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Abstract

An e�ective emergency medical service (EMS) is a critical part of any health
care system. This paper presents the optimization of EMS vehicle �eet allo-
cation and base station location through the use of a genetic algorithm (GA)
with an integrated EMS simulation model. Two tiers to the EMS model
realized the di�erent demands on two vehicle classes; ambulances and rapid
response cars. Multiple patient classes were modeled and survival functions
used to di�erentiate the required levels of service. The objective was max-
imization of the overall expected survival probability across patient classes.
Applications of the model were undertaken using real call data from the
London Ambulance Service. The simulation model was shown to e�ectively
emulate real-life performance. Optimization of the existing resource plan
resulted in signi�cant improvements in survival probability. Optimizing a
selection of one hour periods in the plan, without introducing additional
resources, resulted in a notable increase in the number of cardiac arrest pa-
tients surviving per year. The introduction of an additional base station
further improved survival when its location and resourcing were optimized
for key periods of service. Also, the removal of a base station from the system
was found to have minimal impact on survival probability when the selected
station and resourcing were optimized simultaneously.

Keywords: Simulation, Optimization, Emergency medical service.

∗Corresponding author. Tel.: +44 (0)191 3342479
Email address: graham.coates@durham.ac.uk (Graham Coates)

Preprint submitted to Elsevier May 13, 2015



1. Introduction

An e�ective emergency medical service (EMS) is a critical part of any
health care system. One key factor in the performance of an EMS is the
speed at which emergency vehicles can respond to incidents. It is vital that
at all times emergency vehicles are located so as to ensure adequate coverage
and rapid response times [1]. The optimum distribution of emergency vehicles
depends on the distribution of demand.

There is a signi�cant body of literature on the e�ective positioning of
EMS facilities and a wide variety of models have been developed to solve the
problem [1�5]. Although di�erent models are used, the overarching goal of
any such model is to determine the distribution of emergency facilities and
resources that best serves a given demand.

Much of the literature on EMS facility location uses models derived from
the principle of set covering [5�8]. Such models aim to locate EMS resources
so as to cover a set of demand nodes. At its simplest, a node is covered if
an EMS resource is within a predetermined distance or response time. Early
covering models ignored the stochastic nature of EMS systems and dealt with
the static and deterministic location problem [9, 10]. Probabilistic models
have been developed that use queuing theory to account for the fact that
ambulances act as servers in a queuing system and are sometimes unavailable
[11�13].

Increases in computing power and the advent of metaheuristics have fa-
cilitated the development of more complex models to solve the EMS facility
location problem. For example, Aytug and Saydam [14] solved the large-scale,
maximum expected coverage location problem (MEXCLP) using two forms
of genetic algorithm, one being coupled with a local search algorithm, which
were seen to outperform an integer programming approach and Daskin's
heuristic [15] in terms of locating an optimal or near-optimal solution in a
reasonable amount of time. Also, Saydam and Aytug [16] solved the MEX-
CLP by combining a genetic algorithm with Jarvis' and Larson's hypercube
model [17, 18], the latter of which had previously only been used as a com-
parison tool [19, 20]. Similarly, a number of other approaches have combined
a hypercube queuing model with a genetic algorithm [21�24], simulated an-
nealing [25] and Tabu search [26�28] in order to optimize the location and
allocation planning of EMS systems. Also, some metaheuristics have been
used alone such as a genetic algoirithm to optimize the location of ambu-
lances in order to contribute to higher survival rates from life-threatening
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medical events [29] and simulated annealing to solve the large scale, dynamic
maximal covering location problem (MCLP) [30]. Some research has focused
on the stochastic and uncertain nature of the location problem of EMS ve-
hicles. For example, Repede and Bernardo [31] introduced TIMEXCLP, the
�rst covering model with time variation to account for the stochastic na-
ture of variables such as travel and service times when evaluating alternative
ambulance locations. On a similar theme, Ingolfsson et al. [32] included
uncertainty in relation to delays and travel times when aiming to maximize
expected coverage by minimizing the allocation of the number of ambulances
to stations in order to provide a speci�ed level of service.

Recent developments in the �eld of EMS system research include a num-
ber of areas such as the use of approximate dynamic programming [33, 34]
and stochastic programming [35, 36] to solve the ambulance redeployment
and/or location problem. Another important development has been the use
of patient survivability as a performance metric instead of the concept of
`cover'. Erkut et al. [37] recognised the need for a new performance mea-
sure and introduced the concept of survival functions; non-linear functions
that model the relationship between response time and survival rate. They
incorporated a survival function, derived from medical research into cardiac
arrests, within a number of existing covering models. It was found that
the existing covering models produced sub-optimal EMS facility distribu-
tions when evaluated using the more realistic performance measure. Indeed,
in recognizing the importance of performance measures being more closely
related to patient outcomes, McLay and Mayorga [38, 39] investigated the
in�uence of maximizing coverage for di�erent response time thresholds on
patient survival rates. Acknowledging that the �ndings were speci�c to the
rural/urban geographic region considered, locating ambulances to maximize
minumum response time thresholds was found to simultaneously maximized
patient survival. Also, Bandara et al. [40] focused on patient survivability
and its maximization via optimizing the dispatch of paramedic units to emer-
gency calls depending on their severity. It was found that consideration of
call severity, or urgency, would lead to an increase in patients' mean survival
probability.

One limitation of the work presented by Erkut et al. [37] is the modelling
of only one incident type. Knight et al. [41] addressed this limitation by
incorporating a cardiac arrest survival function with step functions repre-
senting response time targets for other incident types. The heterogeneous
objective function was a sum of the individual survival functions weighted
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by their relative priorities; e�ectively a multi-objective optimization. This
objective function was incorporated into a simple covering model.

Although covering models are popular, it is accepted in the literature that
EMS simulations are more accurate [42, 43]. In fact, simulation is almost uni-
versally used in the literature to validate the selections of optimization models
[44]. As well as increased realism, simulation produces a wealth of perfor-
mance data, such as response time distributions and ambulance utilisation
statistics, which cannot be acquired using a covering model.

1.1. Contribution of this paper

Despite recent advances in the �eld there are areas for further develop-
ment. This paper presents work to amalgamate the recent developments in
performance metrics with an accurate, simulation based model of a complex
EMS system. The aim of this work is to provide useful recommendations on
vehicle resourcing and ambulance base station siting from a planning per-
spective. The novel areas of this work are:

• The integration of heterogeneous survival functions with an EMS sim-
ulation capable of utilising real call data.

