class 2 are backordered, and hence the inventory decreases at a
rate d1 until it reaches point C where the inventory is zero. All backordered demands
are ful�lled at the end of the period using the replenished stock.

E

D

t

A

OC

B
c2

s

t2

  T

t1

end of

period

Figure 1: Inventory as a function of time under a time threshold policy

Let Cp and Ch be the penalty and holding costs incurred from time T to 0, respectively.
For the case with two demand classes, the de�nition of ti implies that

Cp =
1

2

2∑
i=1

πidit
2
i .

In Figure 1, the inventory held in the interval of length T is represented by the area of
region ECBAE, which is equal to the area of region EODAE minus the area of region
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CODABC. Hence, Ch is obtained as

Ch = h

[
sT − (d1 + d2)(T − t2)2

2
− (d1 + d2)(T − t2)t2 −

d1(t2 − t1)2

2
− d1(t2 − t1)t1

]
= h

(
sT −

2∑
i=1

diT
2

2
+

2∑
i=1

dit
2
i

2

)
.

By induction, for the cases with K demand classes, it follows that

Cp =
1

2

K∑
i=1

πidit
2
i and Ch = h

(
sT −

K∑
i=1

diT
2

2
+

K∑
i=1

dit
2
i

2

)
.

Therefore, given initial stock s, the optimal backordering times ti is found by solving

(A) min
ti

TC(s) = hsT −
K∑
i=1

hdiT
2

2
+

K∑
i=1

(πi + h)dit
2
i

2
(1)

s.t. ti ≥ 0, ∀i ∈ {1, . . . ,K} (2)

T ≥ ti, ∀i ∈ {1, . . . ,K} (3)

ti ≥ tj , if i > j, ∀i, j ∈ {1, . . . ,K} (4)

s−
K∑
i=1

diT +
K∑
i=1

diti ≥ 0. (5)

Here constraint (4) follows from Proposition 1 and constraint (5) ensures that the re-
maining on-hand stock at the end of the period is nonnegative.

3.2. Optimal rationing policy

The optimization problem (1) to (5) is a convex programming model with linear con-
straints. Hence, the KKT conditions, which are necessary and su�cient for a solution to
be optimal, can be used to derive the closed-form optimal solution to problem (A).
Let αi, βi, γij , δ be the Lagrangian multipliers for the constraints (2), (3), (4), and

(5), respectively. The Lagrangian function is

L(ti, αi, βi, γij , δ) = hsT −
K∑
i=1

hdiT
2

2
+

K∑
i=1

(πi + h)dit
2
i

2
−

K∑
i=1

αiti −
K∑
i=1

βi(T − ti)

−
∑
i>j

γij(ti − tj)− δ

(
s−

K∑
i=1

diT +
K∑
i=1

diti

)
(6)
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and the KKT conditions are

(πi + h)diti − αi + βi −
∑
i>j

γij +
∑
i<j

γij − δdi = 0 ∀i (7)

αiti = 0 ∀i (8)

βi(T − ti) = 0 ∀i (9)

γij(ti − tj) = 0 ∀i > j (10)

δ

(
s−

K∑
i=1

diT +

K∑
i=1

diti

)
= 0 (11)

αi, βi, γij , δ ≥ 0 (12)

ti ≥ 0 (13)

T ≥ ti (14)

ti ≥ tj ∀i > j (15)

s−
K∑
i=1

diT +

K∑
i=1

diti ≥ 0. (16)

Equation (7) re�ects that the gradient of the Lagrangian equals 0. Equations (8)-(11) are
the complimentary slackness conditions, (12) is the dual feasible condition, and (13)-(16)
are the primal feasible conditions.
Before presenting the optimal solutions, we introduce some additional notations to be

used in the closed-form expressions of the optimal solutions. Let

ρij =
πi + h

πj + h
, ∀i, j ∈ {1, ...,K}. (17)

ρij re�ects the relative importance between classes i and j. When ρij < 1, it means class
i is less important than class j. Obviously, ρii = 1 and ρij < 1 if i > j. We also de�ne

Sn =


∑K

i=1 diT, n = K∑n
j=1(1− ρ(n+1)j)djT, n ∈ {1, ...,K − 1}

0, n = 0.

(18)

The de�nition implies that Sn > Sn−1 for any n.
The points Sn divide the region [0,∞) into K + 1 intervals. Based on the interval

into which the inventory at time T falls, the closed-form optimal solution to (A) can be
obtained by applying the KKT conditions. Combining with Proposition 1, we obtain the
following theorem that summarizes the optimal inventory rationing policy:

Theorem 2. Let s be the amount of on-hand inventory at time T . Assume that the

demands of each class i, i ∈ {1, . . . ,K} are deterministic with a constant rate di. Then

a time threshold policy is optimal where the backordering time ti for any class i is de�ned
as

ti = 0, ∀i ∈ {1, . . . ,K},
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if s ≥ SK and

ti =


T, n < i ≤ K∑n

j=1 djT − s∑n
j=1 ρnjdj

, i = n

ρnitn, 1 ≤ i < n,

(19)

if Sn−1 ≤ s < Sn, n ∈ {1, . . . ,K}.

Proof. See the appendix.

When s ≥ SK , the result in Theorem 2 is intuitive. If the initial inventory is su�cient
to satisfy the demands of all classes, then there is no backorder for any customer class
and hence ti = 0.
If the initial stock s is in [SK−1, SK), Theorem 2 shows that the demands of any class

will not be fully satis�ed. The ratio between backordering times ti and tK is equal to
ρKi. ti increases as s decreases from SK . When s reaches SK−1, we have tK = T , i.e.,
the system should backlog demand of class K since time T .
If s ∈ [Sn−1, Sn), n ∈ {1, . . . ,K − 1}, the stock is used to satisfy demand of class i,

