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Abstract

Convex vector (or multi-objective) semi-in�nite optimization deals with
the simultaneous minimization of �nitely many convex scalar functions
subject to in�nitely many convex constraints. This paper provides char-
acterizations of the weakly e¢ cient, e¢ cient and properly e¢ cient points
in terms of cones involving the data and Karush-Kuhn-Tucker conditions.
The latter characterizations rely on di¤erent local and global constraint
quali�cations. The results in this paper generalize those obtained by the
same authors on linear vector semi-in�nite optimization problems [Eur J
Oper Res 227 (2013) 12-21].

1 Introduction

We consider convex optimization problems of the form

P : "min " f (x) = (f1(x); :::; fp(x)) s.t. gt(x) � 0; t 2 T; (1)

where x 2 Rn (the space of decisions), f(x) 2 Rp (the objective space), the
index set T is a compact Hausdorf topological space, fi : Rn ! R is a convex
function, i = 1; : : : ; p; gt is convex for each t 2 T; and the function (t; x) 7! gt(x)
is continuous on T �Rn: The continuity of f is consequence of the assumptions
on its components f1; :::; fp: The model (1) includes ordinary convex (scalar and
vector) optimization problems just taking the discrete topology on the (�nite)
index set. Since the optimality theory for this class of problems has been thor-
oughly studied, we assume in the sequel that T is in�nite. When p � 2; P is
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a convex vector semi-in�nite optimization (SIO in brief) problem; otherwise, P
is a convex scalar SIO problem. Replacing in (1) the space of decisions Rn by
an in�nite dimensional space (typically a locally convex Hausdor¤ topological
vector space) one gets a convex (scalar or vector) in�nite optimization (IO in
short) problem.
We assume throughout the paper that p � 2 and the feasible set of P; denoted

by X; is non-empty. Obviously, X is a closed convex set whereas its image by
the vector-valued objective function f (X) � Rp is possibly non-convex and non-
closed. The vector SIO problem P can be reformulated as a vector optimization
problem with the single convex constraint function '(x) := maxt2T gt(x); called
marginal function:

P : "min " f (x) = (f1(x); :::; fp(x)) s.t. '(x) � 0:

Throughout the paper we use the following notation. Given x; y 2 Rm; we
write x 5 y (x < y) when xi � yi (xi < yi; respectively) for all i = 1; :::;m:
Moreover, we write x � y when x 5 y and x 6= y:
An element x 2 X is said to be e¢ cient (weakly e¢ cient) if there is no bx 2 X

such that f (bx) � f(x) (f (bx) < f(x); respectively). There are many notions
of proper e¢ ciency in the literature, as those introduced by Geo¤rion, Benson,
Borwein and Henig. Since P is convex, all these concepts are equivalent (see,
e.g., [9]), so that we recall only Geo¤rion�s de�nition: a feasible point x 2 X is
said to be properly e¢ cient if there exists � > 0 such that, for all i = 1; :::; p andbx 2 X satisfying fi(bx) < fi(x); there exists j 2 f1; :::; pg such that fj(bx) > fj(x)
and

fi(x)� fi(bx)
fj(bx)� fj(x) � �:
We denote by XpE ; XE ; and XwE the sets of properly e¢ cient points, e¢ -

cient points, and weakly e¢ cient points of P; respectively. Obviously, XpE �
XE � XwE ; with X = XwE whenever one component of f is identically zero,
and X = XpE in the trivial case that f is the null function. Moreover, it is
known that f (XpE) is dense in f (XE) ([17]; see also [9, Theorem 3.17]).
Given a (possibly non-convex) vector SIO problem

P : "min " f (x) s.t. x 2 X;

x 2 X is said to be locally (properly, weakly) e¢ cient solution of P if there
exists a neighborhood N of x such that x is (properly, weakly) e¢ cient solution
of

PN : "min " f (x) s.t. x 2 X \N :

Global and local concepts coincide in convex vector SIO thanks to the convexity
of X and the componentwise convexity of f: For instance, if x 2 X is not weakly
e¢ cient there exists bx 2 X such that f(bx) < f (x) ; since f(�bx + (1� �)x) <
f (x) for all � 2 ]0; 1[ ; with �bx + (1� �)x 2 X \ N for � su¢ ciently small,
x cannot be a locally weakly e¢ cient solution of P: For this reason, in convex
vector SIO, we can characterize the (proper, weak) e¢ ciency on the basis of
local information. The known tests for non-linear vector optimization classify
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a given x 2 X as locally (properly, weakly) e¢ cient solution or not through
conditions involving subsets of the objective space Rp or suitable scalarizations
of P (see, e.g., [2], [9]).
In this paper, on convex vector SIO, we give conditions for x 2 XpE ; x 2 XE ;

and x 2 XwE which are expressed in terms of convex cones contained in the
decision space Rn or in terms of the existence of Karush-Kuhn-Tucker (KKT in
short) multipliers which can be computed from x and the data describing P:
As a general rule, to obtain a checkable necessary optimality condition for a

given constrained optimization problem, one needs to assume some property of
the constraint system called constraint quali�cation (CQ in short). We consider
in this paper four CQs which extend those used in our previous paper [12]
on linear vector SIO. The strongest one is the natural extension of the CQ
introduced by M. Slater in a seminal work on scalar optimization published in
1950, which was adapted to linear scalar SIO by Charnes, Cooper and Kortanek
in the 1960s. A weaker CQ for convex scalar SIO has been proposed in [23].
The locally Farkas-Minkowski CQ was �rst de�ned in [26] for linear scalar SIO,
and then extended to convex scalar SIO in [13] and to convex scalar IO in [8].
CQs weaker than the locally Farkas-Minkowski one have been introduced in
[23], for convex SIO problems, and in [22], for convex IO problems. The local
Slater CQ, introduced in Section 3 of this paper, seems to be new while the
extended Kuhn-Tucker CQ was introduced in [29] for convex IO as an extension
of that used by H.W. Kuhn and A.W. Tucker in [19] for ordinary non-linear
optimization problems. Section 1 of [22] reviews the state of the art on CQs in
convex scalar optimization.
The stability of linear and non-linear vector SIO has been investigated since