• A method for the modelling of time-variant travel times in a complex
network. The incorporation of vehicle routing avoids the unsound, but
common assumption that vehicles respond from their base stations.

• A multi-tiered EMS model recognising the di�erent demands on two
vehicle classes; ambulances and rapid response cars.

• Calibration and validation of the simulation model as applied to the
London EMS system.

• An application case study incorporating one million calls across the
entire London EMS region (2,400 km2), demonstrating the signi�cant
improvements in patient survival achievable with optimized resource
plans.

• Simultaneous optimization of base station location and the number
and type of EMS vehicles located at each station (vehicle allocation).
Further, the impact of introducing a new station to the London system
is investigated; recommendations are made on the optimum location
for the new station and how it should be resourced.
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The remainder of this paper is structured as follows. In section 2, de-
tails are given of an EMS simulation model. Next, Section 3 presents the
optimization heuristic and objective funcion used in conjunction with the
simulation model. In section 4, the results of a number of cases considered
based on real incident call data from the London Ambulance Service are
presented and discussed. Finally, concluding remarks and possible areas for
further work are given in Section 5.

2. Simulation model

An EMS simulation model was required in order to evaluate proposed
vehicle allocations, i.e. the number and type of EMS vehicles located at each
base station. Simulation was chosen over other modelling techniques due to
the increased realism and accuracy it a�ords [44, 45]. Simulation was chosen
over other modelling techniques due to the increased realism and accuracy
it a�ords [44, 45]. Simulation gains a further advantage through the ability
to directly utilise real call data (trace-driven), avoiding the simpli�cations
required to model demand. Collating such data used to be an issue, how-
ever the majority of modern EMS providers utilise computer-aided dispatch
(CAD) systems that can provide data for use in data-driven simulations.
The use of real data also captures the complex, time-dependent variation in
demand and resourcing, something omitted by the majority of studies.

For the purpose of the study reported in this paper, the London Ambu-
lance Service (LAS) provided data covering all emergency calls between 1st
November 2011 and 31st October 2012; almost one million calls, see Figure
1 for the geographic distribution of these calls. For each call the data con-
tained call arrival time, incident type (initial diagnosis), location, dispatch
time, number of resources dispatched, time spent at the scene, destination of
patient transport (if any), time travelling to hospital, and time spent hand-
ing over the patient to hospital sta�. The originating location of dispatched
EMS vehicles was not included in this data. Wherever possible this data
was used directly in the simulation instead of modelling, helping to mini-
mize assumptions. Modelling was employed in cases where the required data
was not available or decisions and processes depended on vehicle allocation.
Figure 2 shows the EMS vehicle dispatch and service process.

The simulation model was written using C++ rather than bespoke sim-
ulation software as it a�orded a superior level of control for modelling such
unique processes. Further, execution speed was also a primary concern. Code
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Figure 1: Geographic distribution of all calls received by the LAS for a one year period
between 1st November 2011 and 31st October 2012; almost one million calls.

was designed to be as generic as possible, with minor alterations the simula-
tion model could be applied to any large EMS system.

The simulator accepts the following inputs:

• An allocation of ambulances (A) and rapid response cars (R) to base
stations.

• A period of interest (>). Calls that arrive within the time period >
are loaded from a data �le.

The trace-driven simulator processes emergency calls in accordance with
a �rst-come �rst-served order. Waiting calls are stored in a global system
queue and only assigned to a speci�c station and vehicle at the point of
dispatch; the logic is described in Algorithm 1. Four types of simulation
event are processed:

• New call arrival (lines 8-15). The new call (c) is assigned the required
number of vehicles according to the dispatch policy. If not all of the
required vehicles are available then as many as possible are dispatched
and further vehicles are sent once they become available. In this study a
simple myopic dispatch policy is employed, where the nearest available
vehicles (shortest estimated travel times) are assigned. The nearest
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Figure 2: The EMS vehicle dispatch and service process. The details and timings of most
processes could be extracted from the LAS call data. Modelling was employed where this
was not viable (highlighted in green).
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available vehicles may include one or more vehicles in the process of
returning to base following completion of a job, these vehicles would
then be re-dispatched from their current simulated location. Discus-
sions with the LAS indicated that this is a reasonable approximation
of the real dispatch policy, although an operator may decide to wait
for alternative vehicles if the nearest currently available is beyond a
threshold distance.

The array V (c) contains the vehicles assigned to the call, the number
and type of which is speci�ed in the LAS data. If vehicles are assigned
(|V (c)| > 0) then they are �agged as busy and a scene departure event
is created. The scene departure time is dependant on the call time
(t), dispatch delay (td), time taken for the nearest vehicle to reach the
scene (tr), and time spent at the scene (tsc). These variables are unique
to each call and all but the travel time is extracted from the LAS call
data. Travel times are estimated using the travel time model presented
in Section 2.1.

If no resources are available then the call is added to a �rst-in �rst-
out queue (Q). Although this is a simple approximation to what is
a complex decision for an EMS operator, it was considered a reason-
able approximation by LAS personnel. This queue of waiting calls is
considered whenever a vehicle �nishes servicing another call.

• Scene departure (lines 16-23). The vehicles assigned to a call are leaving
the scene of the incident, tsc seconds after arrival of the �rst vehicle.
If transport is required, as speci�ed in the LAS data, one ambulance
departs for hospital and a job completion event is created. At least
one ambulance is sent to every call requiring transport and the �rst
ambulance on-scene is assigned transport duties. The job completion
time is dependant on the travel time to hospital (th), and the time spent
handing over the patient to hospital sta� (tho). Both of these variables
are extracted directly from the LAS call data. All other vehicles are
�agged as available and depart for their respective base stations.

• Job completion (lines 24-27). Service of call c is complete. Any vehicles
still assigned to the call are �agged as available and depart for their
respective base stations.

• Vehicle location update (lines 28-31). The locations of travelling vehi-
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cles are periodically updated in line with the routing and travel time
model presented in Section 2.1. The �real-time� locations of vehicles
are used when deciding which vehicles should respond to calls. This is
a signi�cant departure from the existing academic literature in which
it is assumed that vehicles always respond from their base stations; an
assumption even made in relatively complex simulation models [43, 45].
Discussions with the LAS revealed that such an assumption is �awed
for a busy EMS. In London it is not uncommon for vehicles to be away
from their bases for several hours at a time.