1 ≤ i ≤ n, and all demands of class i, n < i ≤ K, are backlogged from the very beginning,
i.e., time T . This is essentially equivalent to a reduced rationing problem with n demand
classes only. The only di�erence is that in the optimal solution, the K-class problem
backlogs all demands from any class i, i > n, which do not exist in the n-class problem.
In (19), ti > 0 for any class i, which implies that a greedy policy is not optimal. Here

the greedy policy is a policy that backlogs the demands from class i unless the demands
from more important classes, i.e., any class j where j < i, are fully satis�ed till the end
of the period. For example, if the stock at time T is no less than the total demand of
class 1 in the remaining time, i.e., s ≥ d1T , the greedy policy would reserve enough
stock for class 1, and then use the remaining stock to satisfy demand of class 2 and
so on, which yields t1 = 0 for the greedy policy. Note that the bene�t of satisfying a
demand is determined not only by the corresponding penalty cost per unit time, but also
by the length of the remaining time to the end of the period. If s < SK , satisfying all
the demands from class 1 is at the price of backordering the demands from some less
important class at an earlier time, which explains why the greedy policy is not optimal.
Also note that the penalty costs of di�erent classes and the holding costs are combined

into parameters ρij in the closed-form expressions (19) for the optimal backordering times.
Therefore, at any time T , given the initial inventory level s and the holding cost h, there
exists no one-to-one mapping between the penalty costs πi and the optimal backordering
times ti, because di�erent penalty costs may yield the same optimal backordering time
as long as the ratios ρij are preserved.
Another important remark of Theorem 2 is that for any demand class i, ti < T if and

only if the on-hand inventory is strictly greater than Si−1, i.e., the demand of class i
observed at time T will not be backordered as long as the on-hand inventory at that time
is greater than Si−1. The observation immediately yields the optimality of a threshold
policy where the threshold for class i at time T is Si−1.
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Corollary 1. The optimal policy for the inventory rationing problem with deterministic

demands is as follows: For any demand class i, i ∈ {1, ...,K}, there exists a threshold

level ci(T ) ≡ Si−1 at any time T , T ∈ [0, TP ], such that the demand from class i at
time T is satis�ed if the on-hand inventory at time T is above ci(T ), and is otherwise

backordered.

Note that the threshold level for class i is always higher than that for class j for any
i < j and any time T . In addition, the threshold for class 1 is always zero, which agrees
with the property in Proposition 1 that the on-hand inventory at the backordering time
t1 must be zero as long as t1 is before the end of the period.

3.3. Optimal cost

Substituting the optimal solution of ti in Theorem 2 into (1), at any given time T , results
in the optimal cost TC∗(s) as a function of the on-hand inventory s:

TC∗(s) =



hsT −
K∑
i=1

hdiT
2

2
, s ≥ SK

hsT −
K∑
i=1

hdiT
2

2
+

(∑n
i=1 diT − s∑n
i=1 ρnidi

)2 n∑
i=1

(πi + h)ρ2nidi
2

+

K∑
i=n+1

(πi + h)diT
2

2
, n ∈ {1, . . . ,K}, Sn−1 ≤ s < Sn.

(20)
We have the following theorem for the optimal cost function.

Theorem 3. The optimal cost function TC∗(s) given in (20) is continuous, di�eren-

tiable, and convex in s for any s ∈ [0,∞). Moreover,

dTC∗(s)

ds
|s=Si =

{
−πi+1T, i ∈ {1, . . . ,K − 1}
hT, i = K.

(21)

Proof. See the appendix.

The derivative of TC∗(s) at SK shows that an increase of stock from SK will incur
a cost hT per unit. As the initial stock of SK can already satisfy the demands of all
classes, it is intuitive that any additional stock above the level SK will be held until the
end of the period, hence incurs a holding cost hT per unit.
Moreover, the derivative of TC∗(s) at Si−1, i ∈ {2, ...,K}, also explains why Si−1

corresponds to the threshold for class i at time T . Assume δ units of demand from class
i arrive at time T and the on-hand inventory is s. The system needs to immediately decide
whether or not to satisfy the demand. If the system backlogs the demand, then a penalty
cost πiTδ incurs. If the system satis�es it, then the on-hand inventory becomes s − δ.
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Obviously, the demand should be satis�ed if and only if TC∗(s) + πiTδ ≥ TC∗(s − δ),
which is approximately

dTC∗(s)

ds
≥ −πiT. (22)

Theorem 3 shows that (22) holds i� the inventory s ≥ Si−1, i.e., we should accept the
demand from class i at time T i� the on-hand inventory is above Si−1.
Suppose that there exists an ordering opportunity at time T without any �xed ordering

cost. As we need to order for all backlogged demands at the end of the period, the
total ordering cost from time T to the end of the period equals the unit ordering cost
multiplied by max{

∑K
i=1 diT −s, 0}. In other words, the total ordering cost is a constant

independent of the ordering quantity at time T and can be ignored when calculating
the optimal ordering quantity. Therefore, given the on-hand inventory s at time T ,
the optimal ordering quantity can be obtained by solving minx≥0{TC∗(s + x)}. The
convexity of TC∗(s) yields that that the optimal ordering policy is a base stock policy
and the optimal base stock level denoted by S∗ is the global minimizer of the function
TC∗(s). Obviously, S∗ can be obtained by solving d[TC∗(s)]/ds = 0. (21) shows that
d[TC∗(s)]/ds is positive at SK and is negative at SK−1. Therefore, the optimal base
stock level S∗ lies in (SK−1, SK), i.e., it is between the threshold for class K and the
total demand.

4. Inventory rationing for stochastic demands

As shown in Topkis (1968), the optimal policy for the inventory rationing problem with
stochastic demands is a threshold policy, i.e., for any demand class i, there exists a
threshold ci(T ) at any time T , T ∈ [0, TP ], such that the demands from class i occurring
at time T is satis�ed if the on-hand inventory is greater than ci(T ) and is backordered
otherwise. In this section, we generalize the results for deterministic demands to obtain
approximate dynamic thresholds c̃i(T ) for stochastic demands.
Similar to the idea of the certainty equivalence principle, we can replace the stochastic

demand processes with deterministic ones having the same expected rate. Since the future
demands follow stationary stochastic processes with expected rates di, the problem with
stochastic demands is then reduced to one whose future demand for any demand class i is
deterministic with a constant rate di. For the deterministic model, Section 3 shows that
the optimal threshold ci(T ) for any class i at any time T is Si−1 de�ned in (18). Thus,
for any time T , T ∈ [0, TP ], approximate dynamic thresholds c̃i(T ) can be obtained from
the following closed-form expressions:

c̃1(T ) = 0 and c̃i(T ) =
i−1∑
j=1

(1− ρij)djT, i ∈ {2, ...,K}, (23)

Note that the optimal threshold of class 1 in the stochastic demand case is always 0.
This is obvious as the marginal loss from backordering a demand of class 1 is greater
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than the marginal gain from holding the stock to satisfy any future demand (c.f. Topkis,
1968).
The approximate thresholds are independent of the demand distributions. Since the

optimal thresholds should depend on the distributions, this observation indicates that
the certainty equivalence principle (CEP) may not be valid for the dynamic rationing.
However, as mentioned in Section 1, the idea of CEP has been successfully applied to
other inventory models. It is hence expected that the CEP approach capable of obtaining
e�ective solutions for the inventory rationing problem, which is fortunately validated by
the computational results in Section 5.
From the closed-form expressions, we can directly obtain the following managerial

insights:

• The dynamic threshold of class i is independent of the expected demand rate and
the penalty cost of any class j, j > i, which has a lower shortage cost than class i.
This property is reasonable in the sense that if the system adds a new demand class
with a lower penalty cost, the thresholds for existing classes with higher penalty
cost will not change.

