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ABSTRACT 

Increasing attention is given to on-time delivery of goods in the distribution and logistics 

industry. Due to uncertainties in customer demands, on-time deliveries cannot be ensured 

frequently. The vehicle capacity may be exceeded along the planned delivery route, and then 

the vehicle has to return to the depot for reloading of the goods. In this paper, such on-time 

delivery issues are formulated as a vehicle routing problem with stochastic demands and time 

windows. Three probabilistic models are proposed to address on-time delivery from different 

perspectives. The first one aims to search delivery routes with minimum expected total cost. 

The second one is to maximize the sum of the on-time delivery probabilities to customers. The 

third one seeks to minimize the expected total cost, while ensuring a given on-time delivery 

probability to each customer. Having noted that solutions of the proposed models are affected 

by the recourse policy deployed in cases of route failures, a preventive restocking policy is 

examined and compared with a detour-to-depot recourse policy. A numerical example indicates 

that the preventive restocking policy can help obtain better solutions to the proposed models 

and its effectiveness depends on the solution structure. It is also shown that the third model can 

be used to determine the minimum number of vehicles required to satisfy customers’ on-time 

delivery requirements. 
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1. Introduction 

 

The vehicle routing problem (VRP), introduced by Dantzig and Ramser (1959), involves 

planning a set of minimum-cost delivery routes for the vehicles of a logistics company. Each 

vehicle must depart from the depot, serve a set of geographically spread customers having 

known demands, and finally return to the depot. Each customer can only be visited once by one 

single vehicle. The total demand of the customers on each delivery route cannot exceed the 

vehicle capacity. Due to its broad distribution and logistics applications, the VRP together with 

a number of VRP variants has been intensively studied in the literature (Toth and Vigo 2002; 

Golden et al. 2008; Leung et al. 2010, 2013; Beraldi et al. 2015; Dayarian et al. 2015). 

 

The vehicle routing problem with time windows (VRPTW) is one VRP variant in which each 

customer requires to be served within a given time window. In the case of hard time windows, 

late arrival vehicles are not allowed (Solomon 1987; Savelsbergh 1992). In the case of soft time 

windows, customers accept the service of late arrival vehicles, but nonetheless tardiness 

penalties are incurred (Taillard et al. 1997; Chiang and Russell 2004). In both cases, early arrival 

vehicles must wait until the customer’s earliest acceptable service time (i.e. the lower bound of 

the time window) begins. 

 

The vehicle routing problem with stochastic demands and time windows (VRPSD-TW) extends 

the VRPTW by considering uncertainties in customer demands. In this problem, customer 

demands are only known with probability distributions when planning the delivery routes. A 

customer’s actual demand could be revealed only when the vehicle arrives at the customer’s 

location. A route failure is defined as occurring when the vehicle arrives at one customer 

location but the actual revealed demand of that customer exceeds the remaining vehicle capacity. 

In cases of such route failures, certain types of recourse actions must be taken. For example, 

the vehicle may return to the depot to reload before resuming the delivery service. Due to the 

additional travel times consumed by recourse actions, time windows of the remaining customers 

along the planned delivery route may be violated. On-time delivery to these customers thus 

cannot be ensured, which is a critical issue in the VRPSD-TW. 

 

In the literature, only a few researchers have studied the VRPSD-TW. Chang (2005) proposed 

a two-stage stochastic programming with recourse model (referred to as a recourse model) for 
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the VRPSD-TW. In the first stage, a set of a priori delivery routes is planned. The actual 

customer demands are then revealed in the second stage. A detour-to-depot recourse policy was 

deployed in cases of route failures. The objective is to plan a set of a priori delivery routes that 

minimizes carrier’s expected total cost, which is comprised of the deterministic cost of the first-

stage solution, the expected cost of recourse actions in the second stage and the expected penalty 

cost for time-window violations. Lei et al. (2011) also formulated a recourse model for the 

VRPSD-TW to minimize carrier’s expected total cost. 

 

The above VRPSD-TW models mainly stemmed from the carrier’s point of view and focused 

on reducing carrier’s expected total cost. By this approach, the probability of late delivery to 

some customers may be quite high, because time windows could be violated due to the 

additional travel times consumed by recourse actions. In practice, however, on-time delivery is 

a key delivery service performance measure (Forslund et al. 2010; Karim et al. 2010). On-time 

delivery directly influences inventory levels and customer service levels, and contributes to 

maintaining a competitive advantage in supply chain operations (Nakandala et al. 2013). 

Conversely, a high probability of late delivery would lead to customer dissatisfaction and 

consequently, reduced market share. Therefore, it is necessary to investigate on-time delivery 

in the study of the VRPSD-TW. 

 

This paper extends the previous work in the following two aspects. Firstly, on-time delivery is 

addressed by formulating the VRPSD-TW from the different perspectives of the carrier and 

customers. Three probabilistic models are proposed for the VRPSD-TW. The first one is a 

recourse model formulated from the carrier perspective to minimize the carrier’s expected total 

cost (penalties for late deliveries included), given that a fixed-size fleet of vehicles is available. 

The second model aims to maximize the sum of the on-time delivery probabilities to customers. 

It stems from the customer’s point of view and addresses the question of “how well is the on-

time delivery performance of the carrier with a fixed-size fleet of vehicles?” The third one is a 

new stochastic programming model which embeds probabilistic customer service level 

constraints within a traditional recourse model. It aims to minimize the carrier’s expected total 

cost, while ensuring a given on-time delivery probability to each customer. 

 

Secondly, the applicability of the preventive restocking (PR) policy on the three proposed 

models is examined. In the previous VRPSD-TW studies, the detour-to-depot (DTD) recourse 
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policy was deployed in cases of route failures. Under this recourse policy, the vehicle returns 

to the depot to reload only when it runs out of stock. Inspired by Yang et al. (2000), a PR policy 

is developed for each of the three proposed models in this paper, under which the vehicle may 

return to the depot to reload before a stock-out occurs. The PR policy can help achieve better 

delivery solutions than those obtained by using the DTD recourse policy. It is also shown that 

the PR policy has a simple threshold-type structure and is easy to implement. 

 

The remainder of this paper is organized as follows. Section 2 briefly reviews the vehicle 

routing problem with stochastic demands (VRPSD), which is closely related to the VRPSD-

TW. Section 3 presents the three models proposed for the VRPSD-TW. Section 4 examines the 

PR policy for each of the three proposed models. Section 5 reports the results of an illustrative 

example. Conclusions are drawn and presented in Section 6. 