2.1. Modelling travel times in a large and complex network

One of the principal components of the simulation model is a method
for estimating travel times and routes within the London transport network.
Ideally this travel time model would be capable of estimating the distance
between any two precise locations, however the size and complexity of the
London network make this impractical. In order to simplify the model the
simulation space was discretised into a grid; a common approach to demand
aggregation [14]. It was found that over 99.9% of LAS calls in the one year
period considered were bounded by a 53km by 45km area approximately
centred on the city centre. This area was divided into a 26 by 22 grid to form
a discretised simulation space; see Figure 3. The grid resolution used was a
compromise between accuracy and computational e�ciency. The locations
of all calls, base stations, and hospitals were snapped to the centre of the cell
in which they resided. The 0.1% of calls outside these bounds were excluded
from the model.

In order to e�ectively model travel times within London it was important
to capture the time-dependent nature of the system; something rarely consid-
ered in similar studies. The most practical approach was to assume that the
routes travelled by vehicles were independent of time but the speed at which
vehicles travelled was not. Having time-independent routes allowed distances
between nodes to be precomputed, reducing the run-time and complexity of
the model. One approach to modelling distances is to use the Euclidean
distance between two nodes [46]; this however, does not capture the varying
complexity of a road network. One way to capture this complexity is to use
geographic information systems (GIS). A tool was developed utilising the
Google Maps Javascript API, which could return the travel distance, along
the quickest road route, between any two nodes.
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Algorithm 1 Simulator: Trace-driven simulation method

1: function Simulate(A,R,>)
2: C ← LoadCalls(>) . load call log (C) from �le
3: Q ← ∅ . initialize empty call queue (Q)
4: ε ← C . initialize event queue (ε) with calls
5: while |ε| > 0 do

6: remove next event (e) from ε
7: t ← e.time() . update current time (t)
8: if e = new call (c) then
9: V (c) ← Dispatch(c, A,R) . assign vehicles
10: if |V (c)| > 0 then

11: �ag vehicles in V (c) as busy
12: insert scene departure event at time:
13: t+ td(c) + tr(c) + tsc(c) into ε
14: else

15: Q ← Q+ c . queue the call

16: else if e = scene departure for call c then
17: transport vehicle (if any) departs for hospital
18: insert job completion event at time:
19: t+ th(c) + tho(c) into ε
20: if |V (c)| > 1 then

21: �ag non-transport vehicles as available
22: insert vehicle location update events into ε
23: CheckQueue(Q) . answer queued calls

24: else if e = job completion for call c then
25: �ag transport vehicle as available
26: insert vehicle location update event into ε
27: CheckQueue(Q) . answer queued calls
28: else if e = location update for vehicle (v) then
29: UpdateLocation(v)
30: if not end of journey then

31: insert vehicle location update event into ε
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Figure 3: The LAS service area discretised into a 26 x 22 grid. Blue and red dots represent
EMS vehicle base stations snapped to their model locations; red dots represent EMS vehicle
base stations selected for optimization. Map data c©2013 Google.

The size of the area to be modeled posed a number of challenges. For
example, a limit existed on the volume of geocoded data that could be re-
quested from Google; a maximum of 2,500 requests per day under a free
license. To produce a look-up table of distances for each node pairing in the
572 node grid would require almost 330,000 data requests, which was deemed
impractical. Consequently, a number of possible solutions were considered:

• A smaller region could be modeled using a sub-set of the LAS call
data. This would require a number of assumptions about which calls
were answered from within the sub-region.

• The resolution of the simulation grid could be reduced. A 12 by 12
grid could have been achieved however such a coarse resolution would
likely invalidate the model.

• An assumption could be made about travel routes in order to reduce the
volume of GIS data required. Given that the simulation space is discre-
tised into a grid, it could be assumed that a route between two nodes
in neighbouring cells is well approximated by a straight path between
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the two nodes. Thus, the overall travel route could be constructed from
the straight paths between neighbouring nodes; see Figure 4.

From these three possible solutions, the route approximation was pre-
ferred as it avoided making potentially invalid assumptions about the LAS
system. Further, the straight path assumption is not unreasonable when jour-
neys are of a similar length to the distance between grid spaces; con�rmed
through analysis of the LAS data. This assumption reduced the volume of
distance data required by a factor of 72; for each node, only the distance to
each of its eight neighbours is required, reducing the number of data requests
to 4,292. The possible solutions of modelling a smaller region and reducing
the resolution of the simulation grid were not considered any further.

The accuracy of the route approximation was evaluated in order to quan-
tify potential errors. Almost 2,400 typical journeys, of varying length, were
extracted from the LAS data and their precise start and end locations were
used with Google Maps to determine an accurate travel distance. These pre-
cise distances were compared to those approximated by the distance model.
As anticipated, the model overestimated travel distances on average and er-
rors increased with length of journey. A correction was built into the model
to remove this average overestimation. The factor by which each distance is
corrected is dependent on journey length; see Table 1.

Table 1: Average overestimation of distances by model.

Number of steps in Average correction factor
route approximation (modeled / real distance)

1 1.16
2 1.30
3 1.37
4 1.39
5 1.31
6 1.37
7 1.38
8 1.40
9 1.39
10 1.40
11 1.43

The time-dependent aspect of the travel time model is the speed at which
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vehicles travel. For any given time of week it is assumed that all vehicles
travel at a constant speed. A higher degree of accuracy could be achieved by
considering the variable nature of travel times and the e�ect of di�erent road
types, however this level of detail was considered outside the scope of this
study. If derived from real data, the bene�t of using an average speed is that
the e�ects and frequency of random perturbations, such as delays due to un-
usual tra�c or road accidents, are incorporated into the model. Durations of
journeys with known start and end locations were extracted from timestamps
in the LAS data; these journeys corresponded to urgent transport from the
scene to hospital. With these travel times, and approximated distances from
the calibrated distance model, it was possible to derive vehicle speeds. For
each day in the week these speeds were then aggregated and averaged based
on time of day; see Figure 5. When derived from real data, the bene�t of
using an average speed is that the e�ects and frequency of random pertur-
bations are incorporated into the model. Whilst using these average speeds
does not explicitly model events such as breakdowns and heavy tra�c, it does
implicitly encompass the impact of these random events on travel times, and
their relative probabilities.

Figure 4: A �ctional vehicle route is marked in red and its modeled approximation shown
in black. Map data c©2013 Google.