• The threshold of class i is also independent of the expected demand rate of class i,
but it depends on its penalty cost of shortage πi.

• The threshold of class i is less than
∑i−1

j=1 djT , i.e., the total expected demands of
the more important classes in the remaining time interval, which implies that the
system may allow some stockout for the more important classes to reduce costs.

• The threshold of class i increases linearly with the remaining time.

• The penalty costs πi and the holding cost h determine the thresholds solely through
the parameters ρij . Even if these cost coe�cients are changed, the threshold of each
class, and hence the corresponding service level, remain the same as long as the
parameters ρij are unchanged.

• The closed-form expressions allow us to easily estimate how sensitive the approx-
imate thresholds are to the disturbances in input parameters, e.g., the expected
demand rates, the shortage costs, and the holding cost.

Furthermore, suppose that we could order at time T without paying �xed cost. By
replacing the stochastic demand process with the deterministic process with the same
expected rate, an approximate base stock level S∗ can be obtained following the approach
presented in the last paragraph of Section 3. The initial inventory at time T could be
adjusted to S∗ if s ≤ S∗, and no order is placed if s > S∗. The computational results in
Section 5 demonstrate that the cost is very close-to-optimal if we adopt the approximate
base stock policy for ordering and the approximate threshold policy for rationing.
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5. Numerical study

In this section we investigate the accuracy of the closed-form expressions in (23), by
comparing it with the optimal dynamic rationing policy in Topkis (1968).
In the numerical study, the demand of class i is assumed to follow a Poisson process

with rate di. We consider the initial stock s in the region [0, 3dTP ], where d =
∑K

i=1 di.
dTP is hence the expected demands from all classes in the period. Let TC∗(TP , s) and
TCa(TP , s) be the expected costs over the period under the optimal and approximate
policies, respectively. The optimal rationing thresholds and optimal costs are calculated
using the multi-dimensional dynamic programming model introduced in Topkis (1968).
The approximate thresholds are obtained from the closed-form expressions (23), and the
corresponding costs can be evaluated recursively based on the demand distributions.
De�ne the cost di�erence function and the maximal cost di�erence as

CD(s) =
TCa(TP , s)− TC∗(TP , s)

TC∗(TP , s)
· 100%

CDmax = max
s
CD(s).

The maximal cost di�erence CDmax is used to measure the performance of the closed-
form expressions. Another relevant measure of the accuracy is the di�erence between
ci(TP ) and c̃i(TP ), where ci(T ), T ∈ [0, TP ], denotes the optimal threshold for class i at
time T .
We start with a base case with 3 demand classes and additional 27 cases are generated

by varying certain inputs of the base case. The parameters in the base case are as follows:
d1 = d2 = d3 = 300, π1 = 27, π2 = 9, π3 = 3, h = 1, and TP = 0.08. Note that the time
unit is a year and the length of the period is about one month. The results are shown in
Figures 2, 3, and 4.
Figure 2 displays how the optimal and approximate thresholds change with the remain-

ing time for demand classes 2 and 3. Note that the thresholds for class 1 are always 0 for
both policies and hence are omitted in the �gure. As can be observed, the approximate
thresholds of classes 2 and 3 provide close lower bounds to the optimal counterparts.
In the deterministic model, it is optimal to ful�ll all backlogged demands at the end of
the period. Therefore, the derivation of the closed-form expressions implicitly assumes
that all backlogged demands can only be ful�lled at the end of the period. However,
the optimal policy for the stochastic model allows ful�lling backorders in the middle of
the period. Hence, the demands could be backordered more aggressively as the backlogs
could be ful�lled whenever extra stocks are available. As a result, under the optimal
policy, the system could set higher reserve stocks, i.e., higher thresholds for classes 2 and
3 than the closed-form approximations.
Figure 3 shows the costs under the optimal and approximate threshold policies. The

costs of both policies nearly coincide. Moreover, both curves are convex, which is consis-
tent with what was proved in Topkis (1968), i.e., the optimal cost is convex in the initial
stock.
Figure 4 exhibits the relative cost di�erence CD(s) as a function of the ratio s/(dTP ),

i.e., the ratio of the initial stock to the total expected demand of the period. CD(s) is
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Figure 2: Comparison between the optimal and approximate thresholds (base case)

bounded by 0.78%, which indicates that the cost of the approximate threshold policy is
near optimal. In particular, the di�erence is above 0.5% only when the ratio s/(dTP ) is in
the range [0.49, 0.89], whereas the di�erence vanishes fast when s/(dTP ) drifts away from
the range. Note that we can satisfy almost all the demands when the initial inventory
level s is high, and most demands are backordered for very small s. Therefore, in these
two cases, the total cost is insensitive to small variations in rationing thresholds. It can
also be observed that CD(s) increases drastically when the ratio s/(dTP ) is near 0.2 or
0.5. The optimal thresholds of classes 2 and 3 at the beginning of the period are 0.22dTP
and 0.5dTP , respectively. Consider the case when the ratio s/(dTP ) approaches 0.22
from below. As the initial stock is slightly lower than the optimal threshold for class 2,
the demands of class 2 should be backordered at the beginning of the period. On the
other hand, the approximate thresholds are lower than the optimal ones, and hence the
approximate threshold of class 2 could be higher than the initial stock. Therefore, the
approximate policy should satisfy the demands of class 2 at the beginning of the period.
Because the optimal and approximate thresholds suggest opposite decisions regarding
the demands of class 2, we expect the di�erence in the costs to be non-negligible, which
explains the increase in CD(s) when s/(dTP ) is close to 0.2. Similarly, we can also show
why there is a jump in CD(s) when s/(dTP ) is near 0.5. For other computational cases,
we also observe such a jump in the relative cost di�erence when the initial inventory level
is close to the optimal threshold of certain class.
In addition, Figures 3 and 4 provide information on how to select the initial inventory

