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a b s t r a c t

Real world applications for vehicle collection or delivery along streets usually lead to arc routing problems,

with additional and complicating constraints. In this paper we focus on arc routing with an additional

constraint to identify vehicle service routes with a limited number of shared nodes, i.e. vehicle service

routes with a limited number of intersections. This constraint leads to solutions that are better shaped for

real application purposes. We propose a new problem, the bounded overlapping MCARP (BCARP), which is

defined as the mixed capacitated arc routing problem (MCARP) with an additional constraint imposing an

upper bound on the number of nodes that are common to different routes. The best feasible upper bound

is obtained from a modified MCARP in which the minimization criteria is given by the overlapping of the

routes. We show how to compute this bound by solving a simpler problem. To obtain feasible solutions for

the bigger instances of the BCARP heuristics are also proposed. Computational results taken from two well

known instance sets show that, with only a small increase in total time traveled, the model BCARP produces

solutions that are more attractive to implement in practice than those produced by the MCARP model.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Capacitated arc routing mathematical models are often used to

ormulate delivering or collecting problems where the demands are

ssociated with the links of the underlying network.

There are many variants of these problems. In the typical capaci-

ated arc routing problem (CARP) the objective is to identify minimum

ost (or time) routes to be traversed by the vehicles of a given fleet to

erform the service in the streets of a network, starting and ending at

depot. The street segments demanding for service are called tasks,

nd have a given demand to be satisfied by one of the vehicles. The

eet is homogeneous, and the vehicles capacity must be respected.

The CARP was introduced by Golden and Wong (1981), and orig-

nally defined on undirected graphs. Since then, several CARP varia-

ions and generalizations have been reported in the literature, many

f them motivated by real life applications, like waste collection,

ostal distribution or winter gritting. Dror (2000), Wøhlk (2008), and

orberán and Prins (2010) survey the research on the CARP and its

ariations, as well as their applications.
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The Mixed CARP (MCARP) generalizes the CARP for mixed

raphs, that is, graphs with arcs and edges. The MCARP is more

uited to situations where the direction of the traversals has to be

aken into account. This is the case of household waste collection

see e.g. Bautista, Fernández, & Pereira, 2008; Belenguer, Benavent,

acomme, & Prins, 2006; Ghiani, Guerriero, Improta, & Musmanno,

005; Gouveia, Mourão, & Pinto, 2010; Mourão & Amado, 2005;

ourão, Nunes, & Prins, 2009), or road network maintenance (see e.g.

maya, Langevin, & Trépanier, 2007). The MCARP is NP-hard, since it

eneralizes the CARP, which is known to be NP-hard (Golden & Wong,

981).

Since this work is motivated by a refuse collection problem,

enceforward the task demands represent the amounts of refuse to

ollect.

Real world applications often require other constraints that must

e added to the basic MCARP model. In some cases, it is not even easy

o decide how to measure the additional specifications. Examples of

uch situations arise when workloads need to be equitably distributed

mong the vehicles, or different vehicle routes have to be constrained

o separated geographical regions. On the recent paper of Ghiani,

aganà, Manni, Musmanno, and Vigo (2014) strategic and tactical

ssues involving these type of constraints are surveyed for solid waste

anagement systems.

Also, too many intersections of the service areas of different

ehicles can complicate the activities to be held in a region (see

http://dx.doi.org/10.1016/j.ejor.2015.01.042
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Fig. 1. lpra2 instance – optimal solutions for three vehicles.

t

w

p

t

n

b

i

d

i

t

n

w

t

w

i

s

s

c

s

“

c

d

(

i

(

t

a

n

N

f

p

M

g

t

S

e

t

d

r

a

i

e.g., Mourgaya & Vanderbeck, 2007; Muyldermans, Cattrysse,

Van Oudheusden, & Lotan, 2002). According to Kim, Kim, and Sahoo

(2006) and Poot, Kant, and Wagelmans (2002) for instance, solutions

with an excessive number of vehicle crossovers tend to be rejected by

the practitioners. Kim et al. (2006) also remark that the overlapping

of service areas is strongly related to the intersection of the vehi-

cle routes. The number of intersections may decrease if each vehicle

service area is concentrated in a geographical region.

An adequate definition of these “nice” regions (sets of arcs and

edges) is not easy to state since besides needing to be separated and

workload balanced, their shape should have other “nice” character-

istics. These, apart from being subjective, also allow practitioners to

accept or reject a solution after a single viewing. A survey on measures

used in the literature for the classification of the regions is provided

later in Section 2.

Two of these “attractive” characteristics for the service areas are:

(i) connectivity and (ii) compactness. While connectivity can be clearly

defined as the possibility of traveling between any two points of a

region without leaving it, there are different measures of the com-

pactness of a region (MacEachren, 1985). In general, these measures

compare the region against an “ideal compact shape”, such as a circle

or a square, or they are based on the distances between points in the

region – higher distances mean, in general, less compact regions.

Typical solutions for MCARP models are usually very unsatisfac-

tory in terms of the above criteria. Fig. 1a depicts the optimal MCARP

solution for instance lpra2 (see Section 6.1 for a description of the data

set), where we can see the overlap of several different vehicle routes

(identified by a different color) and very irregular (thus, not “nice”)

regions served by each route. Furthermore, we even observe discon-

nected sequences of tasks within each vehicle service. Thus, solutions

resulting from solving the “pure” MCARP can be very inadequate to

implement in practice.

The disconnected components observed in the MCARP solutions

has motivated our first attempt to improve the shape characteristics

of the routes. In this approach, we have imposed constraints guar-

anteeing that the set of tasks within each route are connected. We

omit from this paper the details of how we have modeled and imple-

mented this approach. However, we refer the reader to Fig. 1b, which

illustrates the solution for the instance lpra2 obtained after adding

such “connectivity” constraints to the model. It is quite clear that this

solution, despite having connected sets of tasks, still exhibits several

undesirable situations such as vehicle routes that overlap and spread

(being non compact) in the collection zone.

This attempt to model the “nice” features of the routes by adding

connectivity constraints illustrates what we have mentioned before,

namely that it may not be straightforward to measure and describe
he “attractiveness” specification of the routes, in a mathematical

ay.

Motivated by this unsuccessful experiment, in this paper we pro-

ose, study and test a new model that uses a constraint simpler

o formulate and that is based on a different way to measure the

on-overlapping of the vehicle routes. We call this new problem the

ounded overlapping MCARP (BCARP). The overlapping is measured

n terms of the number of nodes that are common to the tasks of

ifferent routes.

One motivation for considering this measure is as follows. We may

nterpret the set of these common (shared) nodes as representing

he boundaries between the regions served by each route, and their

umber as the length of the corresponding boundaries. Thus, one

ay to promote “nice” (disjoint and compact) regions is by limiting

he length of their boundaries.

Fig. 1c depicts the optimal BCARP solution for instance lpra2, where

e have included the new constraint on non-overlapping routes. It

s interesting to compare the three solutions in the figure in order to

ee the advantage of the latest approach, in terms of compactness and

eparation of the regions served by each route. Moreover, although

onnectivity was not enforced in the BCARP model, the resulting

olution has connected sets of tasks in each route.

In this work we consider three main measures to evaluate the

nice” characteristics of solutions. While the first one measures the

onnectivity, the other two try to measure the compactness, as

etailed in Section 5.

This paper is organized as follows. After the review literature

Section 2), the relevant notation is presented in Section 3.1. Next,

n Section 3.2 we review a model for the MCARP from Gouveia et al.