2.2. Setting up an initial state

At the start of simulation all EMS vehicles are idle at their respective
base stations, leading to unrealistically short response times until a steady
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Figure 5: Mean speeds of ambulances transporting life-threatening calls to hospital.

operating state is reached. In order to prevent this a�ecting the evaluation
of vehicle allocations, a steady operating state is created by processing a
bu�er of calls prior to the period of interest; no statistics are recorded for
the calls in this bu�er. By gradually incrementing the bu�er period, it was
found that processing a bu�er of ninety minutes of calls or over, prior to
the period of interest, produced simulation results that were independent
of bu�er duration. A bu�er of ninety minutes was therefore used for all
simulations.

2.3. Model veri�cation, calibration, and validation

Veri�cation and validation of the simulation were vital for model accep-
tance and con�dence in results. The validation approach described in [43]
was employed. By working closely with the LAS during model develop-
ment it was ensured that the model had �face validity� (reasonable to the
practitioner), �structural validity� (operated like the system), and �technical
validity� (assumptions on the data were not far from reality). �Replicative va-
lidity� (predicting the past performance of the system) was achieved through
model calibration. The model was used to simulate the existing distribution
of EMS vehicles and the resulting survival e�ciency compared to that cal-
culated using the LAS data. The average speeds at which vehicles travelled
were tuned so as to minimize the disparity between real and simulated re-
sponse times, e�ectively replicating the current system. Figure 6 compares
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actual survival e�ciency to results from the calibrated simulation model.
Following calibration, the root-mean-square (RMS) error between simulated
and actual survival e�ciency was 0.61%. The speeds derived from the LAS
data were modi�ed by 12% on average.

Figure 6: A comparison between simulated and actual survival e�ciency following model
calibration; RMS error is 0.61%.

3. Optimization

3.1. Optimization heuristic

An optimization heuristic was required for the optimization of EMS ve-
hicle �eet allocation and base station location. The use of a GA was selected
as they have been shown to robustly �nd good solutions for this type of fa-
cility location-allocation problem [14, 16, 47]. GAs employ a �survival of the
�ttest� strategy to iteratively improve the performance of a population of
solutions [48].

A key aspect of any GA is the e�ective representation of a solution as
an encoded string. Careful design of this representation guarantees feasible
solutions, removing the need for continuous feasibility checks. In the opti-
mization heuristic implemented in this study, the representation used was:

|{g1, g2, ..., g2n−1, g2n}{g2n+1}{g2n+2, ..., g2n+1+m}|
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where each gene (g) is a real number between 0 and 1. The �rst 2n genes
encode the coordinates of n base stations with un�xed locations; n can be
varied between 0 and N , where N is the total number of base stations. The
next gene, g2n+1, de�nes the ratio of ambulances to rapid response cars; this
can be included in the optimization or �xed to represent existing resource
levels. The �nal m genes encode the allocation of m vehicles to base stations;
each gene is decoded to give an index between 1 and N .

An illustrative example of the chromosome representation now follows.
Consider a simple problem with three emergency medical vehicles and two
base stations; Station 0 has an un�xed location and Station 1 is �xed. The
solution space has been divided into a 12 by 10 grid and the ratio of ambu-
lances to rapid response cars is un�xed. One chromosome in the population
is as follows:

|0.74, 0.80, 0.70, 0.25, 0.10, 0.74|

The �rst two genes encode a grid coordinate for Station 0 of (8,7):

Round(0.74× (12− 1)) = 8

Round(0.80× (10− 1)) = 7

The third gene speci�es that of the three vehicles, two are ambulances:

Round(0.70× 3) = 2

Finally, the fourth, �fth, and sixth genes specify that Vehicles 0, 1, and
2 are assigned to Stations 0, 0, and 1 respectively:

Round(0.25× (2− 1)) = 0

Round(0.1× (2− 1)) = 0

Round(0.74× (2− 1)) = 1

Algorithm 2 describes the GA procedure used in this study; adapted
from that presented in [49]. The procedure begins with initialization of the
population (P ) using the complementary initialization method described in
[50]. The �rst half of the population is randomly generated, the second half
is then the �mirror image� of the �rst; i.e. each mirrored gene (gmirrored) is
one minus the original gene (1 − goriginal). This method goes some way to
ensuring reasonable diversity in the initial population. For example, if one of
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the chromosomes in the �rst half of the population was randomly generated
as:

|0.47, 0.08, 0.72, 0.51, 0.10, 0.67|

Then the �mirror� of this in the second half of the population would be:

|1− 0.47, 1− 0.08, 1− 0.72, 1− 0.51, 1− 0.10, 1− 0.67|

|0.53, 0.92, 0.28, 0.49, 0.90, 0.33|

At each generation, the �tness of every individual is evaluated using the
simulation model and the objective function detailed in Section 3.2. Evalua-
tions are independent and can therefore be executed in parallel. The Com-
puteFitness function utilises multiple threads, taking advantage of the
multiple cores in modern computers. The studies presented in this paper
were conducted on a quad-core computer using eight threads.

Once the �tness of each individual is known, the next generation can be
populated. Individuals are selected and either copied to the next genera-
tion or crossed with another individual to produce o�spring; the probability
of which is set by the crossover rate (rx). A number of di�erent selection
procedures were trialled, including cost and rank weighted roulette-wheel se-
lection. The procedure which produced high performing individuals in the
shortest time, without premature convergence, was the tournament selection
procedure described in [50]; a small subset of the population is randomly
picked and the �ttest individual within this subset selected. Although likely,
it is not guaranteed that the best individuals contribute to the next gener-
ation. Ensuring the preservation of a number of elite individuals leads to
improved performance [51]. The single best individual was preserved in this
implementation.

