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Abstract The pairwise comparisons method is a convenient tool used when the relative order among different concepts

(alternatives) needs to be determined. One popular implementation of the method is based on solving an eigenvalue

problem for the pairwise comparisons matrix. In such cases the ranking result the principal eigenvector of the pairwise

comparison matrix is adopted, whilst the eigenvalue is used to determine the index of inconsistency. A lot of research

has been devoted to the critical analysis of the eigenvalue based approach. One of them is the work of Bana e Costa

and Vansninck [1]. In their work authors define the conditions of order preservation (COP) and show that even for a

sufficiently consistent pairwise comparisons matrices, this condition can not be met. The present work defines a more

precise criteria for determining when the COP is met. To formulate the criteria a discrepancy factor is used describing

how far the input to the ranking procedure is from the ranking result.

1 Introduction

The origins of pairwise comparisons (herein abbreviated as PC) date back to the thirteenth century [5]. The contempo-

rary form of the method owes to Fechner [7], Thurstone [23] and Saaty [18]. The latter proposed the Analytic Hierarchy

Process (AHP) - a hierarchical, eigenvalue based extension to the PC theory, which provides useful methods for dealing

with a large number of criteria. In its early stages the PC method was a voting method [5]. Later it was used in psycho-

metrics and psychophysics [23]. Over time, it began to be used in decision theory [19], economics [17], and other

fields. The utility of the method has been confirmed by numerous examples [24,15,22]. Despite its long existence it is still

an interesting subject for researchers. Some of its aspects still raise vigorous discussions [6,2,1] and prompt researchers

to enquire further into this area. Example of such exploration are the Rough Set approach [9], fuzzy PC relation handling

[16,8,25], incomplete PC relation [3,12], non-numerical rankings [11], rankings with the reference set of alternatives [13,

14] and others. A more thorough discussion of the PC method can be found in [21,10].

2 Preliminaries

2.1 Pairwise comparisons method

Central to the PC method is a PC matrix M = [mi j ], where mi j ∈ R+ and i , j ∈ {1, . . . ,n}, that expresses a quantitative

relation R over the finite set of concepts C
df
= {c i ∈ C ∧ i ∈ {1, . . . ,n}}. The set C is a non empty universe of concepts

and R(c i ,c j ) =mi j , R(c j ,c i ) =m j i . The values mi j and m j i are interpreted as the relative importance, value or quality

indicators of concepts c i and c j , so that according to the best knowledge of experts c i =mi j c j

should hold.

Definition 1 A matrix M is said to be reciprocal if ∀i , j ∈ {1, . . . ,n} : m i j =
1

m j i
and M is said to be consistent if ∀i , j ,k ∈

{1, . . . ,n} : mi j ·m j k ·mk i = 1.
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Since the knowledge stored in the PC matrix usually comes from experts in the field of R , it may results in inaccuracy.

In such a case it may be that there exists a certain triad of values mi j ,m j k ,mk i from M for which mi j ·m j k ·mk i 6= 1. In

other words, different ways of estimating concept value may lead to different results. This observation gave rise to the

concept of an inconsistency index describing how far the matrix M is inconsistent. There are a number of inconsistency

indexes [4]. The most popular, proposed by Saaty [18], is defined below.

Definition 2 The eigenvalue based consistency index (Saaty’s Index) of n ×n reciprocal matrix M is equal to:

S (M ) =
λmax−n

n −1
(1)

where λmax is the principal eigenvalue of M .

The result of the pairwise comparisons method is ranking - a function that assigns values to the concepts. Formally,

it can be defined as follows.

Definition 3 The ranking function for C (the ranking of C ) is a function µ : C → R+ that assigns to every concept from

C ⊂C a positive value from R+.

In other words, µ(c ) represents the ranking value for c ∈ C . The µ function is usually written in the form of a vector

of weights µ
df
=
�
µ(c1), . . .µ(cn )
�T

. One of the popular methods of obtaining the vector µ is to calculate the principal

eigenvector µm ax of M (i.e. the vector associated with the principal eigenvalue of M ) and rescale them so that the sum

of its elements is 1, i.e.

