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Abstract

In general, a portfolio problem minimizes risk (or negative utility) of a portfolio of financial assets with
respect to portfolio weights subject to a budget constraint. The inverse portfolio problem then arises when
an investor assumes that his/her risk preferences have a numerical representation in the form of a certain
class of functionals, e.g. in the form of expected utility, coherent risk measure or mean-deviation functional,
and aims to identify such a functional, whose minimization results in a portfolio, e.g. a market index, that
he/she is most satisfied with. In this work, the portfolio risk is determined by a coherent risk measure, and
the rate of return of investor’s preferred portfolio is assumed to be known. The inverse portfolio problem
then recovers investor’s coherent risk measure either through finding a convex set of feasible probability
measures (risk envelope) or in the form of either mixed CVaR or negative Yaari’s dual utility. It is solved in
single-period and multi-period formulations and is demonstrated in a case study with the FTSE 100 index.

Key words: decision making under risk, coherent risk measure, portfolio optimization, inverse portfolio
problem.

1 Introduction

Identifying agent’s risk preferences has been and continues to be one of the main thrusts of decision mak-
ing under uncertainty. Von Neumann and Morgenstern [34] were the first who proposed four axioms on a
preference relation: completeness, transitivity, continuity, and independence and showed that these axioms ad-
mit a numerical representation in the form of expected utility. Due to its mathematical elegance and relative
simplicity, the expected utility theory (EUT) still remains a normative model of the theory of choice despite
continuing debate and criticism since its inception. On the one hand, empirical evidence (so-called paradoxes)
shows that some of EUT’s axioms are consistently violated (see, e.g., Allais paradox [1]), whereas, on the
other hand, even if the four axioms are agreed to follow, an agent faces an exhaustive questionnaire procedure
for identifying his/her utility function. A considerable number of alternative theories of choice have emerged
only to encounter their own paradoxes and to reveal that they hardly have advantage over the EUT; see dual
utility theory [31,35], weighted expected utility theory (WEUT) [7], rank-dependent (anticipated) utility theory
(AUT) [25], prospect theory [9,15], cumulative prospect theory (CPT) [16], regret theory [21], disappointment
theory [5], mean-deviation theory [11], to mention just a few.

While all utility theories begin with axioms on a preference relation and then derive numerical represen-
tations for those axioms, the recently emerged theory of coherent risk measures [2] introduces the notion of
acceptance set A for risky alternatives (random variables) and measures risk of a random variable (r.v.) X
as the minimum amount of cash C that makes X + C acceptable. In other words, a risk measure ρ of X can
be determined as ρ(X) = min{C ∈ R |X + C ∈ A}. If A is a closed positively homogeneous convex
cone containing all nonnegative r.v.’s and no strictly negative r.v.’s, then ρ is a positively homogeneous convex
functional and is called coherent risk measure [2]. In this case, it admits a dual representation in the form
ρ(X) = supQ∈Q E[Q(−X)], where Q is a closed convex set whose elements are nonnegative r.v.’s with ex-
pected value of 1 (constant 1 is also included). The set Q is called risk envelope and each its element can be
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interpreted as a “distortion” of the underlined probability measure. Namely this interpretation ties risk pref-
erences to a certain convex set of probability measures. In other words, the agent can specify “scenarios” of
probability measures and can evaluate risk of an r.v. X as the negative expected value of X under the worst-case
probability measure over the convex hull of the specified probability measures; see, e.g., [20]. In fact, there is
a one-to-one relationship between coherent risk measures and risk envelopes.

Given the elegant risk-envelope characterization and the attractive properties (convexity, positive homo-
geneity, monotonicity, and constant translation) of coherent risk measures, the agent may reasonably assume
that his/her risk preferences have a numerical representation in the form of a coherent risk measure ρ, which
he/she would use in a variety of decision making problems: optimal portfolio selection [23], optimal risk shar-
ing [14], optimal hedging [32], etc. Also, −ρ(X) plays the role of a utility functional of an r.v. X, and the
question of identifying ρ(X) is equivalent to the one of identifying the utility functional U(X) = −ρ(X). One
of the approaches to finding ρ is to solve the inverse portfolio problem: if the agent minimizes the coherent risk
measure ρ over some set of r.v.’s (portfolio returns), and X∗ is known to be optimal, i.e. the rate of return of an
optimal portfolio, then ρ can be recovered from X∗ through determining the risk envelope Q associated with
ρ. This approach was demonstrated in identifying a deviation measure in a Markowitz-type portfolio selection
problem; see [12] and [36, Section 8.2.4]. However, in general, the results in [12] cannot be used directly to
solve the inverse portfolio problem with an unrestricted class of coherent risk measures, since deviation mea-
sures correspond one-to-one to averse measures of risk [27, 28],1 which, in contrast to coherent risk measures,
are not required to preserve monotonicity of preference relations; see [27, 28] and [36, Section 2.3]. In fact,
these two classes of risk measures have a nonempty intersection called coherent averse measures of risk that
correspond one-to-one to lower range dominated deviation measures (subclass of general deviation measures).
For example, the standard deviation is not lower range dominated, and as a result, it has no counterpart in coher-
ent risk measures through the one-to-one correspondence established in [27, 28]. Also, the work [12] assumes
X∗ to be SSD-efficient to guarantee the existence of a law invariant solution, which is no longer required here.

This paper solves the inverse portfolio problem with coherent risk measures in both single-period and multi-
period formulations. In the single-period formulation, a set X of feasible portfolio rates of return at some time
moment t0 in the past is given, and the agent’s optimal portfolio rate at t0 is known to be X∗ ∈ X . The
inverse problem is then finding a coherent risk measure ρ from a given classR, determined by some additional
requirements/constraints on agent’s risk preferences, such that X∗ is agent’s optimal choice. It is shown that
if a law-invariant solution to the inverse problem exists, it can always be represented in the form of mixed
CVaR, and a technique for explicitly computing that mixed CVaR is suggested.2 Moreover, if an exact solution
does not exist, the technique returns the “best” approximate mixed CVaR. In the multi-period formulation, a
sequence of agent’s optimal portfolio rates of return is given (each of which is from a given feasible set), and
ρ ∈ R is sought to make all those portfolio rates optimal (or at least close to optimal).

