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Abstract 

This research proposes a bi-level model for the mixed network design problem (MNDP). The upper 

level problem involves redesigning the current road links’ directions, expanding their capacity, and 

determining signal settings at intersections to optimize the reserve capacity of the whole system. 

The lower level problem is the user equilibrium traffic assignment problem. By proving that the 

optimal arc flow solution of the bi-level problem must exist in the boundary of capacity constraints, 

an exact line search method called golden section search is embedded in a scatter search method for 

solving this complicated MNDP. The algorithm is then applied to some real cases and finally, some 

conclusions are drawn on the model’s efficiency. 

Keywords 

Transportation network design; Bi-level programming; User equilibrium traffic assignment; Golden 

section; Scatter search. 

 

1. INTRODUCTION 

The Urban Network Design Problem (UNDP) is a classic decision problem in transportation 

planning and is concerned with the improvement of urban transportation network systems in order 

to respond to the growth of travel demand. Nowadays, studying urban transportation network 

systems is crucial because the speed of the increase in urban transportation demand is higher than 

that in expanding the transportation system, so this system could not accommodate the increase in 

demand, while resources available for expanding the system capacity remain limited (Yang and 

Bell, 1998a). Until now, most UNDPs have been formulated as bi-level problems which in the 

upper level problem, several investment decisions are made by system owners or planners to 

optimize the desired objective function.  

When it comes to decision variables in the upper level problem, UNDPs are divided into three 

different classes. The first class is known as the discrete network design problem (DNDP) which 

only involves discrete decisions (e.g., Long et al., 2010, 2014; Miandoabchi et al., 2012a,b; 2015; 

Szeto et al., 2014). Typical discrete decisions in the DNDP are constructing new streets, adding new 
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lanes to the existing streets, determining the street directions and their lane allocations, and 

designing the turning restrictions at intersections. The second type is the continuous network design 

problem (CNDP) (e.g., Szeto and Lo, 2006; 2008; Lo and Szeto, 2009; Sun et al., 2014; Jiang and 

Szeto, 2015; Szeto et al., 2015) which deals only with continuous variables such as signal setting of 

intersections, determining road tolls, and street capacity expansion. The last type is named the 

mixed network design problem (MNDP) which involves both continuous and discrete variables. 

There are few research papers in this category. Some recent related researches are Cantarella et al. 

(2006), Dimitriou et al. (2008), Zhang and Gao (2009), and Gallo et al. (2010). The problem in this 

research is a kind of MNDP because several discrete and continuous variables are involved.  

According to Magnanti and Wong (1984), the decisions in UNDPs can be grouped into 

strategic, tactical, and operational types, each of which deals with long-term, mid-term, and short-

term network design issues, respectively. This paper investigates the strategic decision of street 

capacity expansion, the tactical decision of one-way two-way streets configuration, and the 

operational decision of signal setting at intersections. After that, a number of comprehensive 

reviews have been published by Friesz (1985), Migdalas (1995), and Yang and Bell (1998a) which 

focus specifically on UNDP. Recently, Farahani et al. (2013) also conducted a comprehensive 

review on UNDPs’ definitions, classifications, objectives, constraints, and solution methods, 

objectives, constraints, and solution methods, which encompass both road and public transit 

network design problem.  

The street orientation was first considered by Lee and Yang (1994) as the sole network design 

decision in a bi-level model to maximize the total travel time of the network. After that, in some 

research, the single level modeling approach along with all or nothing traffic assignment was used 

for optimizing the street orientations (e.g., Drezner and Wesolowsky, 1997; Drezner and Salhi, 

2000; 2002; Drezner and Wesolowsky, 2003). All the other related studies adopted bi-level models 

with the user equilibrium traffic assignment approach for optimizing the street orientations and 

other discrete or continuous decisions (e.g., Cantarella et al., 2006; Gallo et al., 2010; Miandoabchi 

and Farahani, 2011; Miandoabchi et al., 2013). 

Street capacity expansion can be considered as the most prevalent decision in UNDP studies. 

Although this has been modeled in most of the previous research as a continuous variable to 

simplify the solution method for solving the problem, it has been modeled as a discrete variable in a 

number of other studies. For example, Steenbrink (1974), LeBlanc (1975), Poorzahedy and 

Turnquist (1982), Yang and Bell (1998b), Poorzahedy and Abulghasemi (2005), Poorzahedy and 

Rouhani (2007), Szeto et al. (2010), Miandoabchi and Farahani (2011), and Miandoabchi et al. 

(2013) have investigated discrete capacity expansion in DNDPs. In MNDPs, only Dimitriou et al. 

(2008) have modeled this as a discrete variable. 
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The most common objective function among UNDPs is the minimization of total travel time or 

cost across the network. Other used objective functions include consumer/social surplus, total 

distance traveled, minimum construction or construction and travel cost, reserve capacity, etc. In 

this research, the maximization of reserve capacity is adopted as the objective function. Webster 

and Cobbe (1966), Allsop (1972), and Wong (1996) investigated this concept for network 

intersections. However, using this concept as the objective function of the UNDPs was only 

suggested in the study by Yang and Bell (1998a). Yang and Bell (1998b) introduced a paradox 

related to network design problems and demonstrated that using the concept of reserve capacity into 

a network design problem is the best way to avoid this paradox. They also mentioned several 

advantages of the capacity-based formulation for UNDPs such as formulation simplicity. There are 

many alternative factors to measure the reserve capacity of a system, but the common one is the 

multiplier of the origin-destination (O-D) demand matrix of network. In this way, reserve capacity 

can be defined as the largest multiplier which can be applied to the existing travel demand matrix of 

the concerned network, such that the street flow capacities are not violated. Reserve capacity is 

often captured in the CNDPs, while in DNDP only Gao et al. (2005), Miandoabchi and Farahani 

(2011), and Miandoabchi et al. (2013) have exploited this as the objective function. However, there 

is no research on using this as the objective function in MNDPs. 

