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Abstract

Convex vector (or multi-objective) semi-infinite optimization deals with
the simultaneous minimization of finitely many convex scalar functions
subject to infinitely many convex constraints. This paper provides char-
acterizations of the weakly efficient, efficient and properly efficient points
in terms of cones involving the data and Karush-Kuhn-Tucker conditions.
The latter characterizations rely on different local and global constraint
qualifications. The results in this paper generalize those obtained by the
same authors on linear vector semi-infinite optimization problems [Eur J

Oper Res 227 (2013) 12-21].

1 Introduction
We consider convex optimization problems of the form

P:"min" f(z)=(fi(z),.., fp(x)) st. g(z) <0,teT, (1)

where © € R™ (the space of decisions), f(z) € RP (the objective space), the
index set T is a compact Hausdorf topological space, f; : R — R is a convex
function, ¢ = 1,...,p, g; is convex for each ¢ € T, and the function (¢, z) — g(x)
is continuous on 7' x R™. The continuity of f is consequence of the assumptions
on its components f1, ..., fp. The model (1) includes ordinary convex (scalar and
vector) optimization problems just taking the discrete topology on the (finite)
index set. Since the optimality theory for this class of problems has been thor-
oughly studied, we assume in the sequel that T is infinite. When p > 2, P is
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a convex vector semi-infinite optimization (SIO in brief) problem; otherwise, P
is a convex scalar SIO problem. Replacing in (1) the space of decisions R"™ by
an infinite dimensional space (typically a locally convex Hausdorfl topological
vector space) one gets a convex (scalar or vector) infinite optimization (IO in
short) problem.

We assume throughout the paper that p > 2 and the feasible set of P, denoted
by X, is non-empty. Obviously, X is a closed convex set whereas its image by
the vector-valued objective function f (X) C RP is possibly non-convex and non-
closed. The vector SIO problem P can be reformulated as a vector optimization
problem with the single convex constraint function ¢(x) := maxser g:(x), called
marginal function:

P:"min" f(z)=(fi(z),.., fp(x)) st. px)<O0.

Throughout the paper we use the following notation. Given x,y € R™, we
write x £ y (x < y) when z; < y; (z; < y;, respectively) for all i = 1,...,m.
Moreover, we write © < y when x < y and x # v.

An element T € X is said to be efficient (weakly efficient) if thereisno & € X
such that f(Z) < f(T) (f (Z) < f(T), respectively). There are many notions
of proper efficiency in the literature, as those introduced by Geoffrion, Benson,
Borwein and Henig. Since P is convex, all these concepts are equivalent (see,
e.g., [9]), so that we recall only Geoffrion’s definition: a feasible point T € X is
said to be properly efficient if there exists p > 0 such that, for all : = 1,...,p and
T € X satisfying f;(Z) < fi(T), there exists j € {1, ..., p} such that f;(Z) > f;(Z)
and 7]01(@ — fl(@ <p.

[i(@) = f; (@)

We denote by X,r, Xg, and X, g the sets of properly efficient points, effi-
cient points, and weakly efficient points of P, respectively. Obviously, X, C
Xp C Xyg, with X = X,p whenever one component of f is identically zero,
and X = X,g in the trivial case that f is the null function. Moreover, it is
known that f (X,g) is dense in f (Xg) ([17]; see also [9, Theorem 3.17]).

Given a (possibly non-convex) vector SIO problem

P:"min" f(z) st zeX,

T € X is said to be locally (properly, weakly) efficient solution of P if there
exists a neighborhood A of T such that T is (properly, weakly) efficient solution
of

Py :"min" f(z) st.ze€ XNN.

Global and local concepts coincide in convex vector SIO thanks to the convexity
of X and the componentwise convexity of f. For instance, if T € X is not weakly
efficient there exists £ € X such that f(Z) < f(Z); since f(AT+ (1 —N)7) <
f (@) for all A € ]0,1[, with AT + (1 —\)Z € X NN for A sufficiently small,
T cannot be a locally weakly efficient solution of P. For this reason, in convex
vector SIO, we can characterize the (proper, weak) efficiency on the basis of
local information. The known tests for non-linear vector optimization classify



a given € X as locally (properly, weakly) efficient solution or not through
conditions involving subsets of the objective space RP or suitable scalarizations
of P (see, e.g., [2], [9]).

In this paper, on convex vector SIO, we give conditions for Z € X, g, T € X,
and T € X,,g which are expressed in terms of convex cones contained in the
decision space R™ or in terms of the existence of Karush-Kuhn-Tucker (KKT in
short) multipliers which can be computed from T and the data describing P.

As a general rule, to obtain a checkable necessary optimality condition for a
given constrained optimization problem, one needs to assume some property of
the constraint system called constraint qualification (CQ in short). We consider
in this paper four CQs which extend those used in our previous paper [12]
on linear vector SIO. The strongest one is the natural extension of the CQ
introduced by M. Slater in a seminal work on scalar optimization published in
1950, which was adapted to linear scalar SIO by Charnes, Cooper and Kortanek
in the 1960s. A weaker CQ for convex scalar SIO has been proposed in [23].
The locally Farkas-Minkowski CQ was first defined in [26] for linear scalar SIO,
and then extended to convex scalar SIO in [13] and to convex scalar IO in [8].
CQs weaker than the locally Farkas-Minkowski one have been introduced in
[23], for convex SIO problems, and in [22], for convex IO problems. The local
Slater CQ, introduced in Section 3 of this paper, seems to be new while the
extended Kuhn-Tucker CQ was introduced in [29] for convex IO as an extension
of that used by H'W. Kuhn and A.-W. Tucker in [19] for ordinary non-linear
optimization problems. Section 1 of [22] reviews the state of the art on CQs in
convex scalar optimization.

