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introduction of a cleaner renewable energy, although onerous, is opti-

mal with respect to inter-temporal utility. The cleaner technology is

adopted either instantaneously or gradually at a controlled rate. The

problem of optimum under viability constraints is 6-dimensional un-

der a continuous-discrete dynamic controlled by energy consumption

and investment into production of renewable energy. Viable optima

are obtained either with gradual or with instantaneous adoption. A

longer time horizon increases the probability of adoption of renewable

energy and the time for starting this adoption. It also increases max-

imal utility and the probability to cross the threshold of irreversible

pollution. Exploiting a renewable energy starts sooner when adoption

is gradual rather than instantaneous. The shorter the period remain-

ing after adoption until the time horizon, the higher the investment

into renewable energy.

Key words: Multi-stage optimal control, threshold effects, irreversibility,

non-renewable resources, viability
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1 Introduction

Optimal technological regime switching appears during trade-offs between

obsolescence, learning costs, and productivity gains (Hamilton, 1990; Par-

ente, 1994; Makris, 2001; Boucekkine et al., 2004). The determination of

the best moment for adopting a renewable energy complicates classical op-

timization. Boucekkine et al. (2013a, b) resume the exhaustible-resource

and stock-pollution model of Tahvonen (1997) to derive first-order optimal-

ity conditions and characterize the geometry of the shadow prices at opti-

mal switching times (if any). We revisit this problem, but with viability-

optimality techniques allowing us to overcome the technical difficulties of a

large number of variables and of gradual adoption. We also find the optimum

while having state variables remain in their respective sets of constraints im-

posed by economic necessities.

We consider pollution as possibly irreversible, as Tahvonen and With-

agen (1996) and Prieur (2009) do. The non-renewable resource, say fossil

fuels, is extracted and consumed, causing emissions of pollutant. Beyond a

critical concentration, pollutant is no longer absorbed, as it is the case for

carbon dioxide by the oceans. The choice is to adopt a renewable but ex-

pensive technology, say wind power, or not. Prieur et al. (2011) searched

for the optimal management of exhaustible resources under irreversible pol-
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lution but ignored the adoption of the new technology. In Boucekkine et

al. (2013b), the timing of adoption is endogenous but not the size of the

investment in the technology of renewable energy. This assumption follows

Valente (2011): when adoption starts, the share of renewable energy is set to

a constant, reflecting the maximal level of the renewable energy allowed by

the technological capacity of the country. We refer to this type of adoption

as “instantaneous adoption.” We relax the view of instantaneous adoption,

which is mathematically convenient but restrictive, and suggest to endoge-

nize the investment into the renewable energy, within the possibilities left by

the technology. We refer to this type of adoption as “gradual adoption.” For

example, the part of renewable energy in the French production of electricity

is forecast to grow from 22.9% in 2013 to 35% in 2020.1 We suggest to de-

termine not only when the transition to a renewable energy should start, but

also at what rate it should be substituted to the former one. The proportion

of clean but expensive energy can then be adjusted over time.

Boucekkine et al. (2013), using Pontryagin, had to check all possible

candidates to optimality (inner solutions, corner solutions, solutions with

adoption of renewable energy and those without, solutions with reversibility

of pollution and those without), computing the associated value functions for

1source Réseau de transport d’électricité, published by Bertille Bayart in Le Figaro, 10

December 2013.
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each set of parameters and for each set of initial conditions, to finally select

the maximal value. In contrast, viability theory yields optima in a neces-

sary and sufficient way, allowing a systematic exploration of the state space.

Our method here allows one to solve the problem without the round-about

of Pontryagin or Hamilton-Jacobi-Bellman, without having to compute each

candidate solution to select the best one thereafter. Our econometric anal-

ysis, as in Bonneuil and Boucekkine (2014), shall capture the main features

of viable optimal decisions and help us interpret them. Besides, thanks to

Bonneuil’s (2006) viability algorithm, the technique is flexible enough to add

state dimensions, here gradual versus instantaneous adoption, avoiding to de-

rive first-order conditions each time. The technique works with continuous-

discrete time dynamics. The link with optimal solutions, which economists

are fond of, was established theoretically (Bonneuil, 2012). It finds here a

practical application.