In this paper, an MNDP is introduced to maximize the reserve capacity of the whole network. 

The problem involves two types of discrete variables, namely i) capacity expansion and orientation 

of the existing streets, and ii) one type of continuous variable, i.e., signal setting. The common 

approach of bi-level programming is used to model the proposed problem, in which the simple 

deterministic user equilibrium assignment problem is used in the lower level problem. Table 1 

demonstrates a summary on the related studies and compares the main attributes of the problem 

addressed in this research with them.  
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Table 1. A summary of the related studies in NDPs. 

Solution Method 

Decision     

D
em

a
n

d
 

T
ra

ffic A
ssig

n
m

en
t 

Objective Reference 

Continuous

  

Discrete  

  

S
treet C

a
p

a
city

 

E
x

p
a
n

sio
n

 

T
ra

ffic L
ig

h
t 

S
ettin

g
 

O
rien

tin
g

 

S
eq

u
en

ces o
f S

treets 

C
o

n
stru

ctin
g

 N
ew

 

S
treets 

S
treet C

a
p

a
city

 

E
x

p
a
n

sio
n

 

M
a

k
in

g
 S

o
m

e 

S
treets O

n
e-W

a
y

 

Sensitivity analysis-based algorithm ●      F DUE 
Max. reserve 

capacity 

Wong and Yang 

(1997) 

Enumeration scheme with other methods ●   ●   F DUE 
General weighted 

sum multi-objective 

Yang and Bell 

(1998a) 

- ●      F DUE 
Max. reserve 

capacity 

Yang and Bell 

(1998b) 

Sensitivity analysis-based method ● ●     F DUE 
Max. reserve 

capacity 
Ziyou and Yifan 

(2002) 

Hill climbing, simulated annealing, tabu 

search, genetic algorithm, hybrids of tabu 

search 

 ● ●    F DUE 
Min. total travel 

time 

Cantarella et al. 

(2006) 

Gradient-based method with penalty 

function 
●   ●   F DUE 

Min. total travel cost 

+ construction cost 

Zhang and Gao 

(2009) 

Hybrid genetic algorithm and an 

evolutionary simulated annealing 
    ● ● F DUE 

Max. reserve 

capacity 

Miandoabchi 

and Farahani 

(2011) 

Multi-objective algorithms: Hybrid genetic 

algorithm, evolutionary simulated 

annealing, and artificial bee colony 

   ● ● ● F DUE 

Max. reserve 

capacity + Min. two 

travel time related 

objective functions 

Miandoabchi et 

al. (2013) 

Scatter search algorithm  ●    ● F SUE 
Min. Total travel 

time 

Gallo et al. 

(2010) 

Hybrid scatter search algorithm   ●   ● ● F DUE 
Max. reserve 

capacity  
This Research 

 

In this paper, a hybrid scatter search (HSS) algorithm is developed to solve the proposed 

problem because of the complexity and non-convexity of MNDPs. In the literature, Gallo et al. 

(2010) used scatter search to solve their problem, but there are some significant differences between 

these two works: firstly, our model is more complicated because of adding street capacity expansion 

as a discrete variable and also incorporating the reserve capacity concept in the problem; besides, 

the proposed model in Gallo et al. (2010) did not consider capacity constraints which made their 

solution procedure easier. We propose a hybrid scatter search embedding a golden section search 

method in the scatter search algorithm to cope with capacity constraints in MNDPs. Our proposed 

algorithm can be an appropriate replacement for the sensitivity analysis based (SAB) algorithm, 

which is a very common procedure in solving MNDPs and may not be able to solve problems with 

specific network settings, due to the non-existence of their matrix inversions (Miandoabchi and 

Farahani, 2011).  

The contributions of this paper include the following. First, a new and more complicated MNDP 

is proposed. Second, a new hybrid scatter search algorithm is developed to solve the problem. The 
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reminder of this paper is organized as follows. The notations and mathematical model of the 

problem are defined in Section 2. The solution algorithm is presented in Section 3. In Section 4, 

numerical examples for several real networks are given. Finally, conclusions are drawn in Section 

5. 

 

2. OPTIMIZATION MODEL 

In this section, a bi-level mathematical model is formulated for our proposed problem, in which 

both levels are formulated as non-linear constrained optimization models. Three groups of variables 

are optimized in the upper level. In this level, network policy makers create a configuration for the 

network by adjusting two groups of median term variables consisting of redesigning directions and 

expansion of current link capacities. Besides, signal setting variables are also adjusted as a group of 

short-term decision variables. In an overall view, when a group of variables are characterized in 

their own levels, they will be sent to another level as inputs. Figure 1 depicts the bi-level nature of 

the problem. 

 

Figure 1. Data transfer between the two levels. 

 

In the studied problem, a basic network with known street (link) capacities, directions, and 

intersections to be improved exists in advance. Moreover, travel demand between each node pair is 

known and fixed. Additionally, network users follow the user equilibrium principle. The input data 

for this problem are as follows: 

 Current urban transportation network graph (including link capacities and directions); 

 Current O-D matrix; 

 The capacities, lengths, and free flow travel times of links; 

 The unit cost of widening a link (adding a lane) and maximum budget for expanding link 

capacity;  
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 The maximum number of total possible changes in link directions; 

 Upper and lower bounds of the signal setting variable and the lower bound of the reserve 

capacity (the matrix multiplier). 

