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Abstract

We say that a polygon inscribed in the circle is asymmetric if it contains no two antipodal
points being the endpoints of a diameter. Given n diameters of a circle and a positive integer
k < n, this paper addresses the problem of computing a maximum area asymmetric k-gon
having as vertices k < n endpoints of the given diameters. The study of this type of polygons is
motivated by ethnomusiciological applications.
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1 Introduction

Imagine that we are at a concert of salsa and we want to retain the intrinsic rhythmic pattern
to dance appropriately. Then we should know the clave Son. The clave Son rhythm might be
represented as the 16-bit binary sequence 1001001000101000 or, as usual for cyclic rhythms, by
onsets represented as points on a circle as in Figure 1 c). In this geometric setting, the clave Son
is associated to a pentagon whose vertices are selected on a circular lattice of 16 points. So, the
clave Son is represented by a special selection of k points on the circular lattice. This pattern
has conquered our planet during the last half of the 20th century. But, what properties does this
particular selection have? Notice that the polygon that represents the clave Son does not contain
two antipodal points on the circle and moreover, it is easy to prove that this configuration is just
the pentagon of maximum area without antipodal vertices (this later property produces a certain
kind of asymmetry). Musicians have showed interest in finding similar patterns. Ethnomusicology
is the discipline encompassing various approaches to the study of music that emphasize its cultural
context. More specifically, Ethnomathematics is a domain consisting of the study of mathematical
ideas shared by orally transmitted cultures. Such ideas are related to numeric, logic and spatial
configurations [4, 7]. Related to spacial configurations, the area is a useful measure of evenness of
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Figure 1: a) A flamenco rhythm in Spain, b) a rhythm used in Central Africa, c) the clave son in
Cuba.

scales and rhythms in music theory [15, 3]. Moreover, many musical traditions all over the world
have asymmetric rhythmic patterns. For instance, the Aka Pygmies rhythmic pattern in Figure 1
b) has the so-called rhythmic oddity property discovered by Simha Arom [3]. A rhythm has the
rhythmic oddity property if when represented on a circle it does not contain two onsets (the black
points in the Figure 1) that lie diametrically opposite to each other. Thus, the property asserts
that one cannot break the circle into two parts of equal length, whatever the chosen breaking
point, as there is always one unit lacking on one side. This property produces a kind of perceptual
asymmetry. The asymmetry of the pattern is to some extent intrinsic, in the sense that there exists
no breaking point giving two parts of equal length. Note that the oddity property requires that the
circle is divided into an even number of units. The notion of rhythmic oddity has received different
mathematical treatments; see [17] for more details.

An algorithm for enumerating all the patterns satisfying the rhythmic oddity property has been
proposed in [8]. Asymmetric rhythmics can also be found in the flamenco music of Spain (Figure
1 a)) and the clave Son in Cuba (Figure 1 c)). See [10, 9], and [16], for a detailed study on the
preference of theses rhythms in their cultural contexts.

Inspired in these ideas, we introduce the following geometric problem:

Problem 1.1 Given n diameters in a circle and a positive integer k < n, select k endpoints of
these diameters, no two of the same diameter, in such a way that their convex hull defines a k-gon
of maximum area.

Let us introduce some notation and related work. Let (p0, p
′
0), . . . , (pn−1, p

′
n−1) be n diameters of a

given circle. Let S := {p0, p′0, p1, p′1, . . . , pn−1, p′n−1} be an antipodal set containing the 2n endpoints
of the given diameters. A sub-polygon (of S) is a convex polygon whose vertex set is a subset of S.
An antipodal polygon (on S) is a sub-polygon whose vertex set contains exactly one endpoint from
each diameter (pi, p

′
i) of S [1]. An asymmetric polygon is a sub-polygon that contains no diameter.

Therefore, an antipodal polygon is also an asymmetric polygon. Aichholzer et al. proved that an
antipodal polygon of maximum area can be found in Θ(n)-time [1]. The linear time algorithms
they proposed are strongly based on a simple characterization for the extremal antipodal polygons.
Namely, that an antipodal polygon of maximum area has an alternating configuration [1].

The problem however, is significantly different if we ask for an asymmetric k-gon of maximum
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area with k < n vertices in S. It is not difficult to come up with examples for which the simple
characterization stated above does not hold if k < n. Aichholzer et al. presented an O(nn−k+1)-time
algorithm to compute an antipodal k-gon of maximum area. However, the existence of a polynomial
time algorithm to solve this problem was left as an open question [1].

In this paper, we answer this question in the affirmative. We distinguish two cases: If we are given
a circular lattice with an antipodal set of 2n points (induced by n evenly spaced diameters), we
show how to solve Problem 1.1 in constant time by providing a characterization of the solution.
Otherwise, if the diameters are given in a general configuration, we show that the problem can be
solved in O(kn4)-time using dynamic programming.