µev =

�
µmax(c1)

sev

, . . . ,
µmax(cn )

sev

�T
, and

sev =

n∑

i=1

µmax(c i ) (2)

whereµev - the ranking function,µmax - the principal eigenvector of M . Due to the Perron-Frobenius theorem [18] one

exists, because a real square matrix with the positive entries has a unique largest real eigenvalue such that the associated

eigenvector has strictly positive components.

2.2 Eigenvalue heuristics

According to the PC approach mi l (an entry of M ) should express the relative value of c i ∈ C with respect to c l ∈ C .

Therefore one would expect that µ(c i )/µ(c l ) =mi l , i.e. µ(c i ) =mi l µ(c l ) or conversely m l iµ(c i ) = µ(c l ). In particular, it is

desirable that

m l iµ(c i ) = µ(c l ) =m l jµ(c j ) (3)

for every c i ,c j ,c l ∈C . Unfortunately due to possible data inconsistency this may not be possible, i.e. it may be the case

that m l iµ(c i ) 6=m l jµ(c j ). Therefore the question arises of what µ(c l ) should be? Since the values m l iµ(c i ) for i = 1, . . . ,n

can vary from each other the natural (and probably one of the most straightforward) proposal is to adopt its arithmetic

mean as the desired candidate for µ(c l ). This leads to the equation:

m l 1µ(c1)+ . . .+m l nµ(cn ) = n ·µ(c l ) (4)

which expresses the wish that µ(c l ) should be a compromise between all its putative values. A natural question is

whether it is possible to achieve such a compromise for every l = 1, . . . ,n . In other words, whether it is possible to solve

the following equation system:

m11µ(c1)+ . . .+m1nµ(cn ) = n ·µ(c1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mn1µ(c1)+ . . .+mnnµ(cn ) = n ·µ(cn )

(5)

This leads to the question of the solution of the following matrix equation:

Mµ= nµ (6)

Of course the solution of the above equation is the eigenvector of M , whilst n is replaced by λ - M ’s eigenvalue.

Mµ=λµ (7)

There might be many eigenvectors and eigenvalues of M . However, when M is positive, real and reciprocal it has

at least one positive real eigenvalue associated with the positive and real eigenvector [18]. Let λmax be the real, largest,

positive eigenvalue of M and µmax be the associated eigenvector. AHP adopts µmax as the solution of (7).
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2.3 Local discrepancy

In his seminal work [18, p. 238] Saaty proved the following equality:

λmax−1=

n∑

i=1,i 6=j

m j i

µ(c i )

µ(c j )
(8)

Thus,

λmax−n =




n∑

i=1,i 6=j

m j i

µ(c i )

µ(c j )


− (n −1) (9)

which leads to the equation describing the Saaty’s inconsistency index (Def. 2):

S (M ) =




1

n −1

n∑

i=1,i 6=j

m j i

µ(c i )

µ(c j )


−1 (10)

Following Saaty [18, p. 238] let us denote:

ε(i , j )
df
=m j i

µ(c i )

µ(c j )
=

1

mi j

µ(c i )

µ(c j )
(11)

If the ranking µmax were ideal, i.e. if each expert judgment perfectly corresponded to the ranking results, then every

mi j would equal the ratio µ(c i )/µ(c j ). In such a case every ε(i , j ) would equal to 1. Otherwise, when the ranking is im-

perfect the values mi j and µ(c i )/µ(c j ) may vary. In other words ε(i , j ) describes the discrepancy1 between the particular

expert judgment mi j and the ranking results µ(c i )/µ(c j ). The relationship between ε(i , j ) and S (M ) (adopting µmax - the

eigenvector of M as the ranking function) could be written as follows:

S (M ) =
1

(n −1)

n∑

i=1,i 6=j

�
ε(i , j )−1
�

(12)

In other words the given value of the inconsistency indexS (M ) guarantees that the arithmetic mean of the difference

between assessment accuracy determinants and one, i.e. ε(i , j )−1 equalsS (M ).