 

This research intends to make the following decisions for the problem: 

 The configuration of one-way or two-ways links; 

 The reserve capacity (matrix multiplier) of the improved network;  

 The capacity increment of each link; 

 Signal setting of each intersection; 

 Equilibrium flows on network links.  

 

The upper level objective function is the O-D matrix multiplier. As mentioned before, it is the 

first time to consider concept of reserve capacity for a MNDP. Table 2 consists of key notations 

used in this bi-level mathematical model for this specified MNDP. The mathematical model 

developed for this problem is based on the bi-level programming approach used in UNDPs. This 

model represents the leader-follower or Stackelberg game, in which the network authority as the 

leader decides the network design and the network users as the followers who react to the design 

scenarios by changing their routes. 

Table 2. List of key notations used in problem formulation. 

Description Notation 

Sets 

Set of all links s S 

Set of all arcs (i, j) A 

Set of arcs (i, j) and (j, i) belonging to the link s As 

Set of signal-controlled intersections in the network E 

Set of all pairs of origin and destination nodes (m, n)  W
 

Set of all paths in the network R 

Set of paths r between origin node m and destination node n for all 

RRWnm mn  ,),(  

Rmn
 

Decision variables 

Variable representing the direction of link s. It takes values of -1, 1, and 2. sy  

Binary variable of link s for all sS which equals 1 if link s is selected for 

capacity expansion and 0 otherwise.
 

su  

Binary variable, which equals 1 if arc (i, j) is built on paths between m and n, 

(m, n) W and 0 otherwise. 

ij
mn

 

O-D matrix multiplier 
 

  

Signal setting variable (proportion of green time) for arc (i, j) 
 ij

 

Flow of path r rF  

Parameters 

Cost of widening per unit length of a link (adding a lane)    
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Multiplier for increasing the capacity (i.e., width) of a link    

Maximum available budget for increasing link capacities    

Total demand from origin node m to destination node n mnq  

Length of link s  sd  

Free flow travel time on arc (i, j) 
0

ijt  

Initial direction of link s  
0

sy  

Indicator variable that equals 1 if arc (i, j) is on path r and is 0 otherwise 
r

ij   

Lower bound of the proportions of green time min
 

Upper bound of the proportions of green time max
 

Lower bound of the O-D matrix multiplier 0  

Saturation flow of arc (i, j) cij 

Maximum acceptable degree of saturation for the flow on arc (i, j) which takes 

a value in [0,1] and almost near to 1.  

pij 

Indicator variable that equals 1 if arc (i, j) goes into signal-control intersection 

e and is 0 otherwise 

e

ij  

Functions 

Travel time on arc (i, j)  ijt  

Flow on arc (i, j) that is a function of upper-level decision variables y; μ; u; λ ijf  

Capacity of arc (i, j)
 ijC  

Upper level objective function
 IZ  

Lower level objective function
 IIZ  

 

2.1. Upper level formulation 

The upper level optimization model is as follows: 
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(9)  
2

s s
ji ji s s ji ji s s

s

( y ) y
C ( ,u , y ) ( c (1  u )) s S , ( i , j ) A

2 y
  

 
      
   

(10) 3 1e

ij ij

( i , j ) A

. e E 


    

(11)  Ajiij  ),(maxmin   

(12)  
0   

(13)   mnT M            m ,n W    

(14)    Ssys  2,1,1  

(15)    Ssus  1,0
 

 

Equation (1) shows the main objective function of the leader problem, which is maximizing the 

O-D matrix multiplier as the reserve capacity factor. Equations (2)-(4) ensure that direction 

variables get reasonable values. Inequality (5) restricts the total link expansion cost to the available 

budget.  

For a given demand matrix, each arc flow fij is a function of the demand multiplier μ, its signal 

setting variable λij and its capacity increment variable us. According to inequalities (6)-(7), traffic 

flow on each arc is restricted by the arc capacity and a flow saturation degree. The arc capacities on 

each link are defined in (8) and (9), and depend on the flow capacity and the signal setting. 

Equation (10) implies that the sum of green time proportions on each signal controlled 

intersection must be equal to 1. Inequality (11) limits all green time proportions to their given upper 

and lower bounds. Inequality (12) ensures that the O-D demand matrix multiplier is not lower than 

a minimum value. Inequality (13) ensures that the minimum travel time between each OD pair is 

less than a large value M. This implies that there must be at least one path between each OD pair, 

which means that the network must be strongly connected. If the condition is not met, there is at 

least one OD pair with very large travel time between them. Finally, constraints (14) and (15) 

impose settings to variables’ domains. The direction variable for each link (ys) takes one of the 

following values: 

 1 for an one-way link in a forward direction; 

 -1 for an one-way link in a backward direction; 

 2 for a two-way link. 

The variable for capacity expansion is a binary variable. For each link sS, this variable takes 

the value of 1 if the link is selected for capacity expansion and 0 otherwise. 
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2.2. Lower level formulation 

The lower level optimization model is defined in (16) to (19): 

(16)   






Ss
Aji

f

ssijijijII

s

ij

dxyuCxtZMinimize
),( 0

)),,(,(   

 Subject to: 

(17)   
mn

r mn

r R

F  q m,n W


    

(18)   r

ij r ij

r R

f F  i, j A


    

(19)  0rF , r R  
 

 The lower level problem is the user equilibrium (UE) assignment problem. For further details, 

see Sheffi (1985). 

