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Abstract 

It is well established that multiple reference sets may occur for a decision making unit (DMU) 

in the non-radial DEA (data envelopment analysis) setting. As our first contribution, we 

differentiate between three types of reference set. First, we introduce the notion of unary 

reference set (URS) corresponding to a given projection of an evaluated DMU. The URS 

includes efficient DMUs that are active in a specific convex combination producing the 

projection. Because of the occurrence of multiple URSs, we introduce the notion of maximal 

reference set (MRS) and define it as the union of all the URSs associated with the given 

projection. Since multiple projections may occur in non-radial DEA models, we further define 

the union of the MRSs associated with all the projections as unique global reference set (GRS) 

of the evaluated DMU. As the second contribution, we propose and substantiate a general linear 

programming (LP) based approach to identify the GRS. Since our approach makes the 

identification through the execution of a single primal-based LP model, it is computationally 

more efficient than the existing methods for its easy implementation in practical applications. 

Our last contribution is to measure returns to scale using a non-radial DEA model. This method 

effectively deals with the occurrence of multiple supporting hyperplanes arising either from 

multiplicity of projections or from non-full dimensionality of minimum face. Finally, an 

empirical analysis is conducted based on a real–life data set to demonstrate the ready 

applicability of our approach. 

Keywords: Data envelopment analysis; Linear programming; Global reference set; Minimum 

face; Returns to scale. 

 

1. Introduction 

Data envelopment analysis (DEA), introduced by Charnes, Cooper, and Rhodes (1978) and 

Charnes, Cooper, and Rhodes (1979) based on the seminal work of Farrell (1957), is a linear 
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programming (LP) based method for measuring the relative efficiency of a homogeneous group of 

decision making units (DMUs) with multiple inputs and multiple outputs. Based on observed data 

and a set of postulates, DEA defines a reference technology set relative to which a DMU can be rated 

as efficient or inefficient. For an inefficient DMU, DEA recognizes a unique or multiple projection(s) 

on the efficient frontier of the technology set. Associated with each projection, it also identifies a set 

of observed efficient DMUs against which the under evaluation DMU is directly compared. Those 

efficient DMUs are called reference DMUs, and the corresponding set is referred to as a reference 

set. 

The identification of all the possible reference DMUs for an inefficient unit is an important and 

interesting problem in DEA, on which we concentrate in this contribution by means of the non-radial 

range-adjusted model (RAM) of Cooper, Park, and Pastor (1999). This issue has received significant 

attention in the literature due to its wide range of potential applications in ranking (Jahanshahloo, 

Junior, Hosseinzadeh Lotfi, & Akbarian, 2007), benchmarking and target setting (Bergendahl, 1998; 

Camanho & Dyson, 1999), and measuring returns to scale (RTS) (Cooper, Seiford, & Tone, 2007; 

Krivonozhko, Førsund, & Lychev, 2014; Sueyoshi & Sekitani, 2007a; Sueyoshi & Sekitani, 2007b; 

Tone, 1996; Tone, 2005; Tone & Sahoo, 2006). 

From a managerial point of view, the identification of all the reference DMUs is specifically 

important for two reasons. First, to improve the performance of an inefficient DMU, it may not be 

logical in practice to introduce an unobserved (virtual) projection as a benchmark. In such a 

situation, however, the identification provides the possibility to derive practical guidelines from 

benchmarking against the reference DMUs. Second, when some (but not all) reference DMUs are 

identified for an evaluated unit, the decision maker may be of the opinion that the identified DMUs 

are not appropriate benchmarks and may wish to have more options in choosing targets. In such a 

case, the identification allows him/her to incorporate the preference information into analysis so as to 

yield a projection with the most preferred (i) closeness (Tone, 2010), (ii) values of inputs and 

outputs, and (iii) shares of reference units in its formation. 

The pioneer attempt to find all the reference DMUs in non-radial DEA models was made by 

Sueyoshi and Sekitani (2007b). Based on strong complementary slackness conditions (SCSCs) of 

linear programming, they proposed a primal–dual based method using the RAM model. The 

proposed method in their impressive study is very interesting as a theoretical idea. However, as 

Krivonozhko, Førsund, and Lychev (2012b) have argued, not only the computational burden of 

Sueyoshi and Sekitani’s (2007b) approach is high, but it also seems that the basic matrices defined in 
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their approach are likely to be ill-conditioned, leading to erroneous and unacceptable results even for 

medium-size problems. Furthermore, the economic interpretation of some constraints of their 

proposed model does not make sense. In a more recent and conscious attempt to overcome these 

difficulties, Krivonozhko et al. (2014) have proposed a primal–dual based procedure based on 

solving several LP problems. Using computational experiments, they showed that their proposed 

method works reliably and efficiently on real-life data sets and outperforms Sueyoshi and Sekitani’s 

(2007b) approach. 

It is worth noting that the studies conducted by Sueyoshi and Sekitani (2007) and Krivonozhko 

et al. (2014) correctly found all the observed DMUs on minimum face – a face of minimum 

dimension on which all the projections are located – as a unique reference set of a given DMU. On 

the other hand, both of these studies pointed out that the occurrence of multiple reference sets was 

possible. However, neither of them explicitly made a clear distinction between the uniquely-found 

reference set and other types of reference set for which multipleness may occur. This lack of 

discrimination creates an ambiguity about the uniqueness and, consequently, about the mathematical 

well-definedness of the definition of reference set. 

Therefore, we were motivated to eliminate this ambiguity effectively. To do so, we have 

proposed three types of reference set sequentially, as our first contribution. Corresponding to a given 

projection, we first introduce the notion of unary reference set (URS) including efficient DMUs that 

are active in a specific convex combination producing this projection. Since multiple URSs 

(hereafter referred to as problem Type I) may occur, we introduce the notion of maximal reference 

set (MRS) and define it as the union of all the URSs associated with the given projection. Since 

multiple projections may occur in the RAM model, we further define the union of the MRSs 

associated with all the projections as unique global reference set (GRS) of the evaluated DMU. We 

have had an interesting finding: the convex hull of the GRS is equal to the minimum face. The 

benefits of the introduced three types of reference set (i.e., URS, MRS and GRS) are outlined below. 

• The introduced concepts are all mathematically well-defined. 

• The URS and MRS help demonstrate the occurrence of multiple reference sets associated 

with a single and multiple projection(s), respectively. 