2.4 Conditions of Order Preservation

In [1] Bana e Costa and Vansnick formulate two postulates (conditions of order preservation) as regards the meaning of

an eigenvalue based ranking result. The first one, ordinal, the preservation of order preference condition (POP) claims that

the ranking result in relation to the given pair of concepts (c i ,c j ) should not break with the expert judgement. In other

words for pair of concepts c1,c2 ∈C such that c1 dominates c2 i.e. m1,2 > 1 should hold that:

µ(c1)>µ(c2) (13)

The second one, cardinal, the preservation of order of intensity of preference condition (POIP), stipulates that if c1

dominates c2, more than c3 dominates c4 (for c1, . . . ,c4 ∈C ), i.e. if additionally

m3,4 > 1 and m1,2 >m3,4 then also

µ(c1)

µ(c2)
>
µ(c3)

µ(c4)
(14)

Despite the fact that the both conditions of order preservation have been formulated in the context of eigenvalue

based approach it is important to note that, in principle, they remain valid in the context of any priority deriving method.

None of the two conditions does not require µ be a rescaled eigenvector of M . Moreover, meeting the POP and POIP

conditions seem to be natural for any µ.

1 In [18] the value ε(i , l ) is referred as error.



4 Konrad Kułakowski

3 The ranking discrepancy

It is easy to see that ε(i , j ) = 1/ε(j ,i ). For example if some ε(i , j ) = 2 then ε(j , i ) = 0.5. In fact both of these values carry

the same information, which is: the ranking result for the pair (c i ,c j ) differs twice from the expert judgement. I.e. one

concept got 100% better score than they should. The usefulness of the ε(i , j ) parameter has been recognized by Saaty.

For instance in [20, p. 203] the matrix [ε(i , j )] is used to determine which expert judgments need to be improved in order

to reduce inconsistency of M .

3.1 Local discrepancy

It turns out that ε(i , j ) can also be used to formulate sufficient conditions for which both COP postulates (Def. 2.4) hold.

For this purpose, let us define the local discrepancy E (i , j ) as:

E (i , j )
df
=max{ε(i , j )−1, 1/ε(i ,j )−1} (15)

The value E (i , j ) reflects local differences between ranking results and given expert judgements. Information that for

certain bi , bj the value E (bi , bj ) = 0.8 means that the discrepancy between the expert judgment mbi bj and the ranking results

µ(cbi ) and µ(c bj ) reach 80%. Similarly as the matrix [ε(i , j )], also the local discrepancy matrix [E (i , j )]may help to discover

where the highest discrepancy is, hence, where the expert judgement (or the ranking function) could be improved.

3.2 Global discrepancy

In order to reduce (to limit) the local discrepancies it is reasonable to introduce the concept of the global ranking dis-

crepancy.

Definition 4 Let the global ranking discrepancy for the pairwise comparisons matrix M , and the ranking µ, be the max-

imal value of E (i , j ) for i , j = 1, . . . ,n , i.e.

D(M ,µ)
df
= max

i ,j=1,...,n
E (i , j ) (16)

Thus, a certain value of the global ranking discrepancy D(M ,µ) ≤ δ provides a guarantee that the maximal discrepancy

between a single assessment of an expert and the comparison of corresponding results will not be greater than δ. The

ranking discrepancy D(M ,µ) translates directly into the inconsistency S (M ). The relationship can be expressed as the

following theorem.

Theorem 1 For every pairwise comparisons matrix M and the eigenvector based ranking µmax holds that:

D(M ,µmax)≤δ⇒S (M )≤δ (17)

Proof Since D(M ,µ)≤ δ, thus according to the definition 4, every E (i , j ) ≤ δ for i , j = 1, . . . ,n . Thus, due to definition of

E (see 15), holds that ε(i , j )−1≤δ for every i , j ∈ {1, . . . ,n}. In particular for any j ∈ {1, . . . ,n} it is true that:

n∑

i=1,i 6=j

�
ε(i , j )−1
�
≤ (n −1)δ (18)

hence
1

(n −1)

n∑

i=1,i 6=l

�
ε(i , j )−1
�
≤δ (19)

which, in the light of (12) satisfies the assertionS (M )≤δ.

Hence, besides the fact that the global ranking discrepancy D(M ,µmax) detects and limits the worst case discrepancy

between a single expert judgement and the ranking result, it also provides a guarantee in the original sense proposed

by Saaty [19]. Therefore, wherever the inconsistency index S (M ) has so far been used, D(M ,µmax) might be used in-

stead. Provided of course, that D(M ,µmax) is sufficiently small. In return, in addition to the requirements of the level of

inconsistency, the users receive a guarantee of even discrepancy distribution.