2010) which will be used as a backbone to model the more restric-

ive version of the MCARP here studied. In Section 3.3 we describe

variant where we want to minimize the number of shared nodes,

amed as the non overlapping MCARP (NOMCARP). The value of the

OMCARP objective function is then used to define the upper bound

or the number of overlapping nodes in the MCARP. In Section 3.4 we

ropose a model for the BCARP that is obtained from combining the

CARP model with constraints from the NOMCARP, and a constraint

uaranteeing the referred bounded overlapping. Section 4 is devoted

o the methodology employed to find feasible solutions for the BCARP.

olutions for small sized instances are obtained by solving the mod-

ls in sequence as described above. Heuristics are developed and used

o obtain solutions for the larger sized instances. The measures intro-

uced to evaluate the solutions (Section 5) precede the computational

esults. These involve two sets of well known benchmark instances

nd are presented and analyzed in Section 6, before the conclusions,

n Section 7.
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which is the MCARP with an additional constraint on the number of
. Literature review

This section reviews the literature on the solution methodolo-

ies and the numerical measures used to obtain and evaluate the

nice” attributes for zones, concerning regions partitioning for routing

pplications.

When partitioning a region in smaller “nice” zones either for arc

r node routing applications, three main approaches have been dis-

ussed in the literature. In the first approach, the partitioning and the

outing problems are sequentially solved, using multi phase methods

Mourão et al., 2009; Teixeira, Antunes, & Sousa, 2004). In the second,

he partitioning and the routing are solved together as a whole prob-

em (Kim et al., 2006; Mourão et al., 2009; Ramos & Oliveira, 2011).

n the last one, only the partitioning problem is solved. In some cases,

he partitioning is solved keeping in mind that the application is an

rc routing problem (Assis, Franca, & Usberti, 2014; Muyldermans,

attrysse, & Van Oudheusden, 2003; Muyldermans et al., 2002; Per-

ier, Langevin, & Campbell, 2008) and in others that the application

s on a node routing problem (Gonzalez-Ramírez, Smith, Askin, Mi-

anda, & Sánchez, 2011; Jarrah & Bard, 2012; Lei, Laporte, & Guo,

012; Lin & Kao, 2008; Mourgaya & Vanderbeck, 2007; Ríos-Mercado

Fernández, 2009; Salazar-Aguilar, Ríos-Mercado, González-Velarde,

Molina, 2012).

Among the attributes regarded as relevant when designing zones

or routing applications we may highlight the compactness, the non-

verlapping, and the connectivity within each zone.

Compactness is one of the most frequently mentioned character-

stics, although not always clearly defined. Furthermore, the meaning

f compactness slightly differs from author to author, being, for in-

tance, associated with: (i) zones shapes as close as possible to circles,

quares or rectangles (Gonzalez-Ramírez et al., 2011; Jarrah & Bard,

012; Lin & Kao, 2008); (ii) geographically or visually compact zones

Lei et al., 2012; Perrier et al., 2008); or (iii) the proximity between

he demand entities in the same zone (Assis et al., 2014; Kim et al.,

006; Muyldermans et al., 2003; Poot et al., 2002; Ríos-Mercado &

ernández, 2009; Salazar-Aguilar et al., 2012; Tang & Miller-Hooks,

006).

Several compactness measures have thus been considered in the

iterature, whether to evaluate the final solutions, to evaluate com-

actness during the execution of the solution methods, or both.

enerically, these measures try to evaluate the proximity between

lements belonging to the same zone, as next detailed.

We may find measures based on maximum travel times (Gonzalez-

amírez et al., 2011; Mourão et al., 2009); on maximum Euclidean

istances (Assis et al., 2014; Ríos-Mercado & Fernández, 2009); on

he sum of the Euclidean distances (Kim et al., 2006; Mourgaya &

anderbeck, 2007; Salazar-Aguilar et al., 2012); on the averages and

tandard deviations of distances, or travel times between customers,

r to a reference point in a zone (Mourão et al., 2009; Poot et al., 2002;

ang & Miller-Hooks, 2006); on the perimeters of the zones (Lei et al.,

012); or even perimeters and areas of the zones (Lin & Kao, 2008).

arrah and Bard (2012) define clusters of clients in the plane in such

way that the ratio of the difference between the maximum and the

inimum x coordinate and the difference of the maximum and the

inimum y coordinate lies within a given interval. Poot et al. (2002)

nd Tang and Miller-Hooks (2006) also consider the average number

f customers in a zone which are closer to the reference point of a

ifferent zone rather than to its own, representing costumers who are

ot well positioned. While Poot et al. (2002) reference point refers to

he center of gravity, Tang and Miller-Hooks (2006) opt to use the

ustomer closer to this point, named as the median of the tour. Tang

nd Miller-Hooks (2006) compute the measures based on network

ravel times instead of Euclidean distances.

In some cases, these evaluation compactness measures are also

mbedded in the heuristic processes (Assis et al., 2014; Gonzalez-

amírez et al., 2011; Kim et al., 2006; Lei et al., 2012; Ríos-Mercado
Fernández, 2009; Salazar-Aguilar et al., 2012; Tang & Miller-Hooks,

006). In other cases, authors devise compactness indicators only

mbedded in the solution methods (Lin & Kao, 2008; Mourgaya &

anderbeck, 2007). Although not specifically devised for routing ap-

lication, it is worth to refer compactness measures that compare the

egion with that of an ideal shape (Bozkaya, Erkut, & Laporte, 2003;

acEachren, 1985).

Non-overlapping may be defined as zones with clear geographi-

al borders (Cattrysse, Van Oudheusden, & Lotan, 1997; Muyldermans

t al., 2003), from routes overlapping (Kim et al., 2006; Lu & Dessouky,

006; Poot et al., 2002; Tang & Miller-Hooks, 2006) or boundary cross-

ng points (Lin & Kao, 2008). However, the literature has been scarce

n the evaluation of zones overlapping. Poot et al. (2002) and Kim

t al. (2006) evaluate the overlapping of the solutions by counting

he number of nodes in more than one convex hull of clusters of

odes (each cluster formed by the stops of a route). Lu and Dessouky

2006) define the crossing length percentage of a trip as the sum of

he crossed length of all the crossings divided by the total length of

he trip. Tang and Miller-Hooks (2006) claim that by minimizing the

umber of customers closer to the reference point of another tour,

hey also minimize the overlapping of the tours. In the mathemat-

cal model proposed by Lin and Kao (2008), an upper limit for the

umber of boundary crossing points is imposed, and the number of

uch points is also used to evaluate the overlapping of the final solu-

ions. These authors consider a predefined set of small land parcels,

epresenting small collection areas regarding the amount of refuse to

ollect, and with the road lengths per parcel previously computed.

he aim is to assign the parcels into balanced regions, regarding the

efuse to collect and the road lengths. In the models here proposed no

redefined routes or areas are imposed, and the crossing points are

etermined by the models.

Matis (2008) measures the visual attractiveness of a tour by com-

ining, in only one equation, the number of crossings among different

outes; the compactness (defined from the distances between cus-

omers in the same route); and the number of customers in a route

hich are closer to the center of gravity of another route.

Note that in this paper, the definition of attractive routes does not

onsider the location of the depot (the same applies to the definitions

iven in the previous references). This implies that the design and cost

f the optimal solutions may be influenced by the time taken traveling

rom the depot to the first service, and from the last service back to

he depot. On the other hand, the alternative approach (incorporating

he location of the depot in the definition of attractive routes) may

roduce lopsided shaped routes or even routes with more odd shapes.

computational study to compare the two approaches may shed

ome light on the advantages and disadvantages of each approach.

uch is the purpose of future work.

Zones contiguity is generally related to the connectivity between

ll of its demand entities (Assis et al., 2014; Muyldermans et al., 2003;

errier et al., 2008) or the possibility to reach all of them within the

one (Ríos-Mercado & Fernández, 2009; Salazar-Aguilar et al., 2012).

In this paper, we propose an exact method, based on a model that

imultaneously designs sectors and builds routes, and a heuristic so-

ution method which sequentially solves the two problems. In fact,

y solving a MCARP with an upper bound on the number of overlap-

ing areas, we are able to design “nice” routes. These methods may

hen directly be applied to a sectors design problem, if each sector is

ssigned to one vehicle.