• While the multipleness may occur for the URS and MRS, the GRS presents a unique 

reference set that contains all the possible reference DMUs. 
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As our second contribution, we have proposed an LP model that identifies the GRS, and 

provides a projection in the relative interior of the minimum face. The proposed approach has several 

important features. First, it can effectively deal with the simultaneous occurrence of problems Type I 

and II. Second, this approach involves solving a single LP problem, which makes this approach 

computationally more efficient than the existing ones for its easy implementation in practical 

applications. Third, the computational efficiency of our approach is higher than that of the previous 

primal–dual ones, since it is developed based on the primal (envelopment) form that is 

computationally more efficient than the dual (multiplier) form (Cooper et al., 2007). Forth, since our 

proposed LP problem contains several upper-bounded variables, its computational efficiency can be 

enhanced by using the simplex algorithm adopted for solving the LP problems with upper-bounded 

variables, which is much more efficient than the ordinary simplex algorithm (Winston, 2003).  

Fifth, our proposed approach is more general in the sense that it can be readily used without any 

change in both the ‘additive model’ (Charnes, Cooper, Golany, Seiford, & Stutz, 1985) and the 

‘BAM model’ (Cooper, Pastor, J. T., Borras, Aparicio, & Pastor, D., 2011; Pastor, 1994; Pastor & 

Ruiz, 2007), because the difference between each of these two models and the RAM model lies only 

in the weights assigned to the input and output slacks in the objective function. With some minor 

changes, it can also be used in the ‘RAM/BCC model’ (Aida, Cooper, Pastor, & Sueyoshi, 1998), the 

‘DSBM model’ of Jahanshahloo, Hosseinzadeh Lotfi, Mehdiloozad, and Roshdi (2012) and the 

‘GMDDF model’ of Mehdiloozad, Sahoo, and Roshdi (2014). Furthermore, it can be easily 

implemented in any radial DEA model like the ‘BCC model’ of Banker, Charnes, and Cooper 

(1984), but with some minor changes. Finally, our proposed approach is free from the restricting 

assumption that the input–output data must be non-negative, so it can effectively deal with negative 

data. This can be very beneficial from a practical point of view since in many applications negative 

inputs or outputs could appear. See Pastor and Ruiz (2007) for various examples of applications with 

negative data. 

The third contribution of this study is to measure the RTS in the non-radial DEA setting. As it is 

known, the concept of RTS is meaningful only when the relevant DMU lies on the frontier of the 

technology set. Hence, for an inefficient DMU, an efficient projection must be considered. In this 

case, the type and magnitude of the RTS is determined through the position(s) of the hyperplane(s) 

supporting the technology set at the projection used. The supporting hyperplane(s) passes/pass 

through the MRS associated with this projection and can be mathematically characterized via this 

MRS. Therefore, problem Type II causes the occurrence of multiple supporting hyperplanes 



5 

(hereafter referred to as problem Type III), which makes the measurement of RTS difficult. Such a 

difficulty can be properly dealt with by using a relative interior point of the minimum face for the 

measurement of RTS. This is because the supporting hyperplane(s) binding at this point is/are 

characterized through the GRS, but not through a specific MRS. Nonetheless, the uniqueness of the 

characterized supporting hyperplane(s) cannot yet be guaranteed because the minimum face may not 

be a ‘Full Dimensional Efficient Facet’ (Olesen & Petersen, 1996; Olesen & Petersen, 2003). 

To sum up, the difficulty raised by problem Type III in the measurement of RTS originates 

either from problem Type II or from the non-full dimensionality of the minimum face. To deal with 

this difficulty, we have developed a two–stage procedure for the measurement of RTS by exploiting 

the intensive study of Krivonozhko et al. (2014). In the first stage, we cope with the difficulty arising 

from problem Type II by finding a relative interior point of the minimum face via the LP problem 

proposed to identify the GRS. Then, for the obtained point1, we use the indirect method of Banker, 

Cooper, Seiford, Thrall, and Zhu (2004) or the direct method of Førsund, Hjalmarsson, Krivonozhko, 

and Utkin (2007) to resolve the difficulty resulted from the non-full dimensionality of the minimum 

face. To demonstrate the ready applicability of our approach in empirical works, we have conducted 

an illustrative empirical analysis based on a real–life data set of 70 public schools in the United 

States. 

The remainder of this paper unfolds as follows. Section 2 deals with the description of the 

technology followed by a brief review of the RAM model. Section 3 presents the main contribution 

of our study, where the three notions - URS, MRS, and GRS are introduced, and an LP model for the 

identification of the GRS is proposed. The model developed in this section is then used to develop a 

method for the measurement of RTS. Section 4 illustrates the application of our proposed approach 

with a numerical example, followed by an illustrative empirical application. Section 5 presents the 

summary of our work with some concluding remarks. 

 

2 Background of the research 

Throughout this paper we deal with n observed DMUs; each uses m inputs to produce s outputs. 

For each DMUj ( { }1,...,j J n∈ = ), the input and output vectors are denoted by 1( ,..., )Tj j mjx x=x

0
m
≥∈R  and 1 0( ,..., )T s

j j sjy y ≥= ∈y R , respectively. Superscript T  stands for a vector transpose. We 

                                                 
1 Note that this point does not influence the RTS, since all the relative interior points of the minimum face have the same 
RTS (Krivonozhko, Førsund, & Lychev, 2012c). 
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have denoted the vectors and matrices in bold and have used 0  to show a vector with the value of 0 

in every entry. 

 

2.1 Technology set 

The technology set, T, is defined as the set of all feasible input–output combinations, i.e.,  

 ( ){ }0,   can produce m sT +
≥= ∈x y x yR . (1) 

Under the variable returns to scale (VRS) framework, the nonparametric DEA representation of 

T  can be set up as (Banker et al., 1984): 

 ( ) 0,  ,  ,  1,  0,  DEA m s
VRS j j j j j j

j J j J j J

T j Jλ λ λ λ+
≥

∈ ∈ ∈

  = ∈ ≤ ≥ = ≥ ∀ ∈ 
  

∑ ∑ ∑x y x x y yR . (2) 

 

Definition 2.1.1 Let ( ) ( ) ( ){ },  0T TH = − − − =x y u y y v x x  be a supporting hyperplane of DEA
VRST  at 

( ),x y . Then, H  and its corresponding face, i.e., DEA
VRSF H T= ∩ , are called strong if and only if all 

the components of the coefficient vector ( ),u v  are positive.2 

 

2.2 The RAM model 

Considering DMUo (o J∈ ) to be the unit under evaluation, the RAM model (Cooper et al., 

1999) is defined in reference to DEA
VRST  as  

 