The rest of the paper is organized into four sections. Section 2 introduces coherent risk measures. Section 3
formulates and solves the inverse portfolio problem with coherent risk measures, whereas Section 4 constructs
approximate solutions in the form of mixed CVaR. Section 5 concludes the work and proposes future research
directions.

2 Coherent Risk Measures

Let X be a set of available random variables (r.v.’s), e.g. representing rates of return of risky assets. Formally,
an r.v. is a measurable function from some probability space Ω = (Ω,M, P) to R, where Ω is the set of
future states ω,M is a field of sets in Ω, and P is a probability measure on (Ω,M). The relations between

1In [27, 28], they are originally called strictly expectation bounded risk measures.
2In [12], the technique for identifying deviation measures requires X∗ to have unique risk identifiers with respect to all CVaR’s,

which considerably limits the number of appropriate X∗ (especially of real-life instruments). Here, the corresponding technique works
for arbitrary X∗.
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r.v.’s will be understood to hold in the almost sure sense, e.g., we write X = Y if P[X = Y] = 1 and X > Y
if P[X > Y] = 1. By FX(x) and qX(α) = inf{x|FX(x) > α} will be meant the cumulative distribution
function (CDF) and quantile function of an r.v. X, respectively. Let L∞(Ω) = L∞(Ω,M, P) be the space of
all bounded r.v.’s with the norm ‖X‖∞ = sup |X|, and let L1(Ω) = L1(Ω,M, P) be the space of all r.v.’s
with finite expectation with the norm ‖X‖1 = E|X|. The probability space Ω is called atomless, if there exists
an r.v. with a continuous CDF.3

We assume that every r.v. X from X is bounded, and that an agent evaluates risk of X by a risk measure
ρ : L∞(Ω)→ R satisfying four axioms:

(i) Monotonicity: ρ(X) > ρ(Y) whenever X 6 Y;

(ii) Sub-additivity: ρ(X + Y) 6 ρ(X) + ρ(Y) for all X, Y ∈ L∞(Ω);

(iii) Positive homogeneity: ρ(α X) = α ρ(X) for every X ∈ L∞(Ω) and α > 0;

(iv) Translation property: ρ(X + C) = ρ(X)− C for every X ∈ L∞(Ω) and constant C.

A functional ρ : L∞(Ω) → R satisfying (i)–(iv) is called coherent risk measure [2]. The set of all r.v.’s
with non-positive risk, i.e.

Aρ = {X ∈ L∞(Ω)| ρ(X) 6 0} (1)

is called the acceptance set associated with ρ. The four axioms of ρ imply thatAρ is a positively homogeneous
convex cone containing all nonnegative r.v.’s and no strictly negative r.v.’s; see [2]. In fact, Aρ gives ρ back as

ρ(X) = min
C∈R: X+C∈Aρ

C, (2)

which shows that ρ(X) is the minimum amount of cash infusion needed for X to be acceptable.
Every coherent risk measure satisfying the Fatou property4 can be represented by

ρ(X) = sup
Q∈Q

E[Q(−X)], (3)

for some Q ⊂ QMAX ⊂ L1(Ω), where

QMAX =
{

Q ∈ L1(Ω)
∣∣∣ Q > 0, E[Q] = 1

}
,

see [2]. The set Q in (3) is called the risk envelope of ρ and is recovered from ρ as

Q =
{

Q ∈ L1(Ω)
∣∣∣ E[Q(−X)] 6 ρ(X) for all X ∈ L∞(Ω)

}
. (4)

Since every Q ∈ QMAX is a Radon-Nikodym derivative of some probability measure PQ with respect to P,
E[Q(−X)] = EPQ [−X] can be viewed as the expected loss associated with X under PQ. The set Q in (3) can
then be interpreted as the set of Radon-Nikodym derivatives of probability measures, or scenarios, which the
agent considered “likely,” and the risk measure in (3) is then interpreted as the average loss under the “worst”
scenario. If the supremum in (3) is attained for some Q, it is called a risk identifier for X [30]. The set of all
risk identifiers for X is denoted by Qρ(X).

The representations (1) and (3) imply that the acceptance set Aρ can be determined by the risk envelope Q
by

Aρ = {X ∈ L∞(Ω) | E[QX] > 0 for all Q ∈ Q},
3The existing literature offers several definitions of an atomless space, all of which are equivalent, see [8, Proposition A.27].
4A functional ρ satisfies the Fatou property, if ρ(X) 6 lim inf

n→∞
ρ(Xn) for any bounded sequence Xn with Xn → X a.s. Since

Xn → X a.s. does not imply Xn → X in the L∞ norm, this property is stronger than lower semicontinuity.

3



whereas it follows from (2) and (4) that the risk envelope Q is “induced” by Aρ as

Q =
{

Q ∈ L1(Ω)
∣∣∣ E[Q] = 1, E[QX] > 0 for all X ∈ Aρ

}
.

A coherent risk measure ρ is called law-invariant if ρ(X) = ρ(Y) whenever X and Y have the same
distribution function. This is equivalent to the assumption that the risk envelope Q associated with ρ is law-
invariant: Q1 ∈ Q implies that Q2 ∈ Q whenever Q1 and Q2 have the same distribution, see [6, Corollary
4.3].

The best known example of a law-invariant coherent risk measure is arguably conditional value-at-risk
(CVaR) [26], defined for any α ∈ (0, 1] by

CVaRα(X) ≡ −1
α

∫ α

0
qX(β) dβ.

By continuity, we can define
CVaR0(X) = lim

α→0
CVaRα(X) = − inf X.

A straightforward generalization of CVaR is mixed CVaR [27, 28]

ρ(X) =
∫ 1

0
CVaRα(X) dλ(α), (5)

where λ is a weight function5 on [0, 1], i.e. λ(α) > 0 and
∫ 1

0 dλ(α) = 1. If lim
ε→0

∫ ε
0 dλ(α) = 0,6 mixed CVaR

(5) can be represented in the spectral form

ρ(X) = −
∫ 1

0
φ(α) qX(α) dα, (6)

where φ(α) =
∫
[α,1) s−1dλ(s) is a left-continuous and nonincreasing function with φ(1−) = 0 and

∫ 1
0 φ(α)dα =

1; see Theorem 4.70 in [8]. Guriev [13, Theorem 1] showed that the integral in (6) (without negative sign) is
exactly a Yaari’s dual utility function [35].