. Models

In this section we review and present models for three related

roblems, (i) the MCARP; (ii) the non overlapping MCARP (NOM-

ARP), which also identifies vehicle routes as in the MCARP, but

he minimization criteria is on non-overlapping; and (iii) the BCARP,
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overlappings. We also show that the NOMCARP may be solved by a

simpler model, with the same objective, but only requiring the alloca-

tion of tasks to the vehicle routes (the design of routes is not required).

The new and simpler model is called as the non overlapping routes

model (nor).

For simplicity, and without loss of generality, we assume that

no demand links are incident into the depot. In the other cases, a

dummy depot is considered, only linked with the depot, and from

where vehicle routes must start and end, being the depot treated as

a common node. We also considered that each zone is served by only

one vehicle route.

3.1. Notation

The initial mixed network, (N, AD, AR, ER), includes deadheading,

i.e. links with no demand for service, and required (or demand) links.

N is the set of nodes, representing the depot (node s), and street

crossings or alleys. All deadheading links are represented by arcs in

AD. To identify the links having a service to be performed, and called

required links or tasks, we use the sets AR and ER, corresponding to

the set of the required arcs and the set of required edges, respectively.

For the directed formulations that we will use, we define the di-

rected graph G = (N, A) as next detailed. All links are represented

by arcs in A = AD ∪ R where R = AR ∪ AER
is the set of required arcs,

with AER
= {(i, j), (j, i) : {i, j} ∈ ER ∧ i < j}. That is, in the directed graph

G = (N, A), each required edge {i, j} ∈ ER is replaced by two oppo-

site arcs, (i, j) and (j, i), with the same associated data as the origi-

nal edge. Only one of these two arcs is required to be served. Thus,

|R| = |AR| + 2|ER|, and |AR| + |ER| is the number of tasks.

We assume that both G and its subgraph spanned by N \ {s} are

strongly connected graphs. For simplicity, all nodes in N \ {s} are end-

points of at least one task. Thus, nodes i �= s which are not endpoints

of a task are removed from the network and connections in the origi-

nal network using these nodes are reestablished by adding arcs with

durations corresponding to shortest deadheading path values in the

original network.

The following notation is also needed to describe the models.

• For each link, arc (i, j)or edge {i, j}, dij > 0 is its deadheading time,

i.e., the time needed to traverse the street without serving it. Addi-

tionally, each required link (i, j)or {i, j} has an associated demand,

qij > 0, and a service time, tij ≥ dij.
• A fleet of P identical vehicles is available, each with a capacity of

W . The time needed to empty a vehicle is λ.
• v(.) is the optimal value of model (.) or the value of a feasible

solution obtained with model (.).

3.2. MCARP model

Here, we briefly review the model of Gouveia et al. (2010), named

by (mcar).

Thus, for each route p = 1, . . . , P, let:

• x
p
ij

be 1 if arc (i, j) ∈ R is served by route p, and 0 otherwise.

• y
p
ij

be the number of times that arc (i, j) ∈ A is deadheaded by

route p.
• f

p
ij

be the flow in arc (i, j) ∈ A, related to (part of) the route demand,

needed to guarantee the routes connectivity.

(mcar)

min

P∑
p=1

⎛
⎝ ∑

(i,j)∈A

dijy
p
ij

+
∑
(i,j)∈R

tijx
p
ij

+ λ
∑

(s,j)∈A

y
p
sj

⎞
⎠ (1a)

s.t.:

P∑
p=1

x
p
ij

= 1 ∀(i, j) ∈ AR (1b)
x

P∑
p=1

(
x

p
ij

+ x
p
ji

)
= 1 ∀(i, j) ∈ AER

: i < j (1c)

∑
j:(i,j)∈A

y
p
ij

+
∑

j:(i,j)∈R

x
p
ij

=
∑

j:(j,i)∈A

y
p
ji

+
∑

j:(j,i)∈R

x
p
ji

∀i ∈ N; ∀p (1d)

∑
(s,j)∈A

y
p
sj
� 1 ∀p (1e)

∑
j:(j,i)∈A

f
p
ji

−
∑

j:(i,j)∈A

f
p
ij

=
∑

j:(j,i)∈R

qjix
p
ji

∀ i ∈ N \ {s}; ∀p (1f)

∑
(s,j)∈A

f
p
sj

=
∑
(i,j)∈R

qijx
p
ij

∀p (1g)

f
p
ij
� W

(
y

p
ij

+ x
p
ij

)
∀(i, j) ∈ R; ∀p (1h)

f
p
ij
� Wy

p
ij

∀(i, j) ∈ AD; ∀p (1i)

x
p
ij

∈ {0, 1} ∀(i, j) ∈ R; ∀p (1j)

y
p
ij
� 0 and integer ∀(i, j) ∈ A; ∀p (1k)

f
p
ij
� 0 ∀(i, j) ∈ A; ∀p (1l)

The objective function (1a) minimizes the total traveling time,

iven by the deadheading, the service and the dump times. Con-

traints (1b) and (1c) ensure that all the tasks are served by vehicle

outes; (1d) impose the continuity of routes at each node; (1e) are

eeded to adequately charge the dump cost in the objective func-

ion and to ensure that no more than P vehicles are used; (1f) and

1g) are flow conservation constraints, that together with the linking

onstraints (1h)–(1i) force the connectivity of the routes. Constraints

1h)–(1i) are also used to guarantee that each route total demand is

ompatible with the vehicles capacity, W .

Since this model has symmetric optimal solutions, we have tried

ymmetry-breaking inequalities similar to the ones suggested in

enavent, Corberán, Gouveia, Mourão, and Pinto (2014). However,

s no more instances were solved by its inclusion in the models we

rooped this additional constraints in the models here proposed.

.3. Models for the non overlapping MCARP (NOMCARP)

In this subsection we describe two models for the NOMCARP,

amed as (nomcar) and (nor). The objective is to assign tasks (cor-

esponding to arcs or edges) to vehicle routes while minimizing the

verlapping. One way to measure this overlapping is by counting the

umber of routes each end node of a task is assigned to.

.3.1. Model (nomcar)

For p = 1, . . . , P, and o ∈ N, let n
p
o be a binary variable, indicating

hether node o is an end node of a task assigned to route p. With

hese variables the expression
∑

p=1,...,P n
p
o represents the number of

outes node o belongs to. Thus, in our models, the summation term (2)

epresents the number of routes graph nodes belong to, and is used

o measure the overlapping.

o∈N

P∑
p=1

n
p
o (2)

To obtain a model to minimize the overlapping of the vehicle

outes, we can replace the objective function (1a) of the MCARP model

y the minimization of (2),

in
∑
o∈N

P∑
p=1

n
p
o (3)

nd include the following constraints, which force n
p
o to be one if node

is an end node of a task belonging to vehicle route p:

p
ij
� n

p
o ∀(i, j) ∈ AR; o = i, j; ∀p (4a)
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p
ij

+ x
p
ji
� n

p
o ∀(i, j) ∈ AER

: i < j ; o = i, j; ∀p (4b)

p
o ∈ {0, 1} ∀ o ∈ N; ∀p (4c)

Let us denote by (nomcar) the model resulting from the (mcar)

odel by replacing the objective function (1a) with (3), and including

he additional constraints (4a) to (4c).

.3.2. Model (nor)

We observe that for the new given objective (3) we need no infor-

ation about the vehicle routes that are used to visit the tasks (this

tatement will be clarified later on). Hence, we can reformulate and

implify the model as follows.

For p = 1, . . . , P, let za
p
ij

be a binary variable equal to one iff task

i, j) ∈ AR is assigned to vehicle p, and let ze
p
ij

be a binary variable equal

o one iff task {i, j} ∈ ER is assigned to vehicle p. Thus, variables za
p
ij

nd ze
p
ij

correspond, respectively, to x
p
ij

for (i, j) ∈ AR, and to x
p
ij

+ x
p
ji

for

i, j} ∈ ER in the previous models (mcar) and (nomcar).