The problem studied here is related to other optimization problems in mathematics. In compu-
tational geometry, efficient algorithms have been proposed for computing extremal polygons with
respect to several different properties [6]. Moreover, the so-called stabbing or transversal problems
(see for instance [2]) belong to the same family that our problem. Recently, it has been proved
that the following problem is NP-hard [11]: Given a set S of line segments, compute the minimum
or maximum area (perimeter) polygon P such that P stabs S, that is, at least one of the two
endpoints of every segment s ∈ S is contained in P . In operations research, global optimization
techniques have been extensively studied to find convex polygons maximizing a given parameter [5].
Now, let us consider a different interpretation of the problem, let P be the convex hull of the given
diameters. In this case, the solution to Problem 1.1 can be interpreted as the asymmetric polygon
with k < n vertices that has its area closest to that of P . Therefore, this problem is related to the
approximation of convex sets. In this setting, the best inner approximation of any convex set by a
symmetric set is studied in [13]. Moreover, if we consider the “distance” to a symmetric set to be
a measure of its symmetry [12], then our solution to Problem 1.1 provides the best approximation
of a convex polygon inscribed in a circle by asymmetric sub-polygons.

Finally, it is worth mentioning that although there exists a high number of applications of mathemat-
ics to music theory, the research in music has illuminated problems that are appealing, nontrivial,
and, in some cases, connected to deep mathematical questions. The problem introduced in this
paper could be an example.

The remainder of the paper is organized as follows. In Section 2 we consider the constrained version
of Problem 1.1 in which the endpoints of the diameters are evenly spaced on the circle. In this
case, we provide a characterization of the maximum k-gon which yields a constant time algorithm
to solve Problem 1.1. The general version of this problem where the endpoints of the diameters are
distributed anywhere on the circle is studied in Section 3. In this case, we show that Problem 1.1
can be solved in polynomial time using dynamic programming.

2 Evenly spaced diameters

In this section, we assume that S = {p0, p′0, p1, p′1, . . . , pn−1, p′n−1} is the set of endpoints of n evenly
spaced diameters on a unit circle. That is, S partition the circle into 2n arcs of equal length. A
k-gon Qk with vertices q0, . . . , qk−1 in S can be encoded by a sequence < a0, ..., ak−1 >, where ai
is the number of arcs between the vertices qi and qi+1, 0 ≤ i < k, qk = q0. For example, the clave
Son in Figure 1 c) can be encoded by the sequence < 3, 3, 4, 2, 4 >. In music theory, this sequence
is called the interval vector (or full-interval vector) [14]. As with rhythmic patters, we assume that
the sequence < a0, . . . , ak−1 > is cyclic, i.e., for i ≥ k, ai = ai mod k. Throughout this paper, we
identify a sub-polygon with k vertices by its corresponding encoding sequence.
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Remark 2.1 Let Qk be a sub-polygon encoded by the sequence < a0, . . . , ak−1 >. The following
properties hold:

1. The area of the polygon Qk is
1

2

∑k−1
i=0 sin(πnai).

2. The area is invariant under permutations of the sequence < a0, . . . , ak−1 >. That is, for any
0 ≤ i < j ≤ k−1, the area of the polygons given by the sequences < a0, . . . , ai, . . . , aj , . . . , ak−1 >
and < a0, . . . , aj , . . . , ai, . . . , ak−1 > is the same.

3. Polygon Qk is asymmetric if and only if there are no two indices i, j such that i 6= j and
ai + ai+1 + · · ·+ aj = n.

The following technical results will be used later.

Lemma 2.2 Let a, b, n be positive integers with a− b ≥ 2 and 2n > a+ b. Then we have

sin

Å
πa

n

ã
+ sin

Å
πb

n

ã
< sin

Ç
π(a− 1)

n

å
+ sin

Ç
π(b+ 1)

n

å
Proof. The previous inequality can be written as:

2 sin

Ç
π(a+ b)

2n

å
cos

Ç
π(a− b)

2n

å
< 2 sin

Ç
π(a+ b)

2n

å
cos

Ç
π(a− b− 2)

2n

å
.

Because 0 < π(a+b)
2n < π, 0 ≤ π(a−b−2)

2n < π(a−b)
2n < π and from the fact that cos(·) is decreasing in

(0, π), this inequality holds. �

For ease of notation, a sequence a, . . . , a of c elements all equal to a is denoted by
a, . . . , a︸ ︷︷ ︸

c
. The

following lemma characterizes the k-gons (not necessarily asymmetric) of maximum area.

Lemma 2.3 Given a regular polygon of m vertices inscribed in a circle, the maximum area sub-
polygon with k ≤ m vertices is encoded by any permutation of the following sequence

< q + 1, · · · , q + 1︸ ︷︷ ︸
r

, q, · · · , q︸ ︷︷ ︸
k−r

> ,

where m = kq + r, 0 ≤ r < k.

Proof. Let a0, a1, . . . , ak−1 be a sequence encoding a sub-polygon Qk with maximum area. Define
amax = max (a0, a1, ..., ak−1) and amin = min (a0, a1, ..., ak−1). If amax − amin ≥ 2, then we switch
amax to amax − 1, and amin to amin + 1. In this way, because k ≥ 3 we have m =

∑k−1
i=0 ai >

amax + amin and hence, Lemma 2.2 implies that the new polygon has larger area than the initial
one leading to a contradiction. Therefore, amax − amin ≤ 1. This implies that for some integer e
and for every 0 ≤ i ≤ k − 1, either ai = e or ai = e+ 1.