 

2. Literature review 

 

The vehicle routing problem with stochastic demands arises if customer demands are not known 

with certainty when planning the delivery routes. This problem has been well studied in the 

literature (see Dror et al. 1989 and Gendreau et al. 1996 for an introduction). 

 

One common solution approach in VRPSD studies is a priori optimization (Bertsimas et al. 

1990). By using this approach, the VRPSD can be modeled as a two-stage stochastic 

programming with recourse model (Laporte et al. 2002; Haugland et al. 2007; Goodson et al. 

2012). In the first stage, an a priori set of delivery routes is planned. In the second stage, certain 

recourse actions can be taken as the actual customer demands are revealed, but the vehicle must 

follow the same customer visiting sequence as planned in the first stage. The objective of a 

recourse model is to design an a priori set of delivery routes which minimizes the deterministic 

cost of the first-stage solution plus the expected cost of recourse actions taken in the second 

stage. Delivery solutions obtained by a priori optimization are easy to implement in practice. 

Drivers can maintain high performances following fixed delivery routes and customers can 

receive regular services from the same driver (Erera et al. 2009). 

 

Another solution approach in studying the VRPSD is the chance-constrained programming. 

Stewart and Golden (1983) presented a chance-constrained programming model for the VRPSD 
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which minimizes the deterministic cost (or a priori cost) of the planned delivery routes, while 

ensuring that the probability of route failure is smaller than a given threshold. A similar model 

can be found in Dror et al. (1989). One deficiency of these chance-constrained programming 

models is that the locations of route failures are ignored (Dror et al. 1989). Two delivery routes 

with the same a priori cost and the same probability of route failure can have quite different 

costs of recourse actions, which are affected by the locations of route failures. 

 

Some researchers have studied the VRPSD through a re-optimization approach (Dror et al. 1989; 

Dror 1993; Secomandi 2001; Novoa and Storer 2009; Secomandi and Margot 2009). In this 

approach, the vehicle does not have to follow a given customer visiting sequence as in a priori 

optimization. Conversely, each time the vehicle arrives at one customer location and observes 

the actual demand of that customer, it decides whether or not to return to the depot to reload 

and which customer to visit next, based on its remaining capacity and the set of unserved 

customers. While this approach may result in better delivery solutions with lower costs than a 

priori optimization, it is much more computationally expensive and it may also increase 

management costs (Novoa and Storer 2009). 

 

Different recourse policies have been used in VRPSD studies, including the detour-to-depot 

recourse policy (Chang 2005; Lei et al. 2011) and the preventive restocking policy (Yang et al. 

2000; Tatarakis and Minis 2009; Minis and Tatarakis 2011; Pandelis et al. 2012). Ak and Erera 

(2007) proposed a paired-vehicle recourse policy for the VRPSD. In this recourse policy, some 

a priori delivery routes are paired so as to share the vehicle capacity. In each route pair, if a 

route failure occurs on one route, the remaining unserved customers are added to the end of the 

other route. The paired-vehicle recourse policy may not be suitable for the VRPSD-TW since 

it may lead to large time-window violations. 

 

3. Model formulation 

 

Let 0( , )G V A  be a complete undirected graph, where 0 {0,..., }nV  is the vertex set and 

0{( , ) : , , }i j i j i j  A V   is the arc set. Vertex 0   represents the depot where several 

identical vehicles with capacity Q   are located. The customer set is denoted as 

0 \{0} {1,..., }n V V . Each customer iV  is associated with a time window [ , ]i ia b . It is 

expected that i  ’s demand can be fully served within [ , ]i ia b  . If the vehicle arrives at i  ’s 
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location before ia , it has to wait until ia ; if the time when i ’s demand is fully served is later 

than ib  , a penalty proportional to the lateness must be paid. A symmetric distance matrix 

0{ ( , ) : , }c i j i j C V  is defined on A  and it satisfies the triangular inequality. It is assumed 

that vehicles travel at unit speed and the travel time ijt  between two nodes i  and j  thus 

equals the distance traveled ( , )c i j . In practice, the travel distance can be calculated by the 

shortest path algorithm in the road network (Li et al., 2015). Additional notation is listed as 

follows: 

 

M   large enough number 

f   fixed cost of employing one vehicle 

m   number of vehicles used, which could be a given constant or a decision variable 

K   set of vehicles used, {1,2,..., }mK  

ijkx  binary decision variable associated with each arc ( , )i j A . It is equal to 1 if and 

only if arc ( , )i j  is traversed by vehicle k  and 0 otherwise, kK  

kR  delivery route k   defined as 0 1 1 +1{ =0, ,..., , ,..., , =0}
k kk j j n nr r r r r rR  , where kn   is 

the number of customers assigned to vehicle k , 0jr V , 0 +1kj n  , kK  

0kd  departure time of vehicle k  from the depot, kK  

jr kA  arrival time of vehicle k  at vertex jr ’s location, given that vehicle k  departs from 

the depot at time 0kd , j kr R , 1 +1kj n  , kK  

jr kW  earliness (or wait time) of vehicle k  at customer jr ’s location, j kr R , 1 kj n  , 

kK  

jr kS  the time when customer jr  ’s demand is fully served by vehicle k  , j kr R  , 

1 kj n  , kK  

jr kP  tardiness of delivery to customer jr , j kr R , 1 kj n  , kK  

1i  penalty coefficient for earliness at customer i ’s location, iV  

2i  penalty coefficient for late delivery to customer i , iV  

i  required on-time delivery probability to customer i , iV  

iD  discrete random variable that describes customer i ’s demand, iV  

,i rp  probability of customer i   having r   units of demand, , = P ( = )i r ip D r  , 

1,2,...,r R , R Q , iV  

E( )kL  expected cost of the recourse actions taken along delivery route kR , kK  
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Several assumptions are made in this paper as follows: 1. customer demands are the only 

stochastic elements, and other elements such as travel times and customer locations are 

deterministic; 2. customer demands can be split and the maximum possible demand of each 

customer is smaller than the vehicle capacity; 3. soft time windows are considered; 4. a 

customer’s actual demand is only revealed when the vehicle arrives at that customer’s location 

and the customer’s earliest acceptable service time (i.e. the lower bound of the time window) 

begins; 5. 1i  is smaller than or equal to 1, implying that the unit wait time cost is no greater 

than the unit travel time cost; and 6. service times at customer locations are neglected for clarity. 

