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On the identification of the global reference set in data

envelopment analysis

Abstract
It is well established that multiple reference satsy occur for a decision making unit (DMU)
in the non-radial DEA (data envelopment analysisitirsg. As our first contribution, we
differentiate between three types of reference Best, we introduce the notion afnhary
reference se(URS) corresponding to a given projection of amaleated DMU. The URS
includes efficient DMUs that are active in a specifonvex combination producing the
projection. Because of the occurrence of multipRSd, we introduce the notion pfaximal
reference se{MRS) and define it as the union of all the URSsagziated with the given
projection. Since multiple projections may occumon-radial DEA models, we further define
the union of the MRSs associated with all the mtop@s asuniqueglobal reference sdiGRS)
of the evaluated DMU. As the second contributioa,propose and substantiate a general linear
programming (LP) based approach to identify the GB®#ice our approach makes the
identification through the execution of a singlémal-based LP model, it is computationally
more efficient than the existing methods for itsyeanplementation in practical applications.
Our last contribution is to measure returns toesaging a non-radial DEA model. This method
effectively deals with the occurrence of multiplgpporting hyperplanes arising either from
multiplicity of projections or from non-full dimereality of minimum face. Finally, an
empirical analysis is conducted based on a real-diita set to demonstrate the ready

applicability of our approach.

Keywords: Data envelopment analysis; Linear programming;b@laeference set; Minimum

face; Returns to scale.

1. Introduction
Data envelopment analysis (DEA), introduced by @bsy Cooper, and Rhodes (1978) and
Charnes, Cooper, and Rhodes (1979) based on thmatework of Farrell (1957), is a linear



programming (LP) based method for measuring thativel efficiency of a homogeneous group of
decision making units (DMUs) with multiple inputacamultiple outputs. Based on observed data
and a set of postulates, DEA defines a refereradentdogy set relative to which a DMU can be rated
asefficientor inefficient For an inefficient DMU, DEA recognizes a uniquenaultiple projection(s)

on the efficient frontier of the technology setsasiated with each projection, it also identifieseh

of observed efficient DMUs against which the undealuation DMU is directly compared. Those
efficient DMUs are calledeference DMUsand the corresponding set is referred to esference
set

The identification ofall the possible reference DMUs for an inefficienttusian important and
interesting problem in DEA, on which we concentiatéhis contribution by means of the non-radial
range-adjusted model (RAM) of Cooper, Park, anddP4$999). This issue has received significant
attention in the literature due to its wide randgepotential applications in ranking (Jahanshahloo,
Junior, Hosseinzadeh Lotfi, & Akbarian, 2007), bemarking and target setting (Bergendahl, 1998;
Camanho & Dyson, 1999), and measuring returns ateRTS) (Cooper, Seiford, & Tone, 2007;
Krivonozhko, Fgrsund, & Lychev, 2014; Sueyoshi &i&ni, 2007a; Sueyoshi & Sekitani, 2007b;
Tone, 1996; Tone, 2005; Tone & Sahoo, 2006).

From a managerial point of view, the identificatiohall the reference DMUs is specifically
important for two reasons. First, to improve thef@enance of an inefficient DMU, it may not be
logical in practice to introduce an unobserved t(al) projection as a benchmark. In such a
situation, however, the identification provides thessibility to derive practical guidelines from
benchmarking against the reference DMUs. Seconénveome (but not all) reference DMUs are
identified for an evaluated unit, the decision miakay be of the opinion that the identified DMUs
are not appropriate benchmarks and may wish to hawe options in choosing targets. In such a
case, the identification allows him/her to incogterthe preference information into analysis stoas
yield a projection with the most preferred (i) @asss (Tone, 2010), (ii) values of inputs and
outputs, and (iii) shares of reference units iriatsnation.

The pioneer attempt to find all the reference DMiJsion-radial DEA models was made by
Sueyoshi and Sekitani (2007b). Based on strong ongntary slackness conditions (SCSCs) of
linear programming, they proposed a primal-dualebamethod using the RAM model. The
proposed method in their impressive study is vetgresting as a theoretical idea. However, as
Krivonozhko, Fgrsund, and Lychev (2012b) have adguet only the computational burden of

Sueyoshi and Sekitani's (2007b) approach is highjtkalso seems that the basic matrices defined in



their approach are likely to be ill-conditionedadéng to erroneous and unacceptable results even fo
medium-size problems. Furthermore, the economierpnétation of some constraints of their
proposed model does not make sense. In a moretrandnconscious attempt to overcome these
difficulties, Krivonozhko et al. (2014) have propdsa primal—-dual based procedure based on
solving several LP problems. Using computationgdegiments, they showed that their proposed
method works reliably and efficiently on real-ldata sets and outperforms Sueyoshi and Sekitani's
(2007b) approach.

It is worth noting that the studies conducted bgy®ishi and Sekitani (2007) and Krivonozhko
et al. (2014) correctly found all the observed DMuis minimum face— a face of minimum
dimension on which all the projections are locatems auniquereference set of a given DMU. On
the other hand, both of these studies pointedattthe occurrence ohultiple reference sets was
possible. However, neither of them explicitly maaelear distinction between the uniquely-found
reference set and other types of reference setwfoch multipleness may occur. This lack of
discrimination creates an ambiguity about the uaigss and, consequently, about the mathematical
well-definedness of the definition of reference set

Therefore, we were motivated to eliminate this ajulty effectively. To do so, we have
proposed three types of reference set sequentalgur first contribution. Corresponding to a give
projection, we first introduce the notion whary reference s€URS) including efficient DMUs that
are active in a specific convex combination prodgcthis projection. Since multiple URSs
(hereafter referred to as problem Type |) may gcar introduce the notion ohaximal reference
set (MRS) and define it as the union of all the URSsaaiated with the given projection. Since
multiple projections may occur in the RAM model, vitether define the union of the MRSs
associated with all the projections as unigiebal reference sdiGRS) of the evaluated DMU. We
have had an interesting finding: the convex hulltied GRS is equal to the minimum face. The
benefits of the introduced three types of referesatdi.e., URS, MRS and GRS) are outlined below.