Under a minor technical assumption,7 every law-invariant coherent risk measure can be represented as a
worst-case mixed CVaR

ρ(X) = sup
λ∈Λ

∫ 1

0
CVaRα(X) dλ(α), (7)

where Λ is a collection of probability measures λ on [0, 1], see Corollary 4.63 and Remark 4.64 in [8]. Equiv-
alently, ρ(X) in (7) can be represented as

ρ(X) = sup
Q∈Q

∫ 1

0
qQ(α) q−X(α) dα, (8)

where Q is the same as in (3), see Theorem 4.59 in [8].
In this work, investors are assumed to be non-satiable and risk averse, and their choices are assumed to be

consistent with risk orderings [22].

5In [27,28], λ is a weight function on (0, 1). Following [8, p. 220], we extend the definition of mixed CVaR to include CVaR0(X) =
− inf X and CVaR1(X) = −E[X]. In particular, λ can be a linear combination of delta-functions at α1 < · · · < αn, in which case,
mixed CVaR (5) simplifies to ∑n

i=1 wi CVaRαi (X), where w1, . . . , wn are positive weights summing up to 1.
6In other words, if λ is not a δ-function at 0.
7Namely, this holds if Ω is atomless and L2(Ω) is separable. The representation (7) was originally proved in [18] under somewhat

more restricting conditions.
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An r.v. X dominates an r.v. Y with respect to second-order stochastic dominance (SSD), and we write
X <SSD Y, if E[ f (X)] > E[ f (Y)] for every concave increasing function f : R→ R, or, equivalently, if

CVaRα(X) 6 CVaRα(Y) ∀ α ∈ [0, 1], (9)

see Theorem 2.57 in [8]. If X <SSD Y, then (9) implies that ρ(X) 6 ρ(Y) for every ρ in the form (7), so that
Y can be viewed as universally riskier than X.

A coherent risk measure can be required to conform to certain preferences from agent’s past experience,
for example, to

(a) Accept assets with rates of return X1, X2, . . . , Xk, i.e. X1 ∈ Aρ, . . . , Xk ∈ Aρ or, equivalently,

ρ(X1) 6 0, . . . , ρ(Xk) 6 0,

which can be written as Q ⊂ QM, where Q is the risk envelope associated with ρ and

QM =
{

Q ∈ QMAX
∣∣∣ E[QX1] > 0, . . . , E[QXk] > 0

}
. (10)

In other words, the agent’s risk envelope should include only those scenarios, under which X1, X2, . . . , Xk
have non-negative expected values.

(b) Order “reference” rates X1, . . . , Xk according to a given set S of orderings: (i, j) ∈ S ⇔ Xi � Xj. For
example, the agent may feel that the FTSE250 index is safer than the FTSE100 index, which, in turn,
is safer than the IBM stock. Such preferences may be formalized as Q ⊂ QM, where Q is the risk
envelope of ρ and

QM =
{

Q ∈ QMAX
∣∣∣ E[QXi] > E[QXj], (i, j) ∈ S

}
. (11)

(c) Exclude certain (Radon-Nikodym derivatives of) probability measures that are “too concentrated” to
some scenarios, e.g. to have Q ⊂ QM with

QM =
{

Q ∈ QMAX
∣∣∣ 1/2 6 Q 6 3/2

}
. (12)

(d) Generate a risk envelope by perturbing a “reference” element Q∗ ∈ QMAX, e.g. Q∗ = 1:

Q =
{

Q ∈ QMAX
∣∣∣ Q = Q∗ + Z, Z ∈ Z

}
, (13)

where Z ⊂ L1(Ω) is a closed convex set of possible “errors” of Q∗, and Q = Q∗ + Z can be viewed
as a perturbation of Q∗. For example, Z may consist of all r.v.’s Z with E[|Z|] 6 ε for some ε > 0.

In addition, ρ can be assumed to be either (i) law-invariant, (ii) mixed CVaR (5), or (iii) a finite combination
of CVaRs

ρ(X) = ∑m
j=1 λj CVaRαj(X) (14)

for some 0 6 α1 < · · · < αm 6 1 and λj > 0, j = 1, . . . , m with ∑m
j=1 λj = 1.

The agent may combine any requirements (a)–(d) on the existing preferences with any assumption (i)–(iii)
on the form of coherent risk measure. In general, letR be the set of all coherent risk measures satisfying agent’s
requirements/assumptions. For example,R can be a set of all law-invariant coherent risk measures such that

R =

{
ρ(X) = sup

Q∈Q
E[Q(−X)]

∣∣∣∣∣Q ⊂ QM

}
(15)

with QM defined by either (10), (11), or (12), if the agent requires ρ to conform to preference conditions (a),
(b), or (c), respectively.
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IfR is not a singleton, how to choose a particular risk measure ρ ∈ R? One of the approaches is to recover
ρ from the inverse portfolio problem: the agent assumes that the rate of return of the portfolio that he/she
either believes to be optimal or is relatively satisfied with minimizes ρ over the set X . The portfolio optimality
conditions are then used to find the risk envelope associated with ρ, and ρ is given by (3).

Once ρ is recovered, the agent may use it to find an optimal portfolio over a different set X of portfolio
rates of return, X, and subject to additional constraints, e.g. E[X] > π for some π > 0; see e.g. [23].
However, the knowledge of ρ is critical far beyond portfolio selection. One example is optimal risk sharing
between two agents who use law-invariant coherent risk measures ρ1 and ρ2 as numerical representations of
their attitudes towards risk. Namely, given agents’ endowments X1 and X2, it is often possible to find agents’
shares Y1 and Y2 of the aggregate endowment X = X1 + X2 such that Y1 + Y2 = X, but ρ1(Y1) < ρ1(X1)
and ρ2(Y2) < ρ2(X2), see [14]. Another example is hedging in an incomplete market, when, in contrast to
a complete market, not every contingent claim can be replicated with the existing set of assets, and the agent
needs to find a hedging strategy that minimizes the risk (measured by ρ) of the residual of a replicated claim,
see [32].