 

From the carrier’s perspective, a two-stage stochastic programming with recourse model (RM) 

is built for the VRPSD-TW and shown in Eqs. (1)-(6). In RM, m   is a given constant 

representing the number of vehicles assigned to serve the customers. The objective of RM is to 

plan a set of m  a priori delivery routes which minimizes the carrier’s expected total cost.  

RM 

Min 1 2

( , ) =1

E( ) E( ) E( )
k

j j j j

n

ij ijk k r r k r r k

i j k k k j

t x L W P 
   

   
    

A K K K

                  (1) 

s.t. 
0

1,ijk

j k

x i
 

  
V K

V                                                (2) 

0 1,jk

j

x k


  
V

K                                                  (3) 

0 1,i k

i

x k


  
V

K                                                  (4) 

0 0

0, ,ijk jik

i i

x x j k
 

     
V V

V K                                      (5) 

0{0,1}, , ,ijkx i j k   V K                                          (6) 

 

Objective function, Eq. (1), is composed of: 1. the deterministic cost of the first-stage solution 

(first summation term) and 2. the expected cost in the second stage including the expected cost 

of recourse actions (second summation term) and the expected penalty cost for time-window 

violations (third summation term). 
jr kW  and 

jr kP  in Eq. (1) are defined in Eqs. (7) and (8), 
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respectively. The expected cost in the second stage depends on the recourse policy (discussed 

in Section 4) deployed in cases of route failures. 

 

= max{ ,0}, ,1 ,
j j jr k r r k j k kW a A r j n k    R K                               (7) 

= max{ ,0}, ,1 ,
j j jr k r k r j k kP S b r j n k    R K                               (8) 

 

Eqs. (2)-(6) are the constraints imposed for the first-stage solution of RM. Eq. (2) restricts that 

each customer is visited exactly once by one vehicle. Eqs. (3) and (4) ensure that each vehicle 

starts and ends its delivery route at the depot. Eq. (5) ensures that each vehicle departs from a 

customer location after it visits that customer. Eq. (6) defines the domain of decision variables. 

Similar models to RM can be found in Chang (2005) and Lei et al. (2011). 

 

From the customers’ perspective of receiving reliable delivery services, a new probabilistic 

model (PM) is proposed for the VRPSD-TW to plan a set of m  a priori delivery routes which 

maximizes the sum of the on-time delivery probabilities to customers. The number of vehicles 

used m  is assumed to be a given constant. PM addresses the question of “how well is the on-

time delivery performance of the carrier with a fixed-size fleet of vehicles?” 

PM 

Max 
=1

P{ }
k

j j

n

r k r

k j

S b



K

                                                   (9) 

 s.t. constraints Eqs. (2)-(6). 

 

Objective function Eq. (9) of PM is the sum of the on-time delivery probabilities to customers. 

Costs such as the cost of recourse actions and the penalty cost for time-window violations are 

ignored in PM. A similar model to PM can be found in Kenyon and Morton (2003), in which 

the probability of completing the delivery service by a given deadline is maximized in the 

context of stochastic travel times. 

 

To consider both the carrier and customer interests, a new stochastic programming model 

(RMPC) which embeds probabilistic customer service level constraints within a traditional 
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recourse model is proposed for the VRPSD-TW. In RMPC, m  is assumed to be a decision 

variable and the fixed vehicle employment cost is included in the carrier’s expected total cost. 

RMPC 

Min 1 2

( , ) =1

E( ) E( ) E( )
k

j j j j

n

ij ijk k r r k r r k

i j k k k j

Mf m t x L W P 
   

     
    

A K K K

            (10) 

s. t. P{ } , ,1 ,
j j jr k r r j k kS b r j n k      R K                               (11) 

and constraints Eqs. (2)-(6). 

 

f m   in Eq. (10) is the fixed vehicle employment cost. Eq. (11) restricts that the on-time 

delivery probability to each customer is at least a given value and is referred to as a probabilistic 

customer service level constraint. Similar models to RMPC can be found in Beraldi and Bruni 

(2009) and Zhang et al. (2013). 

 

RMPC has a hierarchical optimization objective. The fixed vehicle employment cost is 

multiplied by a large enough number M  in Eq. (10). The primary objective is to minimize the 

number of vehicles required to satisfy the probabilistic customer service level constraint Eq. 

(11). Given a minimized number of vehicles used, the secondary objective is to minimize the 

sum of the deterministic cost of the first-stage solution, the expected cost of recourse actions 

and the expected penalty cost for time-window violations.  

 

4. Preventive restocking policy 

 

In the VRPSD-TW, a stock-out may occur in the following two cases: 1. a vehicle arrives at a 

customer location but the revealed customer demand exceeds the remaining vehicle capacity; 

2. upon service completion at a customer, the remaining vehicle capacity becomes zero. Under 

the DTD recourse policy, the vehicle returns to the depot to reload only if either of the two types 

of stock-outs occurs. After reloading at the depot, in the first stock-out case, the vehicle resumes 

service at the customer location where the stock-out occurred; in the second stock-out case, it 

proceeds directly to the next customer along the planned delivery route.  

 



10 

 

Under the PR policy, a vehicle may return to the depot to reload before a stock-out occurs. After 

serving one customer, the vehicle decides whether or not to return to the depot to reload based 

on the amount of its remaining capacity. If this amount is smaller than a pre-set quantity, then 

the vehicle returns to the depot to reload; otherwise it proceeds directly to the next customer 

along the planned delivery route. In the first stock-out case stated above, the vehicle takes the 

same action as in the DTD recourse policy. In this section, the applicability of the PR policy is 

examined on each of the three models proposed in Section 3. 

 

4.1 Preventive restocking policy for RM 

 

Let   be one of the planned delivery routes in a particular solution of RM. It is defined as 

(0,1,2,..., , +1,..., ,0)j j n  , where 0 denotes the depot and j  the customer. Under the DTD 

recourse policy, let 1, , ( , )D j jf q d  be the expected cost from j  onward along  , given that, 

after service completion at j , the vehicle has a remaining capacity q  and it departs from j  

at time jd . 1, , ( , )D j jf q d  is computed in the following recursive form: 

1, ,

1, ,

1, ,

( , ), 0
( , )=

( , ), 0

D j j

D j j

D j j

H q d if q
f q d

H q d if q




 

                                         (12) 

with the boundary condition 1, , ,0( , )=D n j nf q d t . In Eq. (12), 1, , ( , )D j jH q d  denotes the expected 

cost of proceeding directly to 1j   upon service completion at j  under the DTD recourse 

policy. It is given as: 