the last 1980s from di¤erent perspectives, e.g., the pseudo-Lipschitz property
and the lower and upper semicontinuity of the e¢ cient set mapping under dif-
ferent types of perturbations, well-posedness, and generic stability (see, e.g., [4],
[5], [6], [10], [30], [31]), while the existing literature on optimality conditions for
vector SIO and vector IO problems is surprisingly limited.
The main antecedent of this paper is [12], on linear vector SIO, which pro-

vides characterizations of the weakly e¢ cient, e¢ cient and properly e¢ cient
solutions in terms of cones involving the data and KKT conditions. In [3], on a
class of vector SIO problems involving di¤erentiable functions whose constraints
satisfy certain invex-type conditions and are required to depend continuously
on an index t ranging on some compact topological space T; KKT conditions
for x 2 XpE ; x 2 XE and x 2 XwE are given. In [14], on non-convex dif-
ferentiable vector SIO, the authors discuss constraint quali�cations as well as
necessary and su¢ cient conditions for locally weakly e¢ cient points and present
optimality conditions for properly e¢ cient points in the senses of Geo¤rion and
of Kuhn and Tucker [19]. Finally, in [7], on non-smooth vector IO problems
posed on Asplund spaces whose index set T has no topological structure, neces-
sary conditions as well as su¢ cient conditions for weakly e¢ cient solutions are
obtained appealing to the machinery of non-smooth analysis and a certain CQ,
for non-convex systems introduced in [4], which can be seen as an extension
of the so-called basic CQs introduced in [21], for scalar IO problems posed in
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Banach spaces.
The convex vector SIO problems considered in this paper arise in a natural

way in robust linear vector optimization. Indeed, consider an uncertain linear
vector optimization problem

(LP ) "min " (c>1 x; : : : ; c
>
p x) s.t. a

>
t x � bt; t 2 T;

where T is a �nite set, ci 2 Ui � Rn; i = 1; :::; p; and (at; bt) 2 Vt � Rn+1,
t 2 T . The uncertainty sets Ui; i = 1; :::; p; are arbitrary non-empty sets while
Vt; t 2 T; are non-empty compact sets. The robust minmax counterpart of (LP )
(term coined in [15]) enforces feasibility for any possible scenario and assumes
that the cost of any (robust) feasible decision will be the worst possible, i.e., the
problem to be solved is

"min "
�
max
c12U1

c>1 x; : : : ; max
cp2Up

c>p x

�
s.t. a>t x � bt;8(at; bt) 2 Vt; t 2 T: (2)

Observe that (2) is as (1), just taking fi (x) = maxci2Ui c
>
i x (i.e., the support

function of Ui), i = 1; :::; p; and expressing the constraints either as b� a>x � 0
for all (a; b) 2

S
t2T

Vt (a compact index set) or as gt (x) � 0; with gt (x) =

max

�
b� a>x : (a; b) 2

S
t2T

Vt
�
for all t 2 T (a �nite index set equipped with

the discrete topology).
This paper is organized as follows. Section 2 recalls basic concepts of convex

analysis to be used later, applying some of them to characterize the subdi¤er-
ential cone and its interior, and to describe the relationships between several
types of "tangent" cones which are closely related with the negative polar of the
active cone. Section 3 extends to convex vector SIO four out of six constraint
quali�cations introduced in [12] for linear vector SIO. The two exceptions, the
Farkas-Minkowski and the local polyhedral constraint quali�cations, have not
been considered in this paper as they are too strong in the convex framework.
For methodological reasons, we give simple direct proofs of the lemmas in Section
3 even though most of them could be also obtained via linearization. Finally,
Section 4 provides di¤erent characterizations of the sets XpE ; XE ; and XwE in
terms of cones and KKT multipliers. Here the proofs are necessarily direct as
the objective functions are not linear. These results are applied to the robust
linear vector optimization problem (LP ):

2 Preliminaries

We start this section by introducing the necessary notation and concepts. Given
Z � Rn; intZ; clZ; and bdZ denote the interior, the closure, and the boundary
of Z, respectively. The scalar product of x; y 2 Rn is denoted by x>y; the
Euclidean norm of x by kxk ; the corresponding open ball centered at x and
radius " > 0 by B (x; ") ; and the zero vector by 0n: We also denote by convZ
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the convex hull of Z; while coneZ := R+ convZ denotes the convex conical hull
of Z [ f0ng. If Z is a convex cone, its positive (negative) polar cone is Z+ :=�
d 2 Rn : z>d � 0 8z 2 Z

	
(Z� :=

�
d 2 Rn : z>d � 0 8z 2 Z

	
; respectively).

A convex cone is said to be pointed whenever it does not contain lines. We use
frequently in this paper the topological interior of polar cones.
We make three claims concerning coneZ; where Z is an arbitrary non-empty

set of Rn:
First,

0n =2 convZ , fconeZ is pointed and 0n =2 Zg : (3)

We shall prove that 0n 2 convZ if and only if coneZ contains lines or 0n 2 Z:
If coneZ contains lines, there exists u 2 Rnn f0ng such that �u 2 coneZ:

Then, we can write u =
nX
i=1

�izi and �u =
nX
i=1

�izi; with �1; :::; �n; �1; :::; �n 2

R+; zi 2 Z; i = 1; : : : ; n; so that

0n =

 
nX
i=1

(�i + �i)

!�1 nX
i=1

(�i + �i) zi 2 convZ:

Alternatively, if 0n 2 Z; it is obvious that 0n 2 convZ:
Conversely, if 0n 2 convZ; there exist �i 2 R+ and zi 2 Z; i = 1; : : : ; n;

such that
nX
i=1

�i = 1 and
nP
i=1

�izi = 0n: Let j 2 f1; :::; ng be such that �j > 0: If

zj 6= 0n; putting � :=
P
i 6=j
�i > 0; it follows that u := ��j

� zj =
P
i 6=j

�i
� zi 2 coneZ;

so that coneZ contains the line spanned by u: Now, suppose that zj = 0n: ThenX
i 6=j

�izi = 0n: (4)

If �i = 0 for all i 6= j; then 0n = zj 2 Z: Otherwise, there exists k 6= j such that
�k > 0; in (4), and we repeat the argument above.
Second,

