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�is paper proposes a variant of the well-known capacitated vehicle routing

problem that models the routing of vehicles in the cash-in-transit industry by in-

troducing a risk constraint. In the Risk-constrained Cash-in-Transit Vehicle Routing
Problem (rctvrp), the risk of being robbed, which is assumed to be proportional

both to the amount of cash being carried and the time or the distance covered by

the vehicle carrying the cash, is limited by a risk threshold.

A library containing two sets of instances for the rctvrp, some with known

optimal solution, is generated. A mathematical formulation is developed and small

instances of the problem are solved by using ibm cplex.

Four constructive heuristics as well as a local search block composed of six lo-

cal search operators are developed and combined using two di�erent metaheuristic

structures: a multistart heuristic and a perturb-and-improve structure. In a statis-

tical experiment, the best parameter se�ings for each component are determined,

and the resulting heuristic con�gurations are compared in their best possible set-

ting. �e resulting metaheuristics are able to obtain solutions of excellent quality

in very limited computing times.

Key words: Metaheuristics, Vehicle routing, Risk management, Cash-in-Transit, Com-

binatorial optimization.

1. Introduction

Over the last decades, vehicle routing problems have drawn the interest of a large number of

researchers, and several variants have been developed to model di�erent real-life situations.

An interesting �eld of application, which has not received much a�ention so far, concerns
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the issue of security during the transportation of cash or valuable goods between banks, large

retailers, shopping centres, ATMs, jewellers, casinos, and other locations where large amounts

of cash or valuables are present.

�e cash-in-transit (CIT) industry groups transportation companies that deal with the physical

transfer of banknotes, coins and items of value. In general the transfer of cash and valuables

happens between customers (typically retail and/or �nancial organisations) and one or more

cash deposits or banks. It is clear that, as a consequence of the nature of the transported goods,

resisting crime is a signi�cant challenge, and CIT companies are constantly exposed to risks

such as robberies.

In order to estimate the importance of the CIT sector we note that in the United Kingdom

alone, more than £500 billion are transported each year (£1.4 billion per day). Some robberies

manage to a�ract a large share of media a�ention. In February 2013 in Foggia (Italy) 300 kg of

gold was robbed. In the same month and year in Brussels (Belgium) a robbery of e50 million

happened, and in March 2013 in Varese (Italy) a criminal organization carried out a robbery of

e10 million. Money stolen in CIT a�acks represents a major source of funding for organized

crime. �e latest statistics from the British Security Industry Association show that a�acks

against CIT couriers remain a serious and growing problem throughout the world (British

Security Industry Association, 2013).

During the last decades, in an e�ort to reduce the incidence of robberies, CIT �rms have heav-

ily invested in be�er vehicles, equipment, infrastructure, and technologies (e.g., armoured ve-

hicles, weapons on board, on-board drop safes and interlocking doors, active vehicle track-

ing). However, no level of security measures can completely prevent robberies from happening

(Erasmus, 2012).

According to Yan et al. (2012); Smith and Louis (2010), one of the main reasons robberies are

so prevalent is a lack of analysis of security issues in the route planning phase. �e authors

warn that a careful planning of the cash-in-transit activities is generally advisable to reduce

the risk of being robbed. For this reason, a recent study of Yan et al. (2012) proposes a model

to formulate more �exible routing and scheduling practices that incorporates a new concept of

similarity for routing and scheduling solutions considering both time and space measures to

reduce the risk of robbery.

Another approach suggested in the literature is to reduce the risk of being a�acked by build-

ing routes that are “unpredictable” for criminals. In so-called “peripatetic” routing problems

(Krarup, 1975; Ngueveu et al., 2010a,b), customers are visited several times within a planning

horizon, but the use of the same arc twice is explicitly forbidden. In Wolfer Calvo and Cordone

(2003) the “unpredictability” is ensured by introducing time windows with a minimum and

maximum time lag between two consecutive visits of the same customer. In this way it is pos-

sible to generate a wide variety of solutions, as required for security reasons. A similar concept

is followed by Michallet et al. (2011, 2014) where regularity (in terms of time at which the visit

of the customer happens) is avoided, by managing time windows in which each customer can

be visited.
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Except for some practical situations that explicitly require customer visits at regular intervals,

the moments in time at which customers are visited are generally variable in the CIT sector

depending on the amount of money that needs to be deposited or picked up, which is seldom

regular. �erefore, CIT �rms de�ne their routing plan on a daily basis, depending on the cus-

tomers that need to be visited. Routing plans in the CIT sector should both be safe and e�cient,

while taking into account two critical issues: minimization of the travelled cost/time, as well

as limiting the exposure of the transported goods to robbery. �e Risk-constrained Cash-in-

Transit Vehicle Routing Problem (rctvrp), that is developed in this paper, a�empts to achieve

this.

Di�erent from the existing approaches known in the literature, we limit the total risk that any

vehicle may incur during its operations to a pre-speci�ed risk threshold. To this end, a risk

index is de�ned to measure the exposure of the vehicle, while it is outside of the depot. To the

best of our knowledge, this particular way to handle security in a vehicle routing context is

new. Moreover, it is complementary to methods that achieve security through unpredictability,

and can potentially be combined with them.

Informally, the rctvrp is de�ned as follows. Given a depot, as well as a set of customers

each with a given “demand”, corresponding to a sum of cash that needs to be picked up, the

objective of the problem is to de�ne a set of routes, one for each vehicle. Each vehicle leaves

from a depot, visits a set of customers picking up cash and returns to the same depot at the end

of its route. On each arc it travels, a vehicle incurs a certain amount of risk that is proportional

to the both time or distance travelled and the amount of cash carried on that arc. �e total

risk incurred by a vehicle is the sum of the individual risks incurred on each arc. For each

vehicle route, this total risk should be at most equal to a prede�ned risk threshold that can

be quanti�ed by the CIT �rm depending on a series of factors such as the amount of money

to be transported, the characteristic of the network, and the company’s a�itude to risk. In

a preliminary analytical stage several scenarios presenting di�erent risk thresholds (see e.g.

Section 5) could be evaluated and the most suitable risk threshold can be adopted by the CIT

company to generate routes that are both e�cient and safe.

�e main focus of this work is the development of a decision model, together with the descrip-

tion of the solution approaches. �e major contributions of this paper are fourfold. (1) A new

variant of the vehicle routing problem, the Risk-constrained Cash-in-Transit Vehicle Routing

Problem (rctvrp) is introduced. �e main distinguishing feature of this problem is the risk

constraint that is used to limit the risk each vehicle runs. (2) A library containing two sets

of problem instances for the rctvrp, some with known optimal solution, is generated. (3) A

mathematical formulation of the rctvrp is developed and optimal solutions for small problem

instances are found by using the ibm cplex solver. (4) E�cient metaheuristic approaches to

solve small, medium and large instances of the rctvrp are presented, tuned using a statistical

experiment, and then compared.

�e remainder of the paper is organized as follows. In Section 2 the literature on vehicle routing

in risk-prone situations is surveyed, and the concept of risk constraint is introduced. Section 3

outlines a mathematical formulation for the rctvrp, while the di�erent components of the

metaheuristic approaches are described in Section 4. In Section 5, the algorithms are tested and
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computational results are reported. Section 6 presents some conclusions and suggestions for

future research. A description of the sets containing the test instances, including the procedure

that was used to generate them, can be found in Appendix A.