1, , , +1 1, 1 +1

2, 1 +1 1, , +1 , +1 +1 +1,

+1,0 2, 1 +1 1, , +1 , +1 +1 +1,0 +1,

>

( , )= + ( )

+ ( )+ ( , + + ( ))

+ 2 + ( )+ ( + , + + ( )+2 )

D j j j j j j j

j j j D j j j j j j j r

r q

j j j j D j j j j j j j j r

r q

H q d t w d

l d f q r d t w d p

t l d f q Q r d t w d t p















  

  





          (13) 

1, , ( , )D j jH q d   represents the expected cost of returning to the depot to reload and then 

proceeding to customer 1j   under the DTD recourse policy. It is given as: 

1, , ,0 0, +1 1, 1 +1 2, 1 +1

1, , +1 ,0 0, +1 +1 +1,

( , )= + + ( )+ ( )

+ ( , + + + ( ))

D j j j j j j j j j j

D j j j j j j j r

r

H q d t t w d l d

f Q r d t t w d p

  
  


                              (14) 

Some of the variables in Eqs. (13) and (14) are defined in Eqs. (15)-(19), where [ ]a b   is 

equal to ( )a b  if a  is larger than b , and 0 otherwise. The expected total cost of  , under 
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the DTD recourse policy, equals to 1, ,0 0( , )Df Q d , provided that the vehicle departs from the 

depot at time 0d  with a full capacity Q . 

+1 +1 , +1( )=[ ( + )]j j j j j jw d a d t                                                 (15) 

+1 +1 ,0 0, +1( )=[ ( + + )]j j j j j jw d a d t t                                               (16) 

+1 , +1 +1( )=[( + ) ]j j j j j jl d d t b                                                  (17) 

+1 , +1 +1 +1,0 +1( )=[( + + ( )+2 ) ]j j j j j j j j jl d d t w d t b                                      (18) 

+1 ,0 0, +1 +1( )=[( + + ) ]j j j j j jl d d t t b                                                (19) 

 

Similarly, under the PR policy, let 1, , ( , )P j jf q d  be the expected cost from j  onward along  , 

given that, after serving j , the vehicle has a remaining capacity q  and it departs from j  at 

time jd . 1, , ( , )P j jf q d  satisfies the dynamic programming recursion: 

 1, , 1, , 1, ,( , )=Min ( , ), ( , )P j j P j j P j jf q d H q d H q d                                   (20) 

with the boundary condition 1, , ,0( , )=P n j nf q d t . In Eq. (20), 1, , ( , )P j jH q d  denotes the expected 

cost of proceeding directly to 1j   upon service completion at j  under the PR policy: 

1, , , +1 1, 1 +1

2, 1 +1 1, , +1 , +1 +1 +1,r

+1,0 2, 1 +1 1, , +1 , +1 +1 +1,0 +1,

>

( , )= + ( )

( )+ ( , + + ( ))

+ 2 + ( )+ ( , + + ( )+2 )

P j j j j j j j

j j j P j j j j j j j

r q

j j j j P j j j j j j j j r

r q

H q d t w d

l d f q r d t w d p

t l d f q Q r d t w d t p















   

   





         (21) 

1, , ( , )P j jH q d   represents the expected cost of returning to the depot to reload and then 

proceeding to 1j   under the PR policy: 

1, , ,0 0, +1 1, 1 +1 2, 1 +1

1, , +1 ,0 0, +1 +1 +1,

( , )= + + ( )+ ( )

+ ( , + + + ( ))

P j j j j j j j j j j

P j j j j j j j r

r

H q d t t w d l d

f Q r d t t w d p

  
  


                              (22) 

The expected total cost of   under the PR policy then equals 1, ,0 0( , )Pf Q d , provided that the 

vehicle departs from the depot at time 0d  with a full capacity Q . 

 

Several properties of the PR policy for RM are given below. The proofs of these properties are 

provided in Appendix A. 
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Lemma 1  1, , 1, , 1, ,+ ( , )=Min + ( , ), + ( , )P j P j P jx f q x x H q x x H q x  is monotonically non-decreasing 

with respect to x . 

 

Lemma 2 1, , 1, ,( , )= ( , )P j j P j jf Q d H Q d  

 

Lemma 3 ,0 1, , ,0 1, ,2 + ( , +2 ) ( , )j P j j j P j jt f Q d t f q d  

 

Theorem 1 To minimize the expected total cost of a planned delivery route, for each customer 

j  along the planned delivery route and a departure time jd  from customer j , there exists a 

quantity jh  , such that the optimal decision, after service completion at customer j  , is to 

proceed directly to customer +1j  if jq h , or return to the depot to reload if jq h . 

 

Theorem 1 indicates that the PR policy for RM has a threshold-type structure. To find the 

quantity jh  , given the departure time jd  , 1, , ( , )P j jH q d   can be computed first. Then 

1, , ( , )P j jH q d  is computed in descending order of q  until it exceeds 1, , ( , )P j jH q d . jh  equals 

the smallest value of q  for which 1, , 1, ,( , ) ( , )P j j P j jH q d H q d . 

 

4.2 Preventive restocking policy for PM 

 

The objective function Eq. (9) of PM is the sum of the on-time delivery probabilities to 

customers. Consider a planned delivery route (0,1,2,..., , +1,..., ,0)j j n    in a particular 

solution of PM. Let 2, , ( , )D j jf q d   be the sum of the on-time delivery probabilities from j  

onward along    under the DTD recourse policy, given that the vehicle has a remaining 

capacity q  after serving j  and departs from j  at time jd . 2, , ( , )D j jf q d  is computed in 

the recursive form in Eq. (23). The sum of the on-time delivery probabilities to all the customers 

along   under the DTD recourse policy then equals 2, ,0 0( , )Df Q d , provided that the vehicle 

departs from the depot at time 0d  with a full capacity Q . 