1 1

1
min    1

         s.t.    ,      1,..., ,

                  ,     1,..., ,

                  1,

                  0,  ,  

m s
i r

o
i ri r

j ij i io
j J

j rj r ro
j J

j
j J

j

s s

m s R R

x s x i m

y s y r s

j J

ρ

λ

λ

λ

λ

− +

− +
= =

−

∈

+

∈

∈

 
= − + +  

+ = =

− = =

=

≥ ∈

∑ ∑

∑

∑

∑

, 0,  , ,i rs s i r− + ≥ ∀

 (3) 

                                                 
2 For more details, see Rockafellar (1970) and Davtalab-Olyaie, Roshdi, Jahanshahloo, and Asgharian (2014). 
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where is
−  ( )i∀  and rs+  ( )r∀  represent the excess of the ith input and the shortfall of the rth output, 

respectively. Here, iR− ( )i∀  and rR+  ( )r∀  are the ranges defined by the lowest and highest observed 

values in the ith input and the rth output, respectively, i.e.,  

 
{ } { }
{ } { }

max min ,     1,..., ;

max min ,     1,..., .

i ij ij
j Jj J

r rj rj
j Jj J

R x x i m

R y y r s

−

∈∈

+

∈∈

= − =

= − =
 (4) 

 

Definition 2.2.1 DMUo is said to be RAM-efficient if and only if 1oρ = , i.e., all the slacks are zero at 

optimality in (3) (Brockett, Cooper, Golden, Rousseau, and Wang, 2004). 

 

Let ( )* * *, ,− +
λ s s  be an optimal solution to (3). Then, the projection of DMUo is defined by 

 ( ) ( ) ( )* *ˆ ˆ: , , ,o o o o j j j
j J

P λ− +

∈

= = − + =∑x y x s y s x y . (5) 

It can then be easily proved that the projection P  is RAM-efficient. 

 

3. Identification of the global reference set 

3.1. The global reference set 

In this subsection, we present some key definitions, concepts and results, which are all essential 

for the development of our proposed approach.  

 

Definition 3.1.1 Let ( )* * *, ,− +
λ s s  be an optimal solution to (3) that is associated with a given projection 

P. We define the set of DMUs with positive jλ∗  as the unary reference set (URS) for DMUo and denote 

it by *
oPR  as 

 { }* DMU  0oP j jR λ∗= > . (6) 

 

We refer to each member of *oPR  as a reference DMU of DMUo. All the reference units of DMUo 

are RAM-efficient, and are located on a supporting hyperplane of DEA
VRST . 

Since the projection P may be expressed as multiple convex combinations of its associated 

reference DMUs, multiple optimal values may take place for the vector λ , leading to the occurrence 
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of multiple URSs (problem Type I). Under such an occurrence, the measurement of RTS via the 

approach of Tone (1996) may be problematic. For a detailed discussion on this issue, interested 

readers may refer to the illustrative Figures 1 and 2 in Krivonozhko et al. (2012c). 

To deal with the occurrence of multiple URSs for a given projection P, we need to define a 

reference set containing all the possible URSs. 

 

Definition 3.1.2 We define the union of all the URSs associated with a given projection P as the 

maximal reference set (MRS) for DMUo and denote it by M
oPR  as  

 { }DMU  0 in some optimal solution of (3) associated with M
oP j jR Pλ∗= > . (7) 

 

Because the RAM model is non-radial in nature, it may produce multiple projections for DMUo, 

resulting in the occurrence of multiple MRSs (problem Type II). The simultaneous occurrence of 

multiple URSs and multiple projections is illustrated with the help of an example in Section 3 in 

Sueyoshi and Sekitani (2007b). 

To deal with the occurrence of multiple MRSs, we use the concept of minimum face3 that was 

considered in detail by Sueyoshi and Sekitani (2007b) and Krivonozhko et al. (2014) from different 

sides. First, we formulate the set of all the optimal solutions of (3), oΩ , in the form of 

 

( )

1 1

, ,  ,     1,..., ,

                            ,    1,..., ,

                            1,

                            

E

E

E

o j ij i io
j J

j rj r ro
j J

j
j J

m s
i r

i ri r

x s x i m

y s y r s

s s
m

R R

λ

λ

λ

− + −

∈

+

∈

∈

− +

− +
= =

Ω = + = =


− = =

=

+ =

∑

∑

∑

∑ ∑

λ s s

( )( )1 ,

                            0,  ,  , 0,  , ,

o

j E i r

s

j J s s i r

ρ

λ − +

+ −


≥ ∈ ≥ ∀ 



 (8) 

where EJ  is the index set of all RAM-efficient DMUs. 

Then, the set of all the projections of DMUo, referred to as a projection set, can be expressed as 

 ( ) ( ){ }= ,  , ,o o o o
− + − +Λ − + ∈ Ωx s y s λ s s . (9) 

                                                 
3 For a graphical illustration of the minimum face, see Figure 4 in Sueyoshi and Sekitani (2007b). 
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As demonstrated by Krivonozhko et al. (2014), there exists a face of minimum dimension, min
oΓ , 

which contains the projection set oΛ . This face is referred to as minimum face and is, indeed, the 

intersection of all the faces of DEA
VRST  that contain oΛ , i.e.,  

 min

 is a face of 
     and 

DEA
VRS

o

o
F T

F

F

Λ ⊆

Γ = ∩ . (10) 

Now, we provide the following definition that considers the occurrence of multiple MRSs 

associated with multiple projections. 

 

Definition 3.1.3 We define the union of all the MRSs of DMUo as its global reference set (GRS) and 

denote it by G
oR  as 

 
o

G M
o oP

P

R R
∈Λ

= ∪ . (11) 

 

Lemma 3.1.1 The convex hull of the GRS, ( )G
oconv R , is a strong face of DEA

VRST . 

See Appendix A for the proof. 

 

Theorem 3.1.1 The minimum face is equal to the convex hull of the GRS, i.e., ( )min G
o oconv RΓ = . 

See Appendix A for the proof. 

 

This theorem reveals that the minimum face is spanned by the GRS. Specifically, we obtain the 

following two corollaries of Theorem 3.1.1. 

 

Corollary 3.1.1 An explicit representation of the minimum face is set up as 

 ( )min ,  ,  , 1,  0,  
G G G
o o o

G
o j j j j j j o

j J j J j J

j Jλ λ λ λ
∈ ∈ ∈

  Γ = = = = ≥ ∀ ∈ 
  

∑ ∑ ∑x y x x y y , (12) 

where G
o EJ J⊆  is the index set of DMUs in GoR . 

 

Corollary 3.1.2 The minimum face is a polytope.4 

                                                 
4 This result was proved in a different way by Krivonozhko et al. (2014). 
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The following lemma is a straightforward consequence of Definitions 3.1.2 and 3.1.3 and the 

expression (9). 