level. As shown in the last paragraph in Section 4, if there exists an ordering opportunity
without �xed cost at time T , we can obtain a base stock policy with the base stock S∗ by
replacing the stochastic demand with its expected rate. For the base case, the approxi-
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mate base stock level at time TP obtained by this approach is S∗ = 64. Figure 2 displays
the ratio S∗/(dTP ) = 0.889, which, according to the last paragraph of Section 3, is
between SK−1/(dTP ) and SK/(dTP ). Interestingly, based on the dynamic programming
model in Topkis (1968), the optimal ordering policy at time TP is a base stock policy with
the base stock level S′ = 64, which is exactly the same as the approximate base stock
level S∗. In fact, for most of our computational cases, the approximate base stock level
is the same as the optimal counterpart, and it is slightly lower than the total expected
demand in the period. Furthermore, given the initial inventory level S∗ = 64, Figure 4
indicates that the relative cost di�erence is 0.52%. Therefore, the idea borrowed from the
certainty equivalence principle yields close-to-optimal ordering and rationing policies.
Based on the base case shown in Figure 2, we generate 27 additional cases by keeping

h �xed while varying other parameters such as the expected demand rates, the shortage
costs, and the length of period. The results are summarized in Table 1. The second to the
eighth columns present the values of the expected demand rates di, the shortage costs πi,
and the length of the period TP . The third last column displays the maximum di�erence
in the expected total cost CDmax between the optimal and approximate policies, while
the last two columns compare the thresholds at the beginning of the period returned by
these two policies for demand classes 2 and 3, respectively. Recall that the thresholds
for class 1 are zeros for both policies and hence they are not reported in the table. Also
note that the base case corresponds to case 1 in the table.
As shown in Table 1, the maximal cost di�erences CDmax is reasonably small in most

cases. In particular, the values of CDmax are less than 1% in 18 cases and are all within
3% except for cases 6 and 7, the approximate thresholds of which are still not signi�cantly
di�erent from the optimal ones. It can also be noted that in most cases, the approximate
thresholds are slightly lower than the optimal ones, which agrees with what observed in
Figure 2.
Cases 2-11 show that the performance of the closed-form expressions is signi�cantly

a�ected by the ratio between two adjacent penalty costs, i.e., πi/πi+1. When the ratio
increases, the gap between the approximate and optimal thresholds enlarges, and so does
the cost di�erence. As mentioned previously, the closed-form expressions are derived
based on the assumption that all backordered demands are ful�lled at the end of the pe-
riod, while the optimal threshold policy for stochastic demands may ful�ll the backorders
during the period. The di�erence in backorder ful�lling mechanisms partially explains
why the di�erence in the threshold levels increases in πi/πi+1. For both the optimal
and approximate policies, the increase in the ratio πi/πi+1 enlarges the gaps among the
thresholds for di�erent demands classes. As the threshold for class 1 is always zero, it
implies that the threshold levels for all other demand classes increase in the ratio πi/πi+1.
Hence, it is more likely to ful�ll backorders in the middle of the period, which further
increases the threshold di�erence between the optimal and threshold policies.
Cases 12-25 illustrate the e�ect of demand rates on the performance of the closed-

form expressions. For a stochastic model, the smaller the coe�cient of variation of the
stochastic demand, i.e., the ratio of the standard deviation to the expectation, the closer
to a deterministic demand the stochastic process is, and hence the more accurate the
closed-form expressions will be. In the Poisson case, the coe�cient of variation of the total
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Table 1: Comparison between the optimal and approximate policies
Case d1 d2 d3 π1 π2 π3 TP CDmax(%) c2(TP ), c̃2(TP ) c3(TP ), c̃3(TP )

1 300 300 300 27 9 3 0.08 0.78 16,15.4 36,35.0
2 � � � 10 � � � 0.07 2,2.2 30,29.7
3 � � � 18 � � � 0.30 11,11.4 34,33.3
4 � � � 36 � � � 1.45 18,17.5 38,35.8
5 � � � 45 � � � 2.26 20,18.8 39,36.3
6 � � � 63 � � � 4.24 22,20.3 40,36.9
7 � � � 90 � � � 7.70 24, 21.4 41,37.4
8 300 300 300 27 9 2 � 1.17 16,15.4 40,38.2
9 � � � � � 4 � 0.60 16,15.4 33,31.7
10 � � � � � 6 � 0.45 16,15.4 26,25.2
11 � � � � � 8 � 0.40 16,15.4 19,18.7
12 100 300 300 27 9 3 � 1.50 6,5.1 22,21.3
13 200 � � � � � � 1.04 11,10.3 29,28.1
14 400 � � � � � � 0.61 21,20.6 43,41.8
15 500 � � � � � � 0.49 26,25.7 50,48.7
16 300 300 100 27 9 3 � 0.63 16,15.4 36,35.0
17 � � 200 � � � � 0.72 16,15.4 36,35.0
18 � � 400 � � � � 0.80 16,15.4 36,35.0
19 � � 500 � � � � 0.81 16,15.4 36,35.0
20 � � 700 � � � � 0.79 16,15.4 36,35.0
21 � � 900 � � � � 0.76 16,15.4 36,35.0
22 100 100 100 27 9 3 � 3.00 6,5.14 13,11.7
23 200 200 200 � � � � 1.34 11,10.3 25,23.3
24 400 400 400 � � � � 0.51 21,20.6 48,46.6
25 500 500 500 � � � � 0.36 26,25.7 60,58.3
26 300 300 300 27 9 3 0.04 1.91 8,7.7 19,17.5
27 � � � � � � 0.12 0.43 24,23.1 54,52.5
28 � � � � � � 0.14 0.34 28,27.0 63,61.2

demand over the period is 1/
√
dTP . For cases 12-15, the cost di�erence indeed decreases