2, ,

2, ,

2, ,

( , ), 0
( , )=

( , ), 0

D j j

D j j

D j j

H q d if q
f q d

H q d if q




 

                                         (23) 

with the boundary condition 2, , ( , )=0D n jf q d .  
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In Eq. (23), 2, , ( , )D j jH q d   denotes the sum of the on-time delivery probabilities from j  

onward along    when the vehicle has a positive remaining capacity after serving j   and 

proceeds directly to 1j   under the DTD recourse policy: 

2, , +1 , +1 2, , +1 , +1 +1 +1,

+1 , +1 +1 +1,0 2, , +1 , +1 +1 +1,0 +1,

>

( , )= ( ( + )) + ( , + + ( ))

+ ( ( + + ( )+2 )) + ( + , + + ( )+2 )

D j j j j j j D j j j j j j j r

r q

j j j j j j j D j j j j j j j j r

r q

H q d b d t f q r d t w d p

b d t w d t f q Q r d t w d t p







   

   




 

(24) 

where ( )a b   is equal to 1 if a  is larger than b , and 0 otherwise. 2, , ( , )D j jH q d  represents 

the sum of the on-time delivery probabilities from j  onward along   when the vehicle is 

out-of-stock after serving j  and returns to the depot to reload before visiting 1j   under the 

DTD recourse policy: 

2, , +1 ,0 0, +1 2, , +1 ,0 0, +1 +1 +1,( , )=( ( + + )) + ( , + + + ( ))D j j j j j j D j j j j j j j r

r

H q d b d t t f Q r d t t w d p       (25) 

 

Under the PR policy, let 2, , ( , )P j jf q d  be the sum of the on-time delivery probabilities from j  

onward along   , given that the vehicle has a remaining capacity q   after serving j   and 

departs from j  at time jd . 2, , ( , )P j jf q d  satisfies the dynamic programming recursion: 

 2, , 2, , 2, ,( , )=Max ( , ), ( , )P j j P j j P j jf q d H q d H q d                                  (26) 

with the boundary condition 2, , ( , )=0P n jf q d . In Eq. (26), 2, , ( , )P j jH q d  denotes the sum of the 

on-time delivery probabilities from j   onward along    if the vehicle proceeds directly to 

1j   after serving j  under the PR policy: 

2, , +1 , +1 2, , +1 , +1 +1 +1,

+1 , +1 +1 +1,0 2, , +1 , +1 +1 +1,0 +1,

>

( , )= ( ( + )) + ( , + + ( ))

+ ( ( + + ( )+2 )) + ( + , + + ( )+2 )

P j j j j j j P j j j j j j j r

r q

j j j j j j j P j j j j j j j j r

r q

H q d b d t f q r d t w d p

b d t w d t f q Q r d t w d t p







   

   




 

(27) 

2, , ( , )P j jH q d  represents the sum of the on-time delivery probabilities from j  onward along 

  if the vehicle returns to the depot to reload before visiting 1j   under the PR policy: 

2, , +1 ,0 0, +1 2, , +1 ,0 0, +1 +1 +1,( , )=( ( + + )) + ( , + + + ( ))P j j j j j j P j j j j j j j r

r

H q d b d t t f Q r d t t w d p       (28) 
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The sum of the on-time delivery probabilities to all the customers along   under the PR policy 

then equals 2, ,0 0( , )Pf Q d , provided that the vehicle departs from the depot at time 0d  with a 

full capacity Q . Several properties of the PR policy for PM are given below. The proofs of 

these properties are analogous to those in Section 4.1 and are omitted here. 

 

Lemma 4  2, , 2, , 2, ,( , )=Max ( , ), ( , )P j P j P jf q x H q x H q x   is monotonically non-increasing with 

respect to x . 

 

Lemma 5 2, , 2, ,( , )= ( , )P j j P j jf Q d H Q d  and 2, , 2, ,(0, )= (0, )P j j P j jf d H d . 

 

Lemma 6 2, , 2, , 1,0( , ) ( , +2 )P j j P j j jf q d f Q d t   

 

Theorem 2 To maximize the sum of the on-time delivery probabilities to all the customer along 

a planned delivery route, for each customer j  along the planned delivery route and a departure 

time jd   from j  , there exists a quantity jh  , such that the optimal decision, after service 

completion at j , is to proceed directly to +1j  if jq h , or return to the depot to reload if 

jq h . 

 

4.3 Preventive restocking policy for RMPC 

 

To achieve the hierarchical objective of RMPC, the PR policy proposed for RMPC is described 

as follows: for a planned delivery route (0,1,2,..., , +1,..., ,0)j j n  , firstly apply the PR policy 

for RM (Section 4.1) to minimize the expected total cost of  ; if the resulting on-time delivery 

probabilities to customers cannot meet customers’ on-time delivery requirements, then apply 

the PR policy for PM (Section 4.2) to maximize the on-time delivery probability to each 

customer on  .  

 

5. Illustrative example 

 

In this section, a small example network (Fig. 1) with a single depot and four customers was 

adopted to illustrate the performance of the proposed models for the VRPSD-TW and the effect 

of the PR policy. In Fig. 1, D  denotes the depot and iC  represents the customer, =1,2,3,4i . 
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Numbers within square brackets in Fig. 1 denote the time windows specified by customers, 

whereas numbers beside the links represent the distances between nodes in the network. It was 

assumed that only one vehicle is available at the depot for serving the four customers and the 

vehicle capacity Q  is 15 units. Vehicle departure time from D  was set to 8:00 AM. 

C3

C2

D

C1

[8:00 9:00][10:00 11:00]

[9:00 10:00]

Departure time:
8:00AM

30km

40km

30km

40km

50km

50km

C4

50km
30km

[9:30 10:30]

70km

70km

 
Fig. 1 A small example network 

 

Customer demands were assumed to follow homogeneous discrete distributions and four 

different customer demand distributions were tested (Table 1). The first customer demand 

distribution is a discrete uniform distribution and denoted as UD in Table 1; the second one is 

a symmetric discrete triangular distribution and denoted as SD in Table 1; the last two are 

positively skewed (PSD in Table 1) and negatively skewed (NSD in Table 1) discrete triangular 

distributions, respectively. 

 

Table 1 Four customer demand distributions (modified from Ak and Erera, 2007) used in the illustrative example 

Possible value 
Probability 

UD SD PSD NSD 

1 0.100 0.025 0.020 0.020 

2 0.100 0.050 0.160 0.040 

3 0.100 0.075 0.320 0.050 

4 0.100 0.150 0.170 0.060 

5 0.100 0.200 0.090 0.070 

6 0.100 0.200 0.070 0.090 

7 0.100 0.150 0.060 0.170 

8 0.100 0.075 0.050 0.320 

9 0.100 0.050 0.040 0.160 

10 0.100 0.025 0.020 0.020 

Expected value 5.500 5.500 4.230 6.770 

Standard deviation 2.872 1.987 2.125 2.125 
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5.1 RM and preventive restocking policy 

 

In this section, RM was solved to obtain a delivery route with minimum expected total cost. 