0n =2 Z ) int (coneZ)
+ �

�
d 2 Rn : z>d > 0 8z 2 Z

	
: (5)

In fact, assume that 0n =2 Z and d 2 int (coneZ)+ : Let " > 0 be such that
clB (d; ") � (coneZ)

+
: Given z 2 Z; d � " z

kzk 2 (coneZ)
+ while z 2 coneZ;

so that z>
�
d� " z

kzk

�
= z>d� " kzk � 0 and so z>d � " kzk > 0: Obviously, if

Z \ (�Z) 6= ;; then both members of the inclusion in (5) are empty.
Third,

Z compact)
�
d 2 Rn : z>d > 0 8z 2 Z

	
� int (coneZ)+ : (6)

In fact, by assumption, there exists � > 0 such that kzk � � for all z 2 Z:
Let d 2 Rn be such that z>d > 0 for all z 2 Z: By the compactness of Z;
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" := minz2Z z
>d > 0: Given x 2 coneZ; we can write x =

nX
i=1

�izi; with �i � 0

and zi 2 Z; i = 1; :::; n: Then, given u such that kuk � 1; one has

x>
�
d+

"

�
u
�
=

nX
i=1

�iz
>
i

�
d+

"

�
u
�
�

nX
i=1

�i

�
"� "

�

��z>u��� � 0:
Thus, B

�
d; "�

�
� (coneZ)+ and d 2 int (coneZ)+ : The inclusion in (6) becomes

an equation between non-empty sets whenever Z is compact and 0n =2 convZ
(as coneZ turns out to be a pointed cone).
The one-sided directional derivative of a real-valued function h : Rn ! R at

x 2 Rn with respect to a vector d 2 Rn is de�ned to be the limit

h0(x; d) = lim
"#0

h(x+ "d)� h(x)
"

;

if it exists. If h is convex, then it is continuous, the directional derivative function
at x 2 Rn; h0(x; :); is a �nite convex function too, and the subdi¤erential

@h(x) :=
n
� 2 Rn : h(x) � h(x) + �> (x� x) 8x 2 Rn

o
;

is a non-empty compact convex such that h0(x; d) = max
�2@h(x)

�>d (see, e.g., [27,

Theorems 23.1 and 23.4]).

Lemma 1 Let h : Rn ! R be a convex function and let d 2 Rn be a descent
direction of h at x 2 Rn: Then, h0(x; d) < 0:

Proof: Since d is a descent direction of h at x there exists � > 0 such that

h(x+ "d)� h(x) < 0 for all " 2 ]0; �[ : (7)

Thus

h0(x; d) = lim
"#0

h(x+ "d)� h(x)
"

� 0:

On the other hand
h0(x; d) = max

�2@h(x)
�>d:

Now, taking into account that 0n =2 @h(x) and @h(x) is compact, if h0(x; d) = 0
there would exists e� 2 @h(x); e� 6= 0n such that e�>d = 0: Thus, in particular, fore� and x+ "d with " 2 ]0; �[

h(x+ "d)� h(x) � "e�>d = 0
which contradicts (7). �
It is easy to prove that, under the assumptions on P;

X =
n
x 2 Rn : �>x � �>y � gt (y) ; 8 (t; y) 2 T � Rn; 8� 2 @gt (y)

o
: (8)
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From (8) and [13, Theorem 9.3] one gets that X is compact if and only if

cone

 S
(t;y)2T�Rn

@gt (y)

!
= Rn: This condition (expressed in terms of the data),

guarantees the compactness of f (X) : More information on X can be obtained
from the linearization (8) of X under the constraint quali�cations introduced in
Section 3.
Two convex cones involving the data of the vector SIO problem P in (1) are
basic in our approach: the convex conical hull of the subdi¤erentials at x 2 X
of the components of f;

G(x) := cone

 
p[
i=1

@fi(x)

!
;

that we shall call subdi¤erential cone at x; and the active cone at x 2 X;

A (x) := cone

0@ [
t2T (x)

@gt(x)

1A ;
where T (x) := ft 2 T : gt(x) = 0g is the set of active indices at x:
We are interested in the negative polar of both cones, G(x)� and A (x)� ;

and their corresponding interiors, intG(x)� and intA (x)� :

Lemma 2 Given x 2 X; the following statements hold:
(i) 0n =2 conv

�
pS
i=1

@fi(x)

�
if and only if G(x) is pointed and 0n =2

pS
i=1

@fi(x):

(ii) G(x)� = fd 2 Rn : f 0i(x; d) � 0; i = 1; : : : ; pg :
(iii) If 0n =2

pS
i=1

@fi(x); then

intG(x)� =

�
d 2 Rn : �>d < 0 8� 2

pS
i=1

@fi(x)

�
= fd 2 Rn : f 0i(x; d) < 0; i = 1; : : : ; pg ;

(9)

with intG(x)� 6= ; whenever 0n =2 conv
�

pS
i=1

@fi(x)

�
:

Proof: (i) It is straightforward consequence of (3), just taking Z =
pS
i=1

@fi(x):

(ii) Since f 0i(x; d) = max
�2@fi(x)

�>d; one has that �>d � 0 for all � 2 @fi(x) if

and only if f 0i(x; d) � 0; i = 1; : : : ; p. So,

G(x)� =

�
d 2 Rn : �>d � 0 8� 2

pS
i=1

@fi(x)

�
= fd 2 Rn : f 0i(x; d) � 0; i = 1; : : : ; pg ;

(10)
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(iii) Again by the identity f 0i(x; d) = max
�2@fi(x)

�>d; one has that �>d < 0

for all � 2 @fi(x) if and only if f 0i(x; d) < 0; i = 1; : : : ; p: Assuming that

0n =2
pS
i=1

@fi(x); from (5) and (6), one gets (9). The additional condition that

0n =2 conv
�

pS
i=1

@fi(x)

�
guarantees, by (i), that G(x) is pointed, which in turn

implies that intG(x)� 6= ;: �
The KKT conditions will be obtained by analyzing the relationships between

negative polar of the active cone A (x) and four "tangent" cones at x de�ned as
follows:
The cone of feasible directions at x is

D (X;x) = fd 2 Rn : 9� > 0 such that x+ �d 2 Xg :