* The introduced concepts are all mathematically-defined.

* The URS and MRS help demonstrate the occurrenowutiiple reference sets associated
with a single and multiple projection(s), respeety

* While the multipleness may occur for the URS and3yifthe GRS presents a unique

reference set that contains all the possible reé&®MUs.



As our second contribution, we have proposed anmdelel that identifies the GRS, and
provides a projection in the relative interior bétminimum face. The proposed approach has several
important features. First, it can effectively dedth the simultaneous occurrence of problems Type |
and 1l. Second, this approach involves solving rglsi LP problem, which makes this approach
computationally more efficient than the existingesnfor its easy implementation in practical
applications. Third, the computational efficiendyoorr approach is higher than that of the previous
primal-dual ones, since it is developed based am phimal (envelopment) form that is
computationally more efficient than the dual (npllgr) form (Cooper et al., 2007). Forth, since our
proposed LP problem contains several upper-boumdgdbles, its computational efficiency can be
enhanced by using the simplex algorithm adoptedsddring the LP problems with upper-bounded
variables, which is much more efficient than théilary simplex algorithm (Winston, 2003).

Fifth, our proposed approach is more general irst#rese that it can be readily used without any
change in both the ‘additive model’ (Charnes, Cop@olany, Seiford, & Stutz, 1985) and the
‘BAM model’ (Cooper, Pastor, J. T., Borras, Apanic& Pastor, D., 2011; Pastor, 1994; Pastor &
Ruiz, 2007), because the difference between eattresé two models and the RAM model lies only
in the weights assigned to the input and outputkslan the objective function. With some minor
changes, it can also be used in the ‘RAM/BCC mo@hetla, Cooper, Pastor, & Sueyoshi, 1998), the
‘DSBM model' of Jahanshahloo, Hosseinzadeh Lotfiehdiloozad, and Roshdi (2012) and the
‘GMDDF model’ of Mehdiloozad, Sahoo, and Roshdi ¥2p Furthermore, it can be easily
implemented in any radial DEA model like the ‘BCCoael’ of Banker, Charnes, and Cooper
(1984), but with some minor changes. Finally, otosppsed approach is free from the restricting
assumption that the input—output data must be mgative, so it can effectively deal with negative
data. This can be very beneficial from a practmaiht of view since in many applications negative
inputs or outputs could appear. See Pastor and(R0@7) for various examples of applications with
negative data.

The third contribution of this study is to meastite RTS in the non-radial DEA setting. As it is
known, the concept of RTS is meaningful only whiea televant DMU lies on the frontier of the
technology set. Hence, for an inefficient DMU, dficeent projection must be considered. In this
case, the type and magnitude of the RTS is detedrinrough the position(s) of the hyperplane(s)
supporting the technology set at the projectionduséhe supporting hyperplane(s) passes/pass
through the MRS associated with this projection aad be mathematically characterized via this

MRS. Therefore, problem Type Il causes the occaeenf multiple supporting hyperplanes



(hereafter referred to as problem Type Ill), whinhkes the measurement of RTS difficult. Such a
difficulty can be properly dealt with by using datéve interior point of the minimum face for the
measurement of RTS. This is because the suppohnypgrplane(s) binding at this point is/are
characterized through the GRS, but not througheaip MRS. Nonetheless, the uniqueness of the
characterized supporting hyperplane(s) cannot gegjuaranteed because the minimum face may not
be a ‘Full Dimensional Efficient Facet’ (Olesen &tBrsen, 1996; Olesen & Petersen, 2003).

To sum up, the difficulty raised by problem Typé iH the measurement of RTS originates
either from problem Type Il or from the non-fullnagnsionality of the minimum face. To deal with
this difficulty, we have developed a two—stage pthoe for the measurement of RTS by exploiting
the intensive study of Krivonozhko et al. (2014) the first stage, we cope with the difficulty angp
from problem Type Il by finding a relative interipoint of the minimum face via the LP problem
proposed to identify the GRS. Then, for the obtipeint, we use the indirect method of Banker,
Cooper, Seiford, Thrall, and Zhu (2004) or the climaethod of Farsund, Hjalmarsson, Krivonozhko,
and Utkin (2007) to resolve the difficulty resultt]dm the non-full dimensionality of the minimum
face. To demonstrate the ready applicability of approach in empirical works, we have conducted
an illustrative empirical analysis based on a rddel-data set of 70 public schools in the United
States.

The remainder of this paper unfolds as follows.ti8ac2 deals with the description of the
technology followed by a brief review of the RAM d&l. Section 3 presents the main contribution
of our study, where the three notions - URS, MRf8l @RS are introduced, and an LP model for the
identification of the GRS is proposed. The modelatigped in this section is then used to develop a
method for the measurement of RTS. Section 4 it the application of our proposed approach
with a numerical example, followed by an illustvatiempirical application. Section 5 presents the
summary of our work with some concluding remarks.

2 Background of theresearch
Throughout this paper we deal withobserved DMUSs; each usesinputs to producs outputs.

For each DMy (jOJ :{1,...,n}), the input and output vectors are denotedxby (X;;,..., X Y

ORY andy; = (Y, Y Y ORS,, respectively. Superscripf stands for a vector transpose. We

! Note that this point does not influence the RTiSses all the relative interior points of the minimdface have the same
RTS (Krivonozhko, Fgrsund, & Lychev, 2012c).



have denoted the vectors and matrices in bold amd bsedd to show a vector with the value of O
in every entry.