The earliness penalty coefficient 1i  in RM was set equal to 0.5 and the tardiness penalty 

coefficient 2i  was set equal to 2, =1,2,3,4i . All possible solutions of RM using only one 

vehicle are listed in Table B.1 in Appendix B. The expected total costs of these solutions under 

the PR policy for RM (Section 4.1) are displayed in Table 2, as well as the percent improvement 

in expected total cost generated by the PR policy over the detour-to-depot recourse policy. 

 

Table 2 Expected total costs (column Cost) of possible solutions of RM under the PR policy and the percent 

improvement (column Imp.) in expected total cost over the DTD recourse policy 

Possible solution 
UD SD PSD NSD 

Cost Imp. (%) Cost Imp. (%) Cost Imp. (%) Cost Imp. (%) 

s1 712.74 4.36 685.50 9.41 552.26 3.23 838.44 6.27 
s2 732.00 11.09 662.29 17.43 629.73 10.50 840.69 10.27 
s3 954.03 7.85 946.59 6.96 828.34 3.80 1059.27 11.94 
s4 983.84 8.06 962.07 7.16 875.95 4.76 1069.25 12.57 
s5 947.20 12.62 938.72 15.63 851.65 9.21 1025.89 14.06 
s6 965.70 13.68 937.38 17.15 904.09 9.29 1027.46 15.35 
s7 693.05 13.28 640.19 20.96 577.86 8.10 799.40 14.94 
s8 672.54 15.19 595.11 22.65 568.11 16.37 771.34 14.40 
s9 656.82 15.85 601.82 22.55 530.20 10.80 768.60 18.62 

s10 580.05 11.96 532.97 13.70 470.42 13.55 682.17 12.91 
s11 804.60 15.97 777.35 21.36 725.86 11.73 861.46 18.60 
s12 879.59 19.93 851.25 24.71 834.73 13.95 912.08 23.18 
s13 424.57a 13.45 407.77a 19.05 309.44a 12.70 501.23a 17.14 
s14 467.19 18.35 432.87 21.63 405.05 17.06 531.09 18.99 
s15 545.31 15.62 533.41 15.88 439.88 8.31 637.56 20.70 
s16 670.74 18.41 628.13 21.00 604.32 11.92 716.38 24.83 
s17 636.74 24.01b 600.35 31.41b 584.86 17.51b 692.06 24.98b 
s18 596.18 18.52 561.71 25.31 533.15 14.00 660.04 18.88 
s19 1144.55 10.06 1124.36 12.03 1031.34 6.21 1239.75 12.95 
s20 1144.55 10.06 1124.36 12.03 1031.34 6.21 1239.75 12.95 
s21 1034.15 3.69 1005.61 4.64 878.45 2.59 1158.82 6.37 
s22 1152.01 9.57 1087.27 14.56 1027.75 5.65 1267.08 11.55 
s23 1290.86 13.01 1280.09 13.66 1214.29 6.55 1362.27 17.06 
s24 1145.16 10.79 1132.74 10.42 1039.65 6.49 1226.55 15.27 

Average 826.42 13.14 793.75 16.72 727.03 9.60 912.03 15.62 
a The lowest expected total cost under the corresponding customer demand distribution 
b The largest percent improvement under the corresponding customer demand distribution 

 

The results in Table 2 indicate that, by applying the PR policy for RM, obvious improvement 

in expected total cost can be achieved over the DTD recourse policy for most of the possible 

solutions of RM. For the optimal solution s13 (
2 3 4 1- - - - -DD C C C C  ) of RM under all four 
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different customer demand distributions, the percent improvement in expected total cost 

generated by the PR policy ranges from 12.70% to 19.05%. 

 

The results in Table 2 also indicate that the expected total cost of a possible solution of RM 

under the PR policy depends on the customer demand distribution. As distribution UD has a 

higher standard deviation than distribution SD, the expected total cost of a possible solution of 

RM is generally higher under distribution UD than that under distribution SD. Since 

distribution NSD has a higher expected value than distribution PSD, the expected total cost of 

a possible solution of RM is generally higher under distribution NSD. 

 

It is noted that, under a particular customer demand distribution, the percent improvement in 

expected total cost generated by the PR policy varies among different possible solutions of RM. 

For example, under distribution UD, the maximum percent improvement is 24.01% (s17, 

2 1 4 3- - - - -DD C C C C  ), while the minimum percent improvement is only 3.69% (s21, 

1 2 3 4- - - - -DD C C C C ). This variation is due to the difference between the PR policies for different 

possible solutions as discussed below, with solutions s17 and s21 under distribution UD taken 

as examples. 

 

Under the PR policy, when the vehicle departs from the depot with a full capacity Q , according 

to Lemma 2 in Section 4.1, for both solutions s17 and s21, the optimal decision is to proceed 

directly to the first customer ( 2C  in s17 and 1C  in s21). After service completion at the first 

customer, it is found that the optimal decision is also the same for solutions s17 and s21, i.e. to 

return to the depot to reload if the remaining vehicle capacity 7q   and to proceed directly to 

the second customer ( 1C  in s17 and 2C  in s21) if 7q  . 

 

After service completion at the second customer, for both solutions s17 and s21, three possible 

values exist for the vehicle departure time 2d   from the second customer. The probability 

distributions of q  at different possible values of 2d  are shown in Fig. 2. 
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Fig. 2 Probability distributions of q at different d2 under the PR policy for (a) solution s17 and (b) solution s21 

 

Fig. 2 shows that the probability distributions of q  at a certain departure time are the same for 

solutions s17 and s21. This is because homogeneous customer demand distributions were 

assumed and the optimal decisions are the same for solutions s17 and s21 in previous two stages 

of decision-making. For each 2d   in Fig. 2, the minimum expected cost from the second 

customer onward 1, ,2 2( , )Pf q d  along the planned delivery route is depicted in Fig. 3. 

  

Fig. 3 Function 
1, ,2 2( , )Pf q d  at different d2 for (a) solution s17 and (b) solution s21 

 

Fig. 3(a) indicates that 1, ,2 2( , )Pf q d   is equal to 1, ,2 2( , )PH q d   when 11q    under all three 

possible values of 2d , i.e. the optimal decision is to return to the depot to reload if 11q   

after serving the second customer. The threshold value 2h  thus equals 11 (regardless of 2d ) 

under the PR policy for solution s17. Additionally, it can be seen from Fig. 2(a) that the 

probability of 11q   is 0.85. This means that the vehicle is very likely to return to the depot 

to reload after serving the second customer under the PR policy for solution s17. 