3 Inverse Portfolio Problem

3.1 Problem Formulation

A single-period portfolio optimization problem is formulated as follows. Let r.v.’s r1, . . . , rn be the rates of
return of n risky assets, and let vi be the fraction of the initial capital invested into asset i. Then the portfolio
rate of return is determined by rp = ∑n

i=1 ri vi, and the investor’s portfolio problem is to minimize a coherent
risk measure ρ of rp with respect to v1, . . . , vn subject to the budget constraint ∑n

i=1 vi = 1 and no-shorting
constraints vi > 0, i = 1, . . . , n:

min
X∈X

ρ(X), (16)

where X is the set of all possible rates of return:

X =
{

X = ∑n
i=1 ri vi

∣∣∣ ∑n
i=1 vi = 1, v1 > 0, . . . , vn > 0

}
. (17)

If short sales are allowed, the feasible set X in (17) becomes X = {X = ∑n
i=1 rivi| ∑n

i=1 vi = 1}, and
if there is also a risk-free asset with constant rate of return r0, then X = {X = ∑n

i=0 rivi| ∑n
i=0 vi = 1}.

In the last case, v0 is typically expressed from the budget constraint as v0 = 1− ∑n
i=1 vi, and rp takes the

form rp = ∑n
i=1(ri − r0)vi + r0 = X + r0, where X = rp − r0 = ∑n

i=1(ri − r0)vi is the portfolio excess
rate of return. In this case, ρ(rp) = ρ(X) − r0, and the portfolio optimization problem can be equivalently
reformulated as (16) with

X =
{

X = ∑n
i=1(ri − r0)vi

∣∣∣ (v1, . . . , vn) ∈ Rn
}

. (18)

In either case, the inverse portfolio problem is then formulated by

Find ρ ∈ R such that ρ(X∗) 6 ρ(X) for each X ∈ X , where X∗ ∈ X and X is given by either (17) or (18).
(19)

Theorem 5 in [27] implies that a sufficient condition for X∗ to be optimal in (16), which is also necessary
when ρ is finite on L2(Ω), is the existence of a risk identifier Q ∈ Qρ(X∗) such that

E[(X− X∗)Q] 6 0 ∀X ∈ X . (20)
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With X given by (17), X∗ = ∑n
i=1 ri v∗i , and (20) reduces to (see also [30, Theorem 2] and [36, Theorem

8.1])

∃Q ∈ Qρ (X∗) such that E[ri Q]

{
= ζ, v∗i > 0
6 ζ, v∗i = 0

i = 1, . . . , n, (21)

where ζ is the Lagrange multiplier corresponding to the constraint ∑n
i=1 vi = 1, which implies that optimal ζ

is equal to E[X∗Q] = −ρ(X∗). The optimality conditions (21) can be equivalently formulated as

∃Q ∈ Q such that E[ri Q] 6 −ρ (X∗) , i = 1, . . . , n. (22)

Indeed, let Q ∈ Q satisfy (22). Then (22) yields ∑n
i=1(E[ri Q] + ρ (X∗)) v∗i 6 0, so that E[X∗Q] + ρ(X∗) 6

0, or ρ(X∗) 6 E[Q(−X∗)]. Since Q ∈ Q, ρ(X∗) > E[Q(−X∗)], and the equality holds. Thus, Q is, in fact,
a risk identifier for X∗, and the equality in (22) holds for every i such that v∗i > 0. Hence, (22) reduces to (21).

If X is given by (18), then the optimal portfolio rate of return must have zero risk.

Proposition 1 If X∗ is a solution to (16) with X given by (18), then ρ(X∗) = 0. Consequently, any portfolio
rate of return from the set {X ∈ X |X = αX∗, α > 0} is also optimal in (16).

Proof Since X in (18) is a subspace of L∞(Ω), (1− ε)X∗ ∈ X and (1 + ε)X∗ ∈ X for some ε > 0, and
since X∗ is optimal, ρ(X∗) 6 min{ρ((1− ε)X∗), ρ((1 + ε)X∗)} = min{(1− ε)ρ(X∗), (1 + ε)ρ(X∗)},
which implies that ρ(X∗) = 0. By positive homogeneity, ρ(αX∗) = 0 for any α > 0 such that αX∗ ∈ X , and
consequently, all these portfolio rates of return are optimal as well. 2

Proposition 1 implies that E[X∗Q] = ρ(X∗) = 0 for any Q ∈ Qρ(X∗), and consequently, the optimality
condition (20) reduces to E[XQ] 6 0 for all X ∈ X , which is possible only if

E[XQ] = 0 ∀X ∈ X , (23)

or, equivalently, if E[ri Q] = r0, i = 1, . . . , n. Any Q ∈ QMAX satisfying (23) is called the Radon-Nikodym
derivative of “risk-neutral probability measure” or “risk neutral” in short.8 By the fundamental theorem of
asset pricing (see, e.g., [8, Theorem 1.7]), the existence of the risk-neutral probability measure is equivalent
to the no-arbitrage assumption, i.e. no portfolio has excess return non-negative with probability 1 and strictly
positive with positive probability. If this assumption does not hold, the investor can borrow at the risk-free rate
unlimited amount of money and can invest in the risky assets making portfolio risk as small as desired, so that
there is no optimal portfolio, and the inverse portfolio problem (19) has no solution.

3.2 Law-invariant Coherent Risk Measure

This section seeks to find law-invariant solutions to the inverse portfolio problem (19). The following proposi-
tion establishes necessary and sufficient conditions for their existence.

Proposition 2 For arbitrary set X and any X∗ ∈ X , the following conditions are equivalent:

(a) The inverse problem (19) has a solution in the form of worst-case mixed CVaR (7).

(b) There is no constant ε > 0 and Y ∈ X such that Y <SSD X∗ + ε.