The stability of linear and non-linear vector SIO has been investigated since
the last 1980s from different perspectives, e.g., the pseudo-Lipschitz property
and the lower and upper semicontinuity of the efficient set mapping under dif-
ferent types of perturbations, well-posedness, and generic stability (see, e.g., [4],
[5], [6], [10], [30], [31]), while the existing literature on optimality conditions for
vector SIO and vector 10 problems is surprisingly limited.

The main antecedent of this paper is [12], on linear vector SIO, which pro-
vides characterizations of the weakly efficient, efficient and properly efficient
solutions in terms of cones involving the data and KKT conditions. In [3], on a
class of vector SIO problems involving differentiable functions whose constraints
satisfy certain invex-type conditions and are required to depend continuously
on an index t ranging on some compact topological space T, KKT conditions
for T € Xpp, T € Xg and T € X, are given. In [14], on non-convex dif-
ferentiable vector SIO, the authors discuss constraint qualifications as well as
necessary and sufficient conditions for locally weakly efficient points and present
optimality conditions for properly efficient points in the senses of Geoffrion and
of Kuhn and Tucker [19]. Finally, in [7], on non-smooth vector IO problems
posed on Asplund spaces whose index set T' has no topological structure, neces-
sary conditions as well as sufficient conditions for weakly efficient solutions are
obtained appealing to the machinery of non-smooth analysis and a certain CQ,
for non-convex systems introduced in [4], which can be seen as an extension
of the so-called basic CQs introduced in [21], for scalar IO problems posed in



Banach spaces.

The convex vector SIO problems considered in this paper arise in a natural
way in robust linear vector optimization. Indeed, consider an uncertain linear
vector optimization problem

(LP) "min" (¢]z,..., c;a:) st.ax>b,teT,
where T is a finite set, ¢; € U; C R™, i = 1,...,p, and (as, by) € Vy C R
t € T. The uncertainty sets U;,© = 1, ..., p, are arbitrary non-empty sets while
Vi, t € T, are non-empty compact sets. The robust minmaz counterpart of (LP)
(term coined in [15]) enforces feasibility for any possible scenario and assumes
that the cost of any (robust) feasible decision will be the worst possible, i.e., the
problem to be solved is

"min" ( max ¢fx,..., max ¢} x| s.t. al x> b, V(ag, b)) €Vt €T (2)
c1 €U Cpeup P

Observe that (2) is as (1), just taking f; (x) = max., ey, ¢; = (i.e., the support

function of U;), i = 1, ..., p, and expressing the constraints either asb—a'z <0

for all (a,b) € U Vi (a compact index set) or as g, (¢) < 0, with g; () =
teT

max {b —a'z:(a,b) € U Vt} for all t € T (a finite index set equipped with
teT
the discrete topology).

This paper is organized as follows. Section 2 recalls basic concepts of convex
analysis to be used later, applying some of them to characterize the subdiffer-
ential cone and its interior, and to describe the relationships between several
types of "tangent" cones which are closely related with the negative polar of the
active cone. Section 3 extends to convex vector SIO four out of six constraint
qualifications introduced in [12] for linear vector SIO. The two exceptions, the
Farkas-Minkowski and the local polyhedral constraint qualifications, have not
been considered in this paper as they are too strong in the convex framework.
For methodological reasons, we give simple direct proofs of the lemmas in Section
3 even though most of them could be also obtained via linearization. Finally,
Section 4 provides different characterizations of the sets X,r, X, and X, in
terms of cones and KKT multipliers. Here the proofs are necessarily direct as
the objective functions are not linear. These results are applied to the robust
linear vector optimization problem (LP).

2 Preliminaries

We start this section by introducing the necessary notation and concepts. Given
Z CR™ int Z, cl Z, and bd Z denote the interior, the closure, and the boundary
of Z, respectively. The scalar product of z,y € R"™ is denoted by z 'y, the
Euclidean norm of z by ||z|, the corresponding open ball centered at x and
radius € > 0 by B (z,¢), and the zero vector by 0,. We also denote by conv Z



the convex hull of Z, while cone Z := R conv Z denotes the convex conical hull
of ZU{0,}. If Z is a convex cone, its positive (negative) polar cone is Z* :=
{d eR™:2Td>0Vz e Z} (Z~ = {d eR":2Td<0Vze Z}, respectively).
A convex cone is said to be pointed whenever it does not contain lines. We use
frequently in this paper the topological interior of polar cones.
We make three claims concerning cone Z, where Z is an arbitrary non-empty
set of R™:
First,
0, ¢ conv Z < {cone Z is pointed and 0,, ¢ Z}. (3)

We shall prove that 0,, € conv Z if and only if cone Z contains lines or 0,, € Z.
If cone Z contains hnes there exists u € R"\ {0,,} such that +u € cone Z.