It is known that D (X;x) � A(x)� ([13, Lemma 7.7]).
The attainable cone at x; denoted by A(X;x); is formed by those d 2 Rn such

that there exist � > 0 and a vector function h 2 C1 ([0; � [ ;Rn) with h(0) = x;
h0(0) = d; and h(s) 2 X for all s 2 [0; � [ :
The Bouligand tangent cone at x; denoted by T (X;x); is formed by those

d 2 Rn such that there exist sequences
�
sk
	
k2N and

�
dk
	
k2N such that s

k # 0,
dk ! d as k ! 1 and x + skdk 2 X for all k 2 N: In that case, since
dk 2 D (X;x) for all k 2 N; d 2 clD(X;x):
The interior tangent cone at x; denoted by T i(X;x); is formed by those

d 2 Rn such that there exist � > 0 and a neighborhood N of d such that
x+ sN � X for all s 2 ]0; � [ :

Lemma 3 ([2], [16], [20], [25], [27], [32]) Given x 2 X; the cones T i(Z;x);
D (Z;x) ; A(Z;x); and T (Z;x) are all convex and satisfy

T i(X;x) = intD (X;x) � D (X;x) � A(X;x) = T (X;x) = clD(X;x): (11)

Example 4 Consider the closed convex set

X =
�
(x1; x2) 2 R2 : t(x1 � 2)2 � t� x2 � 0 8t 2 [0; 1]

	
and the point x = (1; 0) 2 X: Since

' (x) =

�
�x2; 1 � x1 � 3;
x21 � 4x1 + 3� x2; otherwise,

one has

X =
�
x 2 R2 : ' (x) � 0

	
=
�
x 2 R2 : x2 � max

�
x21 � 4x1 + 3; 0

		
;

so that
D(X;x) =

�
d 2 R2 : 2d1 + d2 > 0; d2 � 0

	
[ f02g ;

A(X;x) = T (X;x) =
�
d 2 R2 : 2d1 + d2 � 0; d2 � 0

	
= clD(X;x);
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and
T i(X;x) =

�
d 2 R2 : 2d1 + d2 > 0; d2 > 0

	
= intD(X;x):

Hence, the inclusions in (11) are strict. Observe that

A(x) = cone f(�2t;�1) : t 2 [0; 1]g = cone f(0;�1) ; (�2;�1)g

is the negative polar of any of the cones considered in Lemma 3.

Lemma 5 Given x 2 X;

A(x)� = fd 2 Rn : '0 (x; d) � 0g

and
intA(x)� = fd 2 Rn : '0 (x; d) < 0g

Proof: One has

'0 (x; d) = maxt2T (x)max�2@gt(x) �
>d

= max

8<:�>d : � 2 [
t2T (x)

@gt(x)

9=; : (12)

From (12), we have '0 (x; d) � 0 if and only if �>d � 0 for all � 2
[

t2T (x)

@gt(x)

if and only if d 2 A(x)�:
Similarly, by the compactness of

[
t2T (x)

@gt(x); '
0 (x; d) < 0 if and only if

�>d < 0 for all � 2
[

t2T (x)

@gt(x) if and only if d 2 intA(x)�: �

3 Constraint quali�cations

Next we introduce four constraint quali�cations which are frequently encoun-
tered in the SIO literature or are inspired in classical constraint quali�cations
of non-linear optimization. When the constraint functions are a¢ ne, these con-
straint quali�cations collapse to those introduced, under similar names, in [12]
(for linear vector SIO). Even more, the below CQ hold for the convex system
fgt(x) � 0; t 2 Tg if and only if the corresponding linear versions hold for the
linear system in (8).

De�nition 6 We say that P satis�es the Slater constraint quali�cation (SCQ)
if there is a Slater point x0; i.e. gt(x0) < 0; for all t 2 T:

In other words, SCQ holds if and only if the marginal function ' takes a
negative value at some point (observe that the marginal function of the linear
system in (8) is also '). By continuity of '; SCQ implies that intX 6= ;; but
the converse is not true. It is worth noting that, in contrast with the other three
CQs to be introduced next, SCQ is not associated with a given feasible solution.
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De�nition 7 We say that the locally Farkas-Minkowski constraint quali�cation
(LFMCQ) holds at x 2 X if A(x) = D(X;x)�:

Obviously, if LFMCQ holds at x 2 X; then A(x) is closed. If x 2 int X; then
A(x) = D(X;x)� = f0ng: Therefore the LFMCQ should be investigated only
at the boundary feasible points. Moreover, if this property holds and x 2 bd X;
we have A(x) 6= f0ng; i.e. there are binding constraints at x:

Lemma 8 ([13, Theorem 7.9]) SCQ implies LFMCQ at any feasible solution.

Consequently, if P satis�es SCQ, then bd X = fx 2 X : A (x) 6= f0ngg :
Moreover, geometric information on X in terms of the data can be obtained by
combining (8) and [13, Theorem 5.9].

De�nition 9 We say that P satis�es the local Slater constraint quali�cation
(LSCQ) at x 2 X when either T (x) = ; or there exists a vector d 2 Rn
satisfying

d>� < 0 for all � 2
[

t2T (x)

@gt(x): (13)

Proposition 10 LSCQ holds at x 2 X if and only if

T (x) 6= ; ) 0n =2 conv

0@ [
t2T (x)

@gt(x)

1A :
Proof: We can assume that T (x) 6= ;: The direct statement is obvious

while the converse statement is consequence of the assumptions on P: In fact,
the continuity of t 7! gt(x) on the compact set T entails that T (x) is a compact
set, as well as

[
t2T (x)

@gt(x) (see e.g. [18, Theorem 4.4.2]). Due to the com-

pactness of conv

0@ [
t2T (x)

@gt(x)

1A and the separation theorem, the condition

0n =2 conv

0@ [
t2T (x)

@gt(x)

1A guarantees the ful�lment of LSCQ at x. �

Corollary 11 If P satis�es LSCQ at x 2 X; then A (x) is a pointed closed
cone.

Proof: We can assume T (x) 6= ; (otherwise A (x) = f0ng is closed). By

Proposition 10, since conv

0@ [
t2T (x)

@gt(x)

1A is a compact convex set which does

10



not contain the origin, A (x) = cone

0@ [
t2T (x)

@gt(x)

1A is a pointed closed cone.