2. Risk constraint

Besides the “peripatetic” vehicle routing problems discussed earlier, the concept of risk has

only received limited a�ention in the context of vehicle routing problems for the CIT sector,

whereas it has been thoroughly analysed in the literature on transportation of chemical and

hazardous materials (hazmat).

In the hazmat transportation literature many models have been developed in which a risk func-

tion is de�ned for each road section and safe routes are selected looking at the minimization of

the operating costs. �e risk function is in general based on the substance being transported,

but also on the road characteristics (e.g., tunnels, road condition, light, tra�c). See for example

Reniers et al. (2010); Bianco et al. (2013); Androutsopoulos and Zografos (2012); Van Raemdonck

et al. (2013).

As de�ned by the Center for Chemical Process Safety (2008), risk can be seen as an index of

potential economic loss, human injury, or environmental damage, that is measured in terms

of both the incident probability and the magnitude of the loss, injury, or damage. �e risk
associated with a speci�c (unwanted) event can be expressed as the product of two factors: the

likelihood that the event will occur (pevent) and its consequences (Cevent). A risk therefore is an

index of the “expected consequence” of the unwanted event.

Revent = pevent ·Cevent (1)

In case of hazmat, an undesirable event is an accident that results in the release of hazardous

substances with severe consequences on the population in the neighbourhood of the incident.

�e consequences of the event depend on several factors such as the substance carried, the size

of the population living near the accident, etc. �e probability of an accident occurring depends

on the type of substance transported and on the road characteristics such as lane width, number

of lanes, etc. (see Milovanović et al. (2012) for further details). Another study also considers

the in�uences of weather conditions on the accident probability (Akgün et al., 2007).

�e de�nition of risk in Eq. (1) has many desirable features (additivity, linearity) that facili-

tate the solution process. As mentioned in Dı́az-Ovalle et al. (2013), the risk estimation always

refers to speci�c scenarios and the a�itude to risk of various decision-makers may di�er. How-

ever, a comparison between the risk measures, that have been modelled in the �eld of hazmat

transportation, as well as the possible a�itudes towards risk, is beyond the scope of this paper.

For a more elaborate discussion on risk measures, the reader is referred to Erkut and Ingolfsson

(2005). In the remainder of our work we suppose that the decision maker has a risk-neutral

a�itude.
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In the CIT sector, di�erently from the hazmat transportation, the goods being transported are

not dangerous, but a robbery might generate two di�erent types of unwanted consequences.

�e �rst type consists of the foreseeable consequences that are mainly linked to the loss of the

cash/valuables being transported. �e second type includes the unforeseeable consequences that

are related to the criminal activity itself. An armed assault, e.g., might result in CIT personnel

or third persons being seriously harmed. �erefore unforeseeable consequences involve large

additional costs that, in some cases, might be signi�cant e.g., costs related to damaged vehicles

and/or equipment, costs of policing, ambulance and hospital treatments, the opportunity cost

as a result of inactive CIT personnel. Sometimes, even the road infrastructure can be damaged

during a robbery resulting in additional costs for the users of the road network. Both foresee-

able and unforeseeable consequences, can be mitigated by taking speci�c insurances against

these events, but clearly there is no pay-o� against human tragedy and trauma.

CIT �rms can impact the foreseeable consequences by selecting appropriate cash collection

routes aimed at minimizing the values of the transported goods and thus mitigating the con-

sequences of a robbery. �e unforeseeable consequences on the other hand, are unrelated to the

amount of cash/valuables being transported. Moreover, they are not under the direct control

of CIT companies and since they cannot be quanti�ed a priori, we only focus on the foreseeable
consequences of a robbery. �erefore, in the remainder of the paper, the perspective of a CIT

company is analysed, addressing only the �nancial loss of the transported goods.

2.1. Measuring risk in the RCTVRP

In Russo and Rindone (2011) risk is de�ned in terms of three main components: (a) the occur-
rence of an event (expressed as the probability or the frequency of a speci�c unwanted event

happening); (b) the vulnerability as a measure of the susceptibility of the objects to be protected

from unwanted events; (c) the exposure that represents a weighted value of people, goods and

infrastructure a�ected during and a�er the event.

Following this structure, the risk of being robbed along an edge (i, j ) in route r can be com-

puted as follows: (1) the occurrence of a robbery pi j expressed as the probability of a robbery

happening. It can be in�uenced by several factors such as the road characteristics (number of

lanes, type of road segment, tra�c condition), the weather conditions, the time at which the

robbery happens (e.g., day-time or night-time); (2) the vulnerability νi j de�ned as a measure

of the probability that the robbery succeeds given that it occurs. It might depend on several

factors such as the modus operandi of the criminals, the type of vehicle (e.g., heavy or light

armoured), the weapons on board, the crew preparedness, the police promptness and so on;

(3) the consequence of the robbery Di which quanti�es the loss of cash/valuables transported

by the vehicle until node i in case a robbery happens on edge (i, j ) along route r . �erefore

supposing that a robbery might happen only on a edge (i, j ), the risk faced by the vehicle before

arriving at node j is given by the following formula:

Rrj = pi j · νi j · D
r
i (2)
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Figure 1: Partial probability tree showing the risk along route r

We can express the risk for an entire vehicle route starting from Eq. (2). Since a route r is a

sequence of arcs, we can view the travel of the vehicle along r as a probabilistic experiment, as

shown in Figure 1. Erkut and Ingolfsson (2005) demonstrate the additivity of the risk index by

using a similar approach. In particular the risk associated with r can be expressed as follows:

p0i · ν0i · D
r
0
+ (1 − p0i ) · pi j · νi j · D

r
i + . . . + (1 − p0i ) · (1 − pi j ) · (. . .) · pk0 · νk0 · D

r
k (3)

Supposing that the probability of being robbed more than once along route r can be neglected,

Eq. (3) can be simpli�ed and rewri�en as the sum of the expected consequence of the robbery

on each arc (i, j ) contained in r : ∑
(i,j )∈r

pi j · νi j · D
r
i (4)

According to Smith and Louis (2010), most CIT o�enders are professional armed robbers. Com-

pared with amateur o�enders, professional criminals are prepared to use weapons. Moreover,

they present a higher level of motivation with a greater tendency to gather critical informa-

tion about the targeted companies, plan the o�ence and adopt e�ective a�ack strategies (Pillay,

2008). As a result they have a greater success rate compared to other categories of robbers.

Two factors may in�uence the likelihood of an a�ack: (a) the amount of transported cash and

(b) the characteristics of the arcs. Supposing that the robbers do not have an accomplice inside

the CIT company, it is safe to assume that robbers do not know the value of the goods trans-

ported on any given edge. On long arcs, we can assume that robbers have more opportunities

to a�ack, due to the larger amount of time spent by the CIT vehicle on these arcs. Moreover,

long arcs present a larger number of a�ack points, escape hatches or points where criminals

might hide their vehicles/equipment.

Due to the lack of real data and for the sake of simplicity two basic assumptions are made:

(1) the probability of an a�ack (pi j ) is proportional to the length (ci j ) of the edge traversed

by the vehicle and; (2) the vulnerability factor (νi j ) is assumed to be constant for all edges

and equal to the risk rate computed by using the past records of successful a�acks (from the
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criminal perspective) over the total a�empted a�acks (Veroni and Bourguet, 2008). �erefore,

in the remainder of the paper the vulnerability factor can be omi�ed.