2.1 Technology set

The technology sef,, is defined as the set of all feasible input—otigmmbinations, i.e.,

T ={(x.y) ORZ | x can producg} . (1)

Under the variable returns to scale (VRS) framewtir& nonparametric DEA representation of
T can be set up as (Banker et al., 1984):

Tvi?:{(x,y)m;;s

DAX <X, DAy 2y, DA =LA 2 O,DjDJ}. (2)
jad 0 jad

Definition 2.1.1 Let H :{(x,y)‘ u' (y-y)-v'(x-%X) :C} be a supporting hyperplane @f2"* at
(X,¥). Then,H and its corresponding face, i.&5,=H n T, are calledstrongif and only if all

the components of the coefficient vecfor,v) are positive.

2.2 The RAM mode
Considering DMY (o0 J) to be the unit under evaluation, the RAM modebdger et al.,

1999) is defined in reference The as

p, = min 1—m+s{§%+21}
s.t ZDJ:A'X"+$:)'8 iz 1.m
J
Zﬂ;myﬂ—s*:% , 1= 1.5 (3)
Sh-1
i0d

2 For more details, see Rockafellar (1970) and Dabt®lyaie, Roshdi, Jahanshahloo, and Asghariah4R0



wheres™ (i) ands™ (Or) represent the excess of fite input and the shortfall of theh output,
respectively. HereR™ (0i) and R* (Or) are the ranges defined by the lowest and highesstroed
values in theth input and theth output, respectively, i.e.,
R =max{x}-min{x}, i=1..m
Rr+ =max{ yrj}— rBJm{ yj} , r=1..s

i

(4)

Definition 2.2.1 DMU, is said to b&RAM-efficientif and only if p, =1, i.e., all the slacks are zero at
optimality in (3) (Brockett, Cooper, Golden, Roumseand Wang, 2004).

Let ()f,sj s ) be an optimal solution to (3). Then, the projetid DMU, is defined by
P:z(f(o,i/o):(xo—s‘*,y0+s*’):Z/]j(xj,yj). (5)
il

It can then be easily proved that the projectibis RAM-efficient.

3. Identification of the global refer ence set

3.1. The global reference set
In this subsection, we present some key definitionacepts and results, which are all essential

for the development of our proposed approach.

Definition 3.1.1 Let ()f,s‘* ,s" ) be an optimal solution to (3) that is associatét & given projection
P. We define the set of DMUs with positivﬁp as thaunary reference set (UR&r DMU, and denote
itby R, as

R, ={DMU | 17>0}. (6)

We refer to each member &, as areference DMUof DMU,,. All the reference units of DMYJ

are RAM-efficient, and are located on a supportiggerplane ofT, 2.

Since the projectiol® may be expressed as multiple convex combinatidniss cassociated

reference DMUs, multiple optimal values may takacplfor the vectok , leading to the occurrence



of multiple URSs (problem Type 1). Under such amwcence, the measurement of RTS via the
approach of Tone (1996) may be problematic. Foetilkd discussion on this issue, interested
readers may refer to the illustrative Figures 1 2mal Krivonozhko et al. (2012c).

To deal with the occurrence of multiple URSs fogigen projectionP, we need to define a
reference set containing all the possible URSs.

Definition 3.1.2 We define the union ddll the URSs associated with a given projecttoas the

maximal reference set (MR®) DMU, and denote it byR" as

RY :{ DMU j‘ /1]5 >0 in some optimal solution of (3) sxciated WitfP} . (7

Because the RAM model is non-radial in nature,aymroduce multiple projections for DMU
resulting in the occurrence of multiple MRSs (pesbl Type I1). The simultaneous occurrence of
multiple URSs and multiple projections is illusedtwith the help of an example in Section 3 in
Sueyoshi and Sekitani (2007b).

To deal with the occurrence of multiple MRSs, we tise concept afinimum fac&that was
considered in detail by Sueyoshi and Sekitani (B)@nd Krivonozhko et al. (2014) from different

sides. First, we formulate the set of all the optisolutions of (3).Q,, in the form of

gzﬁhgg)

SAx+§ =%, i=l..m

j0Je

Z/]jyrj_$+: yo = 1"57 )

I0Je

A= 1 (8)

where J.. is the index set of all RAM-efficient DMUSs.

Then, the set of all the projections of DM Weferred to as projection setcan be expressed as

/\0={(xo—s',y0+s+)

(x,s‘ ,s*) DQO} ) (9)

% For a graphical illustration of the minimum faseg Figure 4 in Sueyoshi and Sekitani (2007b).



As demonstrated by Krivonozhko et al. (2014), thedsts a face of minimum dimension;™"
which contains the projection sét . This face is referred to as minimum face andnideed, the
EA

intersection of all the faces a@f.. that contain/A , i.e.,

"= (] F. (10)

F is a face ofy e
andA\,OF

Now, we provide the following definition that codsrs the occurrence of multiple MRSs

associated with multiple projections.

Definition 3.1.3 We define the union dll the MRSs of DMY as itsglobal reference set (GR&hd
denote it byR® as

R =J R:. (11)

POA,

Lemma 3.1.1 Theconvex hulbf the GRS,conv( F§) , is a strong face of 22"

See Appendix A for the proof.

Theorem 3.1.1 The minimum face is equal to the convex hull & @RS, i.e.J " :conv( F§)

See Appendix A for the proof.

This theorem reveals that the minimum face is spdrby the GRS. Specifically, we obtain the

following two corollaries of Theorem 3.1.1.

Corollary 3.1.1 An explicit representation of the minimum faceset up as

rronin - {(x,y)

where J¢ 0 J; is the index set of DMUs iR® .

x=z/1]xj,y=z/1,.yj,z/1j:1,/1jzo,DjDJoG}, (12)
joig

g jng

Corollary 3.1.2 The minimum face is a polytofe.