with the the demand rate of class 1, i.e., the closed-form expressions are more accurate.
Similarly, when the demand rates of all the classes increase, cases 22-25 demonstrate
that the gap between the approximate and optimal thresholds decreases in general and
the maximal cost di�erence decreases signi�cantly. However, cases 16-21 indicate that
the cost di�erence CDmax does not monotonically decrease in the demand rate of class
3. Compared with cases 12-15 and 22-26, the di�erence in CDmax is rather small for
various demand rates of class 3. Note that both the approximate and optimal thresholds
remain unchanged for cases 16-21, which agree with the observation in Section 4 that
the demand rate of the class with the lowest priority has no e�ect on the closed-form
thresholds. This property also explains why CDmax is not sensitive to the demand rate
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of class 3.
Cases 26-28 demonstrate the e�ect of the period length on the performance of the

closed-form expressions. Note that the coe�cients of variation of the demands decreases
with the period length TP , i.e., the demand processes are closer to the deterministic ones
for longer periods. Therefore, as the length of the period TP increases, the maximal
di�erence CDmax decreases and the performance of closed-form expressions improves.
To summarize, the thresholds obtained from the closed-form expressions provide close

approximations for the optimal ones, which indicates that the expressions capture the
essential characteristics of the dynamic rationing thresholds. This approximate approach
performs better for systems with higher demand rates, smaller ratios of two adjacent
penalty costs, and longer periods. The most important factor that a�ects the performance
of the approximate thresholds is the ratio between penalty costs. In the above numerical
study, the penalty cost ratio π1/π2 can be as large as 10, which cover many practical
situations, e.g., those in Deshpande et al. (2003). Furthermore, it is a common practice
to use the di�erent selling prices of the product as the penalty costs for di�erent classes,
and the resulting ratio between adjacent penalty costs is usually less than 5. Of course,
there indeed exist situations where the penalty cost ratio can be very large, e.g., greater
than 10. In this case, the system needs to �nd more accurate rationing thresholds, and
those from the closed-form expressions can serve as a lower bound.

6. Conclusion

This paper studies dynamic inventory rationing for systems with multiple demand classes,
stationary stochastic demand processes, and backordering. An innovative method is pro-
posed based on a similar idea to the certainty equivalence principle, which yields closed-
form expressions for dynamic rationing thresholds. The expressions are easy to compute
and are applicable to any number of demand classes. They also provide important man-
agerial insights.
Numerical results assuming Poisson demands show that the closed-form expressions

have captured the essential characteristics of optimal thresholds. The thresholds cal-
culated using the closed-form expressions are very close to the optimal ones. These
approximations are more accurate and perform better for problems with smaller ratios
between two adjacent penalty costs, larger demand rates, and longer periods.
Since the certainty equivalence principle has no restrictions on the demand processes

and the distribution of random variables, the method may be applied to a wide range
of demand processes, with continuous or discrete demands, independent or dependent
demands for di�erent classes, and stationary or nonstationary demands. It is hence
interesting to investigate the accuracy of approximate expressions for demand processes
other than the Poisson process presented in this paper. The method is expected to be
equally e�ective. The closed-form expressions may also be adjusted to improve their
performance for some special cases, e.g., when the ratios between adjacent penalty costs
are extremely large. Finally, it will be useful to develop closed-form expressions for the
lost sale problems, which could be applied in airline seat rationing. We leave these topics
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for future research.
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A. Proofs of theorems

Proof of Proposition 1

Proof. Assume for contradiction that the optimal policy does not contain a threshold
time ti to backlog the demands of class i as speci�ed in the proposition. As the demands
are deterministic, there must exist t ∈ [0, T ] and δ ∈ (0,min{t, T − t}] such that the
demands of class i occurring in the time interval (t, t+ δ) are backordered, whereas those
occurring in the interval (t− δ, t) are satis�ed.
Obviously, the inventory used to satisfy the demands of class i in the interval (t−δ, t+δ)

is diδ. The holding cost associated with this amount of inventory from time T to 0 is
hdiδ(T − t) + h

2diδ
2, where the �rst term is the cost to carry the inventory δdi from

time T to t, and the second term is the inventory cost from time t to t− δ. Recall that
the demands of class i in the interval (t, t+ δ) are backordered, and hence the shortage
cost associated with the demands of i in (t − δ, t + δ) is πi

2 diδ
2 + πidiδt, where the �rst

term is the shortage cost of the class i demands in (t, t + δ) from time t + δ to t, and
the second term is the shortage cost of these demands from time t to the end of the
period. Therefore, under such a policy, the cost Ci(t + δ, t − δ) associated with serving
the demands from time t+ δ to t− δ is

Ci(t+ δ, t− δ) = hdiδ(T − t) +
h

2
diδ

2 +
πi
2
diδ

2 + πidiδt.

Consider the same inventory rationing policy except that the demands of class i occurring
in the time interval (t, t+ δ) are satis�ed, while those occurring in the interval (t− δ, t)
are backordered. As the inventory reserved for the demands of class i from time t− δ to
t+ δ remains diδ, the cost of this new policy is the same as the previous one except for
the cost associated with serving the demands from time t + δ to t − δ, which, following
a similar argument, is equal to

hdiδ(T − t− δ) +
h

2
diδ

2 +
πi
2
diδ

2 + πidiδ(t− δ) < Ci(t+ δ, t− δ).

Therefore, the policy that satis�es the demands of class i in (t − δ, t) and backorders
those in (t, t + δ) is not optimal, which results in a contradiction. As a result, in an
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optimal policy, there must exist a time ti such that the demands of class i is satis�ed at
time t i� t ≥ ti.
Next, consider a policy with ti > tj for some i < j. The inventories reserved for

demand classes i and j are di(T − ti) and dj(T − tj) respectively. The cost of serving the
demand class i is h

2di(T − ti)
2+ πi

2 dit
2
i , where the �rst term corresponds to the inventory

holding cost, while the second term represents the shortage cost. Similarly, the cost of
serving the demand class j is h

2dj(T − tj)
2 +

πj
2 djt

2
j . Hence, the cost Cij of serving the

demand classes i and j is

Cij =
h

2
di(T − ti)2 +

πi
2
dit

2
i +

h

2
dj(T − tj)2 +

πj
2
djt

2
j .