We are aware that these assumptions are not always realistic. However, a di�erent measure

than the edge length can trivially be employed in the model instead of pi j . �is paper uses the

edge length ci j as a proxy of pi j for reasons of simplicity: the edge length is a given parameter

of any vehicle routing problem, and, moreover, no (realistic) data is available on edge risks for

any set of vehicle routing instances in the literature. �e algorithms developed in Section 4,

however, do not depend in any way on the chosen measure for pi j . Further studies about an

alternative risk index and investigations about the complexity of the resulting problem are le�

for future work.

In the remainder of the paper, it is assumed that the vehicle is empty when leaving the depot,

a�er which it retrieves funds from the customers visited on its route, before returning to the

depot where a secure safe awaits. �e vehicle is supposed to only pick up cash along its route

and never to drop it o�, before the depot is reached. Under these assumptions, to determine the

route risk, a risk index Rri is computed for each node i in route r in a recursive manner starting

from the depot 0 using Eq. (5), where Dr
i is the amount of money on board of the vehicle when

it leaves node i along route r and ci j is the length of arc (i, j ) contained in r .

Rrj = Rri + D
r
i · ci j (5)

�e risk index of a route is a cumulative (increasing) measure of the risk incurred by a vehicle

while it travels along its route. �e global route risk of route r , denoted as GRr , is the risk

incurred by a vehicle upon its return to the depot. In line with real-life CIT applications: (i) the

higher the money transported, the higher the risk; (ii) the longer the vehicle route, the higher

the risk.

In the rctvrp, the global route risk of every route is limited to a certain maximum value, called

the risk threshold T . �e la�er can be used by a CIT �rm to limit the risk along its routes, and as

a consequence, it could be a critical factor to be considered in order to negotiate fair insurance

policies. Actually, insurance companies compute premiums on the basis of the risk exposure

of a CIT �rm which is strictly related to several factors such as: the investment in security,

training of personnel, risk management activities, reputation of the CIT company and loss

records (Turner, 2008). Since premiums are very closely linked to the risk exposure and CIT

�rms are under pressure to cut their operative costs (Turner, 2009), a possible path towards

the reduction of insurance premiums lies in the risk reductions e�orts aimed at generating

relatively safe routes (Turner and Edward, 2005). �is goal could be achieved by using risk

thresholds or by using any other technique aimed at lowering the risk pro�le of a CIT �rm.

2.2. Illustrative example

�e example in Figure 2 may clarify the calculation of the global route risk. �e numbers on

the arcs represent their length, while the values on the nodes denote the demand associated
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to each customer. It is assumed that a vehicle visits nodes A, B, and C and then returns to

the depot in a route r . �e risk index at node A (top le� side of Figure 2) is zero because the

vehicle travels empty along arc (0,A) (RrA = d0 · c0A = 0 · 7 = 0). At node A the vehicle

collects one unit of money and continues to customer B. �e risk index at node B is therefore

equal to RrB = RrA + (d0 + dA) · cAB = 1 · 8 = 8 (top right side of Figure 2). Similarly, the risk

index at node C is equal to RrC = RrB + (d0 + dA + dB ) · cBC = 8 + (1 + 3) · 9 = 44 (bo�om

le� side of Figure 2). �e global route risk when the vehicle returns to the depot is equal to

GRr = RrC + (d0+dA+dB +dC ) ·cC0 = 89 (bo�om right side of Figure 2). Route r = (0,A,B,C,0)
is feasible in the rctvrp if GRr is at most equal to the risk threshold T .

RrA = 0

0
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1

B

3

C

5

7

RrB = 8

0
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0
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1

B

3

C

5

7

8

9

GRr = 89

0
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1
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3
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5

7

8

9

5

Figure 2: Illustrative example

Unlike in the traditional VRP, it is the risk constraint and not the capacity of the vehicle that

prohibits visiting all customers in a single giant tour. Furthermore, the global route risk of

a route r is generally not the same as the global route risk of the reversed route r̄ . For this

reason, it is possible for a route to be feasible if covered in one direction and infeasible in the

other one. �is is an important consideration in the development of heuristic optimization

approaches. Because of the cumulative risk index, the rctvrp bears some resemblance to the

travelling repairman (also called minimum latency) problem, in which the sum of visiting times

at the customers is minimized. In the rctvrp, however, the cumulative measure is treated as a

constraint and not as an objective function.

3. Problem description and mathematical formulation

Formally, the rctvrp is de�ned on a directed graph G = (V ,A). For the sake of simplicity

the central depot 0 is replaced by two dummy nodes, s (start) from which all vehicle routes

depart and e (end) where all routes end. �erefore the set of nodes V = {s,e} ∪ N corresponds

8



to the set of customers N = {1, . . . ,n}, and to the depot. Each customer i ∈ N has a non-

negative demand di which represents the cash to be picked up by the vehicle during its visit.

�e demands associated to the two dummy depots are equal to zero (ds = de = 0). �e set of

arcs is de�ned as A = (N × N ) ∪ ({s} × N ) ∪ (N × {e}). A non-negative distance (or travel

time) ci j is associated with each arc (i, j ) ∈ A. All vehicles start empty (ds = 0) from the depot

and perform a single route, visiting a sequence of customers before returning to the depot (e)

where the collected cash (demand) is deposited. At the start of their tour, each vehicle’s risk
index is equal to zero. A vehicle travelling between nodes i and j increases its risk index by a

value that is equal to the product of the amount of cash it carries when it leaves node i and the

distance (or travel time) ci j .

To formulate this problem as a mixed integer programming (MIP) problem, two families of

decision variables are de�ned for each node. Let Dr
i be equal to the cash carried by the vehicle

when it leaves node i along route r . Let Rri be the value of the risk index for the vehicle when

it arrives at node i along route r . Note that, for a given customer, all but one of these variables

will be zero, because each customer is only visited by one vehicle.

�e boolean decision variable xri j is equal to 1 if arc (i, j ) ∈ A is traversed by the vehicle along

route r and 0 otherwise. �e number of routes is determined as part of the optimization prob-

lem, and is at most equal to n in a solution in which each route contains only one node. For this

reason, without loss of generality the route index r can be de�ned on the customer set N .

min

∑
r ∈N

∑
(i,j )∈A

ci j · x
r
i j (6)

s.t. ∑
j ∈N

xrs j =
∑
i ∈N

xrie ∀r ∈ N (7)∑
j ∈N

x1

s j = 1 (8)∑
i ∈N

xrie >
∑
j ∈N

xr+1

s j ∀r ∈ N \ {n} (9)∑
r ∈N

∑
j ∈V \{s }

xri j = 1 ∀i ∈ N (10)∑
h∈V \{e }

xrhj −
∑

k ∈V \{s }

xrjk = 0 ∀j ∈ N ;∀r ∈ N (11)

Dr
s = 0 ∀r ∈ N (12)

Dr
j > Dr

i + dj −
(
1 − xri j

)
·M1 ∀(i, j ) ∈ A;∀r ∈ N (13)

0 6 Dr
i 6 M1 ∀i ∈ V ;∀r ∈ N (14)

Rrs = 0 ∀r ∈ N (15)

Rrj > Rri + D
r
i · ci j −

(
1 − xri j

)
·M2 ∀(i, j ) ∈ A;∀r ∈ N (16)
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0 6 Rri 6 T ∀i ∈ V ;∀r ∈ N (17)

xri j ∈ {0,1} ∀(i, j ) ∈ A;∀r ∈ N (18)