* This result was proved in a different way by Kriezhko et al. (2014).



10

The following lemma is a straightforward consequent Definitions 3.1.2 and 3.1.3 and the

expression (9).

Lemma3.1.2 DMU, OR? if and only if A, >0 in some(k,s‘,sﬁ)DQo. Formally,

R= | {DMuj\Aj>o}. (13)

(x,s‘ ,s") 0Q,

Theorem 3.1.2 Let ()J,s",s”) be an element of2, such thath' has the maximum number of

positive components. Then,
Re ={pmu | 4 >0} (14)

See Appendix A for the proof.

3.2. Identification of the global reference set
Consider the following homogeneous system of equoati
Au=0,u=0, (15)

where A is a matrix of orderpx q. Bertsimas and Tsitsiklis (1997) presented an tdblpm to find

a feasible solution vectouOR® for (15) such that the number of its positive comgnts is
maximum (Exercise 3.27, pp. 136). In addition, tkaggested the formulation of an LP problem to
find a solution vectorudR* with the maximum number of positive components tleg non-
homogeneous system of equations
Au=d,u=0, (16)

whered is a givenpx1 vector.

We extend the above-mentioned exercise in a waelip us develop an LP-based approach for
the identification of the GRS.

Lemma 3.2.1 Let X be the set of feasible solutions of the followingmogeneous system of
equations
Au+Bv=0,u=0,v=0, a7
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where A and B are matrices of ordepxq and pxg,, respectively. Further, Ie(tu*,w* ,v*) be an

optimal solution for the following LP problem:

max ij
=1
G %
s.t. Zaj (uj +vv].)+ij\{ =0, (18)

Osw, <1,y 20,j=1,..
v;20,j=1.q,

wherea; andb; denote thgth columns of the matriceA and B, respectively. Ther(,u* +W,V )

OX,andu” +w has the maximum number of positive components.
See Appendix A for the proof.

Theorem 3.2.1 Let X be the non-empty set of feasible solutions offthlewing non-homogeneous
system of equations

Au+Bv=d, u=0,v=0. (29)

Further, Iet(uj,vxij, i=L..q+1v ,j= 1,...02) be an optimal solution to the following LP probtem

g+l

max > w,
i=1
% %

st 223 (u+w )+ 3 by —d(y,+ W) =0 (20)
j=1 j=1

Osw, <1, u20,j=1,..g+ 1
v;20j=1.q, .

u+w

] ] ’1:1’

e B N W,V =——1  i=1..0 |O0X, and U’ has the maximum
u +1+Woa+l ql : u J q2

Then, (u’j =
%

number of positive components.

See Appendix A for the proof.

According to Theorem 3.1.2, a way of identifyingetGRS is to find an element, namely
(k’,s",s*'), in Q, such that the number of positive component&.'ofs maximum. On the basis of

this finding, we use Theorem 3.2.1 to formulateltReproblem
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max > g+ 4
e

St ;(Aﬁﬂj))ﬁi+$__(/]it+l+"€m)?5 = 0 = Lm
1We
S (A+m) vy =5 (A, +4.) ¥ = 0, r= 1s,

I
o

(21)

Z (/]i Y, ) _(/]i.+1 +:“J.+1)

YLy (A, +n,)(meY(En)= 0,

> 0k= 1.t+ 1,

§ 20,82 0,i= L.mr= 1.5,
wheret denotes the cardinality of; , i.e., J¢ ={ j,,....J,} -
Let (A;k 48,8 0k, r) be an optimal solution to (21). Then, Theorem13fallows that
i A;l+1 +A;jl+1 , j}t-|>:l+l‘[j

ik * 1
Ainl +ﬂjt+1

t+1

A 1 - "
(A' :ﬂ s" =§— $+':Sf—*,|jk’i’ r}DQO (22)

and A' has the maximum number of positive components.ly\pgp Theorem 3.1.2 to (22), we

identify the GRS as follows:
RS ={DmU |4 >01in (22} . (23)
Having identified the GRS, the projection associatih (22) can also be obtained as
P = (x*o,y*o) :(xo—s+',yo+s") => )l'j(x j,yj). (24)
joag
Since P, is expressed as a strict convex combination ofuittits in RY, it is a relative interior

point of I
In summary, the solutions to (21) determine theo$ell the DMUs spanning the minimum face

(i.e., the GRS) together with a relative interioint of this face (i.e., the projectiod ).

3.3. Properties of the proposed approach
Some useful properties of the proposed approachrasented below.

» Computational efficiency
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Our approach for determining the GRS involves tkecation of a single LP problem, which
makes it computationally more efficient than thestmg ones for its easy implementation in
practical applications. Moreover, the computatiosféiciency of the proposed approach is higher
than that of the previous primal-dual ones sinas hased on the primal (envelopment) form
which is computationally more efficient than theat(multiplier) form (Cooper et al., 2007).

Furthermore, since our proposed LP problem conts@éveral upper-bounded variables, its
computational efficiency can be enhanced by udiegstimplex algorithm adopted for solving the
LP problems with upper-bounded variables. Thisasanse considering (21) as an LP problem

with upper-bounded variables leads to a furtheuegdn in its size. More precisely, the size of

the basic matrices during the solution process mesdm+ s+2)x( m+ s 2), which is greater

than the size of the basic matrices in model (33.by

RTS Measurement
As is well known, the concept of RTS is meaningily when the relevant DMU lies on the
frontier of the technology set. Hence, for an igght DMU,, an efficient projection must be

considered. In this case, the type and magnitudeeoRTS for DMWY is determined through the
position(s) of the hyperplane(s) supportingly' at the projection used. The supporting

hyperplane(s) passes/pass through the MRS asgbcwith this projection and can be
mathematically characterized via this MRS. This lisgpthat the RTS measurement would be
problematic under the occurrence of problem Typeadl it causes the occurrence of multiple
MRSs and, consequently, the occurrence of mulpjgporting hyperplanes (problem Type ).
Note that overcoming the difficulty caused by pesbIType Il does not necessarily guarantee the
uniqueness of the characterized supporting hypeefdy This is because the minimum face may
not be a ‘Full Dimensional Efficient Facet' — arfigént facet of dimensiorm+ s-1 in the
input—output space (Olesen & Petersen, 1996, 2003).