With the plausible parameters values used by Prieur et al. (2011), we shall

determine the factors favoring adoption or not. We shall notably find the

importance of initial fossil resource and initial level of pollution in the maxi-

mal inter-temporal utility. This is consistent with Boucekkine et al. (2013b)

who use a different analysis. In addition, we shall also examine the role of

the time horizon and the capacity to afford a gradual adoption. We shall also

find that a longer time horizon increases the probability of adoption of renew-
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able energy and the time for this adoption. It also increases maximal utility

and the probability to cross the threshold of irreversible pollution. We shall

find that the time for starting exploiting a renewable energy decreases when

adoption is gradual, compared with instantaneous adoption: the shorter the

time remaining after adoption until the time horizon, the more quickly re-

newable energy is adopted. Then the theory of optimal regime switching is

completed by the realistic feature of gradual adoption, a key component of

energy policies.

After posing the problem as a maximization under 4 differential equa-

tions, we shall present viability theory and the procedure to obtain a maxi-

mum under viability constraints, with its associated algorithm. The problem

becomes a viability problem with six dimensions. An example of trajecto-

ries with gradual or with instantaneous adoption will helps us situate the

dynamic. Then we shall proceed to the econometric analysis of 600 simula-

tions, so as to highlight the determinants of adoption and its mode.

2 The problem

The quantity of fossil resource is x1(t) at time t. People are to solve the

trade-off between cheap polluting energy against expensive cleaner energy:

max
v1,v2,ts

∫ T

0

(
u(v1(t))−D(x2(t))− cx3(t)

)
e−δt dt, (1)

6



where T is the time horizon, the function u represents utility and D the

damage function, c is a parameter reflecting the production unit cost, x2 the

level of pollution, x3 the amount of exploited renewable energy, ts ≥ 0 is the

time when this renewable resource begins to be adopted:
x′3(t) = 0 if t < ts

x′3(t) = v2(t) ∈ V2 if t ≥ ts (adoption)

x3 ∈ [0, x3],

(2)

where V2 is a closed set, v2 the investment into or disinvestment from renew-

able energy, x3 the maximal renewable energy, limited by the possibilities

of the country. Total energy consumption v1(t) is the sum of the quantity

e(t) ≥ 0 of polluting energy and of the quantity x3(t) ≥ 0 of renewable non

polluting energy:

v1(t) = e(t) + x3(t). (3)

The fossil resource decreases as:

x′1(t) = −e(t) = −v1(t) + x3(t). (4)

The quantity of pollutant is also taken equal to e(t), such that pollution

varies according to:

x′2(t) = max(0, v1(t)− x3(t))− α(t)x2(t), (5)

where α(t) is the rate of absorption of pollution by the environment, becom-

ing null over a threshold value x2, above which the milieu becomes unable to
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absorb any quantity of pollutant:
α(t) = α constant for x2(t) ≤ x2 (reversibility)

α(t) = 0 otherwise. (irreversibility).

(6)

Equation (2) is an impulse equation:

x′3(t) = w(t)v2(t)

w′(t) = 0 , w(0) = 0

w(t+s ) = w(t−s ) + 1 = 1

x3 ∈ [0, x3],

(7)

where w is a Heaviside function.

The dynamic {4, 5, 6, 7} is a differential inclusion with impulse:
x′(t) ∈ F (x(t))

x+ = R(x) := {x−1 , x−2 , x−3 , 1)}
(8)

with

F (x) := {(−(v1 +x3),max(0, v1−x3)−α1x2≤x2x2, v2, 0), v1 ∈ [0, x1], v2 ∈ V2}.