 

3. SOLUTION ALGORITHM 

It has been proved that even bi-level problems with only linear constraints are NP-Hard 

(Hansen et al., 1992). Here, a two-step recursive procedure is applied to solve this bi-level problem. 

First, for a feasible solution of discrete variables in step I, a bi-level problem is solved during step 

II. The best solution is returned to step I as a group of known parameters. Then, the first step is 

solved and its nearly optimum solution is inputted to step II as a group of known parameters and 

this loop continues till the stopping conditions are met.  

3.1. First step of the algorithm 

Excluding capacity expansion and signal setting constraints, the upper level formulation is almost 

similar to Drezner and Wesolowsky (1997) model, which is developed to determine the best 

configuration of one-way and two-way streets in a network. To solve their problem, Drezner and 

Wesolowsky (1997) proposed a branch and bound algorithm for small-sized problems and three 

heuristic algorithms to solve larger problems. Later, Drezner and Salhi (2000) suggested an 

algorithm based on tabu search (TS) to solve this problem. Drezner and Salhi (2002) compared 

several heuristic and meta-heuristic methods such as descent algorithm, simulated annealing, 

genetic algorithm (GA) and TS. They showed that the designed population-based algorithms 

provide better results compared to other methods. Later, Alvarez et al. (2005) proposed a scatter 

search approach for solving a general network design problem for undirected networks. They 

showed that this algorithm is capable for finding good solutions in large-scale problems within a 

reasonable time. Gallo et al. (2010) used this method for solving a directed network design problem. 

Moreover, Martí et al. (2005) compared scatter search procedure with GA, in the context of 
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searching for nearly optimal solutions to permutation problems. They observed that the scatter 

search found solutions with a higher average quality earlier than GA variants. As can be seen from 

the findings of the previous research, there are successful applications of population-based 

metaheuristics, and specifically Scatter Search in network design problems. Moreover, this 

algorithm has been applied in few UNDP researches. Regarding this background, a hybrid scatter 

search method has been chosen for solving the upper level.  

Scatter search is a kind of population based meta-heuristic technique for solving complex 

optimization problems. This technique includes five steps to update and improve the population by 

operating on current solution subsets to generate new solution subsets in any iteration. 

 

Step 1. Initial solutions set generation 

Generate a set of diverse, feasible and connected solutions from the current network design 

using the diversification generation method applied in Gallo et al. (2010). A diverse solution 

is generated by changing the design of predefined number of links, in which the number 

translates into the distance of the generated solution from the current network. The types of 

distances and the number of solutions to be generated for each type, are determined 

beforehand, and then the solutions are generated based according to it. All these solutions (if 

be connected networks) constitute the initial set which then are used to generate the initial 

reference set. 

Step 2. Reference set generation (and updating) 

In this step, the reference set with size P is built or updated. At the first iteration, the initial 

reference set gets 2/3×P of its members from better solutions in the initial solutions set and 

1/3×P of them from the scattered solutions with maximum distances from the best solution 

(using max-min criterion).  

For updating the reference set through the algorithm, the obtained solutions from step 4 (and 

5) are combined with the current reference set. Then 2/3×P of the best solutions, and 1/3×P 

scattered solutions from the combined set are selected to form the new reference set. Then 

the best solution found so far, is compared with the best solution achieved in the current 

reference set and is updated if necessary. 

In the predefined number of iterations, if the difference between the objective function value 

of the best solution in the current iteration and the best solution found so far, is less than a 

predefined small value, the algorithm stops. Otherwise, it proceeds to step 3. 

 Step 3. Solutions subset generation 

The reference set solutions are used to form different subsets. Firstly, all binary subsets are 

generated. Next, all subsets with three members are formed from the collection of binary 
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subsets and the best reference set solution not contained in them. The same method is used 

to generate all subsets consisting of i members are generated for i = 4 to P.  

For large networks, since the number of all subsets is huge, the desired number of subsets is 

fixed beforehand. The algorithm starts building subsets as the above, until their number 

reaches the predefined value. 

Step 4. Solution combination 

The members of each subset are used to generate a new solution. If K is the total number of 

subsets, then K new solutions are generated. Each variable value of a new solution is derived 

from one of the subset members, using the famous roulette wheel function in GA through 

which, better solutions have more chance to dedicate their elements to the new solution.  

Step 5. Improvement in the current solutions 

In this step, the best of the K generated solutions is subjected to random search method in its 

neighborhood, to get a local optimum solution. The method randomly changes the link 

capacities of the network (not their direction). Then the algorithm proceeds to step 2 to start 

the next iteration, i.e. update the reference set. 

 

In steps 4 and 5, a connectivity test is performed for any new solution, and a disconnected 

solution is discarded and replaced with another one. A shortest path generation method, Dijkstra’s 

algorithm, is used to check the connectivity of all O-D pairs in each network.  

 

3.2. Second step of the algorithm 

As mentioned before, by fixing the nearly optimal values of discrete variables obtained in the first 

step, the resultant problem becomes a known bi-level problem with a simple linear objective 

function, some linear signal setting constraints, some nonlinear implicit capacity constraints in the 

upper level problem and the user equilibrium problem in the lower level problem.  

A line search algorithm is embedded in the proposed scatter search procedure to cope with 

capacity constraints. For a given UE flow obtained from the lower level problem, signal timing 

optimization problem is to be solved with Green Time Swapping Algorithm (GTSA) which is a 

local search algorithm to get signal setting optimal vector for any UE flow. This procedure searches 

for a balance condition between green phases of different stages in a signalized intersection in order 

to swap green time from less pressurized stages to more pressurized stages until the related phases 

have the same pressure level. The algorithm has been described completely in Lee and Machemehl 

(2005). 