(c) There is no Y ∈ X such that

CVaRα(Y) < CVaRα(X∗) ∀ α ∈ [0, 1]. (24)

8A risk-neutral probability measure is a measure under which the expected discounted future price of any instrument is equal to the
current one, see [8].
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(d) The inverse problem (19) has a solution in the form of mixed CVaR (5).

If the probability space Ω is either atomless or finite uniform, i.e. Ω = {ω1, . . . , ωT} with P[ωt] = 1/T,
t = 1, . . . , T, then conditions (a)–(d) are equivalent to the condition that

(e) The inverse problem (19) has a law-invariant solution.

If the probability space Ω is finite uniform, then conditions (a)–(e) are equivalent to the condition that

(f) The inverse problem (19) has a solution in the form (14) with m = T and αj = j/T, j = 1, . . . , T.

If X is given by (18), then conditions (a)–(d) are equivalent to the conditions that

(g) There exists a risk-neutral r.v. Q∗ ∈ QMAX comonotone9 with −X∗.
(h) The inverse problem (19) has a solution in the form

ρ(X) =
∫ 1

0
qQ∗(α) q−X(α) dα, Q∗ ∈ QMAX. (25)

Proof (a)⇒ (b): By contradiction, let ε > 0 and Y ∈ X be such that Y <SSD X∗ + ε. Then, for any ρ given
by (7), ρ(Y) 6 ρ(X∗ + ε) = ρ(X∗)− ε < ρ(X∗), hence ρ is not a solution to the inverse problem (19).

(b)⇒ (c): By contradiction, let Y ∈ X be such that (24) holds. Since CVaRα(X∗) − CVaRα(Y) is
a continuous function of α ∈ [0, 1], it attaints its minimum value ε. By (24), ε > 0, and CVaRα(Y) 6
CVaRα(X∗)− ε = CVaRα(X∗ + ε) for every α ∈ [0, 1]. Hence, Y <SSD X∗ + ε, which contradicts (b).

(c)⇒ (d): The convexity of X and CVaRα, α ∈ [0, 1], implies that the set U = {φ ∈ S|∃X ∈ X : φ(α) >
CVaRα(X)} is a convex subset in the vector space S of continuous functions φ : [0, 1] → R. By (c), the
function φ∗(α) = CVaRα(X∗) belongs to U , but not to the interior of U . Thus, there exists a non-zero linear
functional L : S → R which attains its supremum on U at φ∗; see e.g. [37, Corollary 1.1.4]. In fact, (−L)
is a positive linear functional, that is, (−L)(φ) > 0 for any function φ such that φ(α) > 0 for all α ∈ [0, 1].
Indeed, φ∗ + φ ∈ U , hence L(φ∗ + φ) ≤ L(φ∗), so that L(φ) 6 0. Thus, (−L)(φ) =

∫ 1
0 φ(α) dλ(α)

for some non-negative measure λ on [0, 1], and we may assume that
∫ 1

0 dλ(α) = 1. Then the functional

R(X) = −L(CVaRα(X)) =
∫ 1

0 CVaRα(X) dλ(α) belongs to the family (5) and attains its infimum on X at
X∗.

(a)⇒ (f): Let ρ̃ be a solution to the inverse problem in the form (7). By Theorem 5 in [27], there exists a
risk identifier Q∗ ∈ Qρ̃(X∗) such that E[(X − X∗)Q∗] 6 0 for all X ∈ X . By Proposition 1, ρ̃(X∗) = 0.
Since Q∗ ∈ Qρ̃(X∗), this implies that E[X∗Q∗] = 0, and consequently, E[XQ∗] 6 0 for all X ∈ X , which
is possible only if E[Q∗ri] = r0, i = 1, . . . , n. Thus, Q∗ is a risk-neutral r.v. If ρ(X) 6≡ −E[X], then Q∗

is comonotone with −X∗ by Proposition 14 in [12], applied to the functional D(X) = ρ(X) + E[X]. If
ρ(X) ≡ −E[X] then Q∗ ≡ 1, and comonotonicity follows as well.

(f)⇒ (h): Let Q∗ ∈ QMAX be a risk-neutral r.v. comonotone with −X∗. Then

ρ(X∗) =
∫ 1

0
qQ∗(α) q−X∗(α) dα = E[Q∗(−X∗)] = 0,

where the second equality follows from comonotonicity of Q∗ and −X∗, and the third one from risk neutrality
of Q∗. On the other hand,

ρ(X) =
∫ 1

0
qQ∗(α) q−X(α) dα > E[Q∗(−X)] = 0 = ρ(X∗)

9Two r.v.’s X : Ω → R and Y : Ω → R are said to be comonotone, if there exists a set A ⊂ Ω such that P[A] = 1 and
(X(ω1)− X(ω2))(Y(ω1)−Y(ω2)) > 0 for all ω1, ω2 ∈ A.
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for any other r.v. X ∈ X , where the inequality is due to Hardy & Littlewood [8, Theorem A.24]. Hence, X∗ is
optimal in (16) with ρ.

Implications (h)⇒ (a) and (d)⇒ (a) follow from the fact that families (25) and (5) are subclasses of (7). On
an atomless probability space, every law-invariant risk measure can be represented in the form (7) [8, Corollary
4.63]), and (a)⇔ (e) follows.

Let Ω be a finite uniform set with T elements. Then every law-invariant risk measure ρ preserves SSD,
i.e. ρ(X) 6 ρ(Y) whenever X <SSD Y, see [4, Theorem 3.5], so that it can be represented in the form
(7) [19, Theorem 2.2], and (a)⇔ (e) follows. Finally, with finite uniform Ω, CVaRα(X) is a piecewise-linear
function of α for every X, so that the condition (24) can be written as

CVaRj/T(Y) < CVaRj/T(X∗) j = 1, . . . , T, (26)

and (c)⇒ (e) follows from the same argument as (c)⇒ (d), while the implication (e)⇒ (d) is obvious. 2

If in the proof of (a)⇔ (f)⇔ (h) in Proposition 2, QMAX is replaced by any law-invariant QM ⊂ QMAX,
then the following result holds.