Then, we can write u = Z%Zz and —u = Zﬁ ziy, With a1, ..., an, By, ..., B, €

i=1 i=1
Ry, z,€Z, 1=1,...,n, so that

= (Z (0 + 51')) Z (a; + B;) zi € conv Z.
i=1 i=1

Alternatively, if 0,, € Z, it is obvious that 0,, € conv Z.
Conversely, if 0,, € conv Z, there exist a; € Ry and 2z, € Z, i = 1,...,n,

such that ZO“ =1 and Z a;z; = 0,. Let j € {1,...,n} be such that a;; > 0. If
=1
zj # Oy, putting o := Y o > 0, it follows that u := —%4z; = 3~ %iz; € cone Z,
=y iz
so that cone Z contains the line spanned by u. Now, suppose that z; = 0,,. Then

i#]
If a; = 0 for all ¢ # 7, then 0,, = z; € Z. Otherwise, there exists k # j such that

ap >0, in (4), and we repeat the argument above.
Second,

0, ¢ Z = int (cone Z)* C{deR":2"d>0Vz€ Z}. (5)
In fact, assume that 0, ¢ Z and d € int (cone Z)*. Let € > 0 be such that
clB(d,e) C (coneZ)" . Given z € Z, d — ETaT € (cone Z)* while z € cone Z,
so that 2T (d — Eﬁ) =2"d—¢lz] >0andso z"d > ¢|z| > 0. Obviously, if

ZN(=Z) # 0, then both members of the inclusion in (5) are empty.
Third,

Z compact = {d € R":27d > 0Vz € Z} C int (cone Z)". (6)

In fact, by assumption, there exists § > 0 such that ||z]] < § for all z € Z.
Let d € R™ be such that z'd > 0 for all z € Z. By the compactness of Z,



n

€ :=min,ez 2'd > 0. Given x € cone Z, we can write x = Zuizi, with p; > 0
i=1

and z; € Z, i =1,...,n. Then, given u such that ||ul| < 1, one has

(d—i- u) Zuzl (d—|— u) Zm(e—f‘z u|)>0

Thus, B (d, %) C (cone Z)" and d € int (cone Z)" . The inclusion in (6) becomes
an equation between non-empty sets whenever Z is compact and 0,, ¢ conv Z
(as cone Z turns out to be a pointed cone).
The one-sided directional derivative of a real-valued function i : R™ — R at
T € R™ with respect to a vector d € R™ is defined to be the limit
h(Z + ed) — h(ZT)

/!
H(aid) =gy SELED=E

if it exists. If h is convex, then it is continuous, the directional derivative function
at T € R™, h/(ZT;.), is a finite convex function too, and the subdifferential

O(T) := {g ER": h(z) > h(T) +€ (v —T) Vo € R"} ,

is a non-empty compact convex such that h/(Z;d) = max £'d (see, e.g., [27,

£€Oh ()
Theorems 23.1 and 23.4]).

Lemma 1 Let h : R" — R be a convex function and let d € R™ be a descent
direction of h at T € R™. Then, h'(T;d) < 0.

Proof: Since d is a descent direction of h at T there exists S > 0 such that

hZT +ed) — h(Z) < 0 for all € €0, F]. (7)
Thus Wt ed)— h(E
(@ d) = lim (“"”6) — M@)o,

On the other hand
W (Z;d) = max €'d.
£€OR(T)
Now, taking into account that 0,, ¢ Oh(Z) and Oh(ZT) is compact, if »'(T;d) =0
~ ~ ~T
there would exists § € Oh(T), § # 0, such that { d = 0. Thus, in particular, for
& and T +ed with € €0, 3]

hE +ed) — h(T) > € d=0
which contradicts (7). O

It is easy to prove that, under the assumptions on P,

X={eeR ¢ w<ey—g/y), V(tLy) eTxR", gy} (8



From (8) and [13, Theorem 9.3] one gets that X is compact if and only if

cone U 0g: (y) | = R™. This condition (expressed in terms of the data),
(t,y) €T XR™

guarantees the compactness of f (X). More information on X can be obtained
from the linearization (8) of X under the constraint qualifications introduced in
Section 3.

Two convex cones involving the data of the vector SIO problem P in (1) are
basic in our approach: the convex conical hull of the subdifferentials at T € X
of the components of f,

G(Z) := cone (U Gfi(:r)> ,

i=1

that we shall call subdifferential cone at T, and the active cone at T € X,

A (%) := cone U og(T) |,

teT(T)

where T'(Z) := {t € T : g:(T) = 0} is the set of active indices at T.
We are interested in the negative polar of both cones, G(Z)~ and A ()™,
and their corresponding interiors, int G(Z)~ and int A (%)~ .

Lemma 2 Given T € X, the following statements hold:
P

(i) 0, ¢ conv (0 8]2(1‘)) if and only if G(T) is pointed and 0, ¢ |J 0f;(T).
i=1 i=1
(i) G(@)~ ={d e R" : f/(xT;d) <0, i=1,...,p}.
(iii) 1f 0, ¢ U) 0:(), then
i=1

intG(Z)~ = {d eR":¢Td<0VEe ij 8fi(x)}
i=1

9)
={deR": f{(z;d) <0, i=1,...,p},

with int G(T)~ # 0 whenever 0,, ¢ conv (ij ofi (x)) .
i=1

P
Proof: (i) It is straightforward consequence of (3), just taking Z = |J 9f;(%).
i=1
(ii) Since f!(z;d) = ) rg?)(g)de, one has that £'d < 0 for all £ € afi(T) if
€afi(x
and only if f/(z;d) <0,i=1,...,p. So,

G~ = {de R":£7d<0V¢e O 3fi(x)}

=1

(10)
={deR": f{(z;d) <0, i=1,...,p},



(i) Again by the identity f/(z;d) = ) rg?)(( )§Td, one has that £'d < 0
€ofi(z
for all £ € Of;(%T) if and only if f/(Z;d) < 0, ¢ = 1,...,p. Assuming that

p
0, ¢ U 9fi(T), from (5) and (6), one gets (9). The additional condition that
i=1

p

0, ¢ conv (U ofi (a:)) guarantees, by (i), that G(Z) is pointed, which in turn
i=1

implies that int G(Z)~ # 0. O

The KKT conditions will be obtained by analyzing the relationships between
negative polar of the active cone A (Z) and four "tangent" cones at T defined as
follows:

The cone of feasible directions at T is

D(X;Z) ={d € R" :3u > 0 such that T+ pud € X}.