Notes on discrepancy in the pairwise comparisons method 5

4 The ranking discrepancy and the conditions of order preservation

Similarly as POP and POIP (Sec. 2.4), the global ranking discrepancy is derived from eigenvalue based approach but it

does not depend on it. Thus, the definition (Def. 4) remains valid for any priority deriving method and any µ. Moreover,

the valueD(M ,µ) remains in the immediate connection with POP and POIP. This relationship could be expressed in the

form of the following two assertions.

Theorem 2 For every pairwise comparisons matrix M expressing the quantitative relationships R between concepts c1, . . . ,cn ∈

C , and the ranking µ, the order preference condition is preserved i.e.

mi j > 1 implies µ(c i )>µ(c j ) (20)

if whereverD(M ,µ)<δ then also mi j ≥δ+1.

Proof Since D(M ,µ) < δ, then according to the definition 4, every E (bi , bj ) < δ for bi , bj = 1, . . . ,n . In particular E (j , i ) < δ,

hence also ε(j , i )−1<δ. Therefore, due to the definition of ε (11) it is true that

1

m j i

·
µ(c j )

µ(c i )
<δ+1 (21)

hence

m j i

µ(c i )

µ(c j )
>

1

δ+1
(22)

and due to the reciprocity
µ(c i )

µ(c j )
>

mi j

δ+1
(23)

Therefore the ratio µ(c i )/µ(c j ) is strictly greater than one if only m i j/δ+1 ≥ 1. In other words the only requirement in

addition toD(M ,µ)<δ needed to meet the POP is mi j ≥δ+1.

The above theorem easily translates into an algorithm that allows us to decide whether the pairwise comparison matrix

M and the ranking µ are POP-safe, i.e. whether the POP condition will never be violated for this pair. Let us note that if

we adopt a weak inequality as the upper bound of the ranking discrepancy index i.e. D(M ,µ)≤ δ, then to meet the POP

the strong inequality mi j >δ+1 is needed. Thus, assuming that δ=D(M ,µ) is known, all the ratios greater than one i.e.

mi j > 1 need to be examined to determine whether they are also greater than δ+ 1. If so, M is POP-safe, which means

that POP is not violated.

The relationship between POIP andD(M ,µ) also can be expressed in the form of assertion.

Theorem 3 For every pairwise comparisons matrix M expressing the quantitative relationships R between concepts c1, . . . ,cn ∈

C , and the ranking µ, the order of intensity of preference condition is preserved i.e.

mi j >mk l > 1 implies
µ(c i )

µ(c j )
>
µ(ck )

µ(c l )
(24)

if whereverD(M ,µ)<δ then also m i j/mk l ≥ (δ+1)2

Proof Since D(M ,µ) < δ, then according to the definition 4, every E (p ,q ) < δ for p ,q = 1, . . . ,n . In particular E (j , i ) < δ

and E (k , l ) <δ, hence also ε(j , i )−1<δ and ε(k , l )−1<δ. Thus, following the same reasoning as in Theorem 2 (21, 22

and 23) we obtain that

µ(c i )

µ(c j )
>

mi j

δ+1
and

µ(c l )

µ(ck )
>

m l k

δ+1
(25)

hence due to the reciprocity,
µ(c i )

µ(c j )
>

mi j

δ+1
and

µ(ck )

µ(c l )
<mk l (δ+1) (26)

Therefore, dividing the left inequality by the right inequality leads to the formula

µ(c i )

µ(c j )

µ(ck )

µ(c l )

>

m i j

δ+1

mk l (δ+1)
(27)
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Therefore, the ratio µ(c i )/µ(c j )/µ(ck )/µ(c l ) is greater than 1 if m i j /(δ+1)/mk l (δ+1) is not smaller than 1. In other words the truth

of the following inequality:

mi j

mk l

≥ (δ+1)2 (28)

implies that
µ(c i )

µ(c j )
>
µ(ck )

µ(c l )
(29)

which is the desired assertion.

Similar as before, to hold the above theorem it is enough for the weak inequality D(M ,µ) ≤ δ and the strong inequality
m i j/mk l > (δ+1)2 to hold. Thus, for the practical verification of whether the POIP is violated, the condition m i j/mk l >

(δ+1)2 needs to be examined for every pair mi j ,mk l that meets the requirements of the theorem.