To sum up, the difficulty in the measurement of Rari8es either from Type Il problem or
from the non-full dimensionality of the minimum &cTo overcome this difficulty, we propose a
two—stage procedure based on the intensive studyiwbnozhko et al. (2014). The first stage is
to determine a relative interior point of the minim face by (24). This determination is based on
the following two facts which show that the diffiguarising from problem Type |l can be dealt

with by using a relative interior point of the nmmim face for the measurement of RTS.



(@) Al relative interior points of the minimum fade™ operate under the same type of RTS
(Krivonozhko et al, 2012c).

(b) By Theorem 3.1.1, any relative interior point f" can be expressed as a strict convex

combination of all the reference DMUs iR®. Therefore, each supporting hyperplane

binding at this point is also binding at all théerence DMUs. Precisely, this supporting
hyperplane is characterized through the GRS, buthmough a specific MRS.

In the second stage, the difficulty resulted frdra hon-full dimensionality of the minimum
face is dealt with by measuring the RTSR)f through the indirect method of Banker et al. (2004

or the direct method of Fgrsund et al. (2007).

Extension to other DEA models

Our approach can readily be used without any ch&nghe ‘additive model’ (Charnes et al.,
1985) and the ‘BAM model’ (Cooper et al., 2011;8g8s1994; Pastor & Ruiz, 2007), because the
difference between each of these two models andRi#s! model lies only in the weights
assigned to the input and output slacks in theablvge function. With some minor changes, it can
also be adopted for the ‘RAM/BCC model' of Aida at (1998), the ‘DSBM model’ of
Jahanshahloo et al. (2012) and the ‘GMDDF modeMehdiloozad et al. (2014).

Furthermore, it can be implemented in any radiahDiodel (e.g., the BCC modgl In this

regard, Iet(H*,)C s s ) be an optimal solution to the input-oriented BCOdel. Then, it is

sufficient to replacex, by 8'x, in the input constrains of (8) and (21), and fie sum of slacks

aty' s"+> 5" .
i=1 r=1

Extension to constant returns to scale case

The assumption of VRS is maintained in our studyisTs because when a data set contains
some negative values, one may not be able to definefficient frontier passing through the
origin, as is assumed under constant returns e §€&S). Therefore, as argued by Silva Portela

and Thanassoulis (2010), the assumption of CR8tenable with negative data.

® The issue of identifying all possible reference D#/of each inefficient unit using the BCC model veaplored by
Jahanshahloo, Shirzadi, and Mirdehghan (2008),dfidzhko, Fgrsund, and Lychev (2012a), Roshdi, \@kVdestyne,
Davtalab-Olyaie (2014) and Sueyoshi and Sekita®072).
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It is, however, worth noting that while the minimuiace is a polytope in the VRS-based
technology, it is an unbounded polyhedral coneneén@RS-based technology that is generated by
the reference units in the GRS. Despite this stratdifference between the two technologies
our results can still be successfully adapted far tase of CRS by removing the convexity

constraint, i.e.,ZAJ =1. This is because our approach is primarily basediraling a solution
i

with the maximum number of positive components dotinear system of equations, and is

independent of the existence of the convexity cairdt accordingly.

» Dealing with negative input—output data
Being independent of the data sets used, our pedpapproach is free from the restricting
assumption that the input—output data must be mgative, which makes the identification of the
GRS possible in the presence of negative data. Frgractical point of view, this can be very

beneficial since we deal with negative inputs andldputs in many empirical applications.

4. llustration of the proposed approach
4.1. Numerical example

Let us consider a data set exhibited in Table tL.dbasists of eight hypothetical DMUs with one
input and one output. Based on these data, Figpict the frontier spanned in the two-dimensional

input—output space.

Table 1. Input and output data for Example 4.1

DMU; DMU; DMU; DMU, DMU;s DMUe¢ DMU-, DMUsg
Input 1 2 3 5 8 2 3 6
Output 2 5 6 8 8 1 3 4

To illustrate the application of our proposed ajplg we first evaluate each DMU using the
RAM model. Table 2 exhibits the efficiency scoralahe projection obtained for each DMU. The
results reveal that DML) DMU,, DMU3; and DMU, form the efficient frontier, and hence, are RAM-
efficient. Amongst the inefficient DMUs (DMd) DMUs, DMU; and DMUWs), DMUg has the

minimum efficiency score op, = 0.643.

® For more details about the facial structure of @iRS- and VRS-based technologies, see Davtalabie€Odyaal. (2014),
Davtalab-Olyaie, Roshdi, Partovi Nia, and Asgha(@20i4) and Jahanshahloo, Roshdi, and Davtalabi€{2813).
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Fig 1. The production frontier

While DMU, and DMU, are found as the unique projections for Ddvnd DM, respectively;
DMU; and DM do not have unique projections despite the faat BMU; is determined as a

projection for both. The projection sets of DMEAnd DM are, respectively, the line segment

connecting DMY and DMU; and the line segment connecting DMend DMU, (R’ =8 and
R’ =8). So, the minimum face associated with each ofehanits is the line segment connecting

DMU; and DMU,.