Crossover operations combine the genetic information of parents with the
aim of producing �tter o�spring. The crossover operator used is an adap-
tation of the heuristic crossover method detailed in [50], where two parents
produce two o�spring. There are two stages to the procedure:

1. Genes are copied from parent to child and then randomly swapped
between o�spring. This is known as uniform crossover.
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Algorithm 2 Genetic algorithm

1: P ← Initialize(popSize) . initial population (P )
2: while (1) do
3: ComputeFitness(P )
4: Pnext ← ∅ . initialize next generation (Pnext)
5: copy elite individuals to the next generation
6: Pnext ← Pnext + Elite(P )
7: while |Pnext| < popSize do
8: p ← Selection(P ) . select individual (p)
9: rand ← RNG() . rand ∈ (0, 1)
10: if rand < rx then . crossover rate: rx ∈ (0, 1)
11: pmate ← Selection(P ) . select mate
12: produce o�spring and add to next generation
13: Poffspring ← Crossover(p, pmate)
14: Pnext ← Pnext + Poffspring
15: else

16: Pnext ← Pnext + p

17: Mutate(Pnext)
18: P ← Pnext
19: if HasConverged(P ) then
20: return
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2. Half of the genes in the two children (gchild) are randomly selected and
replaced with a blend of the two parent genes (gparent):

gchild1 = gparent1 + β(gparent2 − gparent1) (1)

gchild2 = gparent2 + β(gparent1 − gparent2) (2)

where β is a randomly generated number in the range 0 to 1.1 (in-
clusive). This crossover operation is e�ectively a linear interpolation
between parent genes, where the point of interpolation is randomly se-
lected by β. By allowing values of β greater than one we allow slight
extrapolation of genetic information, helping to maintain genetic di-
versity. However, this extrapolation can produce infeasible genes, child
gene values are therefore �xed between 0 and 1.

For example, consider two parent chromosomes copied to two o�spring:

gchild1 = gparent1 = |0.13, 0.67, 0.84, 0.33, 0.82, 0.91|

gchild2 = gparent2 = |0.76, 0.97, 0.52, 0.01, 0.18, 0.39|

Genes 0, 3, and 4 are randomly selected and swapped between o�spring
(uniform crossover):

gchild1 = |0.76, 0.67, 0.84,0.01,0.18, 0.91|

gchild2 = |0.13, 0.97, 0.52,0.33,0.82, 0.39|

A β value is randomly generated, genes 2, 3, and 5 randomly selected,
and equations (1) and (2) applied:

β = 1.05

gchild1 = |0.76, 0.67,0.50,0.00, 0.18,0.15|

gchild2 = |0.13, 0.97,0.86,0.35, 0.82,0.94|

Following crossover operations the population is subject to mutation.
From the entire population, a number of randomly selected genes are re-
placed with randomly generated real numbers between 0 and 1. The number
of mutated genes is determined by the mutation rate (rm). The �ttest chro-
mosome is immune to mutation.
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It is technically possible that following crossover and mutation operations,
multiple chromosomes could translate to the same solution. Given that each
problem addressed in this paper typically has in the order of 4 × 1040 pos-
sible solutions, the probability of chromosome redundancy was considered
negligible.

Each iteration the GA is checked for convergence. A number of GA
stopping conditions were implemented but the most e�ective way to ensure
convergence was to run the GA for a predetermined number of generations
whilst monitoring progress using real-time graphs. Each experiment was
replicated 15 times with the genetic algorithm running for an average of
180 generations. Solutions remained static for a minimum of 40 generations
before termination of the genetic algorithm; see Figure 7 which shows typical
GA convergence.

Although a GA is a generally applicable meta-heuristic, the crossover
rate, mutation rate, and population size parameters need to be tuned to suit
each application. Preliminary experiments were undertaken to determine the
optimum settings of these parameters. It was found that a crossover rate of
0.85 and mutation rate of 0.04 quickly produced high performing individuals,
without premature convergence. The crossover rate is slightly higher than
the norm but not unusually so [51]. The high mutation rate was expected,
it encourages adequate exploration of what is an exponentially large and �at
solution space [42]; a mutation rate of 0.03 was used for a similar problem in
[14]. A population size of twenty �ve was selected as a compromise between
performance and computation time.

3.2. Objective function

The optimization presented in this study aims to maximize the number
of EMS patients that survive cardiac arrests and other life-threatening inci-
dents. Patient survival was �rst used as a performance metric by Erkut et
al. [37]. They used a survival function derived from a medical study that
modeled the health of patients after su�ering cardiac arrests [52]. Cardiac
arrest incidents were used because response time is crucial to survival and
the relationship has been studied extensively. Knight et al. incorporated a
similar cardiac arrest survival function with step functions representing re-
sponse time targets for other incident types [41]. The heterogeneous survival
function was a sum of the individual survival functions weighted by their
relative priorities; e�ectively a multi-objective optimization.
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Figure 7: Typical GA convergence during experimentation.

The heterogeneous survival function used in this study is one of a number
of functions that have been shown to approximate survival probability as a
function of time for cardiac patients [37, 41]. This particular survival function
was derived using cardiac survival data from the US and logistic regression.
The survival probability (s) of two patient classes is modeled; cardiac arrests
(sc):

sc =
1

1 + exp(−0.26 + 0.139× Tr)
(3)

and all other life-threatening (category A) calls (sa):

sa =

{
1, for Tr ≤ 8

0, for Tr > 8,
(4)

where Tr is the response time. The objective is maximization of the hetero-
geneous survival e�ciency (ηs):

ηs =

2
γ∑
i=1

sci +
δ∑
j=1

saj

2γ + δ
, (5)
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where γ is the number of cardiac arrest calls and δ the number of category A
calls. Cardiac arrests are weighted as twice as important as other category A
calls. Non-urgent calls (category C) are excluded from the objective function
as they are non life-threatening and not included in LAS performance targets.

4. Application and evaluation

4.1. Problem de�nition

The ambulance �eet allocation and base station location problem is de-
�ned as follows. We are given a set of base stations B = {Bn}, 1 ≤ n ≤ N to
be populated with a set of EMS vehicles V = {Vm}, 1 ≤ m ≤M . During sim-
ulation, vehicles respond to a set of emergency calls C = {Ck}, 1 ≤ k ≤ K.
Each call must be processed by a subset of vehicles Vk ⊆ V , with each call
having an independent time, location, duration, and vehicle requirement.
Vehicles can process at most one call at a time.

The objective of the problem is to maximize patient survival by �nding
the optimal allocation of EMS vehicles to base stations and base station
locations. Stations can be located at any point within the geographic limits
of the model. A derivative of this problem, also addressed by this paper,
�xes the location of base stations to emulate the existing EMS system.

4.1.1. Case study de�nition

The LAS follow a resource plan that, for each hour of the week, de�nes
the number of ambulances and rapid response cars allocated to each of their
seventy base stations. It was seen as logical to approach optimization in the
same way and optimize the planned vehicle allocations for a number of these
hour-long periods. Figure 8 shows the volume of calls received by the LAS
over a one year period, aggregated by time of week. Probable cardiac arrest
calls have been separated from other category A calls for the purposes of
modelling patient health. Figure 9 outlines the current performance of the
LAS as measured by response time targets and survival e�ciency.