�e objective function (6) minimizes the total distance travelled along all the routes. We do not

consider the cost of vehicles used in the solution. Constraints (7) impose that each route starts

and ends at the depot. Constraint (8) states that the �rst route (r = 1) starts at the depot and

must exist. Constraints (9) enforce that route r +1 cannot exist unless route r also exists, which

forces routes to be numbered consecutively. Constraints (10) ensure that each customer is vis-

ited exactly once. Constraints (11) impose that in route r , the vehicle can leave customer j only

if it has previously entered it. Constraints (12)–(14) are used to de�ne the cumulative demand

from the depot to each node i along route r (M1 is a su�ciently large number). Constraints

(15)–(17) ensure that the global route risk is at most equal to the risk threshold T , with M2

again a su�ciently large number. A su�cient choice for these large numbers is M1 =
∑

i ∈V di
and M2 = T . Due to the cumulative demand (Dr

i ) and the cumulative risk (Rrj ), which are both

increasing along route r , subtours are automatically prevented. Finally, as mentioned in Sec-

tion 2.1, in Constraints (16) the value of ci j can be replaced by pi j if detailed data about the

probability of a robbery on arc (i, j ) are available.

Since the rctvrp is an extension (introducing the risk constraint) of the travelling salesman

problem (TSP), which is known to be NP-hard, the rctvrp is also NP-hard. �erefore we

propose some heuristic approaches to solve medium and large problem instances in a relatively

short time.

4. Metaheuristic approaches

In this section we develop some metaheuristic approaches to solve the rctvrp. To this end we

execute and report on a transparent design phase in which we develop and test several di�erent

combinations of (a) four construction heuristics, (b) a local search block, and (c) two heuristic

structures to escape from local optima. �e aim of reporting on this design phase is not only to

ensure the quality of the �nal results, but also to gain additional insight into the contribution

of various heuristic components on the quality of the solutions produced.

4.1. Construction phase

Four di�erent procedures are developed to �nd an initial solution for the rctvrp. �e �rst two

heuristics take the risk constraint into account during the entire construction process. �ey

are (1) a modi�ed Clarke and Wright heuristic with a greedy randomized selection mechanism

(CWg), and (2) a nearest neighbour heuristic with a greedy randomized selection mechanism

(NNg). �e la�er two heuristics temporarily relax the risk constraint, creating a giant (TSP)

tour that is split into feasible tours using an optimal spli�ing procedure. �ese procedures

are (3) a TSP nearest neighbour heuristic with a greedy randomized selection mechanism and

spli�ing (TNNg), and (4) a TSP Lin-Kernighan heuristic with spli�ing (TLK).
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4.1.1. Clarke and Wright heuristic with greedy randomized selection mechanism

(CWg)

�e �rst construction heuristic is a variant of the well known Clarke and Wright heuristic

(Clarke and Wright, 1964), modi�ed to take into account the risk constraint. �e “standard”

Clark and Wright construction heuristic starts from a star solution (in which each customer

is served by its own vehicle) and iteratively merges two routes. To this end the heuristic pre-

computes the saving of each pair of routes, i.e., the decrease in objective function value that

would occur if two routes were merged by connecting these two customers, and sorts the list of

node pairs in order of decreasing savings. At each iteration the heuristic greedily a�empts to

merge the pair of nodes with the largest saving. �is is possible if (1) both nodes are connected

to the depot; (2) the sum of the demand of the routes containing the nodes to merge does not

exceed the vehicle capacity.

For the rctvrp, the original Clarke and Wright heuristic is modi�ed in three ways: (1) in a

greedy randomized selection mechanism, the next pair of nodes to merge is chosen randomly

from a restricted candidate list containing the α �rst pairs of nodes on the sorted savings list.

In particular α represents a parameter of the heuristic that allows it to generate di�erent initial

solutions; (2) the capacity check is replaced with a risk constraint check; (3) both orientations

of the resulting routes are checked, and the one with the lowest risk index is retained.

When merging routes r1 and r2 to obtain the saving si j , the CWg heuristic �rst checks which

route need to be reversed, depending on the position of nodes i and j (either �rst customers

reached right a�er the depot or last customers before the depot), inside r1 and r2 respectively.

As shown in Table 1, eight di�erent ways (two for each position of nodes i and j in r1 and r2

respectively) to generate a merged route starting from r1 and r2 are possible. �en, the CWg

heuristic checks, in constant time, if those reversed routes are feasible. If at least one of the

merged routes is feasible, the heuristic adds the nodes contained in the second route into the

�rst one (or vice versa), recomputing for each of them the resulting risk indices. �is operation,

executed in linear time, guarantees that the risk indices associated to the nodes in the merged

route are always updated.

Table 1: Possible merge scenarios. �e reversed route of r1 (or r2) is denoted with r̄1 (or r̄2)

Position of node
i in route r1

Position of node
j in route r2

Possible merged routes

First First

r̄2 → r1

r̄1 → r2

First Last

r2 → r1

r̄1 → r̄2

Last First

r̄2 → r̄1

r1 → r2

Last Last

r2 → r̄1

r1 → r̄2

An example of a merge operation is shown in Figure 3, where routes r1 and r2 containing

customers i and j are merged, yielding the saving si j = c0i + c0j − ci j . Both customers i and
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j are the last nodes of routes r1 and r2 respectively. Two orientations are evaluated. A zigzag

arc indicates that the initial route has been reversed. In the upper right side of Figure 3 r1 is

merged with the reversed route r̄2, while in the bo�om right side of Figure 3 r2 is merged with

the reversed route r̄1. If both resulting routes are feasible, the one with the lower global route

risk is selected to obtain the saving si j .

Route

r1

Route

r2

i

j

r 1
→

r̄ 2

r
2
→

r̄
1

i

j

i

j

Figure 3: Creation of a new route merging r1 and r2. Only two out of eight possible merge

situations are shown

4.1.2. Nearest neighbour with greedy randomized selection mechanism (NNg)

�e second constructive heuristic is a nearest neighbour heuristic combined with a greedy

randomized selection mechanism. In the standard nearest neighbour heuristic, a solution is

constructed by selecting the closest unvisited node at each iteration. Our version modi�es

the standard heuristic because a greedy randomized selection mechanism is used instead of a

simple greedy procedure. �is means that the next node in the solution is selected randomly

from the restricted candidate list containing the �rst α closest unvisited nodes passing all a

feasibility check with respect to the risk constraint. If it is not possible to add any node to the

current route, without violating the risk constraint (i.e., the vehicle is able to reach the depot

without surpassing the risk threshold), the route is closed (the vehicle drives back to the depot)

and a new route is started.
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4.1.3. TSP nearest neighbour with greedy randomized selection mechanism plus

spli�ing (TNNg)

�is heuristic, like the NNg, uses a nearest neighbour heuristic combined with a greedy ran-

domized mechanism for the node selection. It does not check the risk constraint and, for this

reason, creates a single (TSP) tour. �is procedure is iterated a �xed number of times and the

best giant TSP tour is subjected to a variant of the spli�ing procedure described in Prins (2004).

�e original procedure creates an auxiliary graph containing n + 1 nodes (0 to n), and adds an

arc between nodes i − 1 and j (with i 6 j) if the route from the i-th customer to the j-th cus-

tomer in the order they appear in the giant tour is feasible. Contrary to the original procedure,

our modi�ed version also adds an arc if the reverse route is feasible. �e weight of the arc is

equal to the cost of the route.