 

Lemma 3.1.2 DMU G
k oR∈  if and only if 0kλ >  in some ( ), , o

− + ∈Ωλ s s . Formally, 

 { }
( ), ,  

DMU  0
o

G
o j jR λ

− + ∈Ω

= >
λ s s

∪ . (13) 

 

Theorem 3.1.2 Let ( ), ,− +′ ′′λ s s  be an element of oΩ  such that ′λ  has the maximum number of 

positive components. Then, 

 { }DMU  0G
o j jR λ′= > . (14) 

See Appendix A for the proof. 

 

3.2. Identification of the global reference set 

Consider the following homogeneous system of equations 

 =Au 0 , ≥u 0 , (15) 

where A  is a matrix of order p q× . Bertsimas and Tsitsiklis (1997) presented an LP problem to find 

a feasible solution vector q∈u R  for (15) such that the number of its positive components is 

maximum (Exercise 3.27, pp. 136). In addition, they suggested the formulation of an LP problem to 

find a solution vector q∈u R  with the maximum number of positive components for the non-

homogeneous system of equations 

 =Au d , ≥u 0 , (16) 

where d  is a given 1p×  vector. 

We extend the above-mentioned exercise in a way to help us develop an LP-based approach for 

the identification of the GRS. 

 

Lemma 3.2.1 Let X  be the set of feasible solutions of the following homogeneous system of 

equations  

 ,  ,  + = ≥ ≥Au Bv 0 u 0 v 0 , (17) 



11 

where A  and B  are matrices of order 1p q×  and 2p q× , respectively. Further, let ( )* * *, ,u w v  be an 

optimal solution for the following LP problem: 

 ( )

1

1 2

1

1 1

1

2

max

 s.t. ,

0 1,  0,  1,..., ,

          0,  1,..., ,

q

j
j

q q

j j j j j
j j

j j

j

w

u w v

w u j q

v j q

=

= =

+ + =

≤ ≤ ≥ =

≥ =

∑

∑ ∑a b 0  (18) 

where ja  and jb  denote the jth columns of the matrices A  and B , respectively. Then, ( )* * *,+u w v  

X∈ , and * *+u w  has the maximum number of positive components. 

See Appendix A for the proof. 

 

Theorem 3.2.1 Let X  be the non-empty set of feasible solutions of the following non-homogeneous 

system of equations 

 ,  ,  + = ≥ ≥Au Bv d u 0 v 0 . (19) 

Further, let ( )* * *
1 2, , 1,..., 1, , 1,...,j j ju w j q v j q= + =  be an optimal solution to the following LP problem: 

 ( ) ( )

1

1 2

1 1

1

1

1 1
1 1

1

2

max

 s.t. ,

0 1,  0,  1,..., 1,

           0,  1,..., .

q

j
j

q q

j j j j j q q
j j

j j

j

w

u w v u w

w u j q

v j q

+

=

+ +
= =

+ + − + =

≤ ≤ ≥ = +

≥ =

∑

∑ ∑a b d 0  (20) 

Then, 
1 1 1 1

* * *

1 2* * * *
1 1 1 1

: , 1,..., ,  : , 1,...,j j j
j j

q q q q

u w v
u j q v j q X

u w u w+ + + +

 +
′ ′= = = = ∈  + + 

, and ′u  has the maximum 

number of positive components. 

See Appendix A for the proof. 

 

According to Theorem 3.1.2, a way of identifying the GRS is to find an element, namely 

( ), ,− +′ ′′λ s s , in oΩ  such that the number of positive components of ′λ  is maximum. On the basis of 

this finding, we use Theorem 3.2.1 to formulate the LP problem 
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( ) ( )
( ) ( )
( )

1

1 1

1 1

max  

 s.t.                      0,       1,..., ,

                           0,      1,...,,

                  

t

E

t t

E

t t

E

E

j j
j J

j j ij i j j io
j J

j j rj r j j ro
j J

j j
j J

x s x i m

y s y r s

µ µ

λ µ λ µ

λ µ λ µ

λ µ

+

+ +

+ +

∈

−

∈

+

∈

∈

+

+ + − + = =

+ − − + = =

+

∑

∑

∑

∑ ( )

( )( ) ( )

1 1

1 1
1 1

                         0,

                1 0,

          0 1,  0,  1,..., 1,

          0,  0,  1,..., ,  1,..., ,

t t

t t

k k

j j

m s
i r

j j o
i ri r

j j

i r

s s
m s

R R

k t

s s i m r s

λ µ

λ µ ρ

µ λ

+ +

+ +

− +

− +
= =

− +

− + =

+ − + + − =

≤ ≤ ≥ = +

≥ ≥ = =

∑ ∑

 (21) 

where t  denotes the cardinality of EJ , i.e., { }1,...,E tJ j j= . 

Let ( )* * * *, , , , , ,
k kj j i rs s k i rλ µ − + ∀  be an optimal solution to (21). Then, Theorem 3.2.1 follows that 

 
1 1 1 1 1 1

* * * *

* * * * * *
, , , , ,k k

k

t t t t t t

j j i r
j i r o

j j j j j j

s s
s s k i r

λ µ
λ

λ µ λ µ λ µ
+ + + + + +

− +
− +

 + ′ ′′ = = = ∀ ∈Ω  + + + 
 (22) 

and ′λ  has the maximum number of positive components. Applying Theorem 3.1.2 to (22), we 

identify the GRS as follows: 

 { }DMU 0 in (22)G
o j jR λ′= > . (23) 

Having identified the GRS, the projection associated with (22) can also be obtained as 

 ( ) ( ) ( )* * *, , ,
G
o

o o o o o j j j
j J

P λ+ −

∈

′ ′ ′= = − + = ∑x y x s y s x y . (24) 

Since *
oP  is expressed as a strict convex combination of the units in G

oR , it is a relative interior 

point of min
oΓ . 

In summary, the solutions to (21) determine the set of all the DMUs spanning the minimum face 

(i.e., the GRS) together with a relative interior point of this face (i.e., the projection *oP ). 

 

3.3. Properties of the proposed approach 

Some useful properties of the proposed approach are presented below. 

� Computational efficiency 
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Our approach for determining the GRS involves the execution of a single LP problem, which 

makes it computationally more efficient than the existing ones for its easy implementation in 

practical applications. Moreover, the computational efficiency of the proposed approach is higher 

than that of the previous primal–dual ones since it is based on the primal (envelopment) form 

which is computationally more efficient than the dual (multiplier) form (Cooper et al., 2007). 