After signal setting characterization for UE flows in the previous section, the network reserve 

capacity could be updated using a golden section search (GSS) method. Before applying this 
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procedure, we need to prove that the optimal solutions exist in the boundary of capacity constraints.  

In the following, some lemmas are proved to show the existence of optimal solutions on the 

boundary of implicit capacity constraints (6) and (7). In the absence of signal setting variables, 

these constraints can, respectively, be changed to (20) and (21): 

(20)  
ij s ij ij s s sf ( ,u ) p C ( u , y ) s S , ( i , j ) A      

(21)  
ji s ji ji s s sf ( ,u ) p C ( u , y ) s S , ( i , j ) A      

In these constraints, ys and us have been taken from the upper level problem as constant values. 

According to Yang and Bell (1998a), the optimal value of system reserve capacity is located at the 

boundary of (20) and (21). In our situation of having signal setting variables within capacity 

constraints as used in our model (constraints (6) and (7)), we need to find how these signal setting 

variables affect the optimal value of the reserve capacity. Thus, we will get it by proving two 

lemmas as follows. 

 

Lemma 1. The relationship between the arc flow (fij) and the arc signal setting variable (
ij ) is as 

follows: 

(22)  

cbf

bfa

d
d

ij

d
d

ij

ij












  

where a , b , c  and d are nonnegative constants.  

 

Lemma 2. The derivative 
ij

ij

d

df


is equal or less than 1. It means: 

(23)  or 1
ij

ij ij
ij

d
d df

df


    

The proofs of these lemmas are provided in the Appendix. 

 

By these proofs, we find the relationship between the signal setting and flow variables. According 

to Lemma 2, when increasing the reserve capacity of the network, it suffices to consider its effect 

only on arc flows. The effect on signal setting variables could be ignored, since it is in line with the 

effect on flows according to Lemma 1, but has a much smaller impact than them according to 

Lemma 2. In other words, the reserve capacity of system is only the function of arc flows obtained 

by solving the UE problem in the lower level. Therefore, the optimal value of system reserve 

capacity is located at the boundary of (6) and (7). To obtain this optimal value, a line search 

algorithm called GSS is used as follows: 

Step 1. Consider an initial value for the reserve capacity μ = μ0 and n = 0. 
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Step 2. Obtain the flow of each arc fij(μn) by solving an UE problem in the lower level according 

to the reserve capacity of system. 

Step 3. Calculate the difference between arc flow and capacity for each arc (i, j),

 ij ij n ija f C  . 

Step 4. If all ija  s be equal or less than 0, set μn+1 = μn (1 + ρ), where ρ is a small positive value,  

and n = n + 1, then go to step 2, else set 1left n   , right n   and calculate 

2

rightleft

mean





  and set

meann  1
. 

Step 5. If n 1 n 0.001    , set mean 
 and stop the algorithm, else obtain arc flows by 

solving an UE problem in the lower level according to the reserve capacity of system ij meanf ( ) . 

Step 6. Calculate the difference between the flow and capacity for each arc (i, j), 

 ij ij mean ija f C  . 

Step 7. If all ija s be equal or less than 0, set meanleft    and
left right

mean
2

 



 , then go to 

step 5, else set 
left mean  , right n   and calculate 

2

rightleft

mean





 , then go to step 5. 

 

3.3. Comparison with Genetic Algorithm 

For evaluating the performance of our proposed HSS algorithm, its performance was compared with 

a standard genetic algorithm (SGA) with original version specifications. Like scatter search, GA is a 

population-based metaheuristic which was first introduced by Holland (1975). GA has been 

successfully applied in the network design problems (e.g., Yin, 2000; Drezner and Salhi, 2002; 

Drezner and Wesolowsky, 2003; Cantarella et al., 2006; Chen et al., 2006).  

 

3.4. The main attributes of SGA 

The genetic algorithm used in this paper, is the simple version of GA, with a specific crossover 

operator adopted from the literature. The main attributes of the algorithm are as follows: 

 The initial population set generation method is similar to step 1 of HSS. 

 At each generation, 2 parents are selected using the roulette wheel function. 

 The selected parents are subjected to crossover operator similar, to the one in developed in 

Drezner and Wesolowsky (1997). This operator uses each of the N network nodes to 

generate two selection patterns for deciding to select which link design from which parent. 

Thus, the operator can produce at most 2×N feasible offspring if all have connected 
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networks. 

 There are two kinds of mutation operators in this algorithm; firstly, a predefined number of 

randomly selected offspring are subjected to mutation only on their link directions and 

secondly, a mutation operator randomly perturbs the link capacities of the best solution in 

the population, after it is updated. 

 The population evolution is carried out by substituting the offspring set with the same 

number of worst solutions. 

 The stopping criterion is the same as HSS. 

 

Table 3 provides an overall view to the proposed HSS and SGA and their general features. The 

details will be described later. 

 

Table 3. Comparison of developed algorithms. 

Stopping Criteria 
 

Evolution Strategy 
 Solution Generation 

Method 

Number of 

Iterations 

 
Algorithm 

The best solution of the 

current iteration minus the 

best known solution so far < 

ε (for a predefined number 

of iterations) 

 Selecting a set of best 

solutions and most scattered 

solutions from the 

combination of the current 

reference set and the new 

generated and improved  

solutions, and building the 

new reference set using from 

the combined set 

 Generating a reference set 

using diversification 

generation method, then 

generating and combining 

and improving subsets 

T iterations  HSS 

The best solution of the 

current iteration minus the 

best known solution so far < 

ε (for a predefined number 

of iterations) 

 Replacing a number of worst 

population solutions with 

offspring solutions 

 Selecting two parents, 

applying crossover and 

mutate some superior 

solutions 

G generations  SGA
 

 

4. NUMERICAL RESULTS 

In this section, numerical results have been obtained for a small test network and two real networks. 