(9)

The state variables are x1, x2, x3, and w, and the controls ts, v1, and

v2. The system {4, 5, 6, 7} constitutes a differential system in continuous-

discrete time, also called hybrid dynamic (Bensoussan and Menaldi, 1997)

under constraints K := {x = (x1, x2, x3, w) | x1(t) ≥ 0, x2(t) ≥ 0, x3(t) ∈

[0, x3], w(t) ∈ {0, 1}} ⊂ IR+4.
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Boucekkine et al. (2013b) considered an instantaneous transition to re-

newable resource, which amounts to replace (7) by:
x′3(t) = 0

x3(0) = 0

x3(t+s ) = x3.

(10)

We shall compare the solutions from {4, 5, 6, 7} and from {4, 5, 6, 10},

starting from the same initial conditions.

3 Method: Capture-Viability, Optimization,

Algorithm

3.1 Capture-Viability

A state x = (x1(0), x2(0), x3(0), w(0)) is said T -viable in K if there exists

at least one solution x(.) to (F,R) starting from x(0) = x and remaining

in K until T : ∀t ∈ [0, T ], x(t) ∈ K. A set of T -viable states is called a

viability domain. There exists a maximal domain containing all others, and

called viability kernel. A capture domain is a set of states x from which there

exists at least one solution to (F,R) starting from x and reaching a given set

Ω, playing the role of a target. By adding time as a state variable, this target

may include a fixed time, at which to hit the target. The capture-viability
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kernel Capt(F,R)(K,C) is the largest set of states x from which there exists

at least one solution governed by the dynamic (F,R) and remaining in K for

all t ∈ [0, T ] and reaching the target Ω.

3.2 Impulse Dynamical Systems and Capture-Viability

An impulse differential inclusion (F,R) is described by

1. a set-valued map F : X → X, representing the dynamic in continuous

time:

x′ ∈ F (x) = {f(x, u, v), u ∈ U(x), v ∈ V (x)} (11)

where U(x) and V (x) are closed sets;

2. a reset map R : X → X, describing the discrete part of the run,

associating a new initial state xi+1 ∈ R(xi) with some instant ti.

For two closed sets Ω ⊂ K ⊂ IRm, how can a system governed by (F,R)

through u stay in K and reach Ω before leaving K, despite uncertainty

v. Starting from an initial state x0 ∈ K, a solution x(·) to the impulse

differential inclusion (F,R) is a solution to the differential inclusion x′ ∈ F (x)

viable in K until a time t1 ≥ 0 when it reaches R−1(K). At that point, a

second initial state x1 = x(t+1 ) ∈ R(x(t−1 )) ∩K, with x(t−1 ) := limt→t−1
x(t),

is taken, as a starting state for the continuous-time process, which carries on

its course.
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A state x is said to be viable in a closed subset K with target Ω under

(F,R) if there exists at least one solution x(.) starting from x(0) = x under

the dynamic F such that there exists a T > 0 such that x(T ) ∈ Ω and for

all t ≥ 0, x(t) ∈ K. A subset K is viable under (F,R) if all states x ∈ K

are viable under (F,R). If a closed set K is not viable under (F,R), Aubin

(1999) proved that when F is Marchaud (its graph and its domain are not

empty, the values F (x) are convex, and supy∈F (x) ‖ y ‖ is bounded by a

linear function of ‖ y ‖), then there exists one largest capture-viable subset

of (K,Ω) including all others. This is the hybrid capture-viability kernel,

denoted Capt(F,R)(K,Ω).