Due to the exponential size of the problem, the resource plan has only
been optimized for the eight stations highlighted in red in Figure 3, selected
due to their proximity to an area of high call volume. This is still far from
a trivial problem since during periods of high call volume there are up to
forty �ve vehicles allocated to these eight stations, giving 4.36×1040 possible
combinations. Evaluating each allocation takes �fteen seconds, thus a full
enumeration would take 2.07×1034 years. The approach detailed in this paper
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is capable of optimizing the entire LAS system, the only limit on problem
size is that of solution time.

Although only eight stations are being optimized, the entire LAS sys-
tem was simulated. This meant that vehicles stationed at the central eight
stations were free to respond to calls anywhere in the city, and vehicles at
stations not being optimized were able to respond to calls within the central
zone. This approach captured the cooperative aspects between optimized
stations and the remaining stations in the model.

The results of key studies investigating the resourcing of these eight base
stations are presented and discussed in the remainder of this section.

Figure 8: Call volumes for a one year period aggregated by time of week. Calls are
categorised as either cardiac arrests, life-threatening (category A), or non-urgent (category
C).

4.2. Results and discussion

4.2.1. Optimizing resource plans

This application investigated the number of lives that could potentially
be saved by redistributing the existing resources. Periods of the week are
referred to with the notation DXHY , where X is the day (0 to 6), and Y
the hour (0 to 23) of interest; e.g. D0H6 refers to 6am-7am on Sunday, while
D5H18 is 6pm-7pm on Friday.

Three one-hour periods, representing the range in operating conditions
and current performance, were selected for optimization:
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Figure 9: Current LAS performance as derived from real call data.

• D0H6 - the period with the lowest survival e�ciency according to LAS
data; see real ηs in Table 2.

• D2H11 - the period with the highest volume of life-threatening calls.

• D5H18 - a period with high call volume and low survival e�ciency.

Multiple GA trials were conducted with all base station locations �xed
and the ratio of ambulances to cars �xed to match current resourcing. For
�fteen replications, computation took an average of 25.2 minutes per exper-
iment. Table 2 presents the current and optimized resource plans and the
e�ect on survival e�ciency (ηs), number of cardiac survivors (Sc), and num-
ber of category A calls reached within eight minutes (Sa8). As anticipated,
the largest increase in survival e�ciency is observed in the period with the
lowest real-life performance (D0H6). However, due to a relatively low call
volume this does not translate to the greatest increase in survivors; this is
observed in the period with low performance and high call volume (D5H18).
Optimizing the resource plan for the D5H18 period results in three additional
cardiac arrest survivors and an additional 36 category A calls reached within
eight minutes.

There are no obvious trends in the reallocation of resources, indicating
that the resource plan must be tuned to match the unique demand distribu-
tion in each period of the week. This emphasises the importance of incor-
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Table 2: Current and optimized allocations of ambulances (A) and rapid response cars
(C) for three time periods.

D0H6 D2H11 D5H18

Station Current Optimum Current Optimum Current Optimum

1 1A, 0C 2A, 2C 2A, 0C 1A, 2C 2A, 0C 4A, 0C
2 5A, 1C 5A, 1C 5A, 1C 2A, 4C 5A, 1C 3A, 6C
3 3A, 2C 0A, 1C 6A, 3C 6A, 2C 6A, 3C 2A, 1C
4 3A, 0C 2A, 2C 3A, 0C 4A, 1C 3A, 0C 5A, 2C
5 3A, 2C 3A, 0C 5A, 3C 4A, 1C 5A, 3C 3A, 0C
6 2A, 1C 4A, 1C 2A, 3C 1A, 2C 2A, 2C 5A, 3C
7 1A, 0C 1A, 1C 2A, 0C 5A, 1C 1A, 0C 3A, 1C
8 2A, 2C 3A, 0C 5A, 5C 7A, 2C 5A, 5C 4A, 1C

Real ηs 40.40% � 54.92% � 41.26% �
ηs 40.21% 41.67% 53.92% 54.66% 39.96% 41.32%
∆ηs � 1.46% � 0.74% � 1.36%

Sc 80.1 82.3 223.7 227.2 174.1 177.4
∆Sc � 2.2 � 3.5 � 3.3

Sa8 420 437 1369 1388 916 952
∆Sa8 � 17 � 19 � 36

porating time dependent demand variation and travel times into any EMS
model. The redistribution of resources becomes clearer when the workload
of each station is examined. Table 3 presents base station utilisation un-
der the current and the optimized resource plans, calculated as the average
utilisation of the vehicles at each station. From these tables it can be seen
that performance is being optimized by reallocating vehicles from low to high
workload stations, i.e. balancing load. Station 3 has the lowest utilisation
in the D0H6 period in which optimization reduces the resources by three
ambulances and one car thus increasing utilisation from 26.98% to 30.87%.

In total, the lives of nine additional cardiac arrest patients could be saved
per year in the periods examined (sum of∆Sc in Table 2). Survival would also
signi�cantly improve for other life-threatening cases, each year an additional
72 category A calls would be reached within eight minutes (sum of ∆Sa8
in Table 2). If these gains are representative, it could be expected that
optimization of the whole resource plan would result in signi�cantly more
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Table 3: Base station utilisation under the current and optimized resource plans.

Base station

Period 1 2 3 4 5 6 7 8

Utilisation under current resource plan (%)

D0H6 50.95 47.71 26.98 39.98 41.14 60.18 65.68 46.37
D2H11 92.54 86.62 67.37 92.43 73.51 63.54 94.86 58.19
D5H18 87.78 83.58 65.58 84.00 74.18 65.75 85.91 50.63

Utilisation under optimized resource plan (%)

D0H6 34.06 44.80 30.87 34.26 56.88 54.62 46.03 57.10
D2H11 45.53 53.68 75.56 76.38 82.92 66.60 87.45 79.15
D5H18 86.75 58.45 76.29 65.29 90.29 68.44 76.25 74.91

lives saved per year. Further studies would be required to quantitatively
assess this expectation.

Table 2 presents the best resource plans found after �fteen GA trials. Due
to the stochastic nature of a GA, each trial identi�ed a di�erent resource plan
with varying performance; this variation in GA results is presented in Table
4.

Table 4: Variation in results from �fteen GA trials.