It is known that D (X;%) C A(Z)~ ([13, Lemma 7.7]).

The attainable cone at T, denoted by A(X; ), is formed by those d € R™ such
that there exist 7 > 0 and a vector function h € C! ([0, 7[,R"™) with h(0) = 7,
h'(0) =d, and h(s) € X for all s € [0, 7].

The Bouligand tangent cone at T, denoted by T'(X;T), is formed by those
d € R™ such that there exist sequences {sk}keN and {dk}keN such that s¥ | 0,

d* — das k — oo and T + s*d* € X for all k € N. In that case, since
d¥* € D(X;7) forallk € N, d € cl D(X;7).

The interior tangent cone at Z, denoted by T¢(X;Z), is formed by those
d € R™ such that there exist 7 > 0 and a neighborhood A of d such that
T+ sN C X forall se]0,7[.

Lemma 3 (/2], [16], [20], [25], [27], [32]) Given T € X, the cones T(Z;x),
D(Z;z), A(Z;x), and T(Z;x) are all convex and satisfy

TH(X;7) =int D (X;7) C D(X;7) C A(X;7) =T(X;T) = cl D(X;7). (11)
Example 4 Consider the closed convex set
X ={(z1,22) ER? 1 t(x1 —2)> —t — 2, <0Vt € [0,1]}

and the point T = (1,0) € X. Since

(:E) . —xz’ 1 S 1 S 37
plr)= 23 — 4wy + 3 — 29, otherwise,

one has
X:{CITERQZ@(Z‘)SO}:{.’IJERQZ.Q?QZIH&X{.’I,'%—4$1+3,O}},

so that
D(X,f) = {dERQ :2d1 +ds > 0,ds > O}U{OQ},

AX;T) =T(X;7) = {d € R*: 2d; + d3 > 0,dp > 0} = ] D(X;7),



and
T'(X;z) = {d € R*: 2dy + dp > 0,dy > 0} = int D(X;T).

Hence, the inclusions in (11) are strict. Observe that
A(T) = cone {(—2¢,—1) : t € [0,1]} = cone {(0,-1),(-2,—1)}
is the negative polar of any of the cones considered in Lemma 3.
Lemma 5 GivenT € X,
A@) ™ ={deR": ¢ (7;d) <0}

and
int A(Z)” ={d eR": ¢ (7;d) < 0}

Proof: One has

¢ (T;d) = max,cr(z) MaXeeay, (z) ¢'d
12
— max de:EE U 09:(T) (12
teT ()

From (12), we have ¢’ (Z;d) < 0 if and only if £ 'd < 0 for all £ € U 0g4(T)
teT (%)
if and only if d € A(T) .
Similarly, by the compactness of U 09:(T), ¢' (T;d) < 0 if and only if
teT ()
£Td<0foral¢e U 0g:(T) if and only if d € int A(Z) ™. O
teT ()

3 Constraint qualifications

Next we introduce four constraint qualifications which are frequently encoun-
tered in the SIO literature or are inspired in classical constraint qualifications
of non-linear optimization. When the constraint functions are affine, these con-
straint qualifications collapse to those introduced, under similar names, in [12]
(for linear vector SIO). Even more, the below CQ hold for the convex system
{g:(z) <0,t € T} if and only if the corresponding linear versions hold for the
linear system in (8).

Definition 6 We say that P satisfies the Slater constraint qualification (SCQ)
if there is a Slater point 2°, i.e. g;(z") <0, for allt € T.

In other words, SCQ holds if and only if the marginal function ¢ takes a
negative value at some point (observe that the marginal function of the linear
system in (8) is also ¢). By continuity of ¢, SCQ implies that int X # (, but
the converse is not true. It is worth noting that, in contrast with the other three
CQs to be introduced next, SCQ is not associated with a given feasible solution.



Definition 7 We say that the locally Farkas-Minkowski constraint qualification
(LEFMCQ) holds at T € X if A(T) = D(X;T)".

Obviously, if LFMCQ holds at T € X, then A(T) is closed. If T € int X, then
A(Z) = D(X;Z)” = {0,}. Therefore the LFMCQ should be investigated only
at the boundary feasible points. Moreover, if this property holds and T € bd X,
we have A(Z) # {0, }, i.e. there are binding constraints at T.

Lemma 8 (/13, Theorem 7.9]) SCQ implies LFMCQ at any feasible solution.

Consequently, if P satisfies SCQ, then bd X = {z € X : A(x) # {0,}}.
Moreover, geometric information on X in terms of the data can be obtained by
combining (8) and [13, Theorem 5.9].

Definition 9 We say that P satisfies the local Slater constraint qualification
(LSCQ) at T € X when either T (T) = 0 or there exists a vector d € R"
satisfying

d"¢ <0 foraliée | 0gi(@). (13)

teT(T)

Proposition 10 LSCQ holds at T € X if and only if

T () # 0 = 0, ¢ conv U 0g:(T)

teT(T)

Proof: We can assume that 7' () # @. The direct statement is obvious
while the converse statement is consequence of the assumptions on P. In fact,
the continuity of ¢ — ¢.(T) on the compact set T entails that 7' (Z) is a compact

set, as well as U 0g:(T) (see e.g. [18, Theorem 4.4.2]). Due to the com-
teT (%)

pactness of conv U 0g+(T) | and the separation theorem, the condition
teT(T)

0, ¢ conv U 0g+(T) | guarantees the fulfilment of LSCQ at =. O
teT(T)

Corollary 11 If P satisfies LSCQ at T € X, then A(T) is a pointed closed
cone.