Let u and v be the number of occurrences of the integers e and e + 1 respectively, that is, u(e) +
v(e+ 1) = m. Thus, we have (u+ v)e+ v = kq + r and ke+ v = kq + r. Consequently, v − r is a
multiple of k. Since v ≤ k and r < k, we have only two cases: either v = r, or v = k and r = 0. In
the former case, e = q and in the later, ai = e+ 1 = q for every i. The result follows. �
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2.1 Case k odd

In this section, we show that if the number of vertices k is odd, then there is a permutation of the
sequence of Lemma 2.3 such that its corresponding sub-polygon is asymmetric.

Theorem 2.4 Given a regular polygon of 2n vertices inscribed in a circle and positive integers
k, q, r with 2n = kq + r, 0 ≤ r < k, the maximum area asymmetric sub-polygon with k vertices is
given by the following sequences:

For r even,

< q + 1, · · · , q + 1︸ ︷︷ ︸
r/2

, q, · · · , q︸ ︷︷ ︸
(k−r−1)/2

, q + 1, · · · , q + 1︸ ︷︷ ︸
r/2

, q, · · · , q︸ ︷︷ ︸
(k−r+1)/2

>

For r odd,

< q, · · · , q︸ ︷︷ ︸
(k−r)/2

, q + 1, · · · , q + 1︸ ︷︷ ︸
(r−1)/2

, q, · · · , q︸ ︷︷ ︸
(k−r)/2

, q + 1, · · · , q + 1︸ ︷︷ ︸
(r+1)/2

>

Proof. We note first that both sequences are composed by r occurrences of the element q + 1 and
k − r occurrences of the element q. Therefore, both k-gons are maximum area by Lemma 2.3.
Moreover, ai = a

i+
(k−1)

2

for 0 ≤ i < (k−1)
2 , we say that a

i+
(k−1)

2

is the homologous element of ai in

the sequence and vice versa. Notice that, except for ak−1, every element in the sequence has its
homologous element.

We now prove that the encoded polygon is asymmetric. Let A and B be a partition into two
subsequences of the proposed cyclic sequence so that A contains (k−1)

2 consecutive elements and B

the other (k+1)
2 elements.

Let SA and SB be the sum of the elements of A and B, respectively. If ak−1 /∈ A, then B consists

of the (k−1)
2 homologous elements of the corresponding of A and ak−1 and hence SB = SA + ak−1.

On the other hand, if ak−1 ∈ A, then B contains (k−3)
2 homologous elements of the ones in A plus

two more elements, say ai, aj (recall that ak−1 has no homologous element). Therefore SB − SA =
ai + aj − ak−1 for some indices i 6= j. Regardless of the case, we have that SB > SA, SA < n and

SB > n. As a consequence, any sum of (k−1)
2 consecutive elements is different from n.

For an arbitrary partition of the sequence, we proceed in a similar way. If the sizes of A and B are
arbitrary, we also have two cases. If |A| ≤ (k−1)

2 then SA < n and if |B| ≤ (k−1)
2 then SB < n. In

both cases, the sequences correspond to asymmetric polygons.

�

2.2 Case k even

Unfortunately, if the number of vertices k is even, the following result prevents us from seeking the
solution as a permutation of the sequence of Lemma 2.3.

Theorem 2.5 If k is even, then no permutation of the sequence

< q + 1, · · · , q + 1︸ ︷︷ ︸
r

, q, · · · , q︸ ︷︷ ︸
k−r

>

corresponds to an asymmetric polygon.
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Proof. Set f(i) = ai + ai+1 + ...+ ai+k/2−1. We have f(i+ 1)− f(i) = ai+k/2 − ai, which implies
that f(i + 1) − f(i) ∈ {−1, 0, 1}. If f(0) = n, then the sequence is non-asymmetric. Assume that
f(0) < n. Thus, f(k/2) > n (f(0) + f(k/2) = 2n). Consider now the discrete function given by
the integer values f(0), f(1), ..., f(k/2). Since |f(i + 1) − f(i)| is equal to 1 or 0, f(0) < n and
f(k/2) > n, it follows that there exists an index j, 0 < j < k/2, such that f(j) = n and the
sequence generates a non-asymmetric polygon. The proof for the case f(0) > n is analogous. �

In the following, we prove that it is possible to find the solution for the case k even by considering
the sequence that provides the second maximum area.

Theorem 2.6 If k is even, then any permutation of the sequence

< q + 1, · · · , q + 1︸ ︷︷ ︸
r+1

, q − 1, q, · · · , q︸ ︷︷ ︸
k−r−2

>

corresponds to the sub-polygon of k-vertices with the second maximum area.

Proof. We first prove that if ai is an element of a sequence providing the k-gon with the second
maximum area then ai ∈ {q − 1, q, q + 1, q + 2} for i = 0, . . . , k − 1.

Denote by amax and amin the values max{a0, a1, ..., ak−1} and min{a0, a1, ..., ak−1}, respectively.
Suppose that amax ≥ q + 3. Note that if amin ≥ q + 1, then

∑k−1
i=0 ai > 2n which is a contradiction.