Table 2. The results for Example 4.1

DMU; DMU: DMU: DMU, DMUs DMUs DMU; DMUs
£, 1 1 1 1 0.786 0.714 0.786 0.643
Model (3)
P DMU; DMU: DMU3 DMU;4 DMU;4 DMU: DMU3 DMU3
A 1
2 0
< A 1 0.500 1 0.500 0.333
.g
Model (21) - A 0.250 0.250 0.333
o
A, 0.250 1 1 0.250 0.333
P DMU: DMU; DMU;3; DMU. DMU. DMU: DMU; (3.333,6.333)
u, -1 1.500 1 0.600 0.600 1.500 1 0.900
RTS
measurement u; /g -0.333 0 1 0.600 0.600 0 1 0.900
RTS IRS CRS DRS DRS DRS CRS DRS DRS

CRS: Constant Returns to Scal®&S: Increasing Returns to Scal®RS: Decreasing Returns to Scale.
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Having obtained the efficiency score for each DNNg, use model (21) to identify its GRS and
determine a relative interior point of its corresgimg minimum face. The results are all presemed i
Table 2. Out of the four RAM-efficient DMUs, DMUDMU, and DMU, are extreme-efficient and
DMU3; is non-extreme efficient (see Fig. 1).

Since DMU; and DMU; have unique projections (i.e., DMitbr DMUs and DMU, for DMUg),

the GRS for each of these units is exactly the sasries unique projection. Formallyg :{4} and

Now, consider the case of DMWuffering from the occurrence of problems Typk &nd 111

> Type I: The set{DMU,}, {DMU,,DMU,} and{DMU,,DMU,DMU } are the three

URSs for DMU associated with the projection DMUSo, the MRS of DMY associated
with DMU3 is { DMU ,, DMU ,,DMU ,} .

> Type lI: A, is the line segment connecting DMahd DMU.
» Type lll resulted from Type II: The RTS of DMlbased upon the RTS of DMUand

DMU3; (as its projections) is constant and decreasespeactively.
As can be seen in Table 2, the GRS of DMIdnsists of DMY, DMU3; and DMU, with the

respective weights of 0.5, 0.25 and 0.25, i¥.,={2,3,4 . This finding confirms Corollary 3.1.1,
i.e., the convex hull of DMk} DMU; and DMU, is '™ . Moreover, DMY is determined as a

relative interior point of I .

We now turn to measure the RTS of each inefficigltlJ based upon the RTS of the relative
interior point of its associated minimum face givenTable 2. To do so, we use the two—stage
method of Banker et al. (2004) and examine the sfghe intercept of the supporting hyperplane(s)
passing through the given relative interior pointStage 1, we solve the multiplier form of the BCC
model and obtain the intercept; if the intercepedmial to zero, the RTS is constant. Otherwise,
depending on the sign of the intercept, we solvadditional problem in Stage 2 to determine the
RTS.

We apply the two—stage approach to each relatitezian point and summarize the results in
Table 2. As can be seen, out of the four inefficiamts, the three units - DMJDMU; and DM

operate under decreasing RTS and one unit (i.elJ§Mnder constant RTS.
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4.2. Empirical application

To demonstrate the ready applicability of our pgmb approach, we conduct an illustrative
empirical analysis based on a real-life data sétOopublic schools in the United States, which was
taken from Charnes et al. (1981). To carry outtal computations, we have developed a computer
program using the GAMS optimization software.

The data consists of five inputs and three outpihs. inputs of schools are the education level

of mother as measured in terms of percentage ¢f $uhool graduates among female parerg}, (
the highest occupation of a family member according pre-arranged rating scabe ), the parental
visit index representing the number of visits te #thool site X;), the parent counseling index

calculated from data on the time spent with chitddschool-related topics such as reading together,

etc (x,), and the number of teachers at a given si{g. (The outputs are the Total Reading Score as
measured by the Metropolitan Achievement Teg),(the Total Mathematics Score as measured by
the Metropolitan Achievement Tesy,), and the Coopersmith Self-Esteem Inventory, itéehas a

measure of self-esteeny,).

Table 3. Descriptive statistics of efficiency scores andjgetions obtained by the RAM model for
inefficient schools

DMU P, % %, %, X, X5 A % Y5

Min 0.844 4379 2.233 7.958 8.170 2.274 8.817 9.369 6.350
Max 0.985 39.969 14.650 51.902 52.132 8.314 54.530 63.557 39.100
Mean 0.938 15.634 8.396 28.938 29.847 4.947 30.319 36.529 22367

In order to apply model (21), we have to obtaineffeciency score ofp, beforehand. Thus, we
first make the efficiency assessment of the schosisg the RAM model. The results show that 26
(37%) schools are RAM-efficient. For the remainiy (63%) inefficient schools, Table 3 provides
summary statistics of the efficiency scores andirtpats and outputs of the projection points. i ca

be observed that the values gf range from 0.844 to 0.965 with the mean efficiescgre of 0.938.