�e best possible way to split the giant tour in feasible routes, is achieved by �nding the shortest

path from node 0 to node n in the auxiliary graph. If the shortest path contains the arc from

node i−1 to node j, the giant tour is split between the (i−1)-th and the i-th nodes and between

the j-th and the (j + 1)-th nodes. For a more detailed explanation of this procedure we refer to

Prins (2004).

4.1.4. TSP Lin-Kerninghan plus spli�ing (TLK)

�e Lin-Kernighan heuristic described in Lin and Kernighan (1973) is a deterministic approach

generally considered to be one of the most e�ective methods to generate optimal or near-

optimal solutions for the symmetric travelling salesperson problem. �e fourth constructive

heuristic uses the modi�ed Lin-Kerninghan heuristic implemented in Helsgaun (2000, 2006),

solving the TSP without enforcing the risk constraint. �e solution obtained by this procedure

is subjected to the modi�ed spli�ing heuristic described before.

4.2. Local search operators

�e initial solution for the rctvrp, obtained with one of the four construction heuristics de-

scribed before, serves as input for a local search heuristic, which is composed of six of the most

common local search operators for vehicle routing problems (see Bräysy and Gendreau (2005)),

which have been adapted for the rctvrp. Two-opt and Or-opt are intra-route operators, that

a�empt to improve the order in which the customers assigned to a vehicle are visited (Kinder-

vater and Savelsbergh, 1997). On the other hand, Inter-route operators change more than one

route simultaneously. In practice, these operators improve the assignment decisions, by de-

termining which vehicle has to serve a certain customer. Our algorithm implements Two-opt,
Relocate, Exchange and Cross-exchange.

Each local search operator uses a �rst improvement descent strategy. As soon as a move to

improve the current solution is applied, the local search heuristic is restarted from the new

current solution. �e heuristic stops when the solution cannot be further improved by any
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of the local search operators. Moreover, each of the local search operators is implemented

e�ciently, i.e., wherever possible, short-cut calculations are applied to e�ciently determine

whether a move results in an improved solution and what the new risk indices are for the

di�erent routes a�ected by the move. In many cases, the feasibility check can be done inO (1).
For a detailed description of the local search operators used in this paper see Appendix B.

4.3. Metaheuristic structures and diversification

�e construction algorithms and the local search heuristic are embedded in two di�erent global

metaheuristic structures: a multistart and a perturb-and-improve (or perturbation) structure.

�e multistart repeats both the construction phase and the local search phase a number of

times. �e perturbation structure only uses the construction heuristic once, and restarts the

local search heuristic from a perturbed solution.

�e perturbation operator takes the maximum percentage deterioration∆ of the objective func-

tion associated to the current solution f (x ) as a parameter. It then chooses a random route,

removes the customer with the highest demand from this route and inserts it in a new route,

thereby increasing the total distance travelled. �is step is repeated until the objective func-

tion of the perturbed solution is larger than (1+∆) · f (x ). �e multistart and the perturbation

structures are abbreviated as m- and p-, respectively. Figure 4 outlines the di�erences between

the two heuristics.

Algorithm 1: Multistart

while stopping conditions not met do
generate initial solution;

improve solution using local search;

end
report best solution;

Algorithm 2: Perturbation

generate initial solution;

while stopping conditions not met do
improve solution using local search;

perturb solution;

end
report best solution;

Figure 4: Multistart versus perturbation heuristic structure

Both structures are separately combined with three construction heuristics (CWg, NNg and

TNNg). �e TLK construction heuristic is a deterministic construction heuristic. �erefore,

it does not make sense to combine it with a multistart structure, since it would produce the

same solution a�er every restart. As a result, seven heuristic con�gurations are obtained. Al-

gorithms m-CWg, m-NNg and m-TNNg belong to the class of GRASP metaheuristics (see Feo

et al. (1991)), while the solution approaches p-CWg, p-NNg, p-TNNg and p-TLK can be classi-

�ed as Iterated Local Search (ILS) metaheuristics (see Lourenço et al. (2010)).
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5. Experimental analysis

In this section the seven metaheuristics for the rctvrp, presented in Section 4, are tested. Since

the rctvrp has not been studied before, no test instances are available in the literature. For

this purpose, we generated two sets of instances called set V (“VRP-lib”) and set R (“Random”)

which are further described in Appendix A and made available at h�p://antor.uantwerpen.be/

RCTVRP. �ese 2 sets form a library of instances for the rctvrp. �e experimental analysis is

carried out in two sequential steps described in Sections 5.2 and 5.3 respectively.

In a �rst stage, the parameters of each metaheuristic are calibrated in such a way that each

generates the best possible results when averaged over all possible parameter combinations.

�is is done by running the metaheuristics on a pre-de�ned tuning set containing a subset of

instances randomly selected from set V and set R and by analysing the results within a statis-

tical experiment. In a second stage, once the best se�ing is determined for every metaheuristic

separately, the seven calibrated algorithms are compared. �is comparison is done in two steps:

in the �rst stage all small instances contained in set R are solved, while, in the second stage,

the larger instances contained in set V are tested. All experiments have been performed on an

Intel core i7-2760QM 2.40GHz processor using a machine with 4GB RAM.

5.1. Evaluation of the RCTVRP model

In preliminary experiments, we tested the rctvrp model, described in Section 3, by using ibm

cplex (version 12.3) to solve small instances (i.e., maximum 20 nodes) contained in set R. �is

set is generated in such a way that the impact of the risk threshold and the standard deviation

of the customer demand (σd ) on the computing time can be measured. In particular several

risk levels have been used to test the rctvrp model. �e �rst risk level (RL1) is de�ned as the

minimum risk threshold that allows a feasible solution of the instance as shown in Eq. (19).

For this to be possible, the vehicle needs to be able to visit the customer that has the largest

product of its distance to the depot and its demand level.

RL1 = max

i ∈N
{di · ci0} (19)

Additional risk levels are generated by using an increasing multiplicative factor in steps of

0.5 (i.e. RL1.5 = 1.5 · RL1, . . . ,RL2 = 2 · RL1). For further details the reader is referred to

Appendix A.

�e ibm cplex solver uses an exact approach based on a branch and bound algorithm to explore

the solution space and to detect an optimal feasible solution. As expected this approach is

very time consuming and very demanding with respect to memory usage, especially when the

risk constraint is very tight. With regard to the solution cost, given a value of σd , the lower

the risk level the higher the solution cost due to routes with a lower number of customers.

Unsurprisingly, the computation time increases exponentially with the number of nodes (see

Figure 5), which suggests that for medium and large instances (like those in set V) the exact

approach is not suitable.
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Figure 5: Relationship between computation time and number of nodes

Further results suggest that both the risk level and σd are negatively correlated with the com-

putation time (see Figures 6(a) and 6(b)). Instances with either a smaller risk level or a smaller

demand variance are therefore more di�cult to be solved by ibm cplex. In particular the lower

the risk threshold, the more constrained the problem. �erefore the branch and bound algo-

rithm, used by ibm cplex, might require a deeper exploration of the search tree.