Therefore, we assume that amin ≤ q. In this case, switching amax by amax − 1 ≥ q + 2 and amin by
amin + 1 yields a larger polygon according to Lemma 2.2. However, the new polygon cannot be the
largest one because it contains an element aj ≥ q + 2, in contradiction with Lemma 2.3.

Suppose that amin ≤ q − 2. Following a similar argument to the above case, amax ≥ q + 1 and by
switching amax and amin by amax−1 and amin+1 ≤ q−1, respectively, the area of the new polygon
increases. It cannot be the largest one because it contains an element aj ≤ q − 1.

Using similar arguments we can show that the elements q+ 2 and q− 1 appear at most once in the
k-gon with the second maximum area.

Let A,B,C,D be the number of occurrences of q − 1, q, q + 1, q + 2, respectively. The we have:

A+B + C +D = k

A(q − 1) +B(q) + C(q + 1) +D(q + 2) = 2n

(A+B + C +D)q + (−A+ C + 2D) = kq + r

−A+ C + 2D = r

C = r +A− 2D

Now, the area of the k-gon we are looking for is:

S(A,B,C,D) = A sin

Ç
π(q − 1)

n

å
+B sin

Å
πq

n

ã
+ C sin

Ç
π(q + 1)

n

å
+D sin

Ç
π(q + 2)

n

å
Since 0 ≤ A,D ≤ 1, we have four cases to consider. Case (A,D) = (0, 0) corresponds with the
k-gon of maximum area (Lemma 2.3). Hence, the areas of the remaining cases are:

S(1, B1, C1, 1) = sin
(
π(q−1)
n

)
+ (k − r − 1) sin

(πq
n

)
+ (r − 1) sin

(
π(q+1)
n

)
+ sin

(
π(q+2)
n

)
S(0, B2, C2, 1) = (k − r + 1) sin

(πq
n

)
+ (r − 2) sin

(
π(q+1)
n

)
+ sin

(
π(q+2)
n

)
S(1, B3, C3, 0) = sin

(
π(q−1)
n

)
+ (k − r − 2) sin

(πq
n

)
+ (r + 1) sin

(
π(q+1)
n

)
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We claim that S(1, B1, C1, 1) < S(0, B2, C2, 1) ≤ S(1, B3, C3, 0). To prove this claim, note that

S(0, B2, C2, 1)− S(1, B1, C1, 1) = 2 sin

Å
πq

n

ã
− sin

Ç
π(q − 1)

n

å
− sin

Ç
π(q + 1)

n

å
.

By using Lemma 2.2 with a = q + 1, b = q − 1 we have that S(0, B2, C2, 1) − S(1, B1, C1, 1) > 0.
Notice that 2n ≥ kq ≥ 4q > 2q = a+ b and a− b = 2 in this case.

To prove the other inequality, we use the following trigonometric identities:

sin(α)− sin(β) = 2 cos((α+ β)/2) sin((α− β)/2)

sin(3α) = 3 sin(α)− 4 sin3(α)

Using these identities, we obtain the following:

S(1, B3, C3, 0)− S(0, B2, C2, 1) = sin

Ç
π(q − 1)

n

å
+ 3 sin

Ç
π(q + 1)

n

å
− 3 sin

Å
πq

n

ã
− sin

Ç
π(q + 2)

n

å
= 6 cos

Ç
π(2q + 1)

2n

å
sin

Å
π

2n

ã
− 2 cos

Ç
π(2q + 1)

2n

å
sin

Å
3π

2n

ã
= 2 cos

Ç
π(2q + 1)

2n

åÅ
3 sin

Å
π

2n

ã
− sin

Å
3π

2n

ãã
= 2 cos

Ç
π(2q + 1)

2n

å
4 sin3

Å
π

2n

ã
Because 2n = kq + r, k ≥ 4 and from the fact that C2 = r − 2 ≥ 0, we get that 2n ≥ 4q + 2 and
π(2q+1)

2n ≤ π
2 . As a consequence, S(1, B3, C3, 0)− S(0, B2, C2, 1) ≥ 0 yielding the result. �

The above result asserts that any sequence with coefficients A = 1, B = k− r−2, C = r+ 1, D = 0
provides the k-gon with the second maximum area. In the following result, we provide a sequence
that in addition corresponds to an asymmetric k-gon.

Theorem 2.7 The sequence corresponding to the maximum area asymmetric k-gon for k even is
as follows:

< q − 1, q + 1, · · · , q + 1︸ ︷︷ ︸
r/2

, q, · · · , q︸ ︷︷ ︸
(k−r−2)/2

, q + 1, · · · , q + 1︸ ︷︷ ︸
(r+2)/2

, q, · · · , q︸ ︷︷ ︸
(k−r−2)/2

>

Proof. The proof is similar to that of Theorem 2.4. The sequence proposed, say Q, is a permutation
of the sequence in Theorem 2.6. Therefore, its corresponding k-gon has the second maximum area.
We show that it is also asymmetric.

Observe that for 0 < i < k/2, it holds that ai = ai+k/2. We say that ai+k/2 and ai are homologous
elements for 0 < i < k/2.