3.3 Optimization

Bonneuil (2012) showed that the solutions of the optimization problem {1,

2, 4, 5, 6} are located on the boundary in direction of high welfare

π(t) :=

∫ t

0

(
u(v1(τ))−D(x2(τ))− cx3(τ)

)
e−δτ dτ (12)

of the capture-viability basin of target IR+2 × [0, x3] × {T} × {0, 1} × {0}

within the state space IR+2 × [0, x3]× {T} × {0, 1} × IR+ (containing states
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(x1, x2, x3, x4, w, π)) under the augmented dynamic:

π′(t) = −(u(v1(t))−D(x2(t))− cx3(t))e−δx4(t)

x′1(t) = −v1(t) + x3(t) (fossil resource)

x′2(t) = max(0, v1(t)− x3(t))− α(t)x2(t) (pollution)

x′3(t) = w(t)v2(t) (renewable energy)

x′4(t) = 1 (time), w′(t) = 0 (Heaviside [ts, T ])

α(t) = α 1x2(t)≤x2 (absorption); v1(t) ∈ [0, x1(t)], (energy consumption)

v2(t) ∈ V2, (variation of renewable energy); ts ≥ 0, (switching time)

π(0) = π0, x1(0) = x10, x2(0) = x20, x3(0) = 0, w(0) = 0 (initial conditions).

(13)

The capture-viability kernel of the augmented dynamic (13) has six state

variables: x1, x2, x3, x4, w, and π, and three controls: v1, v2, and ts. The

variable x4 is time, which is now a state variable, in contrast to System {4,

5, 6, 7}.

Bonneuil (2006) addressed the computation of viable states and of the

capture-viability kernel in large state dimension, based on stochastic opti-

mization (to handle the large dimension of the discretized control trajectory).

The idea is to minimize the distance to the set of constraints of solutions

starting from a given state, and to assess the viability status of this state

whether or not the minimization of the distance leads to at least one tra-

jectory remaining in the set of constraints. The search for viable states is
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also achieved by the minimization of a distance to the set of constraints, so

that the procedure relies on a double stochastic optimization: one where the

initial state under examination is fixed, so as to decide whether it is viable

or not, and one where this initial state is varied. We shall use this algorithm

later on.

The addition of the auxiliary variable π participates in the elegant pro-

cedure leading to locate the viable maximum on the boundary in direction

of high π of the capture-viability kernel associated with the augmented dy-

namic (Bonneuil, 2012). A variant of Bonneuil’s (2006) algorithm allows us

to compute the boundary of the capture viability basin in the direction of

high π without the knowledge of the whole capture-viability kernel, which

is very memory-consuming. Firstly, a viable state is found for the auxiliary

dynamic; secondly π is maximized for the same x. For each new attempt

(x, π), stochastic optimization allows us to find one trajectory remaining in

K and reaching the target at time T . For T infinite, an approximation and

extrapolation of “reaching the target” is used, a task here made easy by the

discounting term exp(−δt).
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4 Results

4.1 Simulations

We took the parameter values from Prieur et al. (2011): c = 300, u(v1) =

27v1(32 − v1), D(x2) = 0.0011x2
2, α = 0.0083, x2 = 300. Figure 1 shows an

example of trajectory with gradual adoption remaining in K until T = 30

years and leading to the maximum (equal to π(0) = 96352 in this case),

and another with instantaneous adoption also remaining in K until T = 30

years and leading to the maximum (equal to π(0) = 95853 in this case).

Both start from (x1(0), x2(0), x3(0), x4(0), w) = (363.9, 247.1, 0, 0, 0). A case

where renewable energy is not adopted is qualitatively similar from Figure 1,

except that the variable x3 remains null.

Viable states are distributed over the whole plane (x1, x2), because from

any state (x1, x2, 0, 0, 0), there exists a trajectory leading to a maximal utility.

This is confirmed by computation. The point is whether or not this trajectory

requires adoption.