�
The following example shows that the converse statement of Corollary 11

does not hold.

Example 12 Let n = 2 and gt(x) = (1�t) jx1 � 1j+jx2j�1+t for all T = [0; 1]:
Then it is easy to see that

X =
�
x 2 R2 : gt(x) � 0; t = 0; 1

	
= [0; 2]� f0g:

We have T (02) = [0; 1]; with

@gt(02) = conv f(t� 1;�1); (t� 1; 1)g = ft� 1g � [�1; 1] ; t 2 [0; 1]:

Thus,
S

t2T (02)
@gt(02) = [�1; 0] � [�1; 1] and A (02) = cone

 S
t2T (02)

@gt(02)

!
=

R� � R is closed. Finally, as � (0; 1) 2 @g0(02); LSCQ fails at 02:

De�nition 13 We say that P satis�es the extended Kuhn-Tucker CQ (EK-
TCQ) at x 2 X when

fd 2 Rn : '0(x; d) � 0g � A(X;x): (14)

As a consequence of the Io¤e and Tihkomirov�s theorem on the subdi¤eren-
tial of the supremum function (see e.g. [32, Theorem 2.4.18] and [16, Proposition
6.3]), when x 2 bdX; it holds that

'0 (x; d) = max
t2T (x)

g0t(x; d): (15)

The next lemma provides a useful approximations of the tangent cones to X
at x 2 bdX in terms of the directional derivative function '0 (x; �) :

Lemma 14 Let x 2 bdX. Then,

fd 2 Rn : '0(x; d) < 0g � T i(X;x) � T (X;x) � fd 2 Rn : '0(x; d) � 0g :

Proof: We �rst show that fd 2 Rn : '0(x; d) < 0g � T i(X;x): Let d 2 Rn be
such that '0(x; d) < 0: Then, there exists � > 0 such that '(x+ sd) < 0 for all
s 2 ]0; � [ : By continuity of '; there exist t0 > 0 and an open neighborhood N
of d such that '(x+ td) < 0 for all t 2 ]0; t0[ and all d 2 N : That is,

d 2 T i(fx 2 Rn : '(x) < 0g ; x) � T i(fx 2 Rn : '(x) � 0g ; x) = T i(X;x):

The inclusion T i(X;x) � T (X;x) is well-known (see, e.g. in [28]).

11



Finally, consider d 2 T (X;x): Then, there exist sequences
�
sk
	
k2N and�

dk
	
k2N such that s

k # 0; dk ! d as k !1 and '(x+ skdk) � 0 for all k 2 N:
Since '(x) = 0; one has

'(x+ skdk)

sk
=
'(x+ skdk)� '(x)

sk
� 0 8k 2 N:

Now, taking limits as k !1; we conclude that

'(x+ skdk)

sk
! '0(x; d) � 0: �

Theorem 15 The following statements are true:
(i) SCQ implies LSCQ at any x 2 X:
(ii) If LSCQ holds at x 2 X and T (x) is a set of isolated points of T; then SCQ
holds.
(iii) If LSCQ holds at x 2 X; then LFMCQ holds at x:
(iv) If LSCQ holds at x 2 X; then EKTCQ holds at x:

Proof: (i) Let x0 be a Slater point and x 2 X: Let d := x0 � x and � 2 @gt(x)
for some t 2 T (x) : Since

0 > gt(x
0) � gt(x) + �>

�
x0 � x

�
= d>�;

d satis�es (13).
(ii) We shall prove that, under the assumption (equivalent to assert that

T (x) is �nite and T�T (x) is compact), there exists a Slater point in the half-line
emanating from x in some direction d satisfying (13). In fact, given t 2 T (x) ;
as g0t(x; d) = max

�2@gt(x)
�>d < 0; there exists "t > 0 with gt (x+ �d) < 0 for any

� 2 ]0; "t[ : On the other hand, by continuity of the function maxt2T�T (x) gt;
there exists a neighborhood N of x where maxt2T�T (x) gt is negative. Taking a
su¢ ciently small �0 > 0; we get gt (x+ �0d) < 0 for all t 2 T (x) and x+�0d 2
N : So, x+ �0d is a Slater point.
(iii) By a well-known result (see, e.g., [24, Proposition 5]), if '0(x; d) < 0;

then d 2 D (X;x) : This, combined with Lemma 5, yields

intA(x)� � D (X;x) ; (16)

where intA(x)� 6= ; by Corollary 11, as the negative polar of a pointed closed
convex cone contains interior points. Taking negative polars in both members
of (16) one gets, by the Farkas lemma for cones,

D (X;x)
� �

�
intA(x)�

��
=
�
A(x)�

��
= clA(x) = A(x):

We now prove the reverse inclusion by contradiction. Suppose that there
exists � 2 A(x)�D (X;x)� : Then there exists d 2 D (X;x) such that �>d > 0;

12



with � =
Xm

i=1
�i; �i 2 @gti(x); ti 2 T (x); i = 1; :::;m: Let i0 2 f1; :::;mg such

that �>i0d > 0: This means that for any " > 0; we have

gti0 (x+ "d) = gti0 (x+ "d)� gti0 (x) � "�
>
i0d > 0;

so that d =2 D (X;x) (contradiction). Thus, A(x) = D (X;x)� :
(iv) Let x 2 intX: If x 2 intX; then A(X;x) = Rn and (14) holds trivially.

Thus we can assume without loss of generality (w.l.o.g. in short) that x 2 bdX:
Let d 2 Rn satisfy (13). By (15), we have, from (12),

'0 (x; d) = max

8<:�>d : � 2 [
t2T (x)

@gt(x)

9=; < 0:

Since fd 2 Rn : '0 (x; d) < 0g 6= ; and '0 (x; �) is a �nite-valued convex function
([27, Theorem 23.4]), we get

cl fd 2 Rn : '0 (x; d) < 0g = fd 2 Rn : '0 (x; d) � 0g :

Then, by Lemma 14 and Lemma 3,

fd 2 Rn : '0 (x; d) � 0g = T (X;x) = A (X;x) ;

and so EKTCQ holds at x: �
Observe that the assumptions on T (x) and T�T (x) in Theorem 15(ii) are

not super�uous (see [12, Example 4]) and imply the non-connectedness of T: In
the particular case that T is �nite, SCQ and LSCQ are equivalent. Notice also
that Lemma 8 follows straighforwardly from statements (i) and (iii) of Theorem
15.
The next example shows that LFMCQ does not imply LSCQ (consequently

does not imply SCQ).