Let A and B be a partition into two subsequences of the cyclic sequence Q. First, suppose that A
(and B) consists of k/2 consecutive elements. In this case, neither A nor B contains homologous
elements. Let SA and SB be the sum of the elements of A and B, respectively. If a0 ∈ A then
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ak/2 ∈ B and SA − SB = a0 − ak/2 = −2 6= 0. Similarly, if a0 ∈ B we have SA − SB 6= 0 proving
our claim.

Suppose now that the subsequence A contains less than k/2 consecutive elements. Then, every
element in A has its homologous element in B except maybe for a0 or ak/2. If a0 ∈ A, then
SB − SA = ak/2 − a0 + au + av + . . ., where au, av, . . . are elements of B having no homologous
element in A. In this case, SB > SA. The case |B| < k/2 is analogous. Hence, there are no indices
i, j, i 6= j, so that ai + ai+1 + ...+ aj = n. This completes the proof of the theorem. �

3 The general case

Dı́az-Báñez et al. [11] showed that the following problem is proved to be NP-hard: Given a set
of n line segments in the plane (or in a circle), find a maximum-area convex polygon having as
vertices at least one endpoint from each segment. They also show that if the segments are pairwise
disjoint, then the problem can be solved in polynomial time. A constrained version in which each
segment joins two antipodal points on a circle was recently studied by Aicholzer et al. [1]. They
showed that this constrained problem can be solved with a simple linear time algorithm and they
asked about the hardness of the problem of selecting k endpoints instead of n. As a consequence
of the hardness result of Dı́az-Báñez et al. [11], this problem becomes NP-hard if we remove the
antipodality constraint.

A dynamic programming algorithm presented in this section finds the asymmetric k-gon of maximum
area in time O(kn4). For the special cases k = 3 and k = 4 we show how to solve the problem in
linear time.

3.1 Dynamic programming algorithm

Let S := {p0, p′0, p1, p′1, . . . , pn−1, p′n−1} be the set of the endpoints of n diameters in the unit circle
and let O be the center of this circle. We define a wedge (i, j) as a convex polygon being the convex
hull of O and a subsequence of points (need not be consecutive) of S visited when walking clockwise
along the circle from pi to pj , see Figure 2a. We say that pi and pj are anchors of a wedge (i, j).

O

pi

pj

(a)

O

pt

p′j
pj

pi

pl

(b)

Opt p′t

pl

pj

pi

(c)

Figure 2: The figure a) shows a wedge with anchors pi and pj , b) and c) show the two possible
configurations of a double-wedge (i, j, l, t).

A double-wedge (i, j, l, t) is the union of two disjoint wedges (i, j) and (l, t) such that: (1) this union

8



O

pi

p′i

pt

pl

pj

Figure 3: A maximum area asymmetric k-gon on S formed by the union of a double-wedge (i, j, l, t)
and the triangles Opjpl and Opipt.

contains no diameter and (2) either p′t lies clockwise between pi and pj , or p′j lies clockwise between
pl and pt; see Figure 2 for an illustration. The anchors of a double-wedge are the anchors of the
wedges that form it.

Lemma 3.1 The maximum area asymmetric k-gon (k ≥ 3) on S is formed by the union of a
double-wedge (i, j, l, t) and the triangles Opjpl and Opipt.

Proof. Let Q be the maximum area asymmetric k-gon on S. Let pi be a vertex of Q and let p′i be
its antipodal point. Let pj (resp. pl) be the first vertex of Q found when walking counterclockwise
(resp. clockwise) from p′i along the boundary of the circle. Let pt be the first vertex of Q found
when walking counterclockwise from pi along the boundary of the circle. See Figure 3.

We prove by contradiction that pj , pl and pt exist and are different from pi. Let SQ ⊆ S be the
set of vertices of Q and its antipodal points and the asymmetric k-gon Q of maximum area on S
is a maximum area antipodal on SQ. Suppose that pj does not exist or matches with pi, then all
vertices of Q lie in the same semicircle of the two defined by the diameter pip

′
i, then Q would not

be a maximum area antipodal polygon on SQ[1], this is a contradiction. The proof that pl and pt
exist and are different from pi is analogous, note that pl can matches with pt. The union of the
wedges (i, j) and (l, t) contains no diameter because Q is an asymmetric polygon. We now prove
that p′j lies clockwise between pl and pt or p′t lies clockwise between pi and pj . If p′j lies clockwise
between pt and pi then p′t lies clockwise between pi and pj , if p′j lies clockwise between pl and pt we
are done, finally if p′j lies clockwise between p′i and pl we obtain a contradiction because all vertices
of Q would lie in the same semicircle of the two defined by the diameter pjp

′
j . Therefore, Q is not

a maximum area antipodal polygon on SQ[1]. �

When a double-wedge uses s points of S we say it is an s-double-wedge. For 3 ≤ s ≤ k, let
f(i, j, l, t, s) be the area of the s-double-wedge of maximum area with anchors (i, j, l, t). Notice that
for s = 3 either pi and pj , or pl and pt coincide. By Lemma 3.1, the area of the maximum area
asymmetric k-gon is equal to the maximum of {f(i, j, l, t, k)+AOpjpl +AOpipt}, where (i, j, l, t) goes
over all the possible anchors of a k-double-wedge. Therefore, having computed f(i, j, l, t, k) for all
possible k-double-wedges, the maximum area asymmetric k-gon can be found in time O(n4).