The 100 points for T = 30 years projected onto the (x2, π) plane on

Figure 2 delineate the boundary of the capture-viability kernel, with some

width due to the numerical approximation. The width does not exceed 4

percent in π, at least for low values of pollution x2. This boundary is the set

of viable maxima π(0), with varying initial values.
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Figure 1: Top: Example of a trajectory leading to a viable maximum: x2

(pollution) and x3 (renewable resources) (T = 30 years). Bottom: Associ-

ated controls v1(t) (consumption of polluting resource) and v2(t), increase of

renewable resources. Continuous lines for the case with gradual transition to

renewable resources (v2(t) <∞); dotted lines for the case with instantaneous

transition.
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Figure 2: Projection of the viability boundary onto the (x2, π) plane (T =

30). Each state of the viability boundary is the initial condition of a trajec-

tory leading to maximize utility while remaining in the state of constraints.
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The boundary of the capture-viability kernel in direction of high π gives

the maxima. It is obtained with N = 100 initial conditions for each time

horizon T = 20, 30, 40 years (then 2N trajectories with either gradual or

instantaneous adoption for each time horizon). Table 4.1 gives the simulated

distributions between adoption or not and reversibility or not, by time hori-

zon, for a given threshold x2 = 300. The fact that Table 4.1 counts fewer

reversible cases depends on the value taken for x2.

Table 1: Distribution of the N=600 simulations, 100 by time horizon and

type of transition.

gradual adoption instantaneous adoption non adoption

pollution T=20 T=30 T=40 T=20 T=30 T=40 T=20 T=30 T=40

irreversible 27 47 18 29 46 17 43 34 12

reversible 6 1 1 6 1 1 10 1 1

4.2 Econometric Analysis

4.2.1 Initial conditions

With these 2× 100 simulated data for each of the three time horizons (then

600 observations), with variables normalized between 0 and 1 for the sake

of comparison, except for the time ts at which adoption starts, we fit the

regressions (independently of each other, in the absence of hidden variables
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which could link perturbations εi together):

logit(Pr(adoption)) = − 1.18
0.34

∗ − 0.25
0.26

x10+ 0.16
0.25

x20+ 0.05
0.01

∗ T + ε1,

π(0) = 0.38
0.01

∗ + 0.06
0.01

∗ x10− 0.04
0.01

∗ x20+ 0.014
0.001

∗ T− 0.005
0.006

1no adoption

+ 0.011
0.008

1gradual adoption + ε2

ts = − 1.24
0.64

∗ + 1.41
0.46

∗ x10− 0.62
0.44

x20+ 0.92
0.02

∗ T− 0.22
0.29

1no adoption

− 1.84
0.37

∗ 1gradual adoption + ε3

ts
T

= 0.83
0.02

∗ + 0.05
0.02

∗ x10− 0.02
0.01

x20+ 0.003
0.001

∗ T− 0.01
0.01

1no adoption

− 0.07
0.01

∗ 1gradual adoption + ε4

logit(Pr(reversible)) = 13.99
1.92

∗ − 2.06
0.76

∗ x10− 24.07
3.41

∗ x20− 0.45
0.06

∗ T+ 0.09
0.32

1no adoption

− 0.21
0.45

1gradual adoption + ε5

tfirst x2>x2
= 24.53

0.33

∗ + 0.02
0.01

∗ T− 0.001
0.001

x10− 0.07
0.01

∗ x20− 0.01
0.13

1no adoption

+ 0.03
0.16

1gradual adoption + ε6

ṽ1 = 0.93
0.02

∗ + 0.09
0.01

∗ x10+ 0.01
0.01

x20− 0.0036
0.0005

∗ T− 0.013
0.006

∗ 1no adoption

+ 0.005
0.010

1gradual adoption + ε7

x̃1 = − 0.052
0.002

∗ + 1.012
0.001

∗ x10− 0.01
0.01

x20− 0.003
0.001

∗ T− 0.01
0.01

1no adoption

− 0.01
0.01

1gradual adoption + ε8

x̃2 = − 0.08
0.01

∗ + 0.03
0.01

∗ x10+ 0.69
0.01

∗ x20+ 0.009
0.001

∗ T− 0.001
0.002

1no adoption

+ 0.004
0.003

1gradual adoption + ε9

ṽ2 = 0.80
0.14

∗ + 0.14
0.16

x10+ 0.07
0.15

x20− 0.03
0.01

∗ (T − ts) + ε10 for gradual adoption

(14)

18



where the εis are iid, “Pr” means “probability, the tilde over a variable de-

notes the mean value of this variable over the time interval [0, T ], the signifi-

cant coefficients at the 5% level are marked by a star, the standard deviations

are put in parentheses below the coefficients, and “instantaneous adoption”

is taken as reference for adoption of renewable energy.