Proof: We can assume T (%) # () (otherwise A (ZT) = {0,} is closed). By

Proposition 10, since conv U 0g+(T) | is a compact convex set which does

10



not contain the origin, A (Z) = cone U 0g+(T) | is a pointed closed cone.
teT ()
g

The following example shows that the converse statement of Corollary 11
does not hold.

Example 12 Letn = 2 and g;(z) = (1—t) |z1 — 1|+|x2|—1+¢ for oll T = [0,1].
Then it is easy to see that

X={zeR?’:g(z)<0, t=0,1} =[0,2] x {0}.
We have T'(02) = [0, 1], with
9g:(02) = conv {(t—1,-1),(t—1,1)} ={t —1} x [-1,1],t € [0,1].
Thus, |J 0g:(02) =[-1,0] x [-1,1] and A(03) = cone( U agt(02)> =
teT (02) teT'(02)

R_ x R is closed. Finally, as £(0,1) € dgp(02), LSCQ fails at 0s.

Definition 13 We say that P satisfies the extended Kuhn-Tucker CQ (EK-
TCQ) at T € X when

{deR": ¢/ (z;d) <0} C A(X;7T). (14)

As a consequence of the Ioffe and Tihkomirov’s theorem on the subdifferen-
tial of the supremum function (see e.g. [32, Theorem 2.4.18] and [16, Proposition
6.3]), when T € bd X, it holds that

/7;d = /7;d. 15
¢ (7;d) trer%)gt(x ) (15)

The next lemma provides a useful approximations of the tangent cones to X
at T € bd X in terms of the directional derivative function ¢’ (%;-) .

Lemma 14 Let T € bd X. Then,

{deR": ¢/ (7,d) <0} C T'(X;Z) C T(X;7) C {d € R": ¢/(z,d) < 0}.
Proof: We first show that {d € R" : ¢/(F,d) < 0} C T"(X;Z). Let d € R™ be
such that ¢'(Z,d) < 0. Then, there exists 7 > 0 such that ¢(T + sd) < 0 for all

s g]O, 7[. By continuity of ¢, there exist £y > 0 and an open neighborhood A
of d such that ¢(Z + td) < 0 for all t € ]0,to[ and all d € N. That is,

deT'({z eR": p(z) <0},7) C T'({x € R" : p(x) < 0},7) = T"(X; 7).

The inclusion T%(X ;%) C T(X;Z) is well-known (see, e.g. in [28]).

11



Finally, consider d € T(X;T). Then, there exist sequences {sk}k en and
{dk}keN such that s* | 0, d* — d as k — oo and ¢(Z + s¥d*) < 0 for all k € N.
Since ¢(Z) = 0, one has

o(T + sd*) (@ + sFdF) — o(T)

- = : <0VkeN.
s s
Now, taking limits as k — oo, we conclude that
= k gk _
SD(L:) L Y@d)<0. O
s

Theorem 15 The following statements are true:

(i) SCQ implies LSCQ at any T € X.

(i) If LSCQ holds at T € X and T (T) is a set of isolated points of T, then SCQ
holds.

(iii) If LSCQ holds at T € X, then LEMCQ holds at T.

(iv) If LSCQ holds at T € X, then EKTCQ holds at .

Proof: (i) Let 2° be a Slater point and Z € X. Let d := 2° — 7 and £ € dg,()
for some t € T'(T) . Since

0> gi(2°) > go(@) + ¢ (a° —7) =dT¢,

d satisfies (13).

(ii) We shall prove that, under the assumption (equivalent to assert that
T () is finite and T\ T (Z) is compact), there exists a Slater point in the half-line
emanating from T in some direction d satisfying (13). In fact, given t € T' (%),
as ¢,(T;d) = c Imax_ ¢'d < 0, there exists &; > 0 with g; (T + \d) < 0 for any

ge(T

A € ]0,&¢[. On the other hand, by continuity of the function max;cr 7z) 9¢,
there exists a neighborhood A of T where max;er\ 7(z) g¢ 18 negative. Taking a
sufficiently small Ao > 0, we get g, (T + Aod) < 0 for all ¢ € T'(T) and T+ Aod €
N. So, T + \gd is a Slater point.

(iii) By a well-known result (see, e.g., [24, Proposition 5]), if ¢'(Z;d) < 0,
then d € D (X;Z). This, combined with Lemma 5, yields

int A(Z)” C D (X;7), (16)

where int A(Z)~ # () by Corollary 11, as the negative polar of a pointed closed
convex cone contains interior points. Taking negative polars in both members
of (16) one gets, by the Farkas lemma for cones,

D(X;7)” C (intA®@)") = (A@)") =A@ =A®@).

We now prove the reverse inclusion by contradiction. Suppose that there
exists £ € A(Z)\D (X;Z)” . Then there exists d € D (X;T) such that £'d > 0,
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with € = Z: €., € €09, (@), t: € T(@), i = 1,....m. Let ig € {1,...,m} such
that fiTOd > 0. This means that for any € > 0, we have

g,y @T+ed) =g, (T+ed)— g, (T)>etld>0,

so that d ¢ D (X;Z) (contradiction). Thus, A(Z) = D (X;T) .
(iv) Let T € int X. If T € int X, then A(X;Z) = R™ and (14) holds trivially.
Thus we can assume without loss of generality (w.l.o.g. in short) that Z € bd X.
Let d € R™ satisfy (13). By (15), we have, from (12),

O (T;d) =max{ £'d: € e U Ag:(T) p < 0.
teT ()

Since {d € R" : ¢/ (z;d) < 0} # 0 and ¢’ (T; ) is a finite-valued convex function
([27, Theorem 23.4]), we get

cd{deR": ¢ (z;d) <0} ={d e R" : ¢’ (T;d) < 0}.
Then, by Lemma 14 and Lemma 3,
{deR": ¢ (7;d) <0} =T(X;7) = A(X;7),
and so EKTCQ holds at Z. ([

Observe that the assumptions on T (%) and T\T (%) in Theorem 15(ii) are
not superfluous (see [12, Example 4]) and imply the non-connectedness of T. In
the particular case that T is finite, SCQ and LSCQ are equivalent. Notice also
that Lemma 8 follows straighforwardly from statements (i) and (iii) of Theorem
15.