Suppose that we keep the threshold time ti′ for any class i′ 6= i, j, and change the
threshold time to stop serving classes i and j to t′i and t

′
j where t

′
i = t′j =

diti+djtj
di+dj

. Note

that the inventory reserved for the demand classes i and j is di(T − t′i) + dj(T − t′j) =
di(T − ti) + dj(T − tj), which is the same as the previous policy. While the cost to serve
any other class i′ where i′ 6= i, j remains the same, the cost of serving the demand classes
i and j is changed to C ′ij de�ned as

C ′ij =
h

2
di(T − t′i)2 +

πi
2
dit
′2
i +

h

2
dj(T − t′j)2 +

πj
2
djt
′2
j .

Obviously, we have

Cij − C ′ij =
h

2
di

(
(T − ti)2 − (T − t′i)2

)
+
πi
2
di

(
t2i − t′2i

)
+
h

2
dj

(
(T − tj)2 − (T − t′j)2

)
+
πj
2
dj

(
t2j − t′2j

)
= di

(
t′i − ti

)
hT +

πi + h

2
di
(
t2i − t′2i

)
+ dj

(
t′j − tj

)
hT +

πj + h

2
dj
(
t2j − t′2j

)
=
πi + h

2
di
(
t2i − t′2i

)
+
πj + h

2
dj
(
t2j − t′2j

)
,

where the last equality follows from t′i = t′j =
diti+djtj
di+dj

. Recall that ti > tj . The de�nition

of t′i immediately yields that ti > t′i. Applying πi > πj , we obtain

Cij − C ′ij >
πj + h

2
di
(
t2i − t′2i

)
+
πj + h

2
dj
(
t2j − t′2j

)
=
πj + h

2

(
dit

2
i + djt

2
j −

(diti + djtj)
2

di + dj

)
=
πj + h

2

(
didj(ti − tj)2

di + dj

)
≥ 0,

where the �rst equality is yielded by t′i = t′j =
diti+djtj
di+dj

. The fact Cij −C ′ij > 0 indicates
that it is not optimal to have ti > tj for any i < j, which implies that ti ≤ tj for any
i < j.
Lastly, we assume for contradiction that t1 > 0 in an optimal policy, whereas the

on-hand inventory at t1 is equal to s1 > 0. We have shown that ti ≤ tj for any i < j.
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Therefore, the inventory s1 will never be used to satisfy demand, and hence it bears an
inventory holding cost of hs1T from time T to 0. Also note the cost associated with
serving class 1 is h

2d1(T − t1)
2+ π1

2 d1t
2
1. Therefore, besides the costs to serve the demand

classes i = 2, ...,K, the system also incurs the cost C1 =
h
2d1(T − t1)

2 + π1
2 d1t

2
1 + hs1T .

Now consider the threshold time t′1 = t1−min{t1, s1/d1} for class 1, while keeping the
threshold time ti for any other class i 6= 1. If t1 ≤ s1/d1, we have t′1 = 0, and the on-hand
inventory at time 0 is s1−d1t1. Besides the costs to serve the demand classes i = 2, ...,K,
which remain the same, the additional cost is calculated by C ′1 =

h
2d1T

2+h(s1−d1t1)T ,
which yields that

C1 − C ′1 =
h

2
d1

(
(T − t1)2 − T 2

)
+
π1
2
d1t

2
1 + hd1t1T =

π1 + h

2
d1t

2
1 > 0.

Suppose that t1 > s1/d1, then t′1 = t1 − s1/d1 > 0, and the on-hand inventory at time
t′1 is 0. The cost to serve class 1 is C1 = h

2d1(T − t
′
1)

2 + π1
2 d1t

′2
1 , and the cost saved by

adopting this policy is

C1−C ′1 =
h

2
d1

(
(T − t1)2− (T − t′1)2

)
+
π1
2
d1

(
t21− t′21

)
+hs1T =

π1 + h

2
d1

(
t21− t′21

)
> 0,

where the last equality and the last inequality follow from t′1 = t1 − s1/d1 < t1.
As C1 − C ′1 > 0, we conclude that it is better to backlog the demands of class 1 at

any time t i� t > t′1, where t
′
1 satis�es the property that either t′1 is zero or the on-hand

inventory at t′1 is zero.

Proof of Theorem 2

Proof. In the case that s ≥ Sk, the cost function TC(s) in (1) is convex in ti. Let
∂TC
∂ti

= 0 and it follows that ti = 0, ∀i. Clearly, ti = 0 satis�es all constraints (2)-(5).
Hence it is the optimal solution.
Now suppose that Sn−1 ≤ s < Sn, n ∈ {1, . . . ,K}. It is su�cient to show that there

exists a KKT point with ti as given in (19). Let αi = 0 for any i ∈ {1, . . . ,K}, βi = 0
for any i ∈ {1, . . . , n}, βi = (πn+h)ditn− (πi+h)diT for any i ∈ {n+1, . . . ,K}, γij = 0
for any i > j and i, j ∈ {1, . . . ,K}, and δ = (πn+h)tn. To complete the proof, the KKT
conditions (7)-(16) are veri�ed at the point {ti, αi, βi, γij , δ}.
First, consider the primal feasibility conditions in (13)-(16). Note that

∑n
j=1 djT ≥∑n

j=1(1− ρ(n+1)j)djT ≥ Sn > s, which implies that tn > 0. Also note that

tn =

∑n
j=1 djT − s∑n
j=1 ρnjdj

=

∑n
j=1(1− ρnj)djT +

∑n
j=1 ρnjdjT − s∑n

j=1 ρnjdj

= T −
s−

∑n
j=1(1− ρnj)djT∑n
j=1 ρnjdj

= T − s− Sn−1∑n
j=1 ρnjdj

≤ T,

where the last equality follows from the de�nition of Sn and the property that ρnn =
1, and the inequality is obtained from s ≥ Sn−1. Apply ti = ρnitn ∈ [0, T ] for any
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i ∈ {1, ..., n − 1} and ti = T for any i ∈ {n + 1, ...,K}. It is then straightforward that
ti ∈ [0, T ] for any i, i.e., the conditions (13) and (14) are satis�ed.
The de�nition of ρij implies that ρni > ρnj for any i > j. Recall that tn ∈ [0, T ],

ti = ρnitn ∈ [0, T ] for any i ∈ {1, ..., n − 1}, and ti = T for any i ∈ {n + 1, ...,K}. We
obtain the condition (15) ti ≥ tj for any i > j. In addition, the condition (16) also holds
because

K∑
i=1

diT −
K∑
i=1

diti =
n∑
i=1

diT −
n∑
i=1

ρniditn =
n∑
i=1

diT −

(
n∑
i=1

ρnidi

)(∑n
j=1 djT − s∑n
j=1 ρnjdj

)
= s.