4.2.2 The time horizon

The logit equation of the probability of adoption of a renewable energy in

(14) shows that adoption is more likely to occur with a longer time horizon,

whatever the couple of initial values x10 and x20. The time discount in the ob-

jective function could lead us to believe that the influence of the time horizon

T vanishes exponentially. However, when T increases, the stock of resources

declines, which favors the transition to renewable energy. Our significant

estimate of the role of T then comes from the fact that the initial source of

energy is not renewable. It cannot be taken for granted in discounted optimal

adoption problems. Consistently with this latter result, the maximal utility

π(0) does not depend on adoption and its mode (non significant coefficients

for non adoption and for gradual adoption). As expected, this maximal util-

ity is higher with initial abundant fossil resources (coefficient 0.06), which

allow more consumption and lower pollution (coefficient −0.04), consistently

with (1) (and consistent with Boucekkine et al. (2013b)). A longer time
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horizon (term 0.014) increases π(0), because, from the first equation of (14),

it is associated with adoption of renewable energy, which itself relieves the

disutility brought by pollution. The more abundant the fossil resource, the

later the renewable energy is adopted (coefficient 1.41 in the regression of

ts), because more initial fossil resource leaves more flexibility, or conversely,

because shortage of fossil resource hastens adoption of a renewable energy.

4.2.3 Gradual versus instantaneous

If this adoption is gradual, the new technology is implemented sooner (coef-

ficient −1.81) than if adoption is instantaneous, as expected. Then, gradual

adoption requires foresight, in order to be competitive in terms of utility,

compared with instantaneous adoption. Both the positive effect of the ini-

tial fossil resource and the fact that gradual adoption starts sooner than

instantaneous adoption still hold true for the fraction ts/T (coefficients 0.05

and −0.07 in the regression of ts/T ). The time ts, at which to start ex-

ploiting renewable energy, is also postponed when the time horizon is longer

(coefficient 0.92 in the regression of ts and 0.03 in the regression of ts/T ).

This time ts increases more quickly than T (positive coefficient of T in the

equation of ts/T of (14)). Exceeding the no return pollution threshold is

more likely when fossil resources are abundant (coefficient −2.06) and pol-

lution high (coefficient −24.07): the scarcity of fossil resource drives people
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to limit their pollution, and low initial pollution helps people from reaching

irreversible pollution. Adoption or not of a renewable energy plays no role in

the reversibility of pollution. The solutions having crossed the irreversibility

threshold are associated with adoption, because, over the threshold, it is op-

timal to attenuate the lack of natural self-cleaning by a cleaner technology,

a result also found by Boucekkine et al. (2013b).

The date tfirst x2>x2
, at which the threshold x2 is crossed for the first time,

increases with the time horizon T (coefficient 0.02), because the probability

of adoption also increases with T , and, as expected, decreases with a higher

initial level of pollution (coefficient −0.07).

The mean energy consumption ṽ1 on [0, T ] increases with the initial stock

of fossil resources (coefficient 0.09), because optimal agents use this energy

to consume more, producing more pollution. It also decreases with the time

horizon (coefficient −0.0036), because adoption is also more likely to occur.

The significant coefficient of “no adoption” (−0.013) adds the explanation

that adoption of a renewable energy, which is associated with a longer time

horizon (first equation on the probability of adoption), decreases fossil energy

consumption.