ηs (%)

Period Best Mean σ

D0H6 41.67 41.56 0.118
D2H11 54.66 54.61 0.035
D5H18 41.32 41.30 0.015

4.2.2. Weekday resource strategy

The LAS currently use an identical resource plan for weekdays Monday
through Thursday as demand is expected to be the same. However, the
demand actually observed for these days has signi�cant di�erences; for ex-
ample the total number of category A calls on Mondays is 8.8% higher than
on Wednesdays. Figure 10 shows the current LAS performance for weekdays
Monday through Thursday, as derived from the LAS data. Di�erences in
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demand are causing survival e�ciency to vary across weekdays. The di�er-
ence in survival e�ciency between best and worst performing days reaches a
maximum of 4.9% during the midday period.

A study was conducted into whether the current strategy, referred to as
plan 1, best serves weekday demand. For �fteen replications, computation
took an average of 50 minutes per experiment. The periods D2H6 and D3H6
were chosen for comparison as the di�erence in survival e�ciency (2.1%) was
approximately the average of that observed in Figure 10. Resourcing was
optimized for both of these time periods resulting in two potential resource
plans, plan 2 optimized for D2H6 and plan 3 optimized for D3H6; see Table 5.
The performance of the LAS system was evaluated using both of these plans;
see Table 6. In both periods, both optimized plans outperform the current
plan in terms of survival e�ciency. However, of most note is that the optimal
resource plan for one period is sub-optimal for the other period. That is, for
the period D2H6, plan 2 outperforms plan 3 by 0.55% (a survival e�ciency
of 45.68% compared to 45.13%). Conversely, for the period D3H6, plan 3
outperforms plan 2 by 0.50% (a survival e�ciency of 44.72% compared to
45.22%). This indicates that there is no single resource plan that is optimum
for all weekdays and that the current resource strategy does not best serve
weekday demand. It is instead recommended that the LAS specialise the
resource plan for each weekday, accounting for the di�erences in demand.

Figure 10: LAS performance for Mondays to Thursdays under the current resource plan.
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Table 5: Current and optimized allocations of ambulances (A) and rapid response cars
(C) for two time periods.

D2H6 & D3H6 D2H6 D3H6
Station Current (Plan 1) Optimum (Plan 2) Optimum (Plan 3)

1 1A, 0C 2A, 0C 1A, 1C
2 3A, 1C 2A, 1C 3A, 2C
3 3A, 2C 2A, 1C 2A, 0C
4 2A, 0C 2A, 1C 3A, 1C
5 2A, 1C 2A, 1C 2A, 0C
6 2A, 1C 1A, 2C 1A, 1C
7 1A, 0C 2A, 0C 2A, 0C
8 2A, 0C 3A, 0C 2A, 1C

Table 6: Performance under di�erent resource plans.

D2H6 D3H6

Plan 1 Plan 2 Plan 3 Plan 1 Plan 2 Plan 3

ηs 44.36% 45.68% 45.13% 44.38% 44.72% 45.22%
∆ηs � 1.32% 0.77% � 0.34% 0.84%

Sc 74.9 74.2 74.5 84.3 84.5 84.8
∆Sc � -0.7 -0.4 � 0.2 0.5

Sa8 442 461 453 415 419 425
∆Sa8 � 19 11 � 4 10

4.2.3. System performance with varying resource levels

Discussions with the LAS revealed that it is common for resource gaps
to occur, resulting in fewer than planned vehicles available for a shift. These
gaps can occur for numerous reasons, including sta� illness, vehicle break-
downs, or crews being questioned about incidents by police. In these situa-
tions it is vital to understand how best to redistribute the remaining resources
and what e�ect this may have on system performance. It is also valuable,
from a planning perspective, to understand what e�ect increasing resources
may have on performance; for example net gains may be achievable by trans-
ferring resources between time periods.

The e�ects of varying vehicle numbers were investigated for the three pe-
riods considered in Section 4.2.1, namely D0H6, D2H11 and D5H18. Multiple
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GA trials were conducted with all base station locations �xed. It is unknown
which vehicles would be unavailable or introduced to the system therefore
the ratio of ambulances to cars was included in the optimization. For �fteen
replications, computation took an average of 49.8 minutes per experiment.
Figure 11 shows the system performance as the number of vehicles is varied.
There are obvious trends in both vehicle utilisation and survival e�ciency,
similar to those presented by Knight et al. [41], although utilisation appears
linearly related to vehicle numbers across the ranges investigated.

Figure 11: System performance with varying vehicle numbers. Utilisation is the average
vehicle utilisation across all stations.

Increasing resources causes survival e�ciency to increase, although these
returns diminish. For each period, a critical resource level is reached above
which there is no further increase in performance. This is the maximum
performance that can be achieved with stations located in their current posi-
tions. Table 7 presents these performance ceilings and critical resource levels.
With current resource levels and an optimized resource plan, the LAS could
be operating at 98%, 90%, and 92% of maximum survival e�ciency for the
periods D0H6, D2H11, and D5H18 respectively.

Performance is close to the maximum achievable for D0H6, causing sur-
vival e�ciency to be insensitive to small changes in vehicle numbers. For
example, removing four vehicles from the D0H6 period results in a decrease
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Figure 12: System performance with varying vehicle numbers. The potential to reduce
the number of operating vehicles whilst retaining current performance levels is highlighted
with labels A, B, and C.

in survival e�ciency of 0.42%. If these vehicles were transferred for use in
the D2H11 and D5H18 periods (two vehicles each), survival e�ciency would
increase by 0.91% and 0.49% respectively. Implementing this transfer would
change the numbers of cardiac arrest survivors by -1.8, 2.8, and 2.0 for the
periods D0H6, D2H11, and D5H18 respectively; a net increase of three car-
diac arrest survivors per year. Another notable �nding is that, adhering to
the optimized resource plans, the current level of performance could be met
with signi�cantly fewer vehicles. Vehicle numbers could be reduced by 10, 8,
and 12 for the D0H6, D2H11, and D5H18 periods respectively; see labels A,
B, and C on Figure 12.

4.2.4. Introducing a new base station

A study was carried out to determine the optimum location for a new
base station, i.e. that which would result in the greatest net increase in
survivors. Rather than considering all time periods, the new station location
was optimized for a number of key periods, namely 6pm to 7pm for each
day of the week based on the study presented in Section 4.2.1 which revealed
that the greatest increase in survivors is achieved for periods with low survival

30



Table 7: Performance under optimized resource plans with current and critical resource
levels.