19

Table4. The GRSs and RTSs of the inefficient schools

DMU Global Reference Set Returns to Scale

S1 $52(0.652) $58(0.171) $59(0.177) 0.075 0.003 DRS
S2 S44(0.250) $58(0.750) 0.004 0 CRS
S3 S44(0.201) $52(0.275) $58(0.525) 0.004 0 CRS
S4 S44(0.036) S58(0.954) $59(0.010) 0.006 0 CRS
S6 $58(0.862) $62(0.138) -0.006 0 CRS
S7 S58(0.944)  S59(0.056) 0.044 0 CRS
S8 S44(0.003) $58(0.739) $59(0.258) 0.024 0 CRS
S9 $58(0.831) $59(0.169) -0.003 0 CRS
S10 S44(0.159) $52(0.555) $58(0.236) $59(0.049) 0.023 0.003 DRS
s13 S58(0.828)  S59(0.172) 0.121 0 CRS
S14 S58(0.104)  S62(0.624)  S69(0.272) -0.014 0 CRS
S16 S44(0337)  S58(0.558)  S59(0.105) 0.003 0 CRS
S19 S44(0.397)  S58(0.560)  S59(0.043) 0.003 0 CRS
S23 S44(0.478) $58(0.500) $59(0.022) 0.021 0 CRS
S25 S44(0.234)  S58(0.299)  S62(0.467) -0.047 0 CRS
S26 S44(0.201)  S58(0.698)  S59(0.101) 0.05 0 CRS
S28 S17(0.396)  S20(0.047)  S27(0.369)  S47(0.084)  S62(0.104) -0.096 -0.061 IRS
S29 $62(0.627) $69(0.373) -0.039 0 CRS
S30 $58(0.973) $59(0.027) 0.05 0 CRS
S31 $58(0.990) $59(0.010) 0.004 0 CRS
S33 S44(0.288) $58(0.563) $59(0.150) 0.021 0 CRS
S34 S58(0.768)  S59(0.232) -0.001 0 CRS
S36 $58(0.997) $59(0.003) 0.109 0 CRS
S37 $58(0.978) $59(0.022) 0.001 0 CRS
S39 $20(0.396) S27(0.461) S44(0.143) 0.058 0 CRS
S40 $52(0.239) S58(0.666) $69(0.095) 0.012 0 CRS
S41 S44(0.229)  S58(0.767)  S59(0.004) 0.034 0 CRS
S42 S17(0482)  S20(0.482)  S58(0.036) 0.01 0 CRS
S43 S44(0.114)  S58(0.776)  S59(0.110) 0.029 0 CRS
S46 S44(0.032)  S58(0.710)  S59(0.259) 0.023 0 CRS
S50 S52(0.545)  S58(0.399)  S59(0.056) 0.037 0.004 DRS
S51 S58(0.274)  S62(0.726) 0.017 0 CRS
S53 S58(0.948)  S59(0.052) 0.045 0 CRS
S55 S15(0.010)  S44(0.117)  S52(0.076)  S58(0.554)  S69(0.243) -0.001 0 CRS
S57 $52(0.431) $58(0.499) $69(0.070) 0.017 0 CRS
S60 S44(0.091) $58(0.143) $62(0.766) -0.011 0 CRS
S61 $58(0.009) $62(0.447) S69(0.544) 0.025 0 CRS
S63 S44(0.017) $52(0.012) $58(0.437) $62(0.058) $69(0.476) 0.027 0 CRS
S64 S44(0.032) $58(0.863) $59(0.105) 0.012 0 CRS
S65 S44(0.006) $52(0.075) $58(0.219) $62(0.224) $69(0.476) 0.016 0 CRS
S66 S44(0.052) $58(0.915) $59(0.033) 0.042 0 CRS
S67 S44(0.063) S58(0.834) $59(0.103) -0.006 0 CRS
S68 S44(0.147) $58(0.249) $59(0.134) $62(0.471) -0.004 0 CRS
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S70 S44(0.027)  S58(0.640)  S62(0.333) 0.053 0 CRS

As is well known, the RAM model is not by itselflalto find out all the possible reference units
for inefficient DMUs. Therefore, we apply model j2fbr each inefficient school to identify the
reference schools in its GRS as appropriate benttsm&or the 44 inefficient schools, Table 4
shows all the reference schools together with tt@iresponding weights. For example, the efficient
schools S44, S58 and S59 with the respective weigh0.052, 0.915 and 0.033 appear in the GRS
of the most inefficient school S66. This means t866’s target inputs and outputs are a linear
combination of S44, S58 and S59’s inputs and oatpithus, in order for S66 to become efficient, it

must adjust its inputs and outputs so that it pced®.052xy,, + 0.91%y .+ 0.038y o, amount
of output by consumin®.052xx,, + 0.91% x4+ 0.038x o, amount of input.

Now, we proceed to measure the RTS of the inefftcsehools. For each inefficient DMU, we
first use (24) to obtain a relative interior poaitits corresponding minimum face. The statistits o
the results are given in Table 4. Applying the tatage method of Banker et al. (2004) to the
obtained interior points of Table 5 yields the testhat are reported in the last three columns of
Table 4. As the results show, among 44 inefficlamainches, 3 (7%) schools have decreasing RTS
status, 1 (2%) has increasing RTS status, andetmaining 40 (91%) schools have constant RTS
status.

Table 5. Descriptive statistics of relative interior poirtisthe minimum faces

2Ll % % % % % % % ¥

Min 4.379 2.233 7.958 8.170 2.274 8.817 9.369 6.350
Max 39.969 14.650 51.902 52.132 8314 54.530 63.557 39.100
Mean 15.634 8.396 28.938 29.847 4.947 30.319 36.529 22.367

5. Summary and concluding remarks

The current study is mainly concerned with the fdieation of all the possible reference units
of an evaluated inefficient DMU. It is also intetexs in its application for the measurement of RTS
in non-radial DEA models. Corresponding to a gipeojection of the DMU under evaluation, first,
two basic notions were introduced: i) URS: the fegfficient DMUs that are active in a specific

convex combination generating this projection, apdIRS: the union of all the URSs associated
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with this projection. Then, the notion of GRS wadimed as the union of the MRSs associated with
all projections of the evaluated DMU. With the helipthe introduced notions, it was demonstrated
that the convex hull of the GRS is equal to theimim face, from which it was immediately
concluded that the minimum face is a polytope.

Three types of multipleness may occur in any naliai2DEA model: multiple URSs (Type 1),
multiple projections (Type Il), and multiple suppog hyperplanes (Type Ill). The occurrences of
problems Type | and Il cause difficulties in themtification of all the possible reference DMUs.
The difficulty in the measurement of RTS arises myaifrom problem Type Ill, which itself
originates from two sources: problem Type Il aneltion-full dimensionality of the minimum face.