Furthermore, since our proposed LP problem contains several upper-bounded variables, its 

computational efficiency can be enhanced by using the simplex algorithm adopted for solving the 

LP problems with upper-bounded variables. This is because considering (21) as an LP problem 

with upper-bounded variables leads to a further reduction in its size. More precisely, the size of 

the basic matrices during the solution process becomes ( ) ( )2 2m s m s+ + × + + , which is greater 

than the size of the basic matrices in model (3) by 3. 

� RTS Measurement 

As is well known, the concept of RTS is meaningful only when the relevant DMU lies on the 

frontier of the technology set. Hence, for an inefficient DMUo, an efficient projection must be 

considered. In this case, the type and magnitude of the RTS for DMUo is determined through the 

position(s) of the hyperplane(s) supporting DEA
VRST  at the projection used. The supporting 

hyperplane(s) passes/pass through the MRS associated with this projection and can be 

mathematically characterized via this MRS. This implies that the RTS measurement would be 

problematic under the occurrence of problem Type II, as it causes the occurrence of multiple 

MRSs and, consequently, the occurrence of multiple supporting hyperplanes (problem Type III). 

Note that overcoming the difficulty caused by problem Type II does not necessarily guarantee the 

uniqueness of the characterized supporting hyperplane(s). This is because the minimum face may 

not be a ‘Full Dimensional Efficient Facet’ – an efficient facet of dimension 1m s+ −  in the 

input–output space (Olesen & Petersen, 1996, 2003). 

To sum up, the difficulty in the measurement of RTS arises either from Type II problem or 

from the non-full dimensionality of the minimum face. To overcome this difficulty, we propose a 

two–stage procedure based on the intensive study of Krivonozhko et al. (2014). The first stage is 

to determine a relative interior point of the minimum face by (24). This determination is based on 

the following two facts which show that the difficulty arising from problem Type II can be dealt 

with by using a relative interior point of the minimum face for the measurement of RTS. 
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(a) All relative interior points of the minimum face min
oΓ  operate under the same type of RTS 

(Krivonozhko et al, 2012c). 

(b) By Theorem 3.1.1, any relative interior point of min
oΓ  can be expressed as a strict convex 

combination of all the reference DMUs in GoR . Therefore, each supporting hyperplane 

binding at this point is also binding at all the reference DMUs. Precisely, this supporting 

hyperplane is characterized through the GRS, but not through a specific MRS. 

In the second stage, the difficulty resulted from the non-full dimensionality of the minimum 

face is dealt with by measuring the RTS of *
oP  through the indirect method of Banker et al. (2004) 

or the direct method of Førsund et al. (2007). 

� Extension to other DEA models 

Our approach can readily be used without any change for the ‘additive model’ (Charnes et al., 

1985) and the ‘BAM model’ (Cooper et al., 2011; Pastor, 1994; Pastor & Ruiz, 2007), because the 

difference between each of these two models and the RAM model lies only in the weights 

assigned to the input and output slacks in the objective function. With some minor changes, it can 

also be adopted for the ‘RAM/BCC model’ of Aida et al. (1998), the ‘DSBM model’ of 

Jahanshahloo et al. (2012) and the ‘GMDDF model’ of Mehdiloozad et al. (2014). 

Furthermore, it can be implemented in any radial DEA model (e.g., the BCC model5). In this 

regard, let ( )* * * *, , ,θ − +
λ s s  be an optimal solution to the input-oriented BCC model. Then, it is 

sufficient to replace ox  by *
oθ x  in the input constrains of (8) and (21), and fix the sum of slacks 

at * *

1 1

m s

i r
i r

s s− +

= =

+∑ ∑ . 

� Extension to constant returns to scale case 

The assumption of VRS is maintained in our study. This is because when a data set contains 

some negative values, one may not be able to define an efficient frontier passing through the 

origin, as is assumed under constant returns to scale (CRS). Therefore, as argued by Silva Portela 

and Thanassoulis (2010), the assumption of CRS is untenable with negative data. 

                                                 
5 The issue of identifying all possible reference DMUs of each inefficient unit using the BCC model was explored by 
Jahanshahloo, Shirzadi, and Mirdehghan (2008), Krivonozhko, Førsund, and Lychev (2012a), Roshdi, Van de Woestyne, 
Davtalab-Olyaie (2014) and Sueyoshi and Sekitani (2007a). 
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It is, however, worth noting that while the minimum face is a polytope in the VRS-based 

technology, it is an unbounded polyhedral cone in the CRS-based technology that is generated by 

the reference units in the GRS. Despite this structural difference between the two technologies6, 

our results can still be successfully adapted for the case of CRS by removing the convexity 

constraint, i.e., 1j
j J

λ
∈

=∑ . This is because our approach is primarily based on finding a solution 

with the maximum number of positive components for a linear system of equations, and is 

independent of the existence of the convexity constraint, accordingly.  

� Dealing with negative input–output data 

Being independent of the data sets used, our proposed approach is free from the restricting 

assumption that the input–output data must be non-negative, which makes the identification of the 

GRS possible in the presence of negative data. From a practical point of view, this can be very 

beneficial since we deal with negative inputs and/or outputs in many empirical applications. 

 

4. Illustration of the proposed approach 

4.1. Numerical example 

Let us consider a data set exhibited in Table 1 that consists of eight hypothetical DMUs with one 

input and one output. Based on these data, Fig. 1 depicts the frontier spanned in the two-dimensional 

input–output space. 

 

Table 1. Input and output data for Example 4.1 

 DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 

Input 1 2 3 5 8 2 3 6 

Output 2 5 6 8 8 1 3 4 

 

To illustrate the application of our proposed approach, we first evaluate each DMU using the 

RAM model. Table 2 exhibits the efficiency score and the projection obtained for each DMU. The 

results reveal that DMU1, DMU2, DMU3 and DMU4 form the efficient frontier, and hence, are RAM-

efficient. Amongst the inefficient DMUs (DMU5, DMU6, DMU7 and DMU8), DMU8 has the 

minimum efficiency score of 8 0.643ρ = . 

                                                 
6 For more details about the facial structure of the CRS- and VRS-based technologies, see Davtalab-Olyaie et al. (2014), 
Davtalab-Olyaie, Roshdi, Partovi Nia, and Asgharian (2014) and Jahanshahloo, Roshdi, and Davtalab-Olyaie (2013). 
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Fig 1. The production frontier 

 

While DMU4 and DMU2 are found as the unique projections for DMU5 and DMU6, respectively; 

DMU7 and DMU8 do not have unique projections despite the fact that DMU3 is determined as a 

projection for both. The projection sets of DMU7 and DMU8 are, respectively, the line segment 

connecting DMU2 and DMU3 and the line segment connecting DMU2 and DMU4 ( 1 8R− =  and 

1 8R+ = ). So, the minimum face associated with each of these units is the line segment connecting 

DMU2 and DMU4. 