Consider the following model:

nor)

NO = min
∑
o∈N

P∑
p=1

n
p
o (3)

.t.:

P∑
p=1

za
p
ij

= 1 ∀(i, j) ∈ AR (5a)

P∑
p=1

ze
p
ij

= 1 ∀{i, j} ∈ ER (5b)

∑
(i,j)∈AR

qijza
p
ij

+
∑

{i,j}∈ER

qijze
p
ij
� W ∀p (5c)

za
p
ij
� n

p
o ∀(i, j) ∈ AR; o = i, j; ∀p (5d)

ze
p
ij
� n

p
o ∀{i, j} ∈ ER; o = i, j; ∀p (5e)

za
p
ij

∈ {0, 1} ∀(i, j) ∈ AR; ∀p (5f)

ze
p
ij

∈ {0, 1} ∀{i, j} ∈ ER; ∀p (5g)

n
p
o ∈ {0, 1} ∀ o ∈ N; ∀p (4c)

n the (nor) model the objective function (3) minimizes the number

f nodes visits. Constraints (5a) and (5b) assign each task to only one

ehicle, and (5c) ensures that this assignment respects the vehicles

apacity. Linking constraints (5d) and (5e) are needed to relate the

ssigned tasks with the task nodes variables.

In order to see that the two models, (nor) and (nomcar), are equiv-

lent, we state and prove (see Appendix A) the following result.

roposition. Given a feasible solution of any one of the models (nor)

nd (nomcar), there is a feasible solution of the other model, with the

ame objective value.

.4. Bounded overlapping MCARP model (bcar)

We can use the optimal value of the problem defined in Section 3.3

o define a tight upper bound for the non-overlapping constraint in

he model for the BCARP, named as (bcar). As referred before, the

CARP is a MCARP with a bounded number of overlapping areas.

Besides (1a)–(1l), which are taken from the MCARP model, we add

constraint, (6), imposing the previously mentioned upper bound,

O, on the number of times that the nodes are shared, and the linking

onstraints between node and routing variables are also needed and
tated by (4a)–(4c).

o∈N

P∑
p=1

n
p
o � NO (6)

As we will see in the computational results, the MIP solver, within

time limit of one hour, is not able to find feasible solutions for

he biggest tested instances with the (bcar) model. In order to over-

ome this disadvantage we have developed a heuristic, described in

ection 4.

. Solving BCARP instances

To solve instances of the BCARP we hopefully solve the two mod-

ls, (nor) and (bcar) (see Section 4.1). However, in situations where

he MIP solver does not provide the optimal solution within the pre-

cribed time limit for one of the two models, we use heuristics as

etailed in Sections 4.2 and 4.3. In the computational results section,

e compare the solutions produced by the heuristic and by the (bcar)

odel, when possible.

.1. Solving the BCARP using models (nor) and (bcar)

In theory, optimal solutions for BCARP instances may be obtained if

MIP solver is sequentially applied to the two models. To solve a given

nstance, we first solve the corresponding (nor) model to identify

he upper bound on the number of shared nodes, NO. The model

bcar) is then solved. This methodology, as it will be computationally

onfirmed in Section 6, only works for small instances, since the MIP

olver used (CPLEX) fails to solve (bcar) or even (nor) for medium

ize instances (from 30/40 nodes, 100/90 links and 11 vehicles for

val instances and from 145 nodes, 360 links and 8 vehicles for lpr

nstances) within the time limit of one hour. Feasible solutions for the

igger instances are found through the heuristics next detailed.

.2. Solving (nor)

Whenever the MIP solver fails to solve to optimality or even to find

feasible solution for (nor) we resort to a heuristic. With that pur-

ose, P seed-tasks are first selected, chosen far from the depot and

rom each other, and assigned to the vehicles. Let vp be the seed-task

f vehicle p. A new objective function which measures the distances

etween tasks and the seed-tasks is defined. Let distuvp be the undi-

ected distance between task u = (i, j) ∈ AR or u = {i, j} ∈ ER and the

eed-task vp ∈ AR ∪ ER, i.e., the shortest path deadheading time com-

uted ignoring the orientation of the arcs, and not including du nor

vp . The objective function (3) is replaced by

in

P∑
p=1

⎛
⎝∑

u∈AR

distuvp
za

p
u +

∑
u∈ER

distuvp
ze

p
u

⎞
⎠ (7)

nd a feasible solution to (nor) is obtained by (7) within constraints

5a), (5b), (5c), (5f) and (5g).

We first observe that this variant of the (nor), named as (hnor), is

asier to solve since we have omitted the variables n
p
o and the cor-

esponding constraints. Moreover, with the fixed seeds and (7) the

ymmetric assignments of the (nor) model are avoided. The under-

ying idea of the new objective is to fix tasks that are close to the

eed-tasks.

The optimal solution for (hnor) is then used as follows: tasks such

hat the two end-nodes belong to only one vehicle in the (hnor) solu-

ion are fixed to that vehicle, and we then solve a restricted (nor) with

hese tasks fixed. By first solving the (hnor), the restricted (nor) be-

omes easier to solve (through the fixing of variables – corresponding

o task assignments).

The value of NO to be used in the (bcar) model, and in the 2-

hase heuristic described in the next section, is then the best of the
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Fig. 2. Hypothetical instance and “ideal” solution with |N| = 169 and |routes| = 9. In

this case (
√|routes| +

√|N| − 1)2 − |N| = 56.

Table 1

lpra2 instance – characteristics of the optimal solutions.

Connectivity

(mcar) model (bcar)

Number of connected components 6.0 3.0 3.0

CI 2.0 1.0 1.0

Number of shared nodes 85.0 78.0 59.0

ATD 98.7 87.6 61.1

ROI 2.9 2.2 0.5
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attractive to the users.
following two values: (i) the overlapping in the solution described

above, computed by (2); (ii) the best value obtained by the MIP solver

for the (nor) model.

4.3. A 2-phase Heuristic for the BCARP

A feasible solution for (bcar) can be obtained by solving a mixed

arc routing problem per vehicle, after solving (nor). In the first phase,

model (nor) is used to obtain an assignment of tasks to vehicles, and

then, in the second phase, this assignment is used to build the routes

of each vehicle.

Note that each vehicle subproblem is non-capacitated, as (nor)

assigns tasks taking vehicle capacities into account. The resulting

subproblems are thus substantially easier to solve than the original

MCARP, since the values of the variables for the assignment of tasks

to routes are already chosen, except for the direction for servicing the

required edges.

In the computational section we compare, whenever possible, the

solutions obtained by this heuristic with the solutions obtained with

(bcar).

5. “Nice” solution measures

As referred, “nice” solutions stand for connected and compact so-

lutions. To evaluate the connectivity and the compactness of a solu-

tion we propose three measures. We opted for normalized measures

as this helps examining and classifying solutions of different char-

acteristics, as well as isolated solutions. The proposed measures are

designed mainly to evaluate solutions in urban environments. It is of-

ten the case in many cities that the geometry of streets is rectangular,

and |AD| is small when compared with |AR ∪ ER|.
• Connectivity Index (CI) is the average number of connected com-

ponents (CC) of the set of tasks in the service zones, given by

CI = CC
|routes| , where |routes| is the number of routes of the solution

under evaluation. In the “ideal” situation the tasks of each zone

are all connected and the value of CI is equal to one.
• Average Tasks Distance (ATD) is the average of the shortest path

deadheading times between tasks within service zones, computed

by Eq. (8),

ATD = 1

|routes|
P∑

p=1

∑
a,b served by p

Dab

|taskpairs| (8)

where |taskpairs| = |AR∪ER|×(|AR∪ER|−|routes|)
2×|routes|2 represents an approxi-

mation for the mean value of the number of task pairs per route,

and Dab is the minimum deadheading time from task a to task b,

not including da nor db. These values represent the minimum be-

tween at most eight shortest deadheading travel times, as we are

dealing with mixed graphs. In fact, if both a, b ∈ ER, eight distances

are considered to compute Dab (see Mourão et al., 2009), resulting

in a symmetric distance matrix D. Note that, “nicer” solutions are

obtained with a smaller ATD value. We can observe that routing

distances tend to increase when the shape of the service zones

deviates from “nice” compact shapes such as circles or squares.
• Routes Overlapping Index (ROI), given by Eq. (9), measures the node

overlapping in the solution obtained when compared with the one

in an “ideal” solution. Again, smaller values of this index corre-

spond to “nicer” solutions.