5 Numerical example

Let us consider a case of numerical judgment described in [1]. There are four concepts c1, . . . ,c4 for which the relative

importance determined by a person J is given as the matrix M .

M =




1 2.5 4 9.5

0.4 1 3 6.5
1
4

1
3

1 5
1

9.5
1

6.5
1
5

1




(30)

The rescaled eigenvector corresponding to the maximal eigenvalue of M is given as:

µmax = [0.533, 0.287, 0.139, 0.041]T (31)

As already pointed in [1] POIP is not satisfied. In particular m3,4 >m1,3 but µmax(c3)/µmax(c4)<

µmax(c1)/µmax(c3). The local discrepancy matrix E = [E (i , j )] allows for identifying the most inconsistent entry in M . It is

m3,4, for which E (3,4) = 0.475.

E =




0 0.348 0.044 0.367

0.348 0 0.452 0.077

0.044 0.452 0 0.475

0.367 0.077 0.475 0




(32)

After re-evaluation by experts the value m3,4 is set to 3. Re-creating the local discrepancy matrix for M where m3,4 = 3

and m4,3 = 1/3 indicates that m1,2 also needs expert attention. Re-evaluated m1,2 is set to 1.5 and due to the reciprocity

requirement m2,1 is set to 2/3. After adjusting four entries the matrix (30) takes the form:

M
′

=




1 1.5 4 9.5
1

1.5
1 3 6.5

1

4

1

3
1 3

1

9.5

1

6.5

1

3
1




(33)

The rescaled principal eigenvector of M ′ is:

µ
′

max
= [0.487, 0.338,0.126, 0.048]T (34)

The local discrepancy matrix E ′ = [E ′(i , j )] calculated for M ′ and µ
′

max shows that the global ranking discrepancy is 0.149.

E
′

=




0 0.038 0.033 0.064

0.038 0 0.119 0.077

0.033 0.119 0 0.149

0.064 0.077 0.149 0




(35)

According to the Theorem 2 to meet the POP condition it is enough if

m
′

i j > 1⇒m
′

i j > 1.149 (36)
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for every i , j = 1, . . . ,4 and M ′ = [m
′

i j ]. Similarly, (Theorem 3) the POIP condition is satisfied if

m
′

i j
>m

′

k l
> 1⇒m

′

i j
/m

′

k l
> (1+0.149)2 ≈ 1.32 (37)

for every i , j ,k , l = 1, . . . ,4. It is easy to see that both (36) and (37) hold. Therefore, after the discrepancy reduction2, there

is a guarantee that the resulting pairwise comparisons matrix M ′ together with the ranking µ
′

max
satisfies COP.

6 Discussion and summary

In their work Bana e Costa and Vansnick [1] formulated two conditions whose fulfillment makes the ranking result indis-

putable. Therefore, in practice, meeting these two conditions may translate into a significant reduction in the number

of appeals against the results of the ranking procedure. Hence, in addition to intangible benefits such as providing the

ranking participants a sense of justice, meeting the POP and POIP conditions may contribute to the reduction of costs

associated with the carrying out the evaluation procedure. The notion of global ranking discrepancy D(M ,µ) helps to

fulfill the Bana e Costa and Vansninck postulate. The valueD(M ,µ) directly translates to the requirements for the matrix

M , so that the smaller D(M ,µ) the greater the chance that the POP and POIP conditions are met.

Although the global ranking discrepancy (Sec. 3) has been defined in the context of eigenvalue priority deriving

method, it is not tied to it. In fact it could be useful for any pair of the PC matrix M and the rankingµ. The only, but crucial,

assumption is thatµ attempts to reflect the experts’ judgments given as M . The conditions provided by Theorems (2) and

(3) are sufficient, but they are not necessary. Thus, there may exist better estimates allowing to determine whether the

COP are satisfied. The existence of such estimates remains as an open question.

This study addresses an important problem of discrepancies between expert judgments and ranking results that

may appear in the pairwise comparison method. The notion of the global ranking discrepancy has been defined. Its

relationship with the eigenvalue based inconsistency index and POP and POIP [1] postulates have been shown.
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