Moreover, when σd grows, the order in which the vehicle visits the nodes along its route as-

sumes a greater importance for the feasibility of the problem. As already mentioned in Section

2, the global route risk of a route r (e.g., (A,B,C,D)) is generally not the same as the global route

risk of the reversed route r̄ (e.g., (D,C,B,A)). �us, when the demand associated to the nodes

has a low standard deviation, it can happen that both routes r̄ and r are feasible, resulting in

higher computation times required by an exact approach.
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Figure 6: IBM cplex results

5.2. Calibration of the metaheuristic configurations

For each metaheuristic we tested the parameters related to the instance characteristics (in-
stance parameters) as well as parameters related to the metaheuristic con�gurations themselves

(heuristic parameters). �is allows us to study the relationship between the performance of each

tested metaheuristic, for di�erent parameter se�ings and the characteristics of the instance. In
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Table 2 an overview of these parameters is given, as well as a list of the tested values and their

total number.

Table 2: Heuristic and instance parameters

Parameter Description Values #

Instance parameters

Nodes Number of nodes 14, 18, 22, 121, 200 5

RL Risk level (see Table A.2) 1, 1.5, 2, 2.5, 3 5

Heuristic parameters

Restart/Repetition Number of restarts (multistart structure)

or number of perturbations (perturbation

structure)

as many as possible

within 5 seconds

-

TSP-Repetition Number of initial giant tours to generate.

Only the best of these tours is subject to

the spli�ing mechanism

2, 5, 10, 20 4

G-alpha Size of the restricted candidate list α
(greedy randomized selection mecha-

nism)

1, 2, 3, 4, 5 5

Perturbation Maximum deterioration ∆ of the objec-

tive function

5%, 10%, 20%, 50%,

70%

5

In order to tune each metaheuristic a tuning set was generated, separating the experimental

set of instances (used to test and compare the metaheuristics in Section 5.3) from the control

sample (used to tune the metaheuristics). In particular, this set was obtained by randomly

selecting from the same population set (both sets set V and set R) a limited number of small,

medium and big instances. Each instance in the tuning set (see Table 3) was solved using

each metaheuristic approach in a full factorial experiment (all combinations of the heuristic

parameters were tested). In order to have a fair comparison between competing algorithms,

we let each metaheuristic (with a speci�c se�ing of the heuristic parameters to be tested) run

on each instance for a �xed running time of 5 seconds.

Table 3: Instances contained in the tuning set

Nodes instance Set Risk Level

22 set V 1

121 set V 1.5

14 set R 2

18 set R 2.5

200 set V 3

Preliminary experiments revealed that all the local search operators employed in each meta-

heuristic have a signi�cant e�ect on reducing the objective function. Although the order in

which the neighbourhoods are investigated may have an impact on the quality of the obtained

solutions, we did not observe such an e�ect in some pilot analyses. For this reason, in each

metaheuristic we employed all the local search operators according to the order shown in Ta-

ble 4.
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Table 4: Order of the local search operators used inside all metaheuristics

Nλ Local Search Operator

N1 Or-opt internal
N2 Two-opt internal
N3 Exchange external
N4 Relocate external
N5 Cross-exchange external
N6 Two-opt external

To analyse the results of the experiment a full factorial ANOVA analysis was performed in

SAS. �e results obtained by each metaheuristic were analysed in terms of: (1) quality, i.e.,

the capacity to �nd good solutions given the best possible se�ing of the heuristic parameters;
(2) robustness, i.e., the capacity to obtain good solutions for di�erent levels of the heuristic
parameters.

All metaheuristics were able to �nd excellent solutions for all solved instances. �e largest

observed di�erence in the lowest objective values between any pair of metaheuristics on any

instance is 5.1%. On average, however, p-TLK and m-CWg obtained the best results, both in

terms of quality and robustness, while m-NNg performed worst. Statistical analysis of the

relationship between instance parameters and metaheuristic performance shows that the m-

CWg, p-CWg, and p-TLK metaheuristics perform be�er for large instances. If the risk level

increases (hence the risk constraint becomes less tight) the best solution approaches are m-

CWg and p-TLK.

Based on the above analysis, Table 5 summarizes the best parameter se�ings for each heuris-

tic con�guration. Of course, increasing the number of Restart/Repetition can only im-

prove solution quality, but at the expense of increasing the running time. However, our exper-

iment showed that both the GRASP metaheuristics (m-CWg, m-NNg and m-TNNg) and the ILS

metaheuristics (p-CWg, p-NNg, p-TNNg and p-TLK) converge in a relatively small number of

Restart/Repetition.

With reference to the group of ILS metaheuristics, the CWg, NNg, TNNg and TLK constructive

procedures are applied only once, at the �rst step of each metaheuristic, to �nd an initial solu-

tion. �en, the metaheuristics are restarted from a perturbed solution. In that case, since the op-

timal values, for both the parameter Perturbation and the number of Restart/Repetition,

are relatively low, the p-CWg, p-NNg, p-TNNg and p-TLK metaheuristics can lead to di�erent

solutions. If the parameter Restart/Repetition grows larger, the di�erences in the initial

solutions provided by the CWg, NNg, TNNg and TLK should be quickly overcome by the local

search operators.

5.3. Results and metaheuristic comparison

To test and compare the calibrated metaheuristics (with all parameters set to their best possible

levels) a two-step computational experiment was performed. In the �rst stage each metaheuris-
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Table 5: Optimal se�ings for the seven metaheuristics

Parameter m-CWg m-NNg p-CWg p-NNg m-TNNg p-TNNg p-TLK

TSP-Repetition - - - - 5 10 -

G-alpha 4 3 3 2 2 3 -

Perturbation - - 20% 10% - 10% 5%

tic was run 20 times on all instances of set R, allowing a maximum running time of 5 seconds

per run. �e results were compared with the optimal solutions found by using ibm cplex. In

the second stage, in order to test the behaviour of the metaheuristics on larger problems, all

instances from set V were solved.

All metaheuristics were able to �nd optimal solutions as shown in Table 6. For each meta-

heuristic we report the best percentage gap from the optimal solutions averaged over all in-

stances in set R and the average percentage gap from the optimal solutions over 20 runs.

By comparing the metaheuristic performance and the instances parameter it can be remarked

that instances are more di�cult to solve when they (1) are larger, (2) have a low risk thresh-

old, or (3) have a small demand variation. Detailed results for each instance can be found at

h�p://antor.uantwerpen.be/RCTVRP.

Table 6: Results obtained by solving the instances contained in set R

Metaheuristic Best GAP Avg. GAP

m-CWg 0.0% 0.10%

m-NNg 0.0% 1.28%

p-CWg 0.0% 0.43%

p-NNg 0.0% 0.88%

m-TNNg 0.0% 0.58%

p-TNNg 0.0% 0.69%

p-TLK 0.0% 0.09%

In the second stage of our experiments, all seven metaheuristics were tested on the larger

instances contained in set V (see Appendix A.2 for more details). Each metaheuristic was run

20 times on each instance and because of the larger dimension of the instances we allowed a

maximum running time of 30 seconds per run. Since the optimal solutions are not known, we

compared the results o�ered by each metaheuristic with the best solution obtained so far for

each instance.

�e aggregated results for each risk level are summarized in Table 7. In particular: Table 7(a)

shows for each metaheuristic the best percentage gap from the best known solutions averaged

over all instances in set V; Table 7(b) presents as a measure of the robustness of each meta-

heuristic, the percentage gap between the best and the average solutions found a�er 20 runs

and averaged over all instances in set V.