ROI = NO − |N|
(
√|routes| +

√|N| − 1)2 − |N| (9)

In Eq. (9), NO − |N| is the node overlapping of the solution under

evaluation, with NO here computed by (2), while (
√|routes| +

√|N| −
)2 − |N| represents the node overlapping in an “ideal” solution for

n hypothetical instance, as next detailed.

In order to motivate the index ROI, we consider a hypothet-

cal instance with |N| = n2 nodes and |routes| = r2 service zones,

ith n and r integer and n − 1 multiple of r. Assume further that

odes are placed uniformly in a square in the plane. In the “ideal”

artition of this square, each of the |routes| service zones is con-

ained in a smaller square with [1 + (n − 1)/r]2 nodes each (see

ig. 2, where n = 13 and r = 3). Most nodes belong to only one of

hese squares, others belong to two and some belong to four. The

um of the number of squares each node belongs to is given by

routes| × [1 + (n − 1)/r]2 = (r + n − 1)2. Hence, the overlapping is

alculated by (
√|routes| +

√|N| − 1)2 − |N|. We use this formula even

f the above assumptions on |N| and |routes| are not satisfied. Observe

hat no conditions on the tasks are imposed. It may happen that some

odes that belong to more than one square are only visited by one

oute from a single sector. In order to have it simpler, the definition

f the third measure omit these situations. Note that, this simpli-

cation does not spoil the “significance” and “information” of the

easure.

Table 1 presents the values for the “nice” solution measures, that

re used to compare connectivity and compactness for the optimal

pra2 solution (Fig. 1) computed with the three models ((mcar), con-

ectivity model, and (bcar)). This instance has 104 tasks and 3 routes

re needed. The connectivity index, CI, is higher for the MCARP solu-

ion, thus indicating a less “nice” solution. The BCARP model, although

ot explicitly enforcing the connectivity constraints, produces solu-

ions that are, in terms of connectivity, as good as the ones obtained

y the connectivity model. We observe a similar behavior concern-

ng the other measures, ATD and ROI; the solutions obtained from

he MCARP model are always worse than the ones obtained from the

onnectivity model, which, in turn, are outperformed by the solutions

enerated by the BCARP model.

Through our computational experiments, we will confirm these

esults, namely we will see that feasible vehicle routes obtained with

he BCARP model are substantially more compact and then more
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Table 2

lpr instances characteristics.

Name |N| |A′| |AR| |ER| P W QT

lpra1 28 94 0 52 3 10,000 11,235

lpra2 53 169 5 99 3 10,000 23,446

lpra3 146 469 33 271 8 10,000 64,709

lpra4 195 651 34 469 13 10,000 108,635

lpra5 321 1056 58 748 19 10,000 170,514

lprb1 28 63 5 45 3 10,000 12,142

lprb2 53 117 9 92 4 10,000 23,312

lprb3 163 361 26 279 8 10,000 63,624

lprb4 248 582 8 493 12 10,000 103,770

lprb5 401 876 37 764 19 10,000 171,408

lprc1 28 52 39 11 4 10,000 16,662

lprc2 53 101 77 23 5 10,000 31,718

lprc3 163 316 241 61 12 10,000 97,946

lprc4 277 604 362 142 17 10,000 149,531

lprc5 369 841 387 416 25 10,000 227,186
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. Computational results

In this section we describe computational results from the ap-

roaches previously proposed and discussed. The results for the

CARP and BCARP models and the heuristic are analyzed and com-

ared under three different view-points to evaluate the effect of the

ew overlapping constraint on the routes:

(i) The impact on the objective values (total traveling time).

(ii) The impact on the gap values and CPU times.

(iii) The shape of the solutions.

xact and heuristic approaches are also compared for the BCARP to

ccess the quality of the proposed heuristic, and also to evaluate the

ize of the instances that can be solved to optimality by the proposed

LP model.

The shape of the solutions is evaluated according to the measures

escribed in Section 5.

The computational results were obtained with the MIP solver

PLEX 12.5, on a personal computer (Intel Core i7-3520M 2.90 gi-

ahertz processor and 8 gigabytes of RAM, under 64-bit Windows 7

rofessional), for two sets of benchmark MCARP instances detailed in

ection 6.1. The analysis of the results is provided in Section 6.2.

.1. Test instances

Computational experiments were conducted with the MCARP in-

tances also used in Belenguer et al. (2006) and Gouveia et al. (2010),
Table 3

mval instances characteristics.

Name |N| |AR| |ER| P W QT Na

mval1a 24 20 35 4 200 358 mv

mval1b 24 13 38 5 120 358 mv

mval1c 24 17 36 10 45 358 mv

mval2a 24 16 28 4 180 310 mv

mval2b 24 12 40 5 120 310 mv

mval2c 24 14 35 10 40 310 mv

mval3a 24 15 33 4 80 137 mv

mval3b 24 16 29 5 50 137 mv

mval3c 24 18 25 9 20 137 mv

mval4a 41 26 69 5 225 627 mv

mval4b 41 19 83 6 170 627 mv

mval4c 41 21 82 7 130 627 mv

mval4d 41 21 83 11 75 627 mv

mval5a 34 22 74 5 220 614 mv

mval5b 34 35 56 6 165 614 mv

mval5c 34 17 81 7 130 614 mv

mval5d 34 29 63 11 75 614 mv
amed lpr and mval. The instances characteristics are displayed in

ables 2 and 3.

The first column in these tables indicates the instance name, fol-

owed by the number of nodes, |N|. Third to fifth columns depict the

otal number of links, |A′| = |AD| + |AR| + |ER|, the number of required

rcs, |AR|, and the number of required edges, |ER|. The number of vehi-

les, P, its capacity, W , and the total network demand, QT , are shown

n the three last columns. In the 34 mval instances (Table 3) all links

ave an associated service, and then the total number of links, |A′|, is

iven by summing the number of arc and edge tasks, |AR| + |ER|.
.2. Analysis of computational results

Relevant computational results, comparing solution values devia-

ions and CPU times of the methods, are displayed in Tables 4 and 5,

espectively for the mval and for the lpr instances. As before, the first

olumn indicates the instance name.

.2.1. Evaluating the feasible solution values

The second column in Tables 4 and 5 give information on the in-

rease in (bcar) objective value, measured in percentage, from the

ptimum value of (mcar), while column three depicts the same per-

entage comparing the solution values of the BCARP heuristic with

mcar) optimum values.

The second column (Tables 4 and 5), shows, as expected, an in-

rease in (bcar) feasible solution values when compared with (mcar)

ptimum values.

From the values reported in the third column, we may realize that

he heuristic performs better on the lpr instances rather than on the

val ones. In fact, it produces significantly smaller deviations for the

pr. Regarding the increase on the objective values, the behavior of

bcar) and the heuristic are similar, the latter being able to solve all

he instances.

.2.2. Evaluating the gap values and CPU times

To evaluate the impact of the extra constraints limiting the over-

apping, we also compare gap values (in percentage) and CPU times

in seconds) for the MCARP with the ones of the two proposed meth-

ds for the BCARP, solving the model exactly and using the heuristic

Tables 4 and 5, columns 4–9).