To deal effectively with the simultaneous occuresé problems Type | and Il, an LP-based
approach was proposed to identify the GRS. Ourgeep approach has several advantages over the
existing ones. First, since it requires the executif a single LP problem, it is computationallynmo
efficient than the existing ones for easy impleragah in practical applications. Second, using the
simplex algorithm adopted for solving the LP probsedealing with upper-bounded variables, the
computational efficiency of our approach can bessatially improved. Third, as our proposed
approach is primal-based, its computational efficieis higher than that of the previous primal-dual
methods. Fourth, our proposed approach is morergleinethe sense that it can easily be applied to
both radial and non-radial DEA models (e.g., theCBahd the additive models).

To estimate the RTS, a method in the non-radial CiEddnework is also proposed to deal
effectively with problem Type Ill, which arises e from problem Type Il or from the non-full
dimensionality of the minimum face. A key outcomfetlve LP problem proposed to identify the
GRS is that it generates a projection in the netainterior point of the minimum face. Using this
projection for determining the RTS of the evaluateéfficient DMU, our proposed method
overcomes the difficulty arising from problem TyPeThis is because each supporting hyperplane
binding at the used projection is determined thiotlge GRS, but not through a specific MRS. To
cope with the difficulty arising from the non-fudimensionality of the minimum face, our proposed
method employs the indirect method of Banker e{2004) or the direct method of Fgrsund et al.
(2007).
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Appendix A
Proof of Lemma 3.1.1 Let (X,y) be a relative interior point of\,. Since(X,y) is RAM-efficient,
the SCSCs of linear programming implies the existeof a strong supporting hyperplaneTgty

that passes through this point. Without loss ofegality, let H® be such a hyperplane whose

associated strong face®:=H °n T 25" is of minimum dimension. By Theorem 6.4 in RocKafe
(1970), the convexity ofA, infers that H® is binding at all the DMUs inR®. Therefore,
conv( F§) 0 H, indicating thatconv( F§) O P.

According to Theorem 2 in Davtalab-Olyaie et aD¥2), F° is a polytope (bounded polyhedral

set). Hence, the equality holdsAf, nri (F S) # [0, since this relation implies that all the observed
DMUs on F® belong to R®. Assume, by the way of contradiction, that n ri (FS):D or,
equivalently, A [ a(FS). Then, there exists a unique facefof of minimum dimension, namely
K®, for which A, O0K® [ a(F S) G F 5. The faceK® is a strong face of g (Rockafellar, 1970),

whose dimension is less than thatfef. This is a contradiction and, thus, the proofdmplete by
Definition 2.1.1. O

Proof of Theorem 3.1.1 As proved in Lemma 3.1.honv( F§) is a strong face of 23" containing
A, . Thus, according to the definition 6", it will suffice to show thatconv( F§) Oorm. By the

definition of a face, there exists a supportingdrptane, namelyH ™", such that™™ = H ™" n T, 22"
. Since H™ is binding at each projection, it passes througtheDMU in R®. Then, the convexity

of H™ follows thatconv( F§) O H™, which completes the proof. o
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Proof of Theorem 3.1.2 By the assumption, we ha\(a’,s",s“)DQO. Hence, from (13), we need

only to prove thatR® D{ j‘/}; >0}, which is equivalent to demonstrating thet takes positive

values in any positive component ofin any(k,s‘,s*) 0Q,.

By the way of contradiction, assume that theretsxis elemen(x",s"' ,s*")DQO and an index
th{j‘A;’>0} for which A; =0. Then, let (i,é‘,é*) be a strict convex combination of the
eIements()J,s",s“) and (x”,s‘",s“'). Since Q, is convex, (i,é‘,é*)DQo and {j‘ﬁj >0} =

{j‘ A >O} D{j ‘/lJ > (} Consequently{ j ‘ Al >0} g{j ‘ /ij > q which contradicts the assumption

that A’ has the maximum number of positive componentss;Tthe proof is complete. o

Proof of Lemma 3.2.1 Let (u* +w*,v*) be an optimal solution to (18). The(rm* +W,V )DX.
Without loss of generality, assume that+w’ =(u’(1 +W,..., 0 + W O() We claim that the
number of positive components af +w  is maximum or, equivalently, that +w" takes positive
values in any positive component ofin any feasible solutiOtﬁu,v)D X because of the convexity
of X. To prove our claim, assume on the contrary thextet exists an element of, namely(G,\‘/) ,
and a set of indices, namdli +1,....I} , such thatli,, >0,...,4 > C. Since the system of equations in
(18) is homogeneous, without loss of generalitgait be assumed that<1, j=1,...q;.

Since(u* +W,V )D X and(0,%)0X, we have(u* +wW +0,V +\7)D X thereby

Sa(lu+a)ew) Sag [+ Sn (5+3)=0 A

j=k+

Based on (A.1), we define

] f+’\'1 .:1)---)k1 ] W*y .:11"' ’ ! * ~ -
u' = U+, J w' = il K Vi =v+y, j=1..,9. (A2
O) J:k+ 1"Q1 ’
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%
Then, (u',w',v’) is a feasible solution of (18) with the objectivalue of ij', which is
=1

%
strictly greater thanz w’; . This contradicts the optimality ((fu* +W,V ) and hence proves our
=1

claim. O

Proof of Theorem 3.2.1 Let (uJ +W, j=1..,q+1V ,j= 1,...0,2) be an optimal solution to (20).
By Lemma 3.2.1, this solution has the maximum numbie positive components. Therefore,
u;a+1 + V\70a+1 is positive as a result of the assumption tKat [1 . Consequently, the first constraint of

(20) at optimality can be equivalently rewritten as

4 u +w % v
Zaj % +ij % :d, (A3)
=1 uql+1 + Woa+1 j=1 uql+1 + V\{Vl

which completes the proof. O
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