At the first step, the developed model and the algorithm were used for a small test network to verify 

the procedure accuracy comparing results with an exact solution algorithm outputs. After this 

verification test, the procedure has been applied to two real networks to illustrate the algorithm 

performance and applicability of the proposed solution method to realistic applications. We could 

not prove algorithm efficiency by comparing our solution algorithm with other previous ones, 

because the MNDP with this configuration has not been proposed in previous researches. Therefore, 

we used a standard GA, as one of the traditional and commonly used algorithm for benchmarking, 

to solve this problem for small and medium sized networks. For both examples, the algorithm was 

run many times individually to obtain results. In fact, the algorithm was run 30 times for small-sized 
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and 15 times for medium-sized networks. All computational processes have been done on a laptop 

with an Intel(R) Core(TM) 2 Dou CPU and a 3GB RAM configuration. 

 

4.1. Parameter setting 

The parameters of the two algorithms were set by using series of experiments, by searching for 

parameter ranges in similar algorithms from related papers to find some initial ranges. The 

parameters of the two algorithms were set so that their computational efforts for solving each test 

network are as close as possible to each other, for the purpose of fair comparison. This is done for 

both small and medium sized example networks. Table 4 depicts the parameter settings of the 

algorithms for each test network.  

 

Table 4. Parameter setting for the algorithms. 

Algorithm Parameters 
Small 

Network 

Sioux Falls 

City Network 

Friedrichshain 

Center Network 

HSS 

P (size of the reference set)  9 36 130 

K (total number of generated solutions) 9 36 400 

 

Max number of iterations for  

(the best solution in the current iteration – the 

best known solution so far ) < 𝜀 

 

20 

 

50 

 

100 

ε (Epsilon) 1.000e-04 1.000e-02 1.000e-01 

SGA 

P (size of the population set)  9 25  

Number of mutated offspring 3 12  

 

Max number of iterations for  

(the best solution in the current iteration – the 

best known solution so far ) < ε 

 

20 

 

80 

 

- 

ε (Epsilon) 1.000e-04 1.000e-02  

 

4.2. Results for simple network 

One small network is shown in Figure 2. This network was introduced by Wong and Yang (1997) 

and has two O-D pairs, 7 links and 6 nodes, of which nodes 2 and 5 are signal-controlled 

intersections. The current O-D demand from nodes 1 to 6 is 18 veh/min, from nodes 3 to 4 is 6 

veh/min. This network example has been used in the literature. In this network, two nodes 2 and 5 

are signal controlled junctions, so relations between signal control variables are as below:  

2,42,32,52,1 11  
 
and 5,45,35,65,2 11    (ignoring lost time for simplicity)  
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Figure 2. Small example network. 

 

The input parameters for this simple network are shown in Table 5. Note that for all example 

networks, links are represented by their corresponding nodes, such that the node with smaller 

number comes first.   

Table 5. Parameters of links in the small network. 

5-6 4-5 3-5 2-5 2-4 2-3 1-2 Link 

1 2 1 3 1 2 2 
0

ijt  

1 2 1 3 1 2 2 
0

jit  

30 30 30 35 24 24 30 ijc  

30 30 30 35 24 24 30 jic  

1 1 1 1 1 1 1 sd  

   =366    =1 0  
      =100   

 

To evaluate the capability of the HSS algorithm in achieving optimal solutions, a branch and 

bound (B&B) method was applied to solve the problem. Since the run time of B&B is very high 

even for small networks, we have used it only for the small case. For this network, comparative 

outputs of solving this problem are proposed by the developed HSS, the SGA and B&B method. All 

three algorithms have reached the optimum solution. The exact algorithm has to search 32670 

distinct network designs to find the optimum solution. The two metaheuristics were run 30 times. 

As a consequence, the best and average results have been provided in Table 6. Note that the 

reported network designs for this case and the Sioux Falls case, are the improved versions of the 

initial networks. Although, in the best case the SGA performs slightly better, based on the average 

results the HSS algorithm is the dominant. Table 6 depicts that all algorithms have reached the 

optimum solution, although HSS could reach it by searching fewer solutions which indicates it is 

the preferred solution procedure. 

1 

  Junction without signal control 

  Junction with signal control 

 

 تقاطع دارای چراغ         

4 

2 

5 

6 

3 
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Table 6. The obtained results for solving the simple network. 

Link ys us λij
 

λji
 

1-2 1 1 0.541 - 

2-3 2 0 - 0.458 

2-4 2 0 - 0.458 

2-5 -1 0 0.05 0.541 

3-5 2 0 0.95 - 

4-5 2 1 0.95 - 

5-6 1 0 - 0.05 

Solving algorithm  HSS  SGA B&B 

  Best Average  Best Average - 

Matrix multiplier  2.18 2.18  2.18 2.18 2.18 

Total number of iterations  1 5.4  1 5.9 32670 

Total computation runtime (s)  6 15.3  5 21 6754 

Total number of generated 

solutions 
 53 73 

 
22 128 - 

 

4.3. Results for Sioux Falls city network 

In this section, Sioux Falls city network is used as the first real example to test our developed 

solution algorithm. Sioux Falls city network shown in Figure 3 is a signalized network defined by a 

graph with 24 O-D pairs, 24 nodes and 38 links. The initial values of the parameters such as the free 

flow travel time, capacity, and length of each links have been taken from the website provided by 

Bar-Gera (2013). The following values were used for the required parameters: 10  , 30000  , 

336 . 