The next example shows that LEMCQ does not imply LSCQ (consequently
does not imply SCQ).

Example 16 Letn =2 and g(x) = ||z||—t for allt € T = [0,1]. It follows that
X = {02} and T (03) = {0} . We have D(X,02)" = R2, dgo(02) = cl B (02,1),
A(T) = cone 9gg(02) = R? = D(X,02)~ but (18) fails. So, LFMCQ holds at
02 while LSCQ fails.

Example 17 ([12, Ezample 25]) Consider the linear vector SIO problem

P: "min" f(z)=(r1— 2, —2x2)

s.t. ta;1+< 1—(t—1)2> z9 <0, t€0,2],

whose feasible set is X = R%. It follows that EKTCQ holds at Oy (see [12, Ex-
ample 25]) and A (02) = (R4 x Ry)U{02} is non-closed. Thus, EKTCQ does
not imply LEMCQ.

13



The following example shows that the converse statement of Theorem 15(iv)
does not hold.

Example 18 Consider Example 12, for which LSCQ is not fulfilled at 0. We
have

¢ (02;d) <0 < g;(02,d) <0Vt e [0,1]
@(t—l)dl—FszO and(t—l)dl—dQSOVte [0,1]
< dy ZO,dgzO

Let d € R? be such that ' (0;d) < 0. Then the wvector function h(s) =
(sdy, sda) = (sd1,0) € X for all s € [0,2/d4], satisfies h(0) = 02 and h'(0) = d.
That is, d € A(X;02). So, EKTCQ holds at 05.

Lemma 19 Let T € bd X. Then, P satisfies EKTCQ at T if and only if
T(X;Z)={d e R": ¢ (z,d) <0}. (17)
Proof: Assume that P satisfies EKTCQ at 7, i.e.,
{deR": ¢ (z,d) <0} C A(X;7) =T (X;7). (18)
By (18) and Lemma 14, (17) holds. The converse statement is trivial. O
The four constraint qualifications introduced above fail in the next example.
Example 20 Consider the following set
X={zeR®: gz, 2) =ta] —t(1—t)+ (1 —t) (23 +22) <0, t €[0,1]}.

Since
go(z1,x2) = x% + 12 <0= x5 € [-1,0]

and
g1(z1,22) =23 <0 =2, =0,

one gets X = {0}x[—1,0]. AsT(02) = {0,1},0o € ] 0g:(02) = {(0,0),(0,1)}
t€T(02)

and so LSCQ fails at 03. We also have A(02) = cone{(0,1)} and D(X,02) =

cone{(0,—1)}, so that A(02) & —D(X,02)F, which implies the failure of LEMCQ.

Since gh(02;d) = dy and g} (02;d) = 0, {d € R? : ¢/(02;d) <0} =R xR_. On

the other hand A(X;02) = {0} x R_. So, EKTCQ fails to hold at 05.

4 Cone conditions

It is well-known (see, e.g. [9, Theorem 3.21 and Corollary 3.23]) that, if T is
finite, f;, i =1,...,p and g4, t € T, are convex differentiable functions, T € X,
and 0, ¢ conv{Vf1(Z),...,V[f,(T)}, then T is a weakly efficient solution of
the (ordinary) convex vector optimization problem P if and only if there exist

14



th € T(T),j = 1,...,q, as well as non-negative scalars ALy evoy Apy Higy ey Uy
satisfying

q
ZA Vi@ Z V90 (T) # On. (19)

In geometric terms, the KKT condition (19) asserts that G(z) N A (T) # {0,}
(it is sufficient to take ¢ < n by Carathéodory’s theorem applied to the convex
cone A(T)). In this section we give similar conditions for convex vector SIO
problems and different types of efficiency.

The characterizations of efficient and weakly efficient solutions in this sec-
tion extend similar results on linear vector SIO in [12] to convex vector SIO.
We start with two sufficient conditions for T € X to be efficient and weakly effi-
cient solution independently of the constraints under assumptions which already
appeared in Lemma 2.

Proposition 21 IfT € X, then the following statements are true:
p

(i) If 0,, € conv (U afi(x)> , thenT € XyE.
i=1

1=

p
(i) if 0, € U Ofi(T) and the components of f are strictly convez, thenT € Xp.
i=1

P
Proof: (i) Let 0,, = Zalfi, with @; > 0 and &; € 9f;(Z), i = 1,...,p, and
i=1
P
Zai = 1. Let a; >0, j € {1,...,p}. Then, {; = —ZZ‘—J{Z We can assume
i=1 i#]
w.l.o.g. the existence of i # j such that o; > 0 (otherwise, §; = 0, and 7 € Xyp
because it is a minimizer of f; on R”, and so on X). If we suppose that there
exists T € X such that f(Z) < f(Z), for every ¢ = 1,...,p and &; € If;(T),
then
0> fi (@)~ fi(@) =& @-7).
Thus,
O>§ (z—-7) Zalf (z—7)
i#£]
which is a contradiction whereby = € X, g.