(24)
Consider the condition (7). For any i ∈ {1, ..., n− 1}, we have

(πi + h)diti − αi + βi −
∑
i>j

γij +
∑
i<j

γij − δdi = (πi + h)ρniditn − (πn + h)ditn = 0,

where the second equality is yielded by the de�nition of ρni. When i = n, it is straight-
forward that

(πi + h)diti − αi + βi −
∑
i>j

γij +
∑
i<j

γij − δdi = (πn + h)dntn − (πn + h)dntn = 0.

If i ∈ {n+ 1, ...,K}, then

(πi + h)diti − αi + βi −
∑
i>j

γij +
∑
i<j

γij − δdi

= (πi + h)diT + (πn + h)ditn − (πi + h)diT − (πn + h)ditn = 0.

Therefore, (7) is satis�ed at the point {ti, αi, βi, γij , δ}.
For the complimentary slackness conditions, (8)-(10) can be easily justi�ed, and (11)

is yielded by (24).
For the dual feasible condition (12), clearly, αi ≥ 0 for i ∈ {1, . . . ,K}, βi ≥ 0 for

i ∈ {1, . . . , n}, γij ≥ 0 for i > j and i, j ∈ {1, . . . ,K}, and δ ≥ 0. Hence, it is su�cient
to show that βi = (πn + h)ditn − (πi + h)diT ≥ 0 for any i ∈ {n + 1, . . . ,K}, in which
case n+ 1 ≤ K, or n ≤ K − 1. Applying (19) yields

βi = di

[(πn + h)
(∑n

j=1 djT − s
)∑n

j=1 ρnjdj
− (πi + h)T

]
> di

[(πn + h)
(∑n

j=1 djT − Sn
)∑n

j=1 ρnjdj
− (πi + h)T

]
= di

[(πn + h)
(∑n

j=1 ρ(n+1)jdjT
)∑n

j=1 ρnjdj
− (πi + h)T

]
= di

[(πn + h)
(∑n

j=1 ρ(n+1)nρnjdjT
)∑n

j=1 ρnjdj
− (πi + h)T

]
= di

[
(πn + h)ρ(n+1)nT − (πi + h)T

]
= (πn+1 − πi)diT ≥ 0,
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where the �rst inequality follows by the fact that s < Sn, the second equality by the
de�nition of Sn for n ∈ {1, . . . ,K − 1}, the third and the last equalities by the de�nition
of ρij , and the second inequality by the fact that i ≥ n+ 1.

Proof of Theorem 3

Proof. By (20), TC∗(s) is continuous, di�erentiable, convex in s in any of the K + 1
intervals: [Sn−1, Sn), n ∈ {1, . . . ,K} and [SK ,∞). Hence, it is su�cient to show that
TC∗(s) is continuous and di�erentiable at the points Sn, n ∈ {1, . . . ,K}. Let TC∗n(s)
be the optimal cost TC∗(s) in [Sn−1, Sn), n ∈ {1, . . . ,K} and TC∗K+1(s) be the one in
[SK ,∞). Since TC∗n(s) is right continuous and right di�erentiable at Sn−1, the continuity
and di�erentiability is proved by showing that TC∗n(s)|s=Sn−1 = lim

s→S−n−1

TC∗n−1(s) and

dTC∗n(s)
ds |s=Sn−1 = lim

s→S−n−1

dTC∗n−1(s)

ds for any n ∈ {2, . . . ,K + 1}, respectively.

We �rst prove TC∗(s) is continuous at Sn−1, n ∈ {2, ...,K − 1}. (18) yields Sn−1 =∑n−1
j=1 (1 − ρnj)djT . Substituting Sn−1 into (20) and using the facts ρnn = 1 and (h +

πi)ρ
2
ni = (h+ πn)ρni by (17), we have

TC∗n(s)|s=Sn−1 = hSn−1T −
K∑
i=1

hdiT
2

2
+ T 2

n∑
i=1

(πi + h)ρ2nidi
2

+

K∑
i=n+1

(πi + h)diT
2

2

= hSn−1T −
K∑
i=1

hdiT
2

2
+ T 2

n−1∑
i=1

(πn + h)ρnidi
2

+

K∑
i=n

(πi + h)diT
2

2
.

By (20), combined with the fact that
∑n−1

i=1 ρ(n−1)idi =
(π(n−1)+h)

(πn+h)

∑n−1
i=1 ρnidi, it follows

that

lim
s→S−n−1

TC∗n−1(s) = hSn−1T −
K∑
i=1

hdiT
2

2
+
(∑n−1

i=1 diT − Sn−1∑n−1
i=1 ρ(n−1)idi

)2 n−1∑
i=1

(πi + h)ρ2(n−1)idi

2

+

K∑
i=n

(πi + h)diT
2

2

= hSn−1T −
K∑
i=1

hdiT
2

2
+
( ∑n−1

i=1 ρnidiT∑n−1
i=1 ρ(n−1)idi

)2 n−1∑
i=1

(π(n−1) + h)ρ(n−1)idi

2

+
K∑
i=n

(πi + h)diT
2

2

= hSn−1T −
K∑
i=1

hdiT
2

2
+

(πn + h)(
∑n−1

i=1 ρnidiT )
2

2ρn(n−1)
∑n−1

i=1 ρ(n−1)idi
+

K∑
i=n

(πi + h)diT
2

2

= hSn−1T −
K∑
i=1

hdiT
2

2
+ T 2

n−1∑
i=1

(πn + h)ρnidi
2

+

K∑
i=n

(πi + h)diT
2

2

= TC∗n(s)|s=Sn−1.
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Similarly, it can be proved that TC∗(s) is continuous at SK−1 and SK .
Next, we show that TC∗(s) is di�erentiable at the points Sn−1, n ∈ {2, ...,K−1}. (20)

implies

dTC∗n(s)

ds
= hT + 2

∑n
i=1 diT − s∑n
i=1 ρnidi

· −1∑n
i=1 ρnidi

·
n∑
i=1

(πi + h)ρ2nidi
2

, (25)

Substituting s = Sn−1 , ρnn = 1 and (h+ πi)ρni = (h+ πn) into (25), we obtain

dTC∗n(s)

ds
|s=Sn−1 = hT − (πn + h)T = −πnT.