A time limit of one hour was imposed on the MIP solver to run each

odel, (nor), (bcar), and the model defined for the second phase of the

euristic. The CPU times presented in columns 7 and 9, respectively

or the (bcar) and the heuristic, already include the (nor) CPU time to

nable comparisons with the (mcar) CPU times. This also justifies the

mposed time limit of two hours for (mcar). The instances for which
me |N| |AR| |ER| P W QT

al6a 31 22 47 5 170 451

al6b 31 22 44 6 120 451

al6c 31 23 45 12 50 451

al7a 40 36 50 5 200 559

al7b 40 25 66 6 150 559

al7c 40 28 62 11 65 559

al8a 30 20 76 5 200 566

al8b 30 27 64 6 150 566

al8c 30 28 55 11 65 566

al9a 50 32 100 5 235 654

al9b 50 44 76 6 175 654

al9c 50 42 83 7 140 654

al9d 50 38 93 12 70 654

al10a 50 32 106 5 250 704

al10b 50 33 101 6 190 704

al10c 50 36 100 7 150 704

al10d 50 42 87 12 75 704
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Table 4

Computational results – mval instances.

Name Increase on the Gap values (%) and CPU times (seconds)

objective value (%) (mcar) (bcar) Heuristic

v(B)−v(F)
v(F)

H−v(F)
v(F)

v(F)−LbF
LbF

cpu v(B)−LbB
LbB

cpu H−LbB
LbB

cpu

mval1a 0.00 0.43 0.00 5.4 0.00* 12.5 0.43 0.3

mval1b 15.33 15.33 0.00 0.4 0.00* 341.4 0.00 0.5

mval1c – – 7.85 7200.0 –* 6775.8 25.94 3176.1

mval2a 14.51 19.14 0.00 1.6 0.00* 2.4 4.04 0.1

mval2b 9.37 10.89 0.00 5.7 0.00* 72.5 1.39 0.4

mval2c – – 7.16 7200.0 –* 4000.8 23.66 401.1

mval3a 6.09 6.96 0.00 1.1 0.00* 1.4 0.82 0.2

mval3b 4.23 7.04 0.00 5.7 0.00* 261.9 2.70 0.4

mval3c – – 6.41 7200.0 21.15* 4232.4 35.26 632.7

mval4a 7.24 7.59 0.00 19.7 0.00* 73.6 0.32 1.2

mval4b 14.62 14.92 0.00 61.1 14.62* 3620.1 14.92 20.1

mval4c 17.78 17.14 0.00 6921.3 17.78* 3924.1 17.14 324.4

mval4d – – 6.35 7200.0 – 7200.0 20.81 3600.2

mval5a 11.22 12.23 0.00 9.4 1.53* 3602.5 2.45 2.6

mval5b 10.60 10.11 0.00 7200.0 10.60* 3629.8 10.11 30.0

mval5c 9.18 16.21 0.00 5073.8 9.18* 3949.5 16.21 349.7

mval5d – – 6.99 7200.0 – 7200.0 21.68 3600.2

mval6a 9.20 9.20 0.00 6.4 0.00* 17.7 0.00 0.5

mval6b 8.52 8.52 0.00 133.7 0.00* 22.6 0.00 0.7

mval6c – – 10.91 7200.0 24.78 7200.0 33.04 3600.3

mval7a 1.10 4.12 0.00 57.2 1.10* 3600.8 4.12 0.9

mval7b 2.43 2.43 0.00 16.7 0.00* 15.5 0.00 1.0

mval7c – – 7.80 7200.0 – 7200.0 11.95 3600.3

mval8a 5.16 9.12 0.00 9.0 0.00* 781.1 3.76 1.1

mval8b 12.99 14.88 0.00 371.1 12.99* 3625.1 14.88 25.3

mval8c – – 19.37 7200.0 – 7200.0 33.89 3600.2

mval9a 5.90 7.86 0.00 16.7 5.90* 3602.0 7.86 2.2

mval9b 8.83 7.51 0.00 1211.8 8.83* 3632.0 7.51 32.2

mval9c – – 0.23 7200.0 10.75* 3941.9 12.15 342.0

mval9d – – 12.85 7200.0 – 7200.1 25.69 3600.5

mval10a 7.26 7.73 0.00 45.8 7.26* 3613.2 7.73 13.3

mval10b – 12.86 0.00 7200.0 –* 4478.7 12.86 879.0

mval10c – 11.08 0.00 7200.0 – 7200.0 11.08 3600.2

mval10d – – 6.31 7200.0 – 7200.1 23.50 3600.3

#FS 34 24 34

#OS 23 11 4

v(B) = (bcar) objective value; v(F) = (mcar) objective value; H = heuristic value.

LbB = (bcar) lower bound value; LbF = (mcar) lower bound value.

#FS = number of feasible solutions; #OS = number of optimal solutions.

–: the MIP solver did not find the optimal value of (mcar) or a feasible solution for (bcar) within the time

limit. * : (nor) optimally solved by the MIP solver in one hour.

Table 5

Computational results – lpr instances.

Name Increase on the Gap values (%) and CPU times (seconds)

objective value (%) (mcar) (bcar) Heuristic

v(B)−v(F)
v(F)

H−v(F)
v(F)

v(F)−LbF
LbF

cpu v(B)−LbB
LbB

cpu H−LbB
LbB

cpu

lpra1 0.27 0.50 0.00 0.2 0.00* 2.1 0.22 0.5

lpra2 1.40 1.70 0.00 59.7 0.00* 1331.4 0.30 0.9

lpra3 – – 3.93 7200.0 3.27 7200.0 1.61 3622.8

lpra4 – – 36.24 7200.0 – 6262.6 3.47 6262.6

lpra5 – – – 7200.0 – 10800.0 4.51 10800.0

lprb1 0.34 0.34 0.00 0.2 0.00* 1.5 0.00 0.1

lprb2 2.00 2.00 0.00 6.9 0.00* 17.6 0.00 1.4

lprb3 – – 1.26 7200.0 – 7200.0 2.66 3600.3

lprb4 – – 50.29 7200.0 – 3608.7 4.48 14.9

lprb5 – – – 7200.0 – 6132.9 6.17 4567.4

lprc1 0.12 0.48 0.00 846.2 0.00* 47.1 0.36 0.5

lprc2 – – 0.003 7200.0 2.32* 3609.2 1.38 9.8

lprc3 – – 7.62 7200.0 – 3630.5 2.33 48.2

lprc4 – – – 7200.0 – 10800.0 2.00 7287.7

lprc5 – – – 7200.0 – 7201.4 2.61 7201.4

#FS 11 7 15

#OS 5 5 2

v(B) = (bcar) objective value; v(F) = (mcar) objective value; H = heuristic value.

LbB = (bcar) lower bound value; LbF = (mcar) lower bound value.

#FS = number of feasible solutions; #OS = number of optimal solutions.

–: the MIP solver did not find the optimal value of (mcar) or a feasible solution for (bcar) within the

time limit. * : (nor) optimally solved by the MIP solver in one hour.
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Table 6

Shape measures – mval instances.