 

On the other hand, Fig. 3(b) indicates that, under the PR policy for solution s21, the vehicle 

returns to the depot to reload only in the case when 2d  is 10:40AM and 2q  . This case 
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occurs with probability 0.12 under the PR policy for solution s21 according to Fig. 2(b). This 

implies that in most cases the vehicle will proceed directly to the third customer after serving 

the second customer under the PR policy for solution s21.  

 

To further investigate the reason for the difference between the PR policies for s17 and s21, the 

solution structures of s17 and s21 are displayed in Fig. 4.  

C3

C2

D

C1

30km

C4

50km

70km

(a)

C3

C2

D

C1

30km

C4

50km

40km

First-stage solution

Type 1 decision

Type 2 decision

(b)

 

Fig. 4 Two types of decisions that the vehicle can make after serving the second customer along the planned 

delivery route in (a) solution s17 and (b) solution s21 

 

In Fig. 4, two types of decisions that the vehicle can make after it visits the second customer 

are depicted: type 1 is to proceed directly to the third customer and type 2 is to return to the 

depot to reload before continuing to the third customer. For type 1 decision, if the vehicle 

capacity is exceeded at the third customer, the vehicle must travel back to the depot to reload. 

It can be seen from Fig. 4 that the difference between the costs of these two types of decisions 

is much larger for solution s17 than that for solution s21. For s17, this difference is 90 

(70+50+50-30-50), while for s21, it is only 20 (30+40+40-50-40). Therefore, under the PR 

policy, the vehicle is more likely to make the type 2 decision in s17, while this decision may 

not be so beneficial and attractive for s21. This shows that the solution structure may affect the 

PR policy for a particular solution of RM. 

 

5.2 PM and preventive restocking policy 

 

In section 5.1, the objective is to find a delivery route with minimum expected total cost, 

whereas the on-time delivery probabilities to the customers are ignored. In this section, PM 
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was solved to search a delivery route which maximizes the sum of the on-time delivery 

probabilities to the four customers in Fig. 1. The possible solutions of PM using one vehicle 

are the same as those of RM listed in Table B.1 in Appendix B. The objective function values 

(i.e. the sum of on-time delivery probabilities to all customers) of these solutions of PM under 

the PR policy (Section 4.2) are displayed in Table 3, as well as the percent improvement in 

objective function value generated by the PR policy over the DTD recourse policy. 

 

Table 3 Objective function values (column Obj.) of possible solutions of PM under the PR policy and the percent 

improvement (column Imp.) in objective function value over the DTD recourse policy 

Possible solution 
UD SD PSD NSD 

Obj. Imp. (%) Obj. Imp. (%) Obj. Imp. (%) Obj. Imp. (%) 

s1 1.85 0 1.95 0 1.98 0 1.69 0 
s2 2.27 0 2.33 0 2.76 0 1.79 0 
s3 1.00 0 1.00 0 1.00 0 1.00 0 
s4 1.00 0 1.00 0 1.00 0 1.00 0 
s5 2.00 8.11 2.00 2.83 2.00 1.12 2.00 18.68 
s6 2.00 8.11 2.00 2.83 2.00 1.12 2.00 18.68 
s7 2.00 8.11 2.00 2.83 2.00 1.12 2.00 18.68 
s8 2.70a 15.63 2.89a 21.25 2.96 6.47 2.44a 25.96 
s9 1.00 0 1.00 0 1.00 0 1.00 0 

s10 1.85 24.58b 1.95 35.21b 1.98 10.00b 1.69 35.02b 
s11 2.00 0 2.00 0 2.00 0 2.00 0 
s12 2.00 0 2.00 0 2.00 0 2.00 0 
s13 2.41 0 2.38 0 3.17 a 0 1.80 0 
s14 2.70a 15.63 2.89a 21.25 2.96 6.47 2.37 22.61 
s15 2.00 8.11 2.00 2.83 2.00 1.12 2.00 18.68 
s16 2.00 8.11 2.00 2.83 2.00 1.12 2.00 18.68 
s17 2.00 0 2.00 0 2.00 0 2.00 0 
s18 2.00 0 2.00 0 2.00 0 2.00 0 
s19 1.00 0 1.00 0 1.00 0 1.00 0 
s20 1.00 0 1.00 0 1.00 0 1.00 0 
s21 1.00 0 1.00 0 1.00 0 1.00 0 
s22 1.00 0 1.00 0 1.00 0 1.00 0 
s23 1.00 0 1.00 0 1.00 0 1.00 0 
s24 1.00 0 1.00 0 1.00 0 1.00 0 

Average 1.70 4.02 1.72 4.02 1.78 1.19 1.62 7.37 
a The largest objective function value under the corresponding customer demand distribution 
b The largest percent improvement under the corresponding customer demand distribution 

 

Table 3 shows that the average percent improvement generated by the PR policy is less than 8% 

under all four customer demand distributions and is less than 2% under distribution PSD. 

Additionally, the percent improvement varies among some of the possible solutions of PM. For 

example, under distribution UD, the maximum percent improvement is 24.58% (s10, 

3 2 1 4- - - - -DD C C C C ), while no improvement is achieved for solutions s17-s24. This variation is 

discussed below, with solutions s10 and s19 (
1 3 2 4- - - - -DD C C C C ) taken as examples. For s10, 
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the sum of the on-time delivery probabilities from the second customer onward 2, ,2 2( , )Pf q d  is 

depicted in Fig. 5. 

 

 

Fig. 5 Function 
2, ,2 2( , )Pf q d  at different d2 for solution s10 

 

Fig. 5 shows that, when 2d  is 09:30AM, 2, ,2 2( , )Pf q d  equals 2, ,2 2( , )PH q d  for all possible 

values of q . The optimal decision after the visit to the second customer is then to return to the 

depot to reload when 2d  is 09:30AM, regardless of the value of q . Moreover, the probability 

that 2d  is 09:30AM equals 0.85 as shown in Fig. 6. The vehicle thus has a probability of 0.85 

to return to the depot to reload after serving the second customer under the PR policy. This 

distinctly differs from the DTD recourse policy under which, after visiting the second customer, 

the vehicle returns to the depot to reload only when =0q .  

 

Fig. 6 Probability distributions of q at different d2 under the PR policy for solution s10 

 

Note that in Fig. 5, since the departure time 11:10AM is too late to meet the time windows of 

the remaining customers, the decision of whether or not to return to the depot at time 11:10AM 

does not impact the objective function value of solution s10. More specifically, both 
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2, ,2 2( , )PH q d  and 2, ,2 2( , )PH q d  are equal to zero when 2d  is 11:10AM. 2, ,2 2( , )Pf q d  is thus 

also equal to zero when 2d  is 11:10AM. 