By (25), it holds that

lim
s→S−n−1

dTC∗n−1(s)

ds
= hT + 2

∑n−1
i=1 diT − Sn−1∑n−1
i=1 ρ(n−1)idi

· −1∑n−1
i=1 ρ(n−1)idi

·
n−1∑
i=1

(πi + h)ρ2(n−1)idi

2

= hT + 2

∑n−1
i=1 ρnidiT∑n−1
i=1 ρ(n−1)idi

· −1∑n−1
i=1 ρ(n−1)idi

·
n−1∑
i=1

ρ(n−1)idi

2
(π(n−1) + h)

= hT +

∑n−1
i=1 ρnidiT∑n−1
i=1 ρnidi

· (πn + h) · (−1)
(π(n−1) + h)

(π(n−1) + h)

= −πnT =
dTC∗n(s)

ds
|s=Sn−1 .

Similarly, it can be veri�ed that TC∗(s) is di�erentiable at s = SK−1 and
dTC∗K(s)

ds |s=SK−1
=

−πKT .
Finally, for the di�erentiability of TC∗(s) at s = SK , (25) yields

dTC∗K+1(s)

ds
|s=SK

= hT

and

lim
s→S−K

dTC∗K(s)

ds
= hT + 2

∑K
i=1 diT − SK∑K
i=1 ρKidi

· −1∑K
i=1 ρKidi

·
K∑
i=1

(πi + h)ρ2Kidi
2

= hT =
dTC∗K+1(s)

ds
|s=SK

.

This completes the proof.

References

H. Arslan, S. C. Graves, and T. A. Roemer. A single-product inventory model for multiple
demand classes. Management Science, 53(9):1486�1500, 2007.

24



Ö. Bulut and M.M. Fadilo§lu. Production control and stock rationing for a make-to-stock
system with parallel production channels. IIE Transactions, 43(6):432�450, 2011.

E. K. Chew, L. H. Lee, and S. Liu. Dynamic rationing and ordering policies for multiple
demand classes. OR Spectrum, pages 1�25, 2011.

M. A. Cohen, P. R. Kleindorfer, and H. L. Lee. Service constrained (s, S) inventory
systems with priority demand classes and lost sales. Management Science, 34(4):482�
499, 1988.

F. de Véricourt, F. Karaesmen, and Y. Dallery. Optimal stock allocation for a capacitated
supply system. Management Science, 48(11):1486�1501, 2002.

R. Dekker, M. J. Kleijn, and P. J. D. Rooij. A spare parts stocking system based on
equipment criticality. International Journal of Production Economics, 56-57:69�77,
1998.

V. Deshpande, M. A. Cohen, and K. Donohue. A threshold inventory rationing policy
for service-di�erentiated demand classes. Management Science, 49(6):683�703, 2003.

R. V. Evans. Sales and restocking policies in a single item inventory system. Management

Science, 14(7):463�472, 1968.

M. M. Fad�lo§lu and Ö. Bulut. A dynamic rationing policy for continuous-review inven-
tory systems. European Journal of Operational Research, 202(3):675�685, 2010a.

M. M. Fad�lo§lu and Ö. Bulut. An embedded Markov chain approach to stock rationing.
Operations Research Letters, 38(6):510�515, 2010b.

J. P. Gayon, F. de Véricourt, and F. Karaesmen. Stock rationing in an m/er/1 multi-class
make-to-stock queue with backorders. IIE Transactions, 41(12):1096�1109, 2009.

A. Y. Ha. Inventory rationing in a make-to-stock production system with several demand
classes and lost sales. Management Science, 43(8):1093�1103, 1997a.

A. Y. Ha. Stock-rationing policy for a make-to-stock production system with two priority
classes and backordering. Naval Research Logistics, 44(5):457�472, 1997b.

A. Y. Ha. Stock rationing in an M/Ek/1 make-to-stock queue. Management Science, 46
(1):77�87, 2000.

H.-C. Hung, E. P. Chew, H. L. Loo, and S. Liu. Dynamic inventory rationing for systems
with multiple demand classes and general demand processes. International Journal of
Production Economics, 139(1):351�358, 2012.

S. M. R. Iravani, T. Liu, K. L. Luangkesorn, and D. Simchi-Levi. A produce-to-stock
system with advance demand information and secondary customers. Naval Research

Logistics, 54(3):331�345, 2007.

25



A. Kaplan. Stock rationing. Management Science, 15(5):260�267, 1969.

P. Melchiors. Restricted time-remembering policies for the inventory rationing problem.
International Journal of Production Economics, 81:461�468, 2003.

P. Melchiors, R. Dekker, and M. J. Kleijn. Inventory rationing in an (s,Q) inventory
model with lost sales and two demand classes. The Journal of the Operational Research
Society, 51(1):111�122, 2000.

K. T. Mollering and U. W. Thonemann. An optimal critical level policy for inventory
systems with two demand classes. Naval Research Logistics, 55(7):632�642, 2008.

I. Moon and S. Kang. Rationing policies for some inventory systems. The Journal of the
Operational Research Society, 49(5):509�518, 1998.

S. Nahmias and W. S. Demmy. Operating characteristics of an inventory system with
rationing. Management Science, 27(11):1236�1245, 1981.

R. Piplani and S. Liu. Comparison of capacity rationing policies for a make-to-order
production system with two customer classes. International Journal of Industrial and
Systems Engineering, 16(2):pp. 223�237, 2014.

H. A. Simon. Dynamic programming under uncertainty with a quadratic criterion func-
tion. Econometrica, 24(1):74�81, 1956.

R. H. Teunter and W. K. K. Haneveld. Dynamic inventory rationing strategies for inven-
tory systems with two demand classes, Poisson demand and backordering. European

journal of operational research, 190(1):156�178, 2008.

H. Theil. A note on certainty equivalence in dynamic planning. Econometrica, 25(2):
346�349, 1957.

D. M. Topkis. Optimal ordering and rationing policies in a nonstationary dynamic in-
ventory model with n demand classes. Management Science, 15(3):160�176, 1968.

Y.-S. Zheng. On properties of stochastic inventory systems. Management Science, 38(1):
87�103, 1992.

26