As mentioned before, to confirm the correctness of the results, the problem has been solved by 

the proposed HSS and the SGA. Both solving procedures were run 15 times. The results are shown 

in Table 7 which indicates that the best obtained matrix multipliers in both algorithms are equal. 

Although the average run time of HSS for each iteration does not exceed its counterpart in SGA, it 

reached those results in significantly less iterations.  
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Figure 3. Sioux Falls network. 

 

The HSS algorithm reached its best result for 53% of times below 100 iterations while the SGA 

found this result in above 200 iterations in all 15 runs. Consequently, the average total 

computational time in the HSS procedure is remarkably less than the SGA. Besides, the GA reached 

its best result only in 40% of its total 15 runs. The results in Table 7 clearly show the superiority of 

the HSS algorithm comparing the best, the worst and the average results of both algorithms. 

 

Table 7. Comparison between HSS and SGA for Sioux Falls network. 

Algorithm Results 

Total 

Computation 

 Time (s) 

Total 

Number 

 of Iterations 

Avg.  

Computation 

Time per 

Iteration 

Objective 

Function 

Value 

HSS 

Best 2664 61 37 1.1621 

Worst 11220 317 35 1.1621 

Average 3844 97 38 1.1621 

SGA 

Best 9982 217 46 1.1621 

Worst  17653 409 43 1.1270 

Average 13717 292 43 1.1498 

 

We can see the best obtained results among the 15 runs of HSS in Table 8. The total 

computational procedure for the given results took 44 minutes. In this developed network, nearly 

65% of streets have changed to one-way streets. These results show the improvement of the urban 

network on adopting the solution obtained by the HSS method. 

 

 

4 5 6 

7 8 9 

10 16 

2 

11 

3 

18 

1 

17 

12 

19 14 15 

   Junction without signal control 

Junction with signal control 

 

 

 

23 

24 

22 

21 20 13 
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Table 8. The best obtained result for Sioux Falls network. 

Links 

1
-2

 

1
-3

 

2
-6

 

3
-4

 

3
-1

2
 

4
-5

 

4
-1

1
 

5
-6

 

5
-9

 

6
-8

 

7
-8

 

7
-1

8
 

8
-9

 

8
-1

6
 

9
-1

0
 

1
0

-1
1
 

1
0

-1
5
 

1
0

-1
6
 

1
0

-1
7
 

1
1

-1
2
 

1
1

-1
4
 

1
2

-1
3
 

1
3

-2
4
 

1
4

-1
5
 

1
4

-2
3
 

1
5

-1
9
 

1
5

-2
2
 

1
6

-1
7
 

1
6

-1
8
 

1
7

-1
9
 

1
8

-2
0
 

1
9

-2
0
 

2
0

-2
1
 

2
0

-2
2
 

2
1

-2
2
 

2
1

-2
4
 

2
2

-2
3
 

2
3

-2
4
 

ys 2 2 1 2 2 -1 1 1 -1 1 2 -1 2 2 -1 -1 -1 -1 -1 -1 1 -1 2 1 1 -1 2 2 1 -1 2 -1 1 2 -1 -1 -1 2 

us 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

λij

 - - 

0
.6

 

0
.3

9
 

- 0
 

0
.4

9
 

0
.4

 

0
 

0
.5

1
 

0
.4

9
 

0
 

0
.4

5
 

0
.4

1
 

0
.3

9
 

0
 

0
 

0
 

0
 

0
 

1
 - - 

0
.6

 

- 0
 

0
 

0
.4

1
 

- 0
 - 0
 - - - - - - 

λji

 - - - - - 

0
.5

4
 

0
 

0
 

1
 

0
 - - 

0
.4

9
 

0
.5

1
 

0
 

0
.3

6
 

0
.3

6
 

0
.3

9
 

0
.2

5
 

0
.5

1
 

0
 - - 0
 

0
 

0
.6

 

0
.4

 

0
.4

1
 

0
 

0
.5

9
 

- 1
 - - - - - - 

Objective Function value (Matrix Multiplier) 1.1621 

Total Number of Iteration 61 

Total computation time (s) 2664 

Average iteration time (s) 37 

 

 

4.4. Results for the Friedrichshain center network 

The second real network used in this research is the Friedrichshain center network as a part of 

Berlin network in Germany. This network is a graph with 266 nodes and 224 links. Initial parameter 

values such as those for the free flow travel time, capacity, and length of each link are obtained 

from the website provided by Bar-Gera (2013). In the primary solution, all links are considered as 

two-way streets. The primary schematic network is shown in Figure 4. 

 

 

Figure 4. Friedrichshain center network (Asudegi, 2009).  
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Table 9 shows results of the HSS algorithm. Although all streets in the primary network are to 

be assumed two-way links, in the final solution about 34% of streets have been changed to one-way. 

Table 9 shows the best solution objective function obtained in this procedure. The total 

computational procedure time for the given results takes about 59 hours.  

 

Table 9. The Best acquired solution result for Friedrichshain network. 

Objective function value: matrix multiplier 1.1252 

Total number of iterations 211 

Number of one-way streets 76 links of total 224 links (about 34%) 

Total computation time  212688 seconds (59 hours) 

Average iteration time  1008 seconds 

The convergence pattern of the proposed HSS in solving the problem for this network is shown in 

Figure 5.  