On average all metaheuristics achieved good results, �nding a good balance between quality

(the best gap from best known solutions averaged over all metaheuristics is equal to 1.24%)
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Table 7: Results obtained solving the instances contained in set V

(a) Best gap from best known solutions

Risk Level m-CWg m-NNg p-CWg p-NNg m-TNNg p-TNNg p-TLK

RL1 0.72% 1.72% 0.92% 1.33% 1.28% 1.02% 0.49%

RL1.5 0.75% 2.07% 1.22% 1.26% 2.05% 1.83% 0.37%

RL2 0.90% 2.21% 1.00% 1.56% 1.57% 1.05% 0.48%

RL2.5 1.12% 1.78% 1.16% 1.66% 1.72% 1.52% 0.77%

RL3 0.83% 1.60% 1.25% 1.50% 1.15% 1.16% 0.50%

AVERAGE 0.86% 1.88% 1.11% 1.46% 1.55% 1.32% 0.52%

(b) Average gap from best known solutions

Risk Level m-CWg m-NNg p-CWg p-NNg m-TNNg p-TNNg p-TLK

RL1 1.32% 3.60% 1.85% 3.33% 2.39% 2.69% 1.11%

RL1.5 1.67% 3.91% 2.48% 3.43% 3.19% 3.28% 1.04%

RL2 1.69% 3.54% 2.31% 3.21% 2.72% 2.76% 1.11%

RL2.5 2.37% 3.66% 2.76% 3.19% 2.95% 2.98% 1.92%

RL3 1.84% 3.89% 2.51% 3.71% 2.52% 2.65% 1.46%

AVERAGE 1.89% 3.75% 2.51% 3.38% 2.84% 2.92% 1.38%

and robustness (the average gap from best known solutions averaged over all metaheuristics

is equal to 2.67%).

�e metaheuristics p-TLK and m-CWg outperformed the other solution approaches with re-

spect to the quality of the obtained solutions. However, p-TLK showed a be�er performance

than m-CWg both in terms of solution quality (0.52% against 0.82%) and robustness (1.38%

against 1.89%). �ese results are probably due to a higher amount of Restart/Repetition
that the p-TLK can execute within the same running time than the m-CWg metaheuristic (on

average 14 times more).

�e NNg heuristic both in combination with a multistart and a perturbation heuristic exhibits

relatively poor performance compared to the other metaheuristics. �ese conclusions are in

line with the results obtained when solving the instances in set R in the �rst stage of our

experiments.

6. Conclusions

In this paper we introduced a new risk index in order to build safe routes that have a global

route risk smaller than a threshold value. We de�ned a new variant of the vehicle routing

problem, called risk-constrained cash-in-transit vehicle routing problem or rctvrp. We also

developed a mathematical formulation for the rctvrp and proposed a library containing two

sets of instances, called respectively set R and set V. Using ibm cplex as a solver, we were

able to test the accuracy of our mathematical formulation �nding optimal solutions for all

small instances contained in set R.
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In order to solve medium and large rctvrp instances in a reasonable time, we developed seven

di�erent metaheuristics. We tested these solution approaches by analysing the relationship

between the instance characteristics and the performance of the seven solution approaches.

For each metaheuristic, a statistical experiment was set up to determine the best heuristic pa-

rameter se�ings.

Using the optimal parameter se�ing of each metaheuristic we solved all instances in set R and

set V. All the algorithms were able to �nd the optimal solutions for all instances in set R and

achieved relatively small gaps from the best known solutions. In general, the best solution

approaches were p-TLK and m-CWg. However, p-TLK is to be preferred since it o�ers a be�er

solution quality and robustness.

Future research can be aimed at handling the risk as an additional objective to be minimized

and not only as a constraint. Moreover, the problem can be extended in several ways, taking

into consideration route length restrictions, time windows, precedence relations, delivery of

money to customers, etc.

A. Library of RCTVRP instances

A.1. Random instances (set R)

set R consists of small rctvrp instances with a number of nodes ranging from 4 to 20. �e set contains

180 instances, the result of combining 9 basic instances (having 4, 6, 8, 10, 12, 14, 16, 18 and 20 nodes

respectively), 5 di�erent risk levels and 4 di�erent values of the standard deviation of the demand vector

(σd ). For each instance the coordinates of each node are randomly selected from the interval [−50,50].

�e demand associated with each node is generated in such a way that the standard deviation of the

demand σd is equal to 1,4,16 and 64, depending on the instance. In addition, �ve di�erent levels of the

risk threshold are determined for each instance. �e �rst one is represented by the minimum risk level

that allows a feasible solution de�ned as RL1 = max

i ∈N
{di ·ci0}. �e remaining four levels of risk threshold

(named RL1.5, RL2, RL2.5 and RL3 respectively) are generated, starting from RL1 by using an increasing

multiplicative factor in steps of 0.5, up to 3, as shown in Table A.2.

A.2. VRP-lib instances (set V)

set V is based on 14 instances from the VRP library (available at h�p://www.or.deis.unibo.it/research

pages/ORinstances/VRPLIB/VRPLIB.html) with a number of nodes ranging from 22 to 301 (see Ta-

ble A.1).

�ese 14 basic instances are combined with 5 di�erent levels of risk threshold as summarized in Ta-

ble A.2. �erefore, the total number of instances contained in the set is equal to 70.
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Table A.1: Basic instances from the VRP library

Name Nodes
E022-04g 22

E026-08m 26

E030-03g 30

E036-11h 36

E045-04f 45

E051-05e 51

E072-04f 72

E101-08e 101

E121-07c 121

E135-07f 135

E151-12b 151

E200-16b 200

E256-14k 256

E301-28k 301

Table A.2: Risk levels

Risk Level Value
RL1 maxi∈N {di · ci0 }
RL1.5 1.5 · RL1

RL2 2.0 · RL1

RL2.5 2.5 · RL1

RL3 3.0 · RL1

B. Local search operators

In this section, the local search operators used in all metaheuristics, are described. For each of them we

report the complexity of the operator and the short-cut calculations which are used to e�ciently deter-

mine whether a move results in an improved solution and what the new risk indices are for the di�erent

routes a�ected by the move. in order to make these e�cient calculations possible, some additional data

structures are updated throughout the local search process following the idea introduced in Kindervater

and Savelsbergh (1997) on handling side constraints in arc-exchange heuristics: (1) Dr
h , the cumulated

cash carried by the vehicle vehicle when it leaves node h along route r , (2) Cr
h , the cumulative distance

travelled from the depot to node h along route r , (3) Rrh , the value of the risk index for the vehicle when

it reaches node h along r , (4) GRr , the global risk of route r , and (5) GCr
, the total length of route r .

B.1. Two-opt intra-route operator

�e two-opt intra-route operator removes two edges from a given route and reconnects the route,

thereby reversing part of the route. As mentioned, such a reversal can have an impact on the risk index,

and therefore the feasibility, of the route. Consider a two-opt move applied to route

r = (0, . . . ,A,B, . . . ,C,D, . . . ,0) (see Figure B.1 on the le�), where edges (A,B) and (C,D) are removed

and the solution is reconnected through edges (A,C ) and (B,D). �e complexity of the move is O (n2)
with the cost check performed in constant time. �is move reduces the cost of the new solution only if

the following condition holds:

cAB + cCD − cAC − cBD > 0 (B.1)
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�e two-opt intra route operator generates a new route (0, . . . ,A,C, . . . ,B,D, . . . ,0), reversing the order

of the nodes between B andC (Figure B.1 on the right). �is reversal, due to the nature of the risk index

described in Section 2, makes it impossible to develop a short-cut calculation to determine the risk index

of the new route in constant time. �e complexity of the feasibility check requires thus O (k ) where k
represents the nodes which are added, starting from node C , to create a new resulting route. �e total

complexity of the two-opt intra-route operator grows thus to O (k n2) .