Proposition 3 The inverse problem (19), where X is given by (18) and R is given by (15) with law-invariant
QM, has a solution in the form (7) if and only if there exists a risk-neutral r.v. Q∗ ∈ QM comonotone with
−X∗. In this case, the coherent risk measure

ρ(X) =
∫ 1

0
qQ∗(α) q−X(α) dα

is a solution of the inverse problem.

The solution to the inverse problem (19), if exists, may in general be not unique. Let R∗ be the set of all
solutions in the form (8) to the inverse problem (19) withR given by (15).

Proposition 4 If the setR∗ is non-empty, it contains a solution ρ∗ with the associated risk envelopeQ∗, which
is “maximal” possible in sense that Q ⊂ Q∗ for any other solution ρ ∈ R∗ with the associated risk envelope
Q. Moreover, Q∗ is given by

Q∗ =
{

Q ∈ QM
∣∣∣∣ ∫ 1

0
qQ(α) q−X∗(α) dα 6 0

}
. (27)

Proof Let ρ given by (8) with the associated risk envelopeQ be a solution to the inverse portfolio problem (19),
and let Q ∈ Q. Then

0 = ρ(X∗) >
∫ 1

0
qQ(α) q−X∗(α) dα,

where the equality follows from Proposition 1, and the inequality is due to (8). Hence, Q ∈ Q∗ by (27), and
Q ⊂ Q∗, and consequently, ρ∗(X) > ρ(X) > 0 for any r.v. X ∈ X . On the other hand, ρ∗(X∗) = 0 by
construction, so that X∗ is optimal in (16) with ρ∗. 2

In the portfolio problem (16), the investor may impose a constraint on the portfolio expected rate of return:

min
X∈X

ρ(X) subject to E[X] > π. (28)

The problem inverse to (28) is formulated similarly to (19): given X∗ ∈ X , find π and ρ such that X∗ is
optimal in (28). If ρ is an averse measure of risk, i.e. ρ(X) > −E[X] for all non-constant X (see [27, 28]
and [36, Section 2.3]), and the constraint E[X] > π holds as equality at optimality, then (28) is equivalent to

min
X∈X
D(X) subject to E[X] > π, (29)

where D(X) = ρ(X) + E[X] is a deviation measure (see [27, 28] and [36, Section 2.1]). The problem inverse
to (29) is solved in [12].
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Proposition 5 [Proposition 4 in [12]] If there is no Y ∈ X for which (24) holds, then X∗ ∈ X is an optimal
solution in (28) for π = E[X∗] and for a risk measure ρ in the form of mixed CVaR (5).

Example 1 Let Ω = {ω1, . . . , ωT} with P[ωt] = 1/T, t = 1, . . . , T, and let rit, i = 1, . . . , n, t = 1, . . . , T,
be the excess rate of return of risky asset i under ωt. The feasible set X in (18) is then a subset of RT and is
given by

X =
{

X = (x1, . . . , xT)
∣∣∣ xt = ∑n

i=1 ritvi, t = 1, . . . , T, (v1, . . . , vn) ∈ Rn
}

.

Fix X∗ = (x∗1 , . . . , x∗T) ∈ X . If there exists a law-invariant solution to the inverse problem (19) with R given
by (15) with QM = QMAX, then its risk envelope (27) takes the form

Q∗ =
{

Q = Perm(q1, . . . , qT)
∣∣∣ ∑T

t=1 qt(−x̄∗t ) 6 0, ∑T
t=1 qt = T, 0 6 q1 6 q2 6 · · · 6 qT

}
, (30)

where (x̄∗1 , . . . , x̄∗T) is a permutation of (x∗1 , . . . , x∗T) such that x̄∗1 > · · · > x̄∗T, and Perm(q1, . . . , qT) denotes
the set of all permutations of (q1, . . . , qT).

In particular, we select n = 92 instruments from the FTSE 100 index10 and identify T = 182 scenarios
for instruments’ weekly rates of return from 3-January-2011 to 30-June-2014. Here, r0 = 0, and rit is the
historical rate of return of instrument i during time period t.

(i) Let X∗ = (x∗1 , . . . , x∗T) be the rate of return of the master fund of positive type [29]11 in Markowitz’s
mean-variance optimization problem. Figure 1 depicts three elements from the law-invariant risk enve-
lope (30). The horizontal axis denotes scenarios t = 1, . . . , T = 182, while the vertical one denotes the
values of the corresponding qt-s.

(ii) Let X∗ = (x∗1 , . . . , x∗T) be the rate of return of the FTSE 100 index.12 Then condition (b) in Proposition
2 does not hold, hence there are no law-invariant solution to the inverse problem (19).

There are two reasons for presenting Example 1(i), where X∗ is chosen to be the rate of return of a mean-
variance portfolio. Firstly, Markowitz’s mean-variance portfolio is often viewed as a reference result in the
modern portfolio theory and capital asset pricing. However, the standard deviation (or, equivalently, variance)
is not, in fact, a measure of risk but rather the one of deviation. It does not preserve monotonicity of a preference
relation and, as a deviation, cannot be used alone to express risk aversion. In this case, the question of interest is
not whether the Markowitz’s mean-variance portfolio is desirable, but rather what a “rational equivalent” of the
mean-variance model in the class of risk measures, which are monotone and risk averse, is. In other words, the
inverse portfolio problem allows to uncover the “rational side” of the mean-variance model. Secondly, Example
1(ii) shows that for X∗ of a real-life instrument, e.g. the FTSE 100 index, the inverse problem typically may
not have exact law-invariant solution. In this case, the investor has two options:

(a) Solve the inverse problem to find an exact non law-invariant solution, or

(b) Find a law-invariant risk measure, which solves the inverse problem approximately.

Option (a) is addressed in Section 3.3, whereas option (b) is pursued in Sections 4.1–4.4.

10There are 101 instrument in the index, nine of them are excluded due to the lack of data.
11A master fund of positive/negative type is an optimal mean-deviation portfolio that has positive/negative unit price and zero weight

in the risk-free asset, see [29, Definition 2, p. 758]. It is a “tangent portfolio” on the mean-deviation positive/negative efficient frontier
of risky assets.