 
Figure 5. Convergence pattern of HSS algorithm.  

 

5. CONCLUSION AND FUTURE RESEARCH 

In this paper, a new bi-level model is developed for a MNDP problem. In the upper level problem, 

two discrete variables (redesign direction, capacity expansion of links) and one continuous variable 

(signal setting) are optimized. In the lower level problem, the UE problem is solved. For solving 

this problem, one hybrid scatter search method incorporating golden section search has been 

proposed. The algorithm has been tested for one small and two real case studies. To evaluate the 

capability of the algorithm in achieving the optimum solution in the small network, the result has 

been compared with the results obtained from the branch and bound method. Moreover, the 

performance of the proposed hybrid scatter search was illustrated by comparing it with a kind of 

standard GA for the small and one of the real networks. The results show that, in both cases, the 

developed HSS has been the absolute dominant algorithm.  

Because of the diversity of network planning factors involved in our problem, several 

assumptions are used in the model, such as a common matrix multiplier for the whole network, 
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simple objective function for the upper level of the model and using simple deterministic UE in the 

lower level problem. As a suggestion for future research, this proposed framework could be 

extended by considering a stochastic UE problem in the lower level problem. Besides, a multi-

objective function and different matrix multipliers for each O-D pair can be used in the upper level 

of the model. Finally, one can consider other network decisions such as lane allocation in two-way 

streets or turning restriction design at intersections for the upper level problem. These extensions 

will make the problem more complex, and may require designing more efficient algorithms. 

Strategies such as parallelizing or distributed computing may be able to handle such complexities.     
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Appendix 

Lemma 1. The relationship between the arc flow (fij) and the arc signal setting variable (
ij ) is as 

follows (in what follows, the arc notation (i,j) is shown as (a) for simplicity):     

(24)  

cbf

bfa

d d

a

d d

a

a






 

 

  

where a , b , c  and d  are nonnegative constants. 

 

Proof: To prove this equation, we use the pressure concept described in Lee and Machemehl 

(2005). The pressure formularization is different depending on what policy is chosen. Here, we 

have chosen the form of pressure based on BPR travel time minimization policy. In this regard, the 

pressure is formulated through (25) where, Pa indicates the pressure of arc a, t
a
0 and c are the free 

flow travel time and the saturation flow, respectively, and α and β are constant parameters. 

(25)  
1

1

0

.

...













a

a

a

a
c

ft
P  

Each signalized intersection includes several stages (green periods), as shown in equation (26), 

the total pressure of stage k in intersection l (Pstage k) is determined by the summation of related arcs’ 

pressures that receives green (Pa), where Ll is the set of all stages in intersection l  

(26)  stage k a l
arc a receives green
at stage k

P P k L 
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According to Lee and Machemehl (2005), in the optimal state, the pressures of all stages in one 

intersection are equivalent. Take one intersection with two stages and two arcs in each stage for 

example in which arcs 1 and 2 receive green simultaneously, and arcs 3 and 4 receive green 

simultaneously; the intersection pressure balancing equation is as (27). It means that the total 

pressure of arcs 1 and 2 is equal to the total pressure of arcs 3 and 4.  

(27)  1

44

1

4

4

0

1

33

1

3

3

0

1

22

1

2

2

0

1

11

1

1

1
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ft

c

ft
PPPPPP stagestage

 

Equation (28) shows relation between the green time proportions of stages for an intersection 

with two stages and two arcs belonging to each stage. 

(28)  
214321 111 stagestage    

Equation (29) is the consequence of synthesizing (27) and (28) where f1 to f4 are UE flows taken 

from the user equilibrium problem. 

(29)  
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For intersections with more than two stages and more than two arcs in each stage, the same 

procedure is repeated. Equation (30) demonstrates the pressure balancing in an intersection with n 

different stages where the pressure for stage n is shown by Pstage n and the pressure of arc a 

belonging to this stage is shown by
n

aP .  

(30)  
1

1 1 1

m m m
1 k n

stage stage k stage n i i i
i i i

P L P L P P L P L P
 

 
   

            

where L is the total pressure; m, m'  and m  are, respectively, the number of arcs belonging to the 

concerned stages. 

By rearranging the green time proportion constraint in the intersection, equation (31) shows the 

relation between the green time proportions of all stages in one intersection.  

(31)  nstage

nstageikstagei

ikstage   


)1(
,

 

Substituting equation (31) in the pressure balance equation (30) will result (32): 
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(32)  

cbf
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In (32), λstage k is the green time proportion of stage k which is equal to signal setting variables 

belonged to this stage such as
a . Besides, a , b , and c  obviously have nonnegative values. In 

these relations, Ll is set of all stages within intersection l and Sk indicates set of all arcs belonged to 

stage k. 

(33)  a= 



kLi

i

l \

)1(   

(34)  b  = 


















aSj

j

j

j

k

f
c

t

\

10 

  

(35)  c  =  
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Lemma 2. The derivative a

a

d

df


 is equal or less than 1. It means: 

(36)  or 1a
a a

a

d
d df

df


    

Proof: We use the result of lemma 1 for the sample intersection to prove the second lemma in (37). 

(37)  

1 11

1 2

1 1 1 11 1

1 2 3 41

1 1
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Assuming an intersection with more than two stages and more than two arcs entering the 

intersection in each stage, the derivative of 
k

k a/ f  is as follows, where λk is the signal setting 

variable of stage k and 
k

af  is the flow of arc a belonging to stage k. 
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This completes the proof. 
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