Resources for ηsMax Current resources

Period ηsMax (%) Vehicles ηs (%) ηs/ηsMax Vehicles

D0H6 42.9 36 41.92 0.98 28
D2H11 64.3 86 57.58 0.90 45
D5H18 48.3 68 44.38 0.92 43

e�ciency and high call volume.
Multiple GA trials were conducted for each of the chosen periods. Within

the simulated region, the new station was free to be located anywhere whereas
all other base station locations were �xed. Initial GA trials found multiple
local optima with approximately equal performance, indicating that the so-
lution space was relatively �at. To mitigate against this, the mutation rate
was increased to 0.05 and the GA run-time tripled. For �fteen replications,
computation took an average of 2.9 hours per experiment.

The optimum station locations for each day of the week are shown in
Figure 13 in which it can be seen that there are two optimal locations, one
corresponding to demand on weekdays (days 1 to 5) and the other at the
weekend (days 0 and 6). The presence of these two locations is supported
by the two distinct call volume patterns, weekday and weekend, observed in
Figure 8. The actual distribution of life-threatening calls in these periods
provides more insight as shown in Figure 14 which indicates the majority of
life-threatening calls are located around the city centre on weekdays whereas
these calls are more dispersed at the weekend. Given the relative proximity
of the weekday and weekend optimum locations, i.e. 10 kilometres, an appro-
priate location for a new station could either be that which most improved
performance or an average of the two locations weighted by the increase in
survivors that could be achieved. To inform such a decision, performance
was evaluated using the new station and compared to performance under the
current resource plan; see Table 8. The new station results in an increase in
survival e�ciency of 3.55% during the week compared to 2.99% at the week-
end. With higher call volumes during the week, this causes an increase of 31
cardiac arrest survivors per year compared to 12 for the weekend location;
see delta ∆Sc in Table 8.
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Figure 13: Black dots mark the optimum locations for a new base station, as optimized
for 6pm to 7pm of each day of the week. Locations are labelled with the days with which
they were found to be optimum. Map data c©2013 Google.

Figure 14: Distribution of life-threatening calls from 6pm to 7pm on weekdays (left) and
weekends (right). The colour gradient depicts the annual volume of calls received within
these periods. The optimum locations for a new base station are marked with black dots.
Map data c©2013 Google.
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Table 8: Performance with and without a new station.

Weekday Weekend

Current New station Current New station

ηs 42.41% 45.96% 42.61% 45.60%
∆ηs � 3.55% � 2.99%

Sc 871.4 903.1 367.7 379.7
∆Sc � 31.7 � 12.0

Sa8 5022 5526 1830 1986
∆Sa8 � 504 � 156

4.2.5. Removing a base station

A �nal study investigated the e�ects of removing a station with the op-
timum one to remove being that which resulted in the smallest net decrease
in survivors. To reduce computation time, and as a proof of concept only,
station removal was optimized for a single period, D1H8, rather than across
all time periods. This study required the introduction of a new gene to the
chromosome representation, which de�ned a station to be removed with any
vehicles assigned to this station excluded from the simulation. GA trials were
conducted with all base station locations �xed, and the ratio of ambulances
to rapid response cars �xed to represent existing resource levels. For �fteen
replications, computation took an average of 1.7 hours per experiment.

Station 1 was identi�ed as the optimum station for removal, as indicated
in Figure 15, with the neighbouring stations (2,3,4,6,7) seeing a net increase
of one ambulance and one rapid response car to deal with the additional load;
see Table 9. Further, removing station 1 and optimizing the resource plan
for D1H8 resulted in a 1.23% increase in survival e�ciency, only 0.04% lower
than with all stations included; see ∆ηs in Table 9. Also, when compared
to current performance, the removal of station 1 corresponds with an annual
increase of 2.8 cardiac survivors in the period examined; see ∆Sc in Table 9.

5. Conclusions

This paper presents the optimization of EMS vehicle �eet allocation and
base station location through the use of a GA with an integrated EMS sim-
ulation model. Novel simulation features and modelling approaches have
enabled a level of realism not seen in other EMS models. In a departure
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Figure 15: Removing the highlighted station was found to minimize the negative impact
on performance for the period of 8am to 9am on a Monday. Map data c©2013 Google.

from existing academic literature, this model has been applied to a complex,
real-life system through the use of LAS call data and geocoded locations.
The aim has been to demonstrate how such a model can be used to make
useful recommendations to practitioners.

A number of studies have demonstrated that signi�cant improvements
in patient survival can be achieved with optimized resource plans. In the
periods examined, the lives of nine additional cardiac arrest patients could
be saved per year without introducing additional resources. Indeed, the LAS
indicated real value in the direct link between potential resource plans and
patient survival estimates.

The LAS weekday resourcing strategy was challenged and the bene�ts of
moving towards a customised plan assessed. Feedback from the LAS identi-
�ed that the main reasons for non-optimal cover are shift-pattern and ros-
tering requirements. Knowledge of the optimum cover is still useful however
and is used to decide when and where to allocate unplanned resources. The
impact of introducing a new station to the LAS system was also investigated
and recommendations made on the optimum location. The LAS noted that
the same techniques would be useful in identifying and evaluating potential
standby points.

Future LAS strategy could see small base stations consolidated into larger
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Table 9: Current and optimized allocations of ambulances and rapid response cars, includ-
ing the optimum resource plan with station one removed. The performance under these
plans is also presented.

Station Current Optimum Optimum
(existing stations) (station 1 removed)

1 2A, 2C 2A, 2C 0A, 0C
2 4A, 4C 2A, 2C 2A, 2C
3 5A, 1C 5A, 1C 4A, 1C
4 3A, 1C 5A, 3C 4A, 2C
5 4A, 3C 3A, 1C 6A, 2C
6 6A, 2C 5A, 3C 6A, 3C
7 0A, 0C 5A, 0C 7A, 2C
8 6A, 2C 3A, 3C 1A, 3C

ηs 56.45% 57.72% 57.68%
∆ηs � 1.27% 1.23%

Sc 212.8 215.7 215.6
∆Sc � 2.9 2.8

Sa8 1163 1193 1192
∆Sa8 � 30 29

'super stations'. An investigation was made into the impact of removing a
station from the system and a recommendation made on the optimum station
to remove. An investigative tool such as this could help inform decisions on
future strategy.

Further work could consider rostering and shift-pattern requirements and
investigate the e�ects of time dependant vehicle routing and stochastic vari-
ation in travel times. The e�ects of di�erent dispatch methods could also
be investigated. One aspect of the LAS system not considered here is how
the optimum resource plan might change throughout the year. Accounting
for seasonal change in demand may reveal more about how best to achieve
optimum performance.
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