 

Table 2. The results for Example 4.1 

   DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 

Model (3) 
oρ  1 1 1 1 0.786 0.714 0.786 0.643 

P  DMU1 DMU2 DMU3 DMU4 DMU4 DMU2 DMU3 DMU3 
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Having obtained the efficiency score for each DMU, we use model (21) to identify its GRS and 

determine a relative interior point of its corresponding minimum face. The results are all presented in 

Table 2. Out of the four RAM-efficient DMUs, DMU1, DMU2 and DMU4 are extreme-efficient and 

DMU3 is non-extreme efficient (see Fig. 1). 

Since DMU5 and DMU6 have unique projections (i.e., DMU4 for DMU5 and DMU2 for DMU6), 

the GRS for each of these units is exactly the same as its unique projection. Formally, { }5 4GJ =  and 

{ }6 2GJ = . 

Now, consider the case of DMU7 suffering from the occurrence of problems Type I, II and III: 

� Type I: The sets { }3DMU , { }2 4DMU ,DMU  and { }2 3 4DMU ,DMU ,DMU  are the three 

URSs for DMU7 associated with the projection DMU3. So, the MRS of DMU7 associated 

with DMU3 is { }2 3 4DMU ,DMU ,DMU . 

� Type II: 2Λ  is the line segment connecting DMU2 and DMU3. 

� Type III resulted from Type II: The RTS of DMU7 based upon the RTS of DMU2 and 

DMU3 (as its projections) is constant and decreasing, respectively. 

As can be seen in Table 2, the GRS of DMU7 consists of DMU2, DMU3 and DMU4 with the 

respective weights of 0.5, 0.25 and 0.25, i.e., { }7 2,3,4GJ = . This finding confirms Corollary 3.1.1, 

i.e., the convex hull of DMU2, DMU3 and DMU4 is min
7Γ . Moreover, DMU3 is determined as a 

relative interior point of min
7Γ . 

We now turn to measure the RTS of each inefficient DMU based upon the RTS of the relative 

interior point of its associated minimum face given in Table 2. To do so, we use the two–stage 

method of Banker et al. (2004) and examine the sign of the intercept of the supporting hyperplane(s) 

passing through the given relative interior point. In Stage 1, we solve the multiplier form of the BCC 

model and obtain the intercept; if the intercept is equal to zero, the RTS is constant. Otherwise, 

depending on the sign of the intercept, we solve an additional problem in Stage 2 to determine the 

RTS.  

We apply the two–stage approach to each relative interior point and summarize the results in 

Table 2. As can be seen, out of the four inefficient units, the three units - DMU5, DMU7 and DMU8 

operate under decreasing RTS and one unit (i.e., DMU6) under constant RTS. 
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4.2. Empirical application 

To demonstrate the ready applicability of our proposed approach, we conduct an illustrative 

empirical analysis based on a real-life data set of 70 public schools in the United States, which was 

taken from Charnes et al. (1981). To carry out all the computations, we have developed a computer 

program using the GAMS optimization software. 

The data consists of five inputs and three outputs. The inputs of schools are the education level 

of mother as measured in terms of percentage of high school graduates among female parents (1x ), 

the highest occupation of a family member according to a pre-arranged rating scale (2x ), the parental 

visit index representing the number of visits to the school site (3x ), the parent counseling index 

calculated from data on the time spent with child on school-related topics such as reading together, 

etc ( 4x ), and the number of teachers at a given site (5x ). The outputs are the Total Reading Score as 

measured by the Metropolitan Achievement Test (1y ), the Total Mathematics Score as measured by 

the Metropolitan Achievement Test (2y ), and the Coopersmith Self-Esteem Inventory, intended as a 

measure of self-esteem (3y ). 

 

Table 3. Descriptive statistics of efficiency scores and projections obtained by the RAM model for 

inefficient schools 

DMU  oρ   1x̂  2x̂  3x̂  4x̂  5x̂   1ŷ  2ŷ  3ŷ  

Min  0.844  4.379 2.233 7.958 8.170 2.274  8.817 9.369 6.350 

Max  0.985  39.969 14.650 51.902 52.132 8.314  54.530 63.557 39.100 

Mean  0.938  15.634 8.396 28.938 29.847 4.947  30.319 36.529 22.367 

 

 

In order to apply model (21), we have to obtain the efficiency score of oρ  beforehand. Thus, we 

first make the efficiency assessment of the schools using the RAM model. The results show that 26 

(37%) schools are RAM-efficient. For the remaining 44 (63%) inefficient schools, Table 3 provides 

summary statistics of the efficiency scores and the inputs and outputs of the projection points. It can 

be observed that the values of oρ  range from 0.844 to 0.965 with the mean efficiency score of 0.938. 
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Table 4. The GRSs and RTSs of the inefficient schools 