Lemma 3.2 All possible values of f(i, j, l, t, s) with 3 ≤ s ≤ k can be computed in time O(kn5).
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Proof. For s = 3, if i = j then f(i, j, l, t, 3) = AOplpt else f(i, j, l, t, 3) = AOpipj . All possible values
of f(i, j, l, t, 3) can be computed in time O(n3). For fixed values i, j, l, t and s (s > 3), the value
of f(i, j, l, t, s) can be computed in time O(n). If p′t lies clockwise between pi and pj then:

f(i, j, l, t, s) = max{f(i,m, l, t, s− 1) +AOpmpj}

for each pm between pi and pj in clockwise, pm 6= p′l and pm 6= p′t. Otherwise, if p′j lies clockwise
between pl and pt then:

f(i, j, l, t, s) = max{f(i, j, l,m, s− 1) +AOpmpt}

for each pm between pl and pt in clockwise, pm 6= p′i and pm 6= p′j . In fact, all possible values
of f(i, j, l, t, s) with a fixed value s (s > 3) can be computed in time O(n5) having computed the
values f(i, j, l, t, s − 1). Then, by iterating s from 3 to k, all possible values of f(i, j, l, t, s) can be
computed in time O(kn5). �

We now show how to improve this running time by computing all possible values of f(i, j, l, t, s) for
a fixed value s > 3 in time O(n4). The following lemma is depicted in Figure 4a.

O

pt

p′t

pl

pj1

pi
pr

pq

pj2

p′j1

p′j2

(a)

O

pt1

p′j

pl

pj

pi

pt2

pq
pr

p′t1
p′t2

(b)

Figure 4: The figures a) and b) show the statements of Lemmas 3.3 and 3.4, respectively.

Lemma 3.3 Let f(i, j1, l, t, s) and f(i, j2, l, t, s) be the areas of the maximum area s-double-wedges
with anchors (i, j1, l, t) and (i, j2, l, t), respectively, such that s > 3 and p′t lies clockwise between
pi and pj1. Let pi, . . . , pr, pj1 and pi, . . . , pq, pj2 be the subsequences in S of the wedges (i, j1) and
(i, j2), respectively. If pj1 precedes pj2 when walking clockwise along the circle from pi, then pr also
precedes pq.

Proof. If pq lies clockwise between pj1 (including it) and pj2 we are done. Now, consider the case
when pq lies clockwise between pi and pj1 . The subsequences pi, . . . , pr, pj1 and pi, . . . , pq, pj2 are
part of the maximum area s-double-wedges (i, j1, l, t) and (i, j2, l, t), respectively. Therefore we have

f(i, j1, l, t, s) = f(i, r, l, t, s− 1) +AOprpj1
≥ f(i,m, l, t, s− 1) +AOpmpj1 for each pm lies clockwise between pi and pj1 (1)

10



f(i, j2, l, t, s) = f(i, q, l, t, s− 1) +AOpqpj2
≥ f(i,m, l, t, s− 1) +AOpmpj2 for each pm lies clockwise between pi and pj2 (2)

From 1 and 2 we obtain the following inequalities:

f(i, r, l, t, s− 1) +AOprpj1 ≥ f(i, q, l, t, s− 1) +AOpqpj1

f(i, r, l, t, s− 1) +AOprpj2 ≤ f(i, q, l, t, s− 1) +AOpqpj2

adding both we obtain that

AOprpj2 −AOprpj1 ≤ AOpqpj2 −AOpqpj1 (3)

Suppose that pq and pr are inverted. Let z, x and y be the angles between pq, pr, pj1 and pj2 (see
Figure 5), then Inequality 3 can be written as:

sin(x+ y)− sinx ≤ sin(x+ y + z)− sin(z + x)

2 cos(x+
y

2
) sin(

y

2
) ≤ 2 cos(x+ z +

y

2
) sin(

y

2
)

cos(x+
y

2
) ≤ cos(x+ z +

y

2
) (4)

Because z+x+y < π and cos(·) is decreasing in the interval (0, π), Inequality 4 yields a contradiction.

O

pj1

pq
pr

pj2

z
x y

Figure 5: This figure shows the triangles involved in the proof of Theorem 3.3.

�

The following lemma has an analogous proof to that of Lemma 3.3 and is depicted in Figure 4b.

Lemma 3.4 Let f(i, j, l, t1, s) and f(i, j, l, t2, s) be the areas of the maximum area s-double-wedges
with anchors (i, j, l, t1) and (i, j, l, t2), respectively, such that s > 3 and p′j lies clockwise between
pl and pt1. Let pl, . . . , pr, pt1 and pl, . . . , pq, pt2 be the subsequences in S of the wedges (l, t1) and
(l, t2), respectively. If pt1 precedes pt2 when walking clockwise along the circle from pl, then pr also
precedes pq.

Theorem 3.5 Let S := {p0, p′0, p1, p′1, . . . , pn−1, p′n−1} be the set of the endpoints of n diameters in
the unit circle and let k be an integer such that k < n. The asymmetric k-gon of maximum area
can be found in time O(kn4).
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Proof. Having computed f(i, j, l, t, k) for all possible k-double-wedge, the maximum area asymmet-
ric k-gon can be found in time O(n4). We show how to compute f(i, j, l, t, s) for all s-double-wedge
with 3 ≤ s ≤ k in time O(kn4).