The mean level x̃1 of fossil resources is closely linked to its initial level

x10 (coefficient 1.012), and decreases only with the time horizon, as expected.

The mean level x̃2 of pollution, as expected, increases with the initial level
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x10 of fossil resources (coefficient 0.03), with the initial level x20 of pollution

(coefficient 0.69), and with the time horizon (coefficient 0.009): the longer

the production, the larger the pollution.

Once renewable energy is adopted, its mean variation ṽ2 no longer de-

pends on initial conditions. It increases with the time horizon, but more

interestingly, decreases when more time is left until the time horizon after

the beginning of adoption (coefficient−0.03 of T−ts). Conversely, the shorter

the transition, the higher the increase v2 of renewable energy. In regressing

(not shown) the amount of renewable energy reached at time T on x10, x20,

and T , this amount depends neither on x10 nor on x20; it increases from

T = 20 to T = 30, is equal from T = 30 to T = 40: the maximization of

utility is then obtained by having more or less the same amount of renewable

energy at the end of the period, which is obtained, as we saw, by starting

adoption later, at a higher speed v2, and for a longer time horizon T .

5 Conclusion

Our extension of the possibility of adoption to gradual adoption rather than

only instantaneous confirms the role of initial conditions in the decision to

adopt a renewable energy. A longer time horizon increases the probabil-

ity of adoption of renewable energy and the time for starting this adoption.
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It also increases maximal utility and the probability to cross the threshold

of irreversible pollution. Exploiting a renewable energy starts sooner when

adoption is gradual rather than instantaneous. The shorter the period re-

maining after adoption until the time horizon, the higher the investment into

renewable energy.
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Bonneuil, Noël (2006). Computing the viability kernel in large state

dimension, Journal of Mathematical Analysis and Applications, 323(2),

1444-1454.

Bonneuil N. (2012). Maximum under continuous-discrete-time dynamic

with target and viability constraints, Optimization, 61(8), 901-913.

Bonneuil, N., & Boucekkine, R. (2014). Viable Ramsey economies, Cana-

dian Journal of Economics, 47(2), 421-444.

Boucekkine, R., Saglam, C., & Vallée T. (2004). Technology adoption

under embodiment: a two-stage optimal control approach. Macroeco-

nomic Dynamics, 8, 250-271.

23



Boucekkine, R., Pommeret, A., & Prieur F. (2013). Technological vs.

ecological switch and the environmental Kuznets Curve. American

Journal of Agricultural Economics 95 (2): 252-260.

Boucekkine, R., Pommeret, A., & Prieur F. (2013b). Optimal regime

switching and threshold effects. Journal of Economic Dynamics and

Control, 37, 2979-2997.

Hamilton, J. (1990). Analysis of time series subject to changes in regime.

Journal of Econometrics, 45, 39-70.

Makris, M. (2001). Necessary conditions for infinite horizon discounted

two-stage optimal control problems. Journal of Economic Dynamics

and Control, 25, 1935-1950.

Parente, S. (1994). Technology adoption, learning-by-doing, and eco-

nomic growth. Journal of Economic Theory, 63, 346-369.

Prieur, F. (2009). The environmental Kuznets curve in a world of irre-

versibility. Economic Theory, 40, 57-90.

Prieur, F., Tidball, M. and Withagen, C. (2011). Optimal emission-

extraction policy in a world of scarcity and irreversibility. CESifo

working paper, 3512.

Tahvonen, O. (1997). Fossil fuels, stock externalities, and backstop tech-

nology. Canadian Journal of Economics, 30, 855-874.

24



Tahvonen, O., and Withagen C. (1996) Optimality of irreversible pol-

lution accumulation. Journal of Economic Dynamics and Control,

20,1775-1795.

Valente, S. (2011). Endogenous growth, backstop technology adoption,

and optimal jumps. Macroeconomic Dynamics, 15, 293-325.

25


	WP_AMSE-2014_34
	reg_switch4_wp34