Example 16 Let n = 2 and gt(x) = kxk�t for all t 2 T = [0; 1] : It follows that
X = f02g and T (02) = f0g : We have D(X; 02)+ = R2, @g0(02) = clB (02; 1) ;
A (x) = cone @g0(02) = R2 = D(X; 02)

� but (13) fails. So, LFMCQ holds at
02 while LSCQ fails.

Example 17 ([12, Example 25]) Consider the linear vector SIO problem

P : "min " f (x) = (x1 � x2;�x2)

s.t. tx1 +

�q
1� (t� 1)2

�
x2 � 0; t 2 [0; 2];

whose feasible set is X = R2�: It follows that EKTCQ holds at 02 (see [12, Ex-
ample 25]) and A (02) = (R++ � R+)[f02g is non-closed. Thus, EKTCQ does
not imply LFMCQ.
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The following example shows that the converse statement of Theorem 15(iv)
does not hold.

Example 18 Consider Example 12, for which LSCQ is not ful�lled at 02. We
have

'0 (02; d) � 0 , g0t(02; d) � 0 8t 2 [0; 1]
, (t� 1)d1 + d2 � 0 and (t� 1)d1 � d2 � 0 8t 2 [0; 1]
, d1 � 0; d2 = 0:

Let d 2 R2 be such that '0 (02; d) � 0: Then the vector function h(s) :=
(sd1; sd2) = (sd1; 0) 2 X for all s 2 [0; 2=d1]; satis�es h(0) = 02 and h0(0) = d:
That is, d 2 A(X; 02): So, EKTCQ holds at 02:

Lemma 19 Let x 2 bdX. Then, P satis�es EKTCQ at x if and only if

T (X;x) = fd 2 Rn : '0(x; d) � 0g : (17)

Proof: Assume that P satis�es EKTCQ at x; i.e.,

fd 2 Rn : '0(x; d) � 0g � A (X;x) = T (X;x) : (18)

By (18) and Lemma 14, (17) holds. The converse statement is trivial. �
The four constraint quali�cations introduced above fail in the next example.

Example 20 Consider the following set

X =
�
x 2 R2 : gt(x1; x2) = tx21 � t (1� t) + (1� t)

�
x22 + x2

�
� 0; t 2 [0; 1]

	
:

Since
g0(x1; x2) = x

2
2 + x2 � 0) x2 2 [�1; 0]

and
g1(x1; x2) = x

2
1 � 0) x1 = 0;

one gets X = f0g�[�1; 0] : As T (02) = f0; 1g ; 02 2
[

t2T (02)

@gt(02) = f(0; 0) ; (0; 1)g

and so LSCQ fails at 02: We also have A(02) = cone f(0; 1)g and D(X; 02) =
cone f(0;�1)g ; so that A(02)  �D(X; 02)+; which implies the failure of LFMCQ.
Since g00(02; d) = d2 and g

0
1(02; d) = 0; fd 2 R2 : '0(02; d) � 0g = R � R�: On

the other hand A(X; 02) = f0g � R�: So, EKTCQ fails to hold at 02:

4 Cone conditions

It is well-known (see, e.g. [9, Theorem 3.21 and Corollary 3.23]) that, if T is
�nite, fi; i = 1; : : : ; p and gt; t 2 T; are convex di¤erentiable functions, x 2 X;
and 0n =2 conv frf1(x); :::;rfp(x)g ; then x is a weakly e¢ cient solution of
the (ordinary) convex vector optimization problem P if and only if there exist
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tj 2 T (x) ; j = 1; : : : ; q; as well as non-negative scalars �1; : : : ; �p; �1; :::; �q
satisfying

pX
i=1

�irfi(x) =
qX
j=1

�jrgtj (x) 6= 0n: (19)

In geometric terms, the KKT condition (19) asserts that G(x) \ A (x) 6= f0ng
(it is su¢ cient to take q � n by Carathéodory�s theorem applied to the convex
cone A (x)). In this section we give similar conditions for convex vector SIO
problems and di¤erent types of e¢ ciency.
The characterizations of e¢ cient and weakly e¢ cient solutions in this sec-

tion extend similar results on linear vector SIO in [12] to convex vector SIO.
We start with two su¢ cient conditions for x 2 X to be e¢ cient and weakly e¢ -
cient solution independently of the constraints under assumptions which already
appeared in Lemma 2.

Proposition 21 If x 2 X; then the following statements are true:
(i) If 0n 2 conv

�
pS
i=1

@fi(x)

�
; then x 2 XwE :

(ii) if 0n 2
pS
i=1

@fi(x) and the components of f are strictly convex, then x 2 XE :

Proof: (i) Let 0n =
pX
i=1

�i�i; with �i � 0 and �i 2 @fi(x); i = 1; :::; p; and

pX
i=1

�i = 1: Let �j > 0; j 2 f1; :::; pg : Then, �j = �
X
i 6=j

�i
�j
�i: We can assume

w.l.o.g. the existence of i 6= j such that �i > 0 (otherwise, �j = 0n and x 2 XwE
because it is a minimizer of fj on Rn; and so on X). If we suppose that there
exists bx 2 X such that f (bx) < f (x) ; for every i = 1; : : : ; p and �i 2 @fi(x);
then

0 > fi (bx)� fi (x) � �>i (bx� x) :
Thus,

0 > �>j (bx� x) = �X
i 6=j

�i
�j
�>i (bx� x) > 0;

which is a contradiction whereby x 2 XwE :
(ii) If 0n 2

pS
i=1

@fi(x) and all the objective functions are strictly convex, then

x is the unique minimizer of at least one of the objective functions on Rn (and
so on X). Then, there is no bx 2 X such that f (bx) � f (x) ; i.e., x 2 XE : �

Theorem 22 Let x 2 X be such that 0n =2
pS
i=1

@fi(x): Then, the following

statements hold:
(i) x 2 XE if and only if

D(X;x) \G(x)� � fd 2 Rn : f 0i(x; d) = 0; i = 1; : : : ; pg :
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(ii) x 2 XwE if and only if D(X;x) \ int G(x)� = ;:

Proof: (i) Denote F (x) := fd 2 Rn : f 0i(x; d) = 0; i = 1; : : : ; pg :
Suppose that x 2 XE : Let d 2 D(X;x) \G(x)�: Then, by Lemma 2(ii),

f 0i(x; d) � 0; for all i = 1; : : : ; p: (20)

Since d 2 D(X;x) and x 2 XE ; if there exists i0 2 f1; : : : ; pg such that
f 0i0(x; d) < 0; d would be a feasible descent direction of f 0i0 at x and there
would exist j0 2 f1; : : : ; pg; j0 6= i0; such that d is a feasible ascent direction
of fj0 at x: Then, by Lemma 1, f

0
j0
(x; d) > 0; which contradicts (20). Thus

f 0i(x; d) = 0; for all i = 1; : : : ; p; i.e., d 2 F (x):
Now assume that x =2 XE : Then, there exist d 2 D(X;x); i0 2 f1; : : : ; pg;

and � > 0 such that

fi(x+ "d) � fi(x); i = 1; : : : ; p; (21)

with

fi0(x+ "d) < fi0(x) (22)

for all " 2 ]0; �[ : From (21) it follows that f 0i(x; d) � 0; i = 1; : : : ; p: Thus, again
by Lemma 2(ii), d 2 D(X;x) \ G(x)�: But, from (22) we get "�>i0d � fi0(x +
"d)� fi0(x) < 0 for all �i0 2 @fi0(x): That is, f

0
i0
(x; d) = max

�i02@fi0 (x)
�>i0d < 0; so

that d =2 F (x):

(ii) If 0n 2 conv

�
pS
i=1

@fi(x)

�
; then x 2 XwE by Proposition 21. So, we

can assume that 0n =2 conv
�

pS
i=1

@fi(x)

�
; in which case 0n =2

pS
i=1

@fi(x): Let

d 2 D(X;x)\ int G(x)�: Then, again by Lemma 2(iii), f 0i(x; d) < 0; i = 1; : : : ; p:
That is, d is a feasible descent direction for fi at x; i = 1; : : : ; p: So, x =2 XwE :

Now, suppose that x =2 XwE ; i.e. there exists x 2 X such that fi(x) < fi(x);
i = 1; : : : ; p: Let d = x� x 2 D(X;x): Since d is a feasible descent direction for
each fi at x; it follows that f 0i(x; d) = max�i2@fi(x) �

>
i d < 0; again by Lemma

1. Thus, d 2 intG(x)� by Lemma 2(iii). Thus, D(X;x)\ int G(x)� 6= ;; which
completes the proof. �
The following example shows that the assumption 0n =2

pS
i=1

@fi(x) in Theo-

rem 22 is not super�uous.

Example 23 Let n = 2; p = 2; f1 (x) = x21 + x
2
2; f2 (x) = x

2
1 � 2x1 + x22; and

gt (x) = xt
2
1 � x2 + t� 1 for all t 2 [0; 1] : As gt grows with t;

X =
�
x 2 R2 : g1 (x) � 0

	
=
�
x 2 R2 : x2 � x21

	
:
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Since f1 and f2 are strictly convex and 02 = rf1 (02) 2
S

i=1;2

@fi(02); we have

02 2 XE : Now, take d = (1; 1) : We have D(X; 02) = R� R++ [ f02g and
G(02)

� = R� R+; so that d 2 D(X; 02) \ G(02)�; but d =2 F (02) because
f 02(02; d) = rf2 (02)

>
d = �2 6= 0:

Corollary 24 Given x 2 X; x 2 XwE if and only if

fd 2 Rn : f 0i(x; d) < 0; i = 1; : : : ; pg \D(X;x) = ;: (23)

Proof: If 0n 2
pS
i=1

@fi(x; d); then x 2 XwE by Proposition 21 and there exists

i 2 f1; : : : ; pg such that f 0i(x; d) � 0; so that (23) holds too. Otherwise, both
statements are equivalent by Theorem 22(ii) and Lemma 2(iii). �

For the sake of brevity, given � = (�1; :::; �p) 2 Rp; we denote
pX
i=1

�ifi in

matrix form as �>f:

Theorem 25 Given x 2 X; the following statements hold:
(i) x 2 XpE if and only if @

�
�>f

�
(x) \D (X;x)+ 6= ; for some � > 0p:

(ii) x 2 XwE if and only if @
�
�>f

�
(x) \D (X;x)+ 6= ; for some � � 0p:

Proof: We associate with P the parameterized (weighted) problem

P (�) : min
�
�>f

�
(x) =

pX
i=1

�ifi(x) s.t. x 2 X; (24)

where � � 0p is the weight vector and P (�) is a convex SIO problem for each

� (we could aggregate
pX
i=1

�i = 1). By Theorem 27.4 of [27] it follows that

x is an optimal solution of P (�) for some � � 0p if and only if there exists

� 2 @
�
�>f

�
(x) \D (X;x)+ :

(i) According to the Geo¤rion Theorem ([11], see also [9, Theorem 3.15]), x
is an optimal solution of P (�) for some � > 0p if and only if x 2 XpE :
(ii) Similarly, by [9, Proposition 3.10], x is an optimal solution of P (�) for

some � � 0p if and only if x 2 XwE : �

Observe that, given x 2 X; 0n 2 conv
�

pS
i=1

@fi(x)

�
entails that XwE : We

consider now the case where 0n =2 conv
�

pS
i=1

@fi(x)

�
:

Corollary 26 Let x 2 X be such that 0n =2 conv
�

pS
i=1

@fi(x)

�
: Then x 2 XwE

if and only if G(x) \D(X;x)+ 6= f0ng ; in which case x 2 bdX:

17



Proof: Let 0n =2 conv
�

pS
i=1

@fi(x)

�
: Then, G(x)\D(X;x)+ 6= f0ng if and only

if there exist � � 0p; �i 2 @fi(x); i = 1; : : : ; p such that
pX
i=1

�i�i 2 D (X;x)
+ if

and only if

pX
i=1

�i@fi(x) \D (X;x)+ = @
�
�>f(x)

�
\D (X;x)+ 6= f0ng

for some � � 0p: The �rst statement follows from Theorem 25(ii).
Finally, if x 2 intX; then D (X;x)+ = f0ng ; so that G(x) \ D(X;x)+ =

f0ng : Hence x =2 XwE by the �rst statement. �

5 KKT conditions

We are in a position to obtain KKT optimality conditions.