P
(i) If 0,, € | 9fi(z) and all the objective functions are strictly convex, then

T is the unique_minimizer of at least one of the objective functions on R™ (and
so on X). Then, there is no T € X such that f(Z) < f (%), i.e., T € Xg. O

P
Theorem 22 Let T € X be such that 0,, ¢ |J 0fi(T). Then, the following
i=1

statements hold:
(i) T € Xg if and only if

D(X;7)NG@)~ c{deR™: fl(z;d)=0,i=1,...,p}.

15



(ii) T € Xyg if and only if D(X;Z) Nint G(Z)~ = 0.

Proof: (i) Denote F (%) :={d € R": f/(z;d)=0,i=1,...,p}.
Suppose that T € Xg. Let d € D(X;Z) N G(Z)~. Then, by Lemma 2(ii),

fi(@;d) <0, foralli=1,...,p. (20)

Since d € D(X;Z) and T € Xg, if there exists i9 € {1,...,p} such that
i (T;d) < 0, d would be a feasible descent direction of f; at T and there
would exist jo € {1,...,p}, jo # o, such that d is a feasible ascent direction
of fj, at T. Then, by Lemma 1, f; (¥;d) > 0, which contradicts (20). Thus
fl(@;d)=0,foralli=1,...,p, ie., d € F(T).
Now assume that T ¢ Xg. Then, there exist d € D(X;7%), ig € {1,...,p},
and 8 > 0 such that

f,’(f‘i—é‘d) Sfi(f),iZL...,p, (21)

with

fio (T +ed) < fi, (T) (22)
for all e € )0, 8. From (21) it follows that f/(Z;d) <0,7=1,...,p. Thus, again
by Lemma 2(ii), d € D(X;Z) N G(Z)~. But, from (22) we get sﬁjod < fi.(@T+
ed) — fi,(T) < 0 for all §; € 0f;, (7). That is, f; (T;d) = max E)f;d <0, so

€5, €0fio (

that d ¢ F(T).
P

(ii) If 0, € conv (U 8]”1-(96))7 then * € X, by Proposition 21. So, we
i=1

P p
can assume that 0, ¢ conv (U 8fz(x)> , in which case 0, ¢ |J 0fi(T). Let
i=1 i=1

d € D(X;Z)Nint G(Z)~. Then, again by Lemma 2(iii), f/(Z; d) < 6, i=1,...,p.
That is, d is a feasible descent direction for f; at T, i =1,...,p. So, T ¢ X,g.

Now, suppose that T ¢ X, g, i.e. there exists € X such that f;(z) < fi(Z),
i=1,...,p. Let d =2 —T € D(X;T). Since d is a feasible descent direction for
each f; at @, it follows that f;(Z;d) = maxe coy,(z) ¢/ d < 0, again by Lemma
1. Thus, d € int G(Z)~ by Lemma 2(iii). Thus, D(X;Z)N int G(Z)~ # 0, which
completes the proof. O

The following example shows that the assumption 0,, ¢ Lz_)J df:(Z) in Theo-

i=1

1=

rem 22 is not superfluous.

Example 23 Letn =2, p =2, f1 (z) = 23 + 23, fo (z) = 23 — 221 + 22, and
gi (x) = at3 — a9+t —1 for allt € [0,1]. As g, grows with t,

X={z€eR’:g1(z) <0} ={zeR*: 25 >a}}.
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Since f1 and fo are strictly convexr and 0o = Vf1(03) € | 9f:(02), we have
i=1,2

02 € Xp. Now, take d = (1,1). We have D(X;02) = R xR, U {02} and

G(02)” = Rx Ry, so that d € D(X;02) N G(02), but d ¢ F (02) because

F3(02:d) = Vf2 (02) " d = —2#0.
Corollary 24 GivenT € X, T € Xy if and only if
{deR": fl(z;d) <0, i=1,...,p} N D(X;T) = 0. (23)

P
Proof: If 0,, € |J 9fi(z;d), then T € X,,g by Proposition 21 and there exists
i=1

ie{l,...,p} such that fi(@;d) > 0, so that (23) holds too. Otherwise, both
statements are equivalent by Theorem 22(ii) and Lemma 2(iii). O

P
For the sake of brevity, given A = (A1,...,\p) € RP, we denote Z)\ifi in
i=1
matrix form as \' f.

Theorem 25 Given T € X, the following statements hold:
(1) T € X,g if and only if O ()\Tf) @) N D(X;7)" #0 for some A > 0,

(1)) T € Xyg if and only if O ()\Tf> @) ND(X;7)" #0 for some A > 0,
Proof: We associate with P the parameterized (weighted) problem
P
P()\) : min (AT f) (@) =Y Nfil@) st w€ X, (24)
i=1

where X\ > 0, is the weight vector and P ()) is a convex SIO problem for each

P

A (we could aggregate Z)\i = 1). By Theorem 27.4 of [27] it follows that
i=1

T is an optimal solution of P (\) for some A > 0, if and only if there exists

cco(\'f)@nDx:E)"

(i) According to the Geoffrion Theorem ([11], see also [9, Theorem 3.15]), T
is an optimal solution of P () for some A > 0, if and only if Z € X, 5.