Name Connectivity Compactness

CI ATD ROI

(mcar) (bcar) H (mcar) (bcar) H (mcar) (bcar) H

mval1a 1.00 1.00 1.00 7.34 5.14 5.23 1.94 0.71 0.71

mval1b 1.25 1.00 1.00 8.74 4.98 4.98 1.67 0.56 0.56

mval1c 1.44 – 1.00 3.23 – 1.46 1.23 – 0.64

mval2a 2.00 1.00 1.00 10.31 8.38 11.38 1.89 0.71 0.71

mval2b 2.00 1.00 1.00 12.33 5.85 6.00 2.98 0.52 0.52

mval2c 1.50 – 1.00 4.83 – 2.11 1.32 – 0.59

mval3a 2.00 1.00 1.00 3.95 2.52 2.41 3.07 0.71 0.71

mval3b 1.67 1.00 1.00 4.01 2.47 2.59 2.72 0.78 0.78

mval3c 1.57 1.00 1.00 1.91 0.83 0.95 1.22 0.69 0.61

mval4a 2.67 1.00 1.00 11.56 7.30 7.09 3.94 0.71 0.71

mval4b 2.00 1.00 1.00 11.26 6.79 6.83 3.26 0.65 0.65

mval4c 2.20 1.00 1.00 11.61 5.47 5.77 3.05 0.75 0.75

mval4d 2.44 – 1.00 8.57 – 3.44 2.09 – 0.65

mval5a 1.00 1.00 1.00 11.77 7.07 7.75 4.30 0.88 0.88

mval5b 3.00 1.00 1.00 11.21 6.19 5.88 4.58 0.87 0.87

mval5c 2.40 1.00 1.00 10.90 5.41 5.51 3.83 0.88 0.88

mval5d 1.67 – 1.00 7.69 – 3.29 2.12 – 0.81

mval6a 1.25 1.00 1.00 6.66 4.94 4.94 1.73 0.58 0.58

mval6b 1.50 1.00 1.00 7.34 3.40 3.40 2.06 0.49 0.49

mval6c 1.80 1.00 1.00 4.35 1.76 2.16 1.60 0.70 0.64

mval7a 1.00 1.00 1.00 11.17 4.93 5.18 2.12 0.44 0.44

mval7b 1.00 1.00 1.00 9.07 5.36 5.37 2.20 0.44 0.44

mval7c 1.30 – 1.00 5.08 – 2.62 1.28 – 0.65

mval8a 1.33 1.00 1.00 11.00 6.64 6.71 5.03 0.82 0.82

mval8b 1.50 1.00 1.00 10.65 4.21 4.71 3.60 0.84 0.84

mval8c 2.89 – 1.00 9.22 – 2.65 2.66 – 0.74

mval9a 2.50 1.00 1.00 9.13 5.86 5.83 3.83 0.64 0.64

mval9b 2.50 1.00 1.00 8.22 4.48 4.48 4.03 0.73 0.73

mval9c 2.00 1.00 1.00 6.55 3.65 3.44 2.95 0.68 0.68

mval9d 2.36 – 1.00 5.51 – 2.52 2.26 – 0.71

mval10a 1.33 1.00 1.00 9.25 5.56 5.66 5.42 0.92 0.92

mval10b 3.50 – 1.00 9.16 – 5.08 4.49 – 0.86

mval10c 2.20 – 1.00 7.59 – 4.08 4.10 – 0.84

mval10d 2.40 – 1.00 6.91 – 2.70 2.47 – 0.79

H: heuristic; –: the MIP solver did not find a feasible solution within the time limit.
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nor) was optimally solved by the MIP solver within one hour are

arked with * in column 6 (the (bcar) gaps).

Gap values are computed by gap = Ub−Lb
Lb

× 100%, where Ub is

he MIP solver upper bound for the respective model. The MCARP

ower bound (LbF) is computed using the MIP solver with the

odels by Gouveia et al. (2010), within a time limit of two

ours.

Since a lower bound for the MCARP is also a lower bound for

he BCARP, the gap for (bcar) is measured with the lower bound

LbB) given by the maximum between (LbF) and the (bcar) lower

ound obtained by the MIP solver within a time limit of one hour. The

euristic gap is also given in terms of the (bcar) lower bound (LbB),
s this value represents a valid lower bound for the problem under

tudy.

More feasible solutions are found (34 against 24 for mval, and 11

gainst 7 for lpr) by using (mcar) rather than with (bcar). However,

omparing the CPU times (columns 5 and 7), we may observe cases

or which (bcar) feasible solutions are obtained faster than the (mcar)

nes. Concerning (bcar), 11 out of 34 and 5 out of 15 optimal solutions

re found (respectively for mval and lpr instances), whilst (mcar)

ptimally solves 12 more mval and the same lpr instances. These

bservations appear to indicate that (bcar) is harder to solve than

mcar).

The heuristic, that achieves feasible solutions with reasonable gap

alues for all instances, appears to be a useful method to solve the

igger sized instances.

We should emphasize that the bigger gap values, associated

ith the heuristic upper bounds, refer to instances that were not

t

olved by the exact models. In many situations, the MIP solver

as not even able to find a feasible solution within the time

imit.

.2.3. Evaluating the shape of the solutions

Here we compare the solutions produced by BCARP (either by

olving the problem exactly or by the heuristic) with the solutions of

he MCARP in terms of the three indexes.

As the results show (see Tables 6 and 7), together with its simplic-

ty, the other advantage of the overlapping constraints here defined

s that they also produce good shape solutions in what concerns the

ompactness and the connectivity.

In these tables, results are grouped for evaluating connectivity

CI) and compactness (ATD and ROI). In each of these groups, columns

mcar), (bcar) and H present the corresponding values for models

mcar) and (bcar) and for the heuristic, respectively. As usual, the first

olumn refers to the instance name.

It should be remarked that model (nor), through a MIP solver or

he heuristic, assigns tasks to vehicles, and its solutions are used both

y (bcar) and the BCARP heuristic. That is, the minimum objective

alue computed, NO, is imposed as an upper bound for the number of

hared nodes in (bcar), and the tasks assigned to each vehicle in the

est (nor) solution are used by the heuristic to design each vehicle

oute.

Note that a connectivity index value equal to one refers to an

ptimal solution under this measure, with one connected component

er route, as it is observed (see Tables 6 and 7) for the majority of

he cases for both the (bcar) and the heuristic, and contrary to the
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Table 7

Shape measures – lpr instances.

Name Connectivity Compactness

CI ATD ROI

(mcar) (bcar) H (mcar) (bcar) H (mcar) (bcar) H

lpra1 3.00 1.00 1.00 63.52 38.91 87.41 3.95 0.66 0.66

lpra2 2.00 1.00 1.00 98.71 61.12 60.63 2.86 0.54 0.54

lpra3 8.25 1.14 1.29 130.43 66.66 65.25 3.58 0.56 0.56

lpra4 21.38 – 1.00 200.16 – 51.53 6.89 – 0.63

lpra5 – – 1.00 – – 52.33 – – 0.59

lprb1 2.00 1.00 1.00 112.82 74.62 74.62 1.98 0.44 0.44

lprb2 4.67 1.00 1.00 107.81 75.94 75.94 3.93 0.63 0.63

lprb3 8.71 – 1.00 173.42 – 86.08 3.64 – 0.47

lprb4 26.25 – 1.00 270.03 – 76.75 6.58 – 0.61

lprb5 – – 1.00 – – 77.17 – – 0.65

lprc1 2.50 1.00 1.00 43.75 33.03 31.69 3.51 0.66 0.66

lprc2 1.00 1.00 1.00 86.78 43.59 48.12 2.51 0.71 0.71

lprc3 11.40 – 1.00 151.82 – 43.49 4.04 – 0.65

lprc4 – – 1.00 – – 47.33 – – 0.62

lprc5 – – 1.00 – – 41.20 – – 0.62

H: heuristic; –: the MIP solver did not find a feasible solution within the time limit.
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values achieved by (mcar). In fact, even for larger lpr instances, when

available, this comparison favors the heuristic that produces values

equal to 1 (except for lpra3), whereas the corresponding values for

(mcar) are greater than 10.

Again, routes compactness, evaluated through indexes ATD and

ROI (Tables 6 and 7), show the advantages of imposing the new con-

straint.

Although identical values are obtained by (bcar) and the heuristic

for the connectivity and the compactness indexes, it should be em-

phasized that the second phase of the heuristic always gets a feasible

solution within the time limit of one hour.

To sum up, solution objective values given by (bcar) greater than

the ones from (mcar) are expected, since additional conditions are

imposed to the vehicle routes. Nevertheless, these increases in the

objective values may be considered acceptable, as they are compen-

sated by “nicer” solution shapes.

7. Conclusions

In this paper we have introduced the BCARP problem, which is

defined as the MCARP with an upper bound on the number of common

nodes to different routes.

Quite often the optimal solutions produced by MCARP do not ex-

hibit nice characteristics to be implemented in practice, namely the

shape of the routes are not attractive to practitioners.