DMU  Global Reference Set  Returns to Scale 

S1  S52( 0.652) S58( 0.171) S59( 0.177)    0.075 0.003 DRS 

S2  S44( 0.250) S58( 0.750)     0.004 0 CRS 

S3  S44( 0.201) S52( 0.275) S58( 0.525)    0.004 0 CRS 

S4  S44( 0.036) S58( 0.954) S59( 0.010)    0.006 0 CRS 

S6  S58( 0.862) S62( 0.138)     -0.006 0 CRS 

S7  S58( 0.944) S59( 0.056)     0.044 0 CRS 

S8  S44( 0.003) S58( 0.739) S59( 0.258)    0.024 0 CRS 

S9  S58( 0.831) S59( 0.169)     -0.003 0 CRS 

S10  S44( 0.159) S52( 0.555) S58( 0.236) S59( 0.049)   0.023 0.003 DRS 

S13  S58( 0.828) S59( 0.172)     0.121 0 CRS 

S14  S58( 0.104) S62( 0.624) S69( 0.272)    -0.014 0 CRS 

S16  S44( 0.337) S58( 0.558) S59( 0.105)    0.003 0 CRS 

S19  S44( 0.397) S58( 0.560) S59( 0.043)    0.003 0 CRS 

S23  S44( 0.478) S58( 0.500) S59( 0.022)    0.021 0 CRS 

S25  S44( 0.234) S58( 0.299) S62( 0.467)    -0.047 0 CRS 

S26  S44( 0.201) S58( 0.698) S59( 0.101)    0.05 0 CRS 

S28  S17( 0.396) S20( 0.047) S27( 0.369) S47( 0.084) S62( 0.104)  -0.096 -0.061 IRS 

S29  S62( 0.627) S69( 0.373)     -0.039 0 CRS 

S30  S58( 0.973) S59( 0.027)     0.05 0 CRS 

S31  S58( 0.990) S59( 0.010)     0.004 0 CRS 

S33  S44( 0.288) S58( 0.563) S59( 0.150)    0.021 0 CRS 

S34  S58( 0.768) S59( 0.232)     -0.001 0 CRS 

S36  S58( 0.997) S59( 0.003)     0.109 0 CRS 

S37  S58( 0.978) S59( 0.022)     0.001 0 CRS 

S39  S20( 0.396) S27( 0.461) S44( 0.143)    0.058 0 CRS 

S40  S52( 0.239) S58( 0.666) S69( 0.095)    0.012 0 CRS 

S41  S44( 0.229) S58( 0.767) S59( 0.004)    0.034 0 CRS 

S42  S17( 0.482) S20( 0.482) S58( 0.036)    0.01 0 CRS 

S43  S44( 0.114) S58( 0.776) S59( 0.110)    0.029 0 CRS 

S46  S44( 0.032) S58( 0.710) S59( 0.259)    0.023 0 CRS 

S50  S52( 0.545) S58( 0.399) S59( 0.056)    0.037 0.004 DRS 

S51  S58( 0.274) S62( 0.726)     0.017 0 CRS 

S53  S58( 0.948) S59( 0.052)     0.045 0 CRS 

S55  S15( 0.010) S44( 0.117) S52( 0.076) S58( 0.554) S69( 0.243)  -0.001 0 CRS 

S57  S52( 0.431) S58( 0.499) S69( 0.070)    0.017 0 CRS 

S60  S44( 0.091) S58( 0.143) S62( 0.766)    -0.011 0 CRS 

S61  S58( 0.009) S62( 0.447) S69( 0.544)    0.025 0 CRS 

S63  S44( 0.017) S52( 0.012) S58( 0.437) S62( 0.058) S69( 0.476)  0.027 0 CRS 

S64  S44( 0.032) S58( 0.863) S59( 0.105)    0.012 0 CRS 

S65  S44( 0.006) S52( 0.075) S58( 0.219) S62( 0.224) S69( 0.476)  0.016 0 CRS 

S66  S44( 0.052) S58( 0.915) S59( 0.033)    0.042 0 CRS 

S67  S44( 0.063) S58( 0.834) S59( 0.103)    -0.006 0 CRS 

S68  S44( 0.147) S58( 0.249) S59( 0.134) S62( 0.471)   -0.004 0 CRS 
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S70  S44( 0.027) S58( 0.640) S62( 0.333)    0.053 0 CRS 

 

As is well known, the RAM model is not by itself able to find out all the possible reference units 

for inefficient DMUs. Therefore, we apply model (21) for each inefficient school to identify the 

reference schools in its GRS as appropriate benchmarks. For the 44 inefficient schools, Table 4 

shows all the reference schools together with their corresponding weights. For example, the efficient 

schools S44, S58 and S59 with the respective weights of 0.052, 0.915 and 0.033 appear in the GRS 

of the most inefficient school S66. This means that S66’s target inputs and outputs are a linear 

combination of S44, S58 and S59’s inputs and outputs. Thus, in order for S66 to become efficient, it 

must adjust its inputs and outputs so that it produces 44 58 590.052 0.915 0.033S S S× + × + ×y y y  amount 

of output by consuming 44 58 590.052 0.915  0.033S S S× + × + ×x x x  amount of input. 

Now, we proceed to measure the RTS of the inefficient schools. For each inefficient DMU, we 

first use (24) to obtain a relative interior point of its corresponding minimum face. The statistics of 

the results are given in Table 4. Applying the two–stage method of Banker et al. (2004) to the 

obtained interior points of Table 5 yields the results that are reported in the last three columns of 

Table 4. As the results show, among 44 inefficient branches, 3 (7%) schools have decreasing RTS 

status, 1 (2%) has increasing RTS status, and the remaining 40 (91%) schools have constant RTS 

status. 

 

Table 5. Descriptive statistics of relative interior points of the minimum faces 

DMU  
1x̂  2x̂  3x̂  4x̂  5x̂   

1ŷ  2ŷ  3ŷ  

Min  4.379 2.233 7.958 8.170 2.274  8.817 9.369 6.350 

Max  39.969 14.650 51.902 52.132 8.314  54.530 63.557 39.100 

Mean  15.634 8.396 28.938 29.847 4.947  30.319 36.529 22.367 

 

 

5. Summary and concluding remarks 

The current study is mainly concerned with the identification of all the possible reference units 

of an evaluated inefficient DMU. It is also interested in its application for the measurement of RTS 

in non-radial DEA models. Corresponding to a given projection of the DMU under evaluation, first, 

two basic notions were introduced: i) URS: the set of efficient DMUs that are active in a specific 

convex combination generating this projection, and ii) MRS: the union of all the URSs associated 
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with this projection. Then, the notion of GRS was defined as the union of the MRSs associated with 

all projections of the evaluated DMU. With the help of the introduced notions, it was demonstrated 

that the convex hull of the GRS is equal to the minimum face, from which it was immediately 

concluded that the minimum face is a polytope. 

Three types of multipleness may occur in any non-radial DEA model: multiple URSs (Type I), 

multiple projections (Type II), and multiple supporting hyperplanes (Type III). The occurrences of 

problems Type I and II cause difficulties in the identification of all the possible reference DMUs. 

The difficulty in the measurement of RTS arises mainly from problem Type III, which itself 

originates from two sources: problem Type II and the non-full dimensionality of the minimum face. 

To deal effectively with the simultaneous occurrence of problems Type I and II, an LP-based 

approach was proposed to identify the GRS. Our proposed approach has several advantages over the 

existing ones. First, since it requires the execution of a single LP problem, it is computationally more 

efficient than the existing ones for easy implementation in practical applications. Second, using the 

simplex algorithm adopted for solving the LP problems dealing with upper-bounded variables, the 

computational efficiency of our approach can be substantially improved. Third, as our proposed 

approach is primal-based, its computational efficiency is higher than that of the previous primal–dual 

methods. Fourth, our proposed approach is more general in the sense that it can easily be applied to 

both radial and non-radial DEA models (e.g., the BCC and the additive models). 