Theorem 27 Given x 2 X; the following statements hold:
(i) If there exists � � 0p (� > 0p) satisfying

(KKT) @
�
�>f

�
(x) \ (�A(x)) 6= ;;

then x 2 XwE (x 2 XpE ; respectively).
(ii) If x 2 XwE (x 2 XpE) satis�es LFMCQ, then there exist � � 0p (� > 0p;

respectively) such that (KKT) holds. If, additionally, 0n =2 conv
�

pS
i=1

@fi(x)

�
;

then the following stronger condition holds:

@
�
�>f

�
(x) \ (�A(x)) 6= f0ng :

Proof : (i) Recall that D (X;x) � A (x)� : Taking positive polars we get

D (X;x)
+ � �A (x)++ = � clA (x) � �A (x) ;

so that (KKT) implies that @
�
�>f

�
(x)\D (X;x)+ 6= ;: The conclusion follows

from Theorem 25.
(ii) We are assuming that A (x) = D (X;x)

�
= �D (X;x)+ : The �rst part is

straightforward consequence of Theorem 25 while the second one follows from
the argument of Corollary 26. �

Lemma 28 If x 2 XwE ; then

fd 2 Rn : f 0i(x; d) < 0; i = 1; : : : ; pg \ T (X;x) = ;: (25)
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Proof: Assume the contrary, that is, there exists d 2 T (X;x) satisfying

f 0i(x; d) < 0; i = 1; : : : ; p: (26)

By d 2 T (X;x); there exist sequences fskgk2N and fdkgk2N such that sk # 0;
dk ! d and x + skdk 2 X for all k 2 N: Since x 2 XwE there exists (perhaps
after passing to a subsequence) an index i0 2 f1; : : : ; pg such that

fi0(x+ s
kdk) � fi0(x); k 2 N:

Since fi0 is directional di¤erentiable at x in the Hadamard sense (see e.g. [1,
Proposition 2.126(v)(c)]), the latter inequalities provide

f 0i0(x; d) = lim
k!1

fi0(x+ s
kdk)� fi0(x)
sk

� 0

which contradicts (26). �
Observe that, since D(X;x) � T (X;x); the direct part of Corollary 24 is

immediate consequence of Lemma 28:
We have shown in Theorem 27 that (KKT) is a necessary condition for weak

e¢ ciency under LFMCQ (and, by Lemma 8, also under SCQ). Finally, we prove
that this necessary condition still holds under the remaining two CQ introduced
in Section 3, namely, LSCQ and EKTCQ, together with the closedness of the
active cone recall that LSCQ entails the latter property according to Corollary
11).

Theorem 29 Let 0n =2 conv
�

pS
i=1

@fi(x)

�
and x 2 XwE satisfying one of the

following conditions:
(i) LSCQ;
(ii) EKTCQ and A (x) is closed.
Then, there exists � � 0p satisfying (KKT).

Proof: Since x 2 XwE and 0n =2 conv
�

pS
i=1

@fi(x)

�
; x 2 bdX and(

d 2 Rn :
pX
i=1

�if
0
i(x; d) < 0; for all � � 0p

)
\ T (X;x) = ; (27)

by Corollary 26 and Lemma 28, respectively. Combining the formulas (15) and
(27) with Theorem 15(iv) and Lemma 19, we conclude that there is no d 2 Rn
such that

pX
i=1

�if
0
i(x; d) < 0 for all � � 0p (28)

and
g0t(x; d) � 0 for all t 2 T (x) : (29)

(i) Assume that LSCQ is satis�ed at x: Now, (28)-(29) is equivalent to: there is
no d 2 Rn such that
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�>d < 0 for all � 2 @
�
�>f

�
(x) for all � � 0p: (30)

and
�>d � 0 for all � 2 @gt(x) for all t 2 T (x) (31)

Since the homogeneous linear system formed by (31)-(30) is inconsistent,

@
�
�>f

�
(x) is a compact convex set and A (x) := cone

 S
t2T (x)

@gt(x)

!
is closed

(by Corollary 11), so that the Minkowski sum of both sets is closed, we can apply
Motzkin�s Theorem [13, Theorem 3.5] to conclude that

0n 2 @
�
�>f

�
(x) +A (x) :

(ii) The proof is the same, taking into account that now A (x) is closed by
assumption. �
Example 17 shows that the closedness assumption in Theorem 29(ii) is not

super�uous. Indeed, the unique solution of the system formed by the non-linear
equations

�1

�
1
�1

�
+ �2

�
0
�1

�
=

2X
i=1

�i

 
�ti

�
q
1� (ti � 1)2

!
; t1; t2 2 [0; 2];

and the inequalities
�i � 0; �i � 0; i = 1; 2; (32)

is �1 = �2 = �1 = �2 = 0: Thus, (KKT) fails.

Example 30 Consider the robust counterpart problem in (2) with Ui = B (ci; ") �
Rn; i = 1; :::; p: Then, fi (x) = maxci2Ui c>i x = c>i x+ " kxk ; with

@fi(x) =

( n
ci + "

x
kxk

o
; if x 6= 0n;

B (ci; ") ; if x = 0n:

Let X =
�
x 2 Rn : p>k x � qk; k 2 K

	
be the feasible set of (2) and let x 2

X: According to Theorem 15, Proposition 21, and Theorems 27 and 29, the
following statements hold:

(i) If 0n 2 conv
�

pS
i=1

@fi(x)

�
; then x is a minmax robust weakly e¢ cient

solution.

(ii) Assume that 0n =2 conv
�

pS
i=1

@fi(x)

�
and either LSCQ or EKTCQ holds

at x 6= 0n: Then, x is a weakly e¢ cient solution of (2) if and only if there exists
� � 0m such that �

pP
i=1

�i

�
ci + "

x
kxk

�
2 A (x) :
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