12The weights of components in FTSE 100 index can be found at http://www.ftse.com/analytics/factsheets/Home/ConstituentsWeights.
The weights of nine excluded components are assumed to be zero.
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Figure 1: Three elements from the law-invariant risk envelope (30). The horizontal axis denotes scenarios
t = 1, . . . , T = 182, whereas the vertical one denotes the values of the corresponding qt-s.

3.3 General Solution

If the inverse problem (19) with X given by (18) has no law-invariant solution, it can always be solved in the
class of all coherent measures provided that the market is arbitrage-free.13 Indeed, if one takes Q = {Q∗} for
any risk neutral Q∗, then the corresponding coherent risk measure ρ in (3) satisfies ρ(X) = 0 for all X ∈ X , so
that any X ∈ X is optimal, in particular, a given X∗ ∈ X . However, there exists ρ for which X∗ is optimal, but
any X ∈ X , which is not proportional to X∗, is not. Such ρ can be constructed through (13): start with any risk
neutral Q∗ and then “robustify” it by choosing an appropriate error set Z . Then Q ∈ QMAX for Q = Q∗ + Z
implies that

E[Z] = 0 ∀Z ∈ Z . (31)

Suppose that Q∗ is a risk identifier for X∗, then E[Q∗(−X∗)] > E[(Q∗ + Z)(−X∗)] for all Z ∈ Z , or,
equivalently,

E[ZX∗] > 0 ∀Z ∈ Z . (32)

Proposition 6 Let Q be defined by (13), where Q∗ is any risk neutral r.v. such that P[Q∗ > 0] = 1, and let
Z be the set of all r.v.’s in L1(Ω) satisfying the conditions (31) and (32),14 i.e. Z = {Z ∈ L1(Ω) | E[Z] =
0, E[ZX∗] > 0}. Then for the corresponding coherent risk measure ρ in (3), the set of optimal portfolio rates
of return in (16) is precisely the set {X ∈ X |X = αX∗, α > 0}.

Proof E[Q(−X∗)] = E[(Q∗ + Z)(−X∗)] = E[Q(−X∗)] + E[Z(−X∗)] 6 0 for every Q ∈ Q, where the
last inequality follows from (23) and (32). Since the equality holds for, say, Q = Q∗, we have ρ(X∗) = 0.

For any X ∈ X , let ZX ∈ L1(Ω) be a set of r.v.’s Z such that E[Z] = 0 and E[ZX] > 0. If X = αX∗ for
some α > 0, then ZX = Z , but otherwise Z \ ZX is non-empty, and there is an r.v. Z∗ such that E[Z∗] = 0
and E[Z∗X∗] > 0 > E[Z∗X]. Since bounded r.v.’s are dense in L1(Ω), Z∗ can be chosen to be bounded.
For any ε > 0, let Zε be an r.v. such that Zε(ω) = 0, ω ∈ Ωε and Zε(ω) = Z∗ + Cε, ω 6∈ Ωε, where
Ωε = {ω |Q∗(ω) 6 ε} and Cε is chosen such that E[Zε] = 0. Since P[Q∗ > 0] = 1, lim

ε→0
P[Ωε] = 0, so that

lim
ε→0

Zε = Z∗ in L1(Ω). Thus, E[ZεX∗] > 0 > E[ZεX] for sufficiently small ε. Then E[Q] = 1 and Q > 0

13A market is considered to be the set of one risk-free and n risky financial instruments, whereas an arbitrage-free market is the one
in which no portfolio has excess rate of return non-negative with probability 1 and strictly positive with positive probability; see [8].

14The statement of the proposition will be unaffected if the extra condition that ‖Z‖1 6 ε for all Z ∈ Z and some ε > 0 is added.
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for Q = Q∗ + ε
‖Zε‖∞

Zε. Consequently, Q ∈ Q and ρ(X) > E[Q(−X)] = E[(Q∗ + ε
‖Zε‖∞

Zε)(−X)] =

− ε
‖Zε‖∞

E[ZεX] > 0, and the statement is proved. 2

Under the conditions in Proposition 1, Proposition 6 describes the best possible solution for the inverse
portfolio problem (19). In terms of acceptance sets, it returns the coherent risk measure ρ, for which the given
rate of return X∗ along with α X∗ for any α > 0 is acceptable, but any other r.v. X is not.

In general, the set Q in Proposition 6 is not unique: if the risk neutral Q∗ is not unique, the investor can
choose either a “favorite” or the maximal possible setQ such that the corresponding coherent risk measure is a
solution to the inverse portfolio problem (19).

Proposition 7 The inverse problem (19) with X given by (18) and with R given by (15) has a solution if and
only if there exists a risk-neutral r.v. Q∗ ∈ QM. In this case, a solution ρ is determined by (3) with

Q =
{

Q ∈ QM
∣∣∣ E[QX∗] > 0

}
, (33)

and this solution is “maximal” possible in sense that the risk envelope of any other solution is a subset of Q in
(33).

Proof “Only if”: Let ρ̃ ∈ R be a solution to (19). By Proposition 1, ρ̃(X∗) = 0, and consequently, ρ̃(X) > 0
for all X ∈ X . By Theorem 5 in [27], there exists a risk identifier Q∗ ∈ Qρ̃(X∗) such that E[(X−X∗)Q∗] 6 0
for all X ∈ X . Hence, E[XQ∗] 6 E[X∗Q∗] = ρ̃(X∗) = 0 for all X ∈ X . Since X ⊆ L∞(Ω), this implies
that Q∗ is a risk-neutral r.v. Since ρ̃ ∈ R and since Q∗ is in the risk envelope of ρ̃, it follows from (15) that
Q∗ ∈ QM.

“If”: Let Q∗ ∈ QM be risk-neutral r.v. Then Q∗ ∈ Q by (33), so that ρ(X) > E[Q∗(−X)] = 0 for
all X ∈ X . Since ρ(X∗) 6 0 by construction, ρ is a solution to (19). If ρ̃ ∈ R is any other solution with
a corresponding risk envelope Q′, ρ̃(X∗) = 0 by Proposition 1, and consequently, E[QX∗] > 0 for every
Q ∈ Q′. Since Q′ ⊂ QM by (15), this implies that Q′ ⊂ Q. 2

The solution (33) can be viewed as a robust approach to identifying risk preferences: it includes the Radon-
Nikodym derivatives of all possible scenarios, for which given rate of return X∗ belongs to investor’s acceptance
set, i.e. X∗ is not worse than the risk-free rate. Observe that (33) is independent of the feasible set X .