To estimate the RTS, a method in the non-radial DEA framework is also proposed to deal 

effectively with problem Type III, which arises either from problem Type II or from the non-full 

dimensionality of the minimum face. A key outcome of the LP problem proposed to identify the 

GRS is that it generates a projection in the relative interior point of the minimum face. Using this 

projection for determining the RTS of the evaluated inefficient DMU, our proposed method 

overcomes the difficulty arising from problem Type II. This is because each supporting hyperplane 

binding at the used projection is determined through the GRS, but not through a specific MRS. To 

cope with the difficulty arising from the non-full dimensionality of the minimum face, our proposed 

method employs the indirect method of Banker et al. (2004) or the direct method of Førsund et al. 

(2007). 

 



22 

Acknowledgments 

We wish to thank Robert G. Dyson (Editor), three anonymous referees of the Journal and Abbas 

Valadkhani, whose invaluable inputs and comments considerably improved an earlier version of this 

article. We are also thankful to Arash Moradi for his careful proofread of the article. The usual 

caveat applies. 

 

Appendix A 

Proof of Lemma 3.1.1 Let ( ),x y  be a relative interior point of oΛ . Since ( ),x y  is RAM-efficient, 

the SCSCs of linear programming implies the existence of a strong supporting hyperplane of DEA
VRST  

that passes through this point. Without loss of generality, let SH  be such a hyperplane whose 

associated strong face :S S DEA
VRSF H T= ∩  is of minimum dimension. By Theorem 6.4 in Rockafellar 

(1970), the convexity of oΛ  infers that SH  is binding at all the DMUs in G
oR . Therefore, 

( )G S
oconv R H⊆ , indicating that ( )G S

oconv R F⊆ . 

According to Theorem 2 in Davtalab-Olyaie et al. (2014), SF  is a polytope (bounded polyhedral 

set). Hence, the equality holds if ( )S
o ri FΛ ∩ ≠ ∅ , since this relation implies that all the observed 

DMUs on SF  belong to G
oR . Assume, by the way of contradiction, that ( )S

o ri FΛ ∩ = ∅  or, 

equivalently, ( )S
o FΛ ⊆ ∂ . Then, there exists a unique face of SF  of minimum dimension, namely 

SK , for which ( )S S S
o F FΛ ⊆ Κ ⊆ ∂ � . The face SΚ  is a strong face of DEA

VRST  (Rockafellar, 1970), 

whose dimension is less than that of SF . This is a contradiction and, thus, the proof is complete by 

Definition 2.1.1.          □   

 

Proof of Theorem 3.1.1 As proved in Lemma 3.1.1, ( )G
oconv R  is a strong face of DEA

VRST  containing 

oΛ . Thus, according to the definition of min
oΓ , it will suffice to show that ( ) minG

o oconv R ⊆ Γ . By the 

definition of a face, there exists a supporting hyperplane, namely minH , such that min min DEA
o VRSH TΓ = ∩

. Since minH  is binding at each projection, it passes through each DMU in G
oR . Then, the convexity 

of minH  follows that ( ) minG
oconv R H⊆ , which completes the proof.   □  
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Proof of Theorem 3.1.2 By the assumption, we have ( ), , o
− +′ ′′ ∈Ωλ s s . Hence, from (13), we need 

only to prove that { }0G
o jR j λ′⊆ > , which is equivalent to demonstrating that ′λ  takes positive 

values in any positive component of λ  in any ( ), , o
− + ∈Ωλ s s . 

By the way of contradiction, assume that there exists an element ( ), , o
− +′′ ′′′′ ∈Ωλ s s  and an index 

{ } 0h jj j λ′′∈ >  for which 0
hj

λ ′ = . Then, let ( )ˆ ˆ ˆ, ,− +
λ s s  be a strict convex combination of the 

elements ( ), ,− +′ ′′λ s s  and ( ), ,− +′′ ′′′′λ s s . Since oΩ  is convex, ( )ˆ ˆ ˆ, , o
− + ∈Ωλ s s  and { }ˆ 0jj λ > =

{ } { } 0 0j jj jλ λ′ ′′> ∪ > . Consequently, { } { }ˆ 0  0j jj jλ λ′ > >� , which contradicts the assumption 

that ′λ  has the maximum number of positive components. Thus, the proof is complete. □  

 

Proof of Lemma 3.2.1 Let ( )* * *,+u w v  be an optimal solution to (18). Then ( )* * *, X+ ∈u w v . 

Without loss of generality, assume that ( )* * * * * *
1 1 ,..., ,0,...,0k ku w u w+ = + +u w . We claim that the 

number of positive components of * *+u w  is maximum or, equivalently, that * *+u w  takes positive 

values in any positive component of u  in any feasible solution ( ), X∈u v  because of the convexity 

of X . To prove our claim, assume on the contrary that there exists an element of X , namely ( )ˆ ˆ,u v , 

and a set of indices, namely { }1,...,k l+ , such that 1ˆ ˆ0,..., 0k lu u+ > > . Since the system of equations in 

(18) is homogeneous, without loss of generality, it can be assumed that ˆ 1ju ≤ , 11,...,j q= . 

Since ( )* * *, X+ ∈u w v  and ( )ˆ ˆ, X∈u v , we have ( )* * *ˆ ˆ, X+ + + ∈u w u v v  thereby 

 ( )( ) ( )
1 2

* * *

1 1 1

ˆ ˆ ˆ .
q qk

j j j j j j j j j
j j k j

u u w u v v
= = + =

 
+ + + + + = 

 
∑ ∑ ∑a a b 0  (A.1) 

Based on (A.1), we define  

 

**
*

2

11

,   1,..., ,ˆ ,   1,..., ,
ˆ  ,  1,...,

ˆ ,    1,.., ;0,            1,.., ;

jj j
j j j j j

j

w j ku u j k
u w v v v j q

u j k qj k q

 = + = ′ ′ ′= = = + = 
= += +  

. (A.2) 
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Then, ( ), ,′ ′ ′u w v  is a feasible solution of (18) with the objective value of 
1

1

w
q

j
j =

′∑ , which is 

strictly greater than 
1

*

1

q

j
j

w
=
∑ . This contradicts the optimality of ( )* * *,+u w v , and hence proves our 

claim.            □  

 

Proof of Theorem 3.2.1 Let ( )* * *
1 2, 1,..., 1, , 1,...,j j ju w j q v j q+ = + =  be an optimal solution to (20). 

By Lemma 3.2.1, this solution has the maximum number of positive components. Therefore, 

1 1

* *
1 1q qu w+ ++  is positive as a result of the assumption that X ≠ ∅ . Consequently, the first constraint of 

(20) at optimality can be equivalently rewritten as 

 
1 2

1 1 1 1

* * *

* * * *
1 11 1 1 1

q q
j j j

j j
j jq q q q

u w v

u w u w= =+ + + +

   +
+ =      + +   

∑ ∑a b d , (A.3) 

which completes the proof.         □  
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