By defining the concept of overlapped nodes and by imposing a

constraint bounding the number of such nodes on the solutions of

the original MCARP, our results show that the resulting solutions ex-

hibit much better characteristics according to three “nicety” measures

proposed in the paper.

As expected the optimal solutions of the new problem are more

costly than the corresponding optimal solutions of the problem with-

out the extra constraint. However, the increase in the cost is ac-

ceptable when we compare what we gain by making the routes

“nicer”.

We have also developed a heuristic that produces acceptable so-

lutions for the instances that are not easy solved by the proposed

MIP model. This method also provides “nice” feasible solutions, with

acceptable gap values in small computational times. The heuristic

suggested in Section 4.2 for the NOMCARP subproblem allows us to

improve the feasible solutions for the BCARP as well as to improve

the “nice” characteristics.

Future work will deepen the study on the properties of attractive

routes. These will also address the inclusion or exclusion of the depot

from the route shaping process.
cknowledgments
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ppendix A. Proof of the proposition

roof. Given a feasible solution (x, y, f, n)of (nomcar), consider (z, n)
ith the same vector n, and z defined by za

p
ij

= x
p
ij

for (i, j) ∈ AR and

e
p
ij

= x
p
ij

+ x
p
ji

for {i, j} ∈ ER. We show that (z, n) is feasible for (nor) and

as the same objective value as the given solution of (nomcar). Indeed,

he objective functions are the same; satisfaction of constraints (5a)

nd (5b) follows from the definition of z and from (1b) and (1c); sat-

sfaction of constraints (5d) and (5e) also follows from the definition

f the variables and from (4a) and (4b); satisfaction of constraints

5f) and (5g) follows from (1b), (1c), and (1j). To see that capacity

constraints (5c) are satisfied, observe that for all p we have
∑

i,j)∈AR

qijza
p
ij

+
∑

{i,j}∈ER

qijze
p
ij

=
∑
(i,j)∈R

qijx
p
ij
=

∑
(s,j)∈A

f
p
sj

≤ W
∑

(s,j)∈A

y
p
sj

≤ W,

here the first equality follows from the definition of the z variables,

nd the second from constraints (1g). The first inequality follows from

1i), as {(s, j) ∈ A} ⊆ AD, and the second from (1e).

Conversely, consider a solution (z, n) feasible for (nor). We build

solution (x, y, f, n) for (nomcar) with the same n variables. For each

, if zp = 0 let xp = 0, yp = 0 and f
p = 0; otherwise, let x

p
ij

= za
p
ij

for

i, j) ∈ AR, and x
p
ij

= ze
p
ij
, x

p
ji

= 0 for {i, j} ∈ ER.

To define variables y
p
ij

and f
p
ij

, find a route Up = (u1, u2, . . . , uT)

tarting and ending in the depot s, passing through all arcs u = (i, j)
uch that x

p
ij

= 1, without visiting node s except as the start and end

f the route. Such a route exists because of the strong connectivity

ssumption on the subgraph of G spanned by N \ {s}, although it may

ass more than once on some arcs. Observe that u1, . . . , uT depend on

, but to make the notation lighter we omit the superscript p from this

nd other terms for which that dependence follows from the context.

Let y
p
ij

be the number of times arc (i, j) is traversed without service

n route Up, that is, y
p
ij

= |{t : ut = (i, j)}| if (i, j) ∈ AD and y
p
ij

= |{t : ut =
i, j)}| − x

p
ij

if (i, j) ∈ R. f
p
ij

can be defined as follows. For t = 1, . . . , T , let

ut be the total demand in the set of arcs St = {ut, . . . , uT} (without
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epetitions) that is satisfied in route p, that is ϕut = ∑
(i,j)∈St∩R qijx

p
ij
.

inally, let f
p
ij

= ∑
t:ut=(i,j) ϕut . Observe that f

p
ij

= 0 if (i, j) /∈ Up.

We show that (x, y, f, n) is feasible for (nomcar). Satisfaction of

onstraints (1j), (1k), (1l) and (4c) follows from the definition of the

ariables; constraints (1b) and (1c) follow from the definition of x and

rom (5a) and (5b).

To see that constraints (1d) are satisfied, let p ∈ {1, . . . , P} and

∈ N. Hence, from the definition of y
p
ij
,

∑
j:(i,j)∈A

y
p
ij

−
∑

j:(j,i)∈A

y
p
ji

=
∑

j:(i,j)∈AD

|{t : ut = (i, j)}| −
∑

j:(j,i)∈AD

|{t : ut = (j, i)}|

+
∑

j:(i,j)∈R

(
|{t : ut = (i, j)}| − x

p
ij

)
−

∑
j:(j,i)∈R

(
|{t : ut = (j, i)}| − x

p
ji

)

=
∑

j:(i,j)∈A

|{t : ut = (i, j)}| −
∑

j:(j,i)∈A

|{t : ut = (j, i)}|

−
∑

j:(i,j)∈R

x
p
ij

+
∑

j:(j,i)∈R

x
p
ji

=
∑

j:(j,i)∈R

x
p
ji

−
∑

j:(i,j)∈R

x
p
ij
.

he last equality follows from Up being a route, so the two left sums

n the third expression are equal for all i ∈ N.

Satisfaction of constraints (1e) follows from the fact that route
p leaves s at most once, through a non-service arc, for each p ∈

1, . . . , P}. Now from the definition of f, we have for all p and i ∈ N \ {s}
∑

:(j,i)∈A

f
p
ji

−
∑

j:(i,j)∈A

f
p
ij

=
∑

t:ut=(j,i)∈A

ϕut
−

∑
t′:ut′ =(i,k)∈A

ϕut′ .

bserve that for i ∈ N \ {s} and t ∈ {1, . . . , T − 1}, ut = (j, i) ∈ A if and

nly if ut+1 = (i, k) ∈ A, so the above expression equals

∑
:ut=(j,i)∈A

(ϕut
− ϕut+1

) =
∑

t:ut=(j,i)∈A

⎛
⎝ ∑

(k,l)∈St∩R

qklx
p

kl
−

∑
(k,l)∈St+1∩R

qklx
p

kl

⎞
⎠

=
∑

t:ut=(j,i)∈R

qjix
p
ji

=
∑

j:(j,i)∈R

qjix
p
ji
,

here the first equality follows from the definition of ϕut and the

ast is true because route Up visits all arcs (k, l) ∈ R such that x
p
kl

= 1.

ence, constraints (1f) are satisfied.

Constraints (1g) follow from the fact that for all p, route Up leaves

ode s at most once and, when it does it, it uses arc u1 ∈ AD. Therefore∑
s,j)∈A

f
p
sj

= f
p
u1

= ϕp
u1

=
∑

(i,j)∈S1∩R

qijx
p
ij

=
∑
(i,j)∈R

qijx
p
ij
,

ecause route Up visits all arcs u ∈ R such that x
p
ij

= 1.

If f
p
ij

= 0, constraints (1h) or (1i) are satisfied because x
p
ij
, y

p
ij
, W ≥ 0.

uppose f
p
ij

> 0. Thus,

p
ij

=
∑

t:ut=(i,j)

ϕut
=

∑
t:ut=(i,j)

∑
(k,l)∈St∩R

qklx
p

kl

≤
∑

t:ut=(i,j)

∑
(k,l)∈R

qklx
p

kl

=
∑

t:ut=(i,j)

⎛
⎝ ∑

(k,l)∈AR

qklza
p

kl
+

∑
{k,l}∈ER

qklze
p

kl

⎞
⎠

≤ W|{t : ut = (i, j)}|,
here the last inequality follows from (5c). The last term is equal to

(yp
ij

+ x
p
ij
) if (i, j) ∈ R, and equal to Wy

p
ij

if (i, j) ∈ AD. Hence constraints

1h) and (1i) are also satisfied in this case.
Therefore, (x, y, f, n) is feasible for (nomcar). Since variables n and

he objective function are the same in both models, it follows that

x, y, f, n)and (z, n)have the same value. This concludes the proof.
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