0

A C

D B

0

A C

D B

Figure B.1: Two-opt intra-route operator

B.2. Or-opt intra-route operator

�e Or-opt intra route operator takes a route r = (0, . . . ,A,B,C,D, . . . ,E,F , . . . ,0) (see Figure B.2 on

the le�), and relocates a string of k consecutive nodes to another location in r . �e relocate inter-route

operator is a particular case of the Or-opt intra route operator in which k = 1. In our case we used

k = 2, moving the arc (B,C ) between nodes E and F , maintaining the same direction of the initial route.

�e complexity of the move is O (n2), while the cost evaluation can be performed in constant time. In

order to reduce the cost of the current solution this move is performed only if:

cAB + cCD + cEF − cAD − cEB − cCF > 0 (B.2)

�e global route risk for the new route (0, . . . ,A,D, . . . , E,B,C,F , . . . ,0) can be calculated in O (1) as

follows:

GRr + Dr
A · (cAD − cAB − cBC − cCD ) − (dB + dC ) · (C

r
E −C

r
D + cBC + cCD + cEB )

+Dr
E · (cEB + cBC + cCF − cEF )

(B.3)

Since all values in Eq. (B.3) are updated throughout the running of the algorithm, this feasibility check

can be performed in O (1). �e resulting route a�er the application of the move is depicted on the right

side of Figure B.2.

B.3. Two-opt inter-route operator

Let r1 = (0, . . . ,A,B, . . . ,0) and r2 = (0, . . . ,C,D, . . . ,0) (see Figure B.3 on the le�) be two routes in

the current solution. A two-opt inter-route move consists in exchanging the partial routes (B, . . . ,0)
and (D, . . . ,0) between r1 and r2, while maintaining the same direction of the initial routes. �is move

reduces the cost of the current solution only if the following condition is satis�ed:
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Figure B.2: Or-opt intra-route operator

cAB + cCD − cAD − cCB > 0 (B.4)

�e global route risk associated to the new route (0, . . . ,A,D, . . . ,0) is equal to:

Rr1

A + D
r1

A · (cAD +GC
r2 −Cr2

D ) +GR
r2 − (Dr2

D − dD ) · (GC
r2 −Cr2

D ) − R
r2

D (B.5)

Similarly, the global route risk of the new route (0, . . . ,C,B, . . . ,0) is:

Rr2

C + D
r2

C · (cCB +GC
r1 −Cr1

B ) +GR
r1 − (Dr1

B − dB ) · (GC
r1 −Cr1

B ) − R
r1

B (B.6)

Because the direction of the initial routes is not inverted, the feasibility check can be performed in

O (1). Since the cost reduction check can also be performed in constant time, the total complexity of the

Two-opt inter-route operator is thus equal to the complexity of the neighbourhood exploredO (n2). �e

resulting routes are shown on the right side of Figure B.3.

0 0

A D

C B

0

A

0

D

C B

Figure B.3: Two-opt inter-route operator

B.4. Relocate inter-route operator

Starting from routes r1 = (0, . . . ,A,B,C, . . . ,0) and r2 = (0, . . . ,D,E, . . . ,0) contained in the current

solution (see Figure B.4 on the le�), the relocation of node B from r1 to r2, while maintaining the same

direction of the two initial routes, is desirable only if the following condition is satis�ed:

cAB + cBC + cDE − cAC − cDB − cBE > 0 (B.7)
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�e complexity of the move is O (n2) with the cost reduction check and the feasibility check both per-

formed inO (1). Taking into account the triangular inequality, it is clear that the risk constraint is always

satis�ed for route (0, . . . ,A,C, . . . ,0). �e global route risk associated to the new route

(0, . . . ,D,B,E, . . . ,0) can be calculated in O (1) time as:

GRr2 + Dr2

D · (cDB + cBE − cDE ) + dB · (GC
r2 −Cr2

E + cBE ) (B.8)

If this value is lower than the risk threshold, the relocation of node B from r1 to r2 can be performed

obtaining the routes shown on the right side of Figure B.4.
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0
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0
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0

D E

Figure B.4: Relocate inter-route operator

B.5. Exchange inter-route operator

Let r1 = (0, . . . ,A,B,C, . . . ,0) and r2 = (0, . . . ,D,E,F , . . . ,0) be two routes in the current solution (see

Figure B.5 on the le�). �is operator exchange nodes B and E between these routes while maintaining

the same direction of the two initial routes. In order to improve the current solution, the following

condition must hold:

cAB + cBC + cDE + cEF − cAE − cEC − cDB − cBF > 0 (B.9)

�e newly obtained routes (0, . . . ,A,E,C, . . . ,0) and (0, . . . ,D,B,F , . . . ,0) have the following global

route risks respectively:

GRr1 + Dr1

A · (cAE − cAB + cEC − cBC ) + dE · cEC − dB · cBC + (dE − dB ) · (GC
r1 −Cr1

C ) (B.10)

and

GRr2 + Dr2

D · (cDB − cDE + cBF − cEF ) + dB · cBF − dE · cEF + (dB − dE ) · (GC
r2 −Cr2

F ) (B.11)

which both have to be smaller than the risk threshold. Both values can be calculated in O (1). In case

the exchange is performed, the resulting routes are shown on the right side of Figure B.5. Given that

the feasibility check can be performed in O (1) as well as the check on the cost reduction, the overall

complexity of the algorithm is thus O (n2) (see Osman (1993) for more details).
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Figure B.5: Exchange inter-route operator

B.6. Cross-exchange inter-route operator

�e Cross-exchange inter-route operator is similar to the Exchange inter-route operator, but a string of

two consecutive nodes is exchanged between a couple of routes. Performing the exchange of arcs (B,C )
and (F ,G ) between routes r1 = (0, . . . ,A,B,C,D, . . . ,0) and r2 = (0, . . . ,E,F ,G,H , . . . ,0) (see Figure B.6

on the le�), while maintaining the original direction of these routes, is desirable only if:

cAB + cCD + cEF + cGH − cAF − cGD − cEB − cCH > 0 (B.12)

�e global route risk of the new routes (0, . . . ,A,F ,G,D, . . . ,0) and (0, . . . ,E,B,C,H , . . . ,0) (see Fig-

ure B.6 on the right) can be calculated in O (1) as follows:

GRr1 + Dr1

A · (cAF − cAB + cFG − cBC + cGD − cCD ) + dF · (cFG + cGD ) − dB · (cBC + cCD )

+ (dF + dG − dB − dC ) · (GC
r1 −Cr1

D ) + dG · cGD − dC · cCD
(B.13)

and

GRr2 + Dr2

E · (cEB − cEF + cBC − cFG + cCH − cGH ) + dB · (cBC + cCH ) − dF · (cFG + cGH )

+ (dB + dC − dF − dG ) · (GC
r2 −Cr2

H ) + dC · cCH − dG · cGH
(B.14)
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Figure B.6: Cross-exchange inter-route operator

�e overall complexity of the move is O (22 n2) given that the cost check and the feasibility check can

both be performed in O (1). For more details about the complexity of this move the reader is referred to

the λ-interchange move described in Osman (1993).
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