For s = 3, f(i, j, l, t, 3) can be computed in time O(n3). For s > 3, if p′t lies clockwise between pi
and pj , f(i, j, l, t, s) = max{f(i,m, l, t, s−1)+AOpmpj}, for each pm between pi and pj in clockwise,
pm 6= p′l and pm 6= p′t. Suppose that we have computed for i, j, l and t the value r such that
f(i, j, l, t, s) = f(i, r, l, t, s−1)+AOprpj . Then, to compute f(i, j+1, l, t, s) we do not need test each
pm between pi and pj+1, we need only to test each pm in the interval from pr to pj+1. In fact, we
can compute f(i, j, l, t, s) for all pj that follows p′t in clockwise for fixed values i, l, t and s in time
O(n). The other case, when p′j lies clockwise between pl and pt is analogous. In fact, all possible
values of f(i, j, l, t, s) with a fixed value s (s > 3) can be computed in time O(n4) having computed
the values f(i, j, l, t, s− 1). Then, iterating s from 3 to k, all possible values of f(i, j, l, t, s) can be
computed in time O(kn4). �

3.2 Special case k = 3

Let S := {p0, p′0, p1, p′1, . . . , pn−1, p′n−1} be the set of endpoints of n diameters in the unit circle,
n ≥ 3. In the following, we prove that the triangle of maximum area on S contains no diameter.
Using this characterization, we show how to find the largest triangle in linear time. We use

_
pipj to

denote the clockwise arc from pi to pj and ∠pipjpk to denote the inner angle of the triangle pipjpk
with apex pj .

Lemma 3.6 A maximal triangle with vertices in S contains no diameter.

Proof. Suppose for a contradiction that the maximal triangle contains a diameter. Let pipjp
′
i be

the maximal triangle. Let pl and p′l be another diameter of points in S. If pl is in
_
pipj then p′l is

in
_

p′ip
′
j . The triangles pipjp

′
i and pipjp

′
l have a common base, the segment pip

′
j , the height of pipjp

′
i

from p′i is smaller than the height of pipjp
′
l from p′l; see Figure 6. Therefore, Apipjp′l > Apipjp′i which

is a contradiction. The proof in the case pl is in
_

pjp
′
i is analogous. �

pi

p′i

pj

p′j

pl

p′l

Figure 6: Ap′
l
pjpi > Apip′ipj because the height of p′lpjpi from p′l is greater than the height of pip

′
ipj

from p′i.

Note that each triangle contains either two angles greater or equal than 2π/3, or two angles smaller
or equal than 2π/3; we call such pair of angles the base angles of the triangle. A critical vertex is
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a vertex supporting a base angle. The following lemma is key to our algorithm.

Lemma 3.7 Let c1, c2, p, b2 and b1 be points in the unit circle that lie in this order when walking
counterclockwise along the circle from c1.

1. If ∠pb1c1 ≤ 2π/3 and ∠pc1b1 ≤ 2π/3, then the maximal triangle that contains p is c1pb1

2. If ∠pb2c2 ≥ 2π/3 and ∠pc2b2 ≥ 2π/3, then the maximal triangle that contains p is c2pb2

Proof. Using similar triangles we can show the following inequalities for the first case (see Fig-
ure 7a):

Apc2b2 < Apc2b1 < Apc1b1

Apc2b2 < Apc1b2 < Apc1b1 ,

and these ones for the other case (see Figure 7b):

Apc2b2 > Apc2b1 > Apc1b1

Apc2b2 > Apc1b2 > Apc1b1 .

�

p

b2

b1

c2

c1

b c

(a)

p

b c

b1

b2
c2

c1

(b)

Figure 7: This figure shows triangles with p as critical vertex. In both cases the maximal triangle
is the closest to the equilateral triangle pbc.

Theorem 3.8 Let S := {p0, p′0, p1, p′1, . . . , pn−1, p′n−1} be the set of endpoints of n diameters in the
unit circle, n ≥ 3. The triangle of maximum area with vertices in S can be found in linear time.

Proof. The idea of our algorithms is to iterate among the endpoints of the n diameters in clockwise
order computing for each pi the maximal triangle with pi as critical vertex. Let M be the triangle
of maximum area with vertices in S. Then M = max{Ti}, where Ti is the maximal triangle with pi

13



pi

pli

pjipmi

pki

Figure 8: The two candidates to be the maximal triangles with critical vertex pi, pipjipmi and
pipkipli .

as critical vertex. Lemma 3.7 allows us to find Ti comparing just two triangles pipjipmi and pipkipli
(see Figure 8), where ji ≤ ki < li ≤ mi and the following inequalities hold:

_
pipji≤ 2π/3 <

_
pipji+1 (5)

_
pipki≥ 2π/3 >

_
pipki−1 (6)

_
pipli≤ 4π/3 <

_
pipli+1 (7)

_
pipmi≥ 4π/3 >

_
pipmi−1 (8)

Note that ji+1 ≥ ji, ki+1 ≥ ki, li+1 ≥ li and mi+1 ≥ mi. If we have for a point pi the points pji ,
pki , pli and pmi , then moving from these points in clockwise we can find for pi+1 the points pji+1 ,
pki+1

, pli+1
and pmi+1 . Therefore, we can compute the maximal triangle with pi as critical vertex

for all pi in S in linear time. �

3.3 Special case k = 4

Unlike the triangle, the quadrilateral of maximum area could contain diameters. However, we prove
that the asymmetric quadrilateral of maximum area satisfies a property that allows us to find it in
linear time.