(i) Similarly, by [9, Proposition 3.10], T is an optimal solution of P ()) for
some A > 0, if and only if T € X,,g. O

P
Observe that, given T € X, 0,, € conv (U 8fl(m)) entails that X, z. We
i=1

P
consider now the case where 0,, ¢ conv < U afi (x)) .
i=1

P
Corollary 26 Let T € X be such that 0,, ¢ conv (U 8fi(m)> . ThenT € XyuE
i=1
if and only if G(z) N D(X,Z)" # {0,}, in which case T € bd X.
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P
Proof: Let 0,, ¢ conv (U 3f1(x)) . Then, G(Z)ND(X,T)" # {0,} if and only
i=1

p

if there exist A > 0, §; € 0fi(T), i = 1,...,p such that Z)\Zfi e D(X;z)" if
i=1

and only if

S NOL@ND (T =0 (A @) 1D (X3 £ {0,)

for some A > 0,. The first statement follows from Theorem 25(ii).
Finally, if 7 € int X, then D (X;Z)" = {0,}, so that G(z) N D(X,z)* =
{0,}. Hence T ¢ X, g by the first statement. |

5 KKT conditions

We are in a position to obtain KKT optimality conditions.

Theorem 27 Given T € X, the following statements hold:
(1) If there exists X > 0, (A > 0,) satisfying

(KKT) 9 (\f) @ N (-A@) £ 0,

then @ € Xg (T € Xpg, respectively).
(i) If T € Xy (T € Xpr) satisfies LEMCQ, then there exist A > 0, (A > 0p,

P
respectively) such that (KKT) holds. If, additionally, 0,, ¢ conv (U 8fz(ac)> ,
i=1

then the following stronger condition holds:

8 (A1) @ N (—A@) # {04}

Proof: (i) Recall that D (X;Z) C A (%)~ . Taking positive polars we get
D(X;Z)to-A@ T T =—cdA@) > -A@),

so that (KKT) implies that 8 (AT f) (@)ND (X;T)" # 0. The conclusion follows

from Theorem 25.

(ii) We are assuming that A(z) = D (X;Z)” = —D (X;Z)" . The first part is

straightforward consequence of Theorem 25 while the second one follows from
the argument of Corollary 26. O

Lemma 28 IfT € X, g, then

{deR™: fl(z;d) <0, i=1,...,p} NT(X;7) = 0. (25)
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Proof: Assume the contrary, that is, there exists d € T(X;T) satisfying

fl(@;d) <0, i=1,...,p. (26)
By d € T(X;%), there exist sequences {s*}ren and {d"}ren such that s* | 0,
d* — d and 7 + s*d* € X for all k € N. Since T € X,,p there exists (perhaps
after passing to a subsequence) an index ig € {1,...,p} such that
fio @ + s%d*) > fio (@), k €N,

Since f;, is directional differentiable at T in the Hadamard sense (see e.g. [1,
Proposition 2.126(v)(c)]), the latter inequalities provide

fio (f+ Skdk) - fio (E)

which contradicts (26). O

Observe that, since D(X;%) C T(X;T), the direct part of Corollary 24 is
immediate consequence of Lemma 28.

We have shown in Theorem 27 that (KKT) is a necessary condition for weak
efficiency under LFMCQ (and, by Lemma 8, also under SCQ). Finally, we prove
that this necessary condition still holds under the remaining two CQ introduced
in Section 3, namely, LSCQ and EKTCQ, together with the closedness of the
active cone recall that LSCQ entails the latter property according to Corollary
11).

P
Theorem 29 Let 0,, ¢ conv <U 8f1($)> and T € X, satisfying one of the
i=1

following conditions:

(i) LSCQ;

(i) EKTCQ and A (T) is closed.

Then, there exists A > 0, satisfying (KKT).

p
Proof: Since T € X, g and 0,, ¢ conv < U afi(x)> , T € bdX and
i=1

P

{d ER": > Nif{(T;d) <0, for all A > op} NT(X;z) =0 (27)
i=1

by Corollary 26 and Lemma 28, respectively. Combining the formulas (15) and

(27) with Theorem 15(iv) and Lemma 19, we conclude that there is no d € R"

such that

p
D O Aifl(@;d) < 0 for all A > 0,, (28)
i=1
and
g;(T;d) <0 forallteT(T). (29)

(i) Assume that LSCQ is satisfied at Z. Now, (28)-(29) is equivalent to: there is
no d € R" such that
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€Td<0foraléed ()\T f) (%) for all A > 0,. (30)

and
€'d <0 for all £ € 9g,(z) for all t € T(z) (31)

Since the homogeneous linear system formed by (31)-(30) is inconsistent,

0 </\—r f) (7) is a compact convex set and A (Z) :=cone [ |J 0g:(T) | is closed
teT(7)

(by Corollary 11), so that the Minkowski sum of both sets is closed, we can apply

Motzkin’s Theorem [13, Theorem 3.5] to conclude that

0n ea(ﬂf) (@) +A®@).
(ii) The proof is the same, taking into account that now A (Z) is closed by

assumption. U

Example 17 shows that the closedness assumption in Theorem 29(ii) is not
superfluous. Indeed, the unique solution of the system formed by the non-linear
equations

Al( & >+A2< 5 ) :g’“‘i< - 1_22’1)2 )’tl’tQE[O’Q]’

and the inequalities

is A1 = Aa = g = py = 0. Thus, (KKT) fails.

Example 30 Consider the robust counterpart problem in (2) withU; = B (¢;,¢) C
R™, i =1,..,p. Then, f; (z) = max,,cy, ¢, v =¢, © +¢||z|, with

o -{ B i

Let X = {x ER":plax>qp k€ K} be the feasible set of (2) and let T €
X. According to Theorem 15, Proposition 21, and Theorems 27 and 29, the
following statements hold:

(i) If 0,, € conv <6 ofi (m)) , then T is a minmax robust weakly efficient
solution. =

(ii) Assume that 0,, ¢ conv (ij 8fi(:r)> and either LSCQ or EKTCQ holds
at T # 0,,. Then, T is a weakly eéi:(zlient solution of (2) if and only if there exists

P _
A > 0y, such that — > \; (Ei +5i) € A(T).

T
Z il
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