 

Fig. 7 illustrates why the vehicle is likely to return to the depot to reload when 2d  is 09:30AM 

under the PR policy for solution s10. 
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Fig. 7 Two types of decisions that the vehicle can make after serving the second customer along the planned 

delivery route in solution s10 

 

In Fig. 7, if the vehicle makes type 2 decision after leaving 2C  at 09:30AM, it can still meet 

the time window of 1C . Type 2 decision is preferable to type 1 decision here because it can 

lower the probability of the vehicle capacity being exceeded at 1C  and thus increase the on-

time delivery probability to 1C . Moreover, type 2 decision at 2C  does not impact the on-time 

delivery probability to 4C . The time window of 4C  cannot be met since the earliest possible 

departure time from 1C  is 10:00AM and the earliest possible arrival time at 4C  is 11:10AM. 

 

Finally, solution s19 is taken as an example to examine why no improvement in objective 

function value is achieved by the PR policy for some of the possible solutions of PM (e.g. 

solutions s17-s24). The planned delivery route in solution s19 is shown in Fig. 8. 

 

Fig. 8 shows that the first customer ( 1C ) along the planned delivery route in solution s19 has 

the latest time window among all four customers. As the vehicle has to wait until 10:00AM at 

1C , the earliest possible departure time from 1C  is 10:00AM. This departure time is too late 

to meet the time windows of the remaining customers, regardless of the type of decision that 
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the vehicle makes after leaving 1C . The PR policy is thus ineffective in this situation. Similar 

solution structures to that of s19 can be found in solutions such as s17, s18 and s20-s24. 
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Fig. 8 The planned delivery route in solution s19 

 

5.3 RMPC and preventive restocking policy 

 

In Table 3, s13 is the optimal solution to PM under the PR policy and customer demand 

distribution PSD. The on-time delivery probability to customer 1C  in s13 is 0.4 under the PR 

policy and distribution PSD. If 1C  requires an on-time delivery probability higher than 0.4, 

then s13 becomes infeasible.  

 

In this section, RMPC was solved to determine the minimum number of vehicles required to 

satisfy the on-time delivery requirements of the four customers in Fig. 1. The required on-time 

delivery probability i  for each customer iC  was set equal to 0.8, 1,2,3,4i  . The fixed 

cost f  of employing one vehicle was set to 1000. Q  was set to 15. 1i  was set to 0.5 and 

2i  to 2, =1,2,3,4i . The possible solutions of RMPC using one vehicle are the same as those 

of RM listed in Table B.1 in Appendix B and possible solutions using two or three vehicles are 

listed in Table B.2 in Appendix B. The expected total costs (including fixed vehicle employment 

cost) of the feasible solutions of RMPC under different customer demand distributions and 

recourse policies are shown in Table 4. 
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Table 4 Expected total costs of the feasible solutions of RMPC 

Feasible solution 
UD SD PSD NSD 

DTD PR DTD PR DTD PR DTD PR 

Using 2 

vehicles 

s33 Inf.a 2339.50 Inf. 2307.01 Inf. 2294.37 Inf. Inf. 

s45 Inf. 2327.16 Inf. 2308.59 Inf. 2294.31 Inf. Inf. 

s49 2320.00 2319.50 2291.50 2291.38 2281.63 2281.63 Inf. Inf. 

s50 2301.00 2296.30 2278.20 2277.33 2270.30 2270.30 Inf. 2315.28 

s54 2350.00 2325.70 2321.50 2316.18 2311.63 2310.65 Inf. 2334.98 

s58 2335.00 2319.00 2306.50 2302.50 2296.63 2295.34 Inf. Inf. 

Using 3 

vehicles 

s61 - - - - - - 3363.89 - 

s63 - - - - - - 3373.89 - 
a Infeasible solution 

 

Table 4 shows that in all four customer demand distribution cases, at least two vehicles are used 

to meet the customers’ on-time delivery requirements. Under distribution NSD and the DTD 

recourse policy, at least three vehicles must be used. It is also found in Table 4 that the number 

of feasible solutions may increase by applying the PR policy. For instance, under distribution 

UD, solutions s33 and s35 are feasible under the PR policy, while they are infeasible under the 

DTD recourse policy. Under distribution NSD, the use of the PR policy reduces the number of 

vehicles used in the feasible solutions of RMPC. 

 

6. Conclusions  

 

In this paper, the VRPSD-TW has been investigated with taking account of the on-time delivery 

issue and different recourse policies. Three probabilistic models have been proposed for the 

VRPSD-TW to address on-time delivery from different perspectives. RM and PM were 

formulated from the perspectives of the carrier and the customers, respectively. RMPC was 

proposed to minimize delivery cost, while satisfying customers’ on-time delivery requirements. 

 

The PR policy has been shown to be applicable in the three models proposed for the VRPSD-

TW. Under the traditional DTD recourse policy, the vehicle returns to the depot to reload only 

when it runs out of stock. However, under the PR policy, the vehicle can return to the depot to 

reload after visiting one customer, if its remaining capacity is less than a threshold value. The 

threshold values can be determined based on the customer demand distributions and the 

customer visiting sequence. This threshold structure makes the PR policy easy to implement. 
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To demonstrate the applicability of the proposed models and the RP policy, an illustrative 

example was conducted. The results of the illustrative example showed that the PR policy can 

help reduce the cost of the possible solutions of RM compared with the traditional DTD 

recourse policy, but it has a smaller impact on the possible solutions of PM. For both RM and 

PM, the effectiveness of the PR policy varies across different possible solutions and is affected 

by the solution structure. For RMPC, more vehicles may be required to meet customers’ on-

time delivery requirements and the use of the PR policy may increase the number of feasible 

solutions and reduce the number of vehicles required. 

 

The introduction of customer demand uncertainties and the PR policy poses severe 

computational challenges for solving the proposed models in larger problem instances. Recently, 

several exact or heuristic algorithms (Baldacci et al. 2011; Goodson et al. 2012; Zhang et al. 

2013; Gauvin et al. 2014; Beraldi et al. 2015) have been developed in the literature to solve 

problems that are closely related to the VRPSD-TW. How to extend these efficient solution 

algorithms for the proposed VRPSD-TW models is warranted for further study. In this study, a 

simple example was adopted to illustrate the essential ideas of this paper. Further studies are 

required to examine the performance of the proposed models and the effect of the PR policy in 

larger problem instances. 
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