Lemma 3.9 Let S := {p0, p′0, p1, p′1, . . . , pn−1, p′n−1} be the set of endpoints of n diameters in the
unit circle, n ≥ 4. Let pi, pl, p

′
j and p′t be the vertices of a maximal quadrilateral. Then the arcs

_
pipj,

_
plpt,

_

p′ip
′
j and

_

p′lp
′
t contain no other points of S, see Figure 9.

Proof. Certainly pl is the farthest point of S from pip
′
j in

_

pip
′
j or p′t is the farthest point of S from

pip
′
j in

_

p′jpi. Suppose that pl (p′t) is the farthest point of S from pip
′
j in

_

pip
′
j (
_

p′jpi), then p′l (pt) is

the farthest point of S from pip
′
j in

_

p′jpi (
_

pip
′
j). In fact p′t (pl) is the second farthest point of S from

pip
′
j in

_

p′jpi (
_

pip
′
j). Hence the points pl and pt (p′l and p′t) are consecutive in clockwise. Analogously

we can prove that pi and pj (p′i and p′j) are consecutive . �
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pi

p′i

p′j

pj

pl

pt

p′l

p′t

O

Figure 9: Illustration of lemma 3.9

Note that the four possible asymmetric quadrilateral with vertices in the subset {pi, pj , pl, pt, p′i,
p′j , p

′
l, p
′
t} have the same area because the segments pip

′
j and p′ipj (plp

′
t and p′lpt) are parallel and

equal. As a consequence of Lemma 3.9, pj = pi+1 and pt = pl+1. From the above lemma we infer
the following corollary.

Corollary 3.10 Let S := {p0, p′0, p1, p′1, . . . , pn−1, p′n−1} be the set of endpoints of n diameters in
the unit circle, n ≥ 4. Let Q be a maximal asymmetric quadrilateral on S. If pi ∈ S is a vertex of
Q then its opposite vertex in Q is p′i+1 or p′i−1.

Lemma 3.11 Let a, b, c, d, a′, e, f and d′ be clockwise points in a circle, where aa′ and dd′ are
diameters. If d is farther than c from ae, then d is farther than c from bf .

Proof. Let m be the intersection point of bd and cf , let n be the intersection point of ad and ce.
Because d is farther than c from ae, Aace < Aade. Because triangle ane is common for the triangles
ace and ade, Aanc < Adne. Since the triangles anc and dne are similar, ac < de. Moreover, bc < ac
and de < df as they are in the same semicircle, respectively. From these inequalities, we infer that
bc < df . Because the triangles bmc and dmf are similar, we know that Abmc < Admf . Since triangle
bmf is common for the triangles bcf and bdf , Abcf < Abdf . Therefore, d is farther than c from bf ;
see Figure 10. �

We are now ready to show the main result of this section.

Theorem 3.12 Let S := {p0, p′0, p1, p′1, . . . , pn−1, pn−1′} be the set of endpoints of n diameters in
the unit circle, n ≥ 4. The asymmetric quadrilateral of maximum area can be found in linear time.

Proof. Let Q be the asymmetric quadrilateral of maximum area on S and let Qi = piplp
′
i+1p

′
l+1 be

a maximal asymmetric quadrilateral with pip
′
i+1 as a diagonal, using Corollary 3.10 we have that

Q = max{Qi}. The idea of our algorithm is to iterate among the endpoints of the n diameters in
clockwise order and compute, for each pi, the maximal asymmetric quadrilateral Qi with pip

′
i+1 as a

diagonal. Suppose that for an arbitrary point pi ∈ S we have computed Qi = piplp
′
i+1p

′
l+1 where pl

and p′l+1 are the farthest points (the farthest and the second farthest maintaining the asymmetry)
from pip

′
i+1 on S. To compute Qi+1 we need to find pm such that pm and p′m+1 are the farthest
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O

a

b

c

m n

d

d′

f

e

a′

Figure 10: Representation of lemma 3.11

points from pi+1p
′
i+2 on S, using Lemma 3.11 we can infer that pm and p′m+1 lie on

_

plp
′
i+2 and

_

p′l+1pi+1, respectively (see Figure 11). Therefore, making a clockwise iteration on S we can find
all the maximal asymmetric quadrilaterals in linear time, computing for each pi the farthest points
(the farthest and the second farthest maintaining the asymmetry) pl and pl+1 from pip

′
i+1 on S

using the farthest points found in the previous step of the iteration. �

O

pi

pi+1

pi+2

pl pm

p′i

p′i+1

p′i+2

Figure 11: pl is the farthest point of S from pip
′
i+1 and pm is the farthest point of S from pi+1p

′
i+2.
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