Example 2 In the settings of Example 1, the risk envelope (33) of a solution with QM = QMAX to the inverse
problem (19) is given by

Q =
{

Q = (q1, . . . , qT)
∣∣∣ ∑T

t=1 qtx∗t > 0, ∑T
t=1 qt = T, q1 > 0, . . . , qT > 0

}
.

IfQM is given by (10), the inverse problem (19) can be formulated as follows: find a coherent risk measure
ρ for which X∗ is optimal, provided that X1, . . . , Xk are acceptable. In this case, the solution (33) includes
additional constraints E[QXi] > 0, i = 1, . . . , k:

Q =
{

Q ∈ QMAX
∣∣∣ E[QX∗] > 0, E[QX1] > 0, . . . , E[QXk] > 0

}
,

which, obviously, remains the same if X∗ is interchanged with any of X1, . . . , Xk.
The representation (33) can be readily generalized for the case when the rate of return of investor’s multi-

period portfolio is known. Suppose that at each time moment t ∈ T = {0, 1, 2, 3, . . . }, the investor chooses a
portfolio, optimal for the next time period, i.e. the investor solves a single-period optimization problem

min
Xt+1∈Xt

ρ(Xt+1), (34)
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where Xt+1 is the excess rate of return of the portfolio at time t + 1 subject to the information available at time
t, and Xt is the set of all possible excess rates of return available at time t.

The problem inverse to (34) is then formulated as follows. Let X∗(t) be the excess rate of return of the
optimal portfolio at t ∈ T . If X∗(t) is known for each t ∈ T , find ρ such that X∗(t) is optimal in (34) for each
t ∈ T . The requirement of the optimality of X∗(t) can be replaced by a weaker condition that for each t ∈ T ,
X∗(t) belongs to the investor’s acceptance set. Then the investor’s risk envelope can be recovered as

Q =
{

Q ∈ QM
∣∣∣ E[QX∗(t)] > 0 ∀t ∈ T

}
, (35)

where QM ⊂ QMAX is specified by extra constraints that the investor may wish to add.
If the set (35) is empty, then investor’s risk preferences are incompatible with coherent risk measures and

the investor may opt for an approximate solution by replacing 0 in the right-hand in (35) side by some ε < 0.
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Figure 2: A solution of the inverse multi-period portfolio problem (36). The horizontal axis denotes scenarios
t = 1, . . . , T with T = 162, whereas the vertical one denotes the values of the corresponding qt-s.

Example 3 In the settings of Example 1(i), let Xt = (xt
1, . . . , xt

T) be the excess rate of return of the portfolio
that the investor held at times t = 1, 2, . . . , t0. Then the investor’s risk envelope (35) with QM = QMAX is
given by

Q =
{

Q = (q1, . . . , qT)
∣∣∣ ∑T

j=1 qjxt
j > 0, t = 1, . . . , t0, ∑T

j=1 qj = T, q1 > 0, . . . , qT > 0
}

. (36)

Suppose that the investor holds a portfolio with the rate of return X∗ for the last t0 = 20 weeks. We use (36)
with t0 = 20, T = 182− 20 = 162, and xt

j = x∗j+t−1, j = 1, . . . , T, t = 1, . . . , t0 to determine the risk
envelope Q. Figure 2a shows three random elements from Q. Figure 2b shows three elements from Q when
additional constraints 0 6 q1 6 q2 6 · · · 6 qT, giving more weight to more recent observations, are added
to (36). The horizontal axis denotes scenarios j = 1, . . . , T, while the vertical one denotes the values of the
corresponding qj-s.

4 Inverse Portfolio Problem with mixed CVaR

Suppose that a solution ρ to the inverse problem (19) is sought in the form of mixed CVaR (14). If the underlying
probability space Ω is finite uniform, which is typically the case in the scenario-based apparoch, such a solution
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always exists, provided that there exists a law-invariant solution, see Proposition 2. We assume that α1, . . . , αm
in (14) are fixed, so that the problem reduces to finding λ1, . . . , λm.

In this case, any element Q of the risk envelope Q can be represented by

Q = ∑m
j=1 λjQj, (37)

where Qj belongs to the risk envelope Qj of CVaRαj given by

Qj =
{

Q ∈ L1(Ω)
∣∣∣ E[Q] = 1, Q ∈ [0, 1/αj]

}
, j = 1, . . . , m. (38)

Then the optimality conditions (22) can be written as

∃Q1, . . . , Qm such that E[Qj] = 1, Qj ∈ [0, 1/αj], j = 1, . . . , m,

∑m
j=1 E[ri λjQj] 6 −∑m

j=1 λj CVaRαj (X∗) , i = 1, . . . , n,
(39)

which, with new variables S1 = λ1Q1, . . . , Sm = λmQm, simplifies to a linear system of equations and
inequalities for λ1, . . . , λm, S1, . . . , Sm:

∑m
j=1 E[ri Sj] 6 −∑m

j=1 λj CVaRαj (X∗) , i = 1, . . . , n,

E[Sj] = λj, Sj ∈ [0, λj/αj], j = 1, . . . , m,

∑m
j=1 λj = 1, λ1 > 0, . . . , λm > 0.

(40)
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Figure 3: Law-invariant solutions of the inverse portfolio problem (19).

Example 4 Let Ω be finite uniform as in Example 1. Then Proposition 3 implies that a law-invariant solution
ρ to (19), if exists, can be found in the form (14) with m = T and αj = j/T, j = 1, . . . , T, and with λ1, . . . , λT

found from (40). This ρ can be equivalently represented in the spectral form (6) with φ(α) = T ∑T
j=i λj/j for

α ∈ [ j−1
T , j

T ), j = 1, . . . , T. If, in addition, the rate of return X = (x1, . . . , xT) of some instrument is required
to be in the acceptance set of ρ, the system (40) includes extra constraint ρ(X) 6 0. As in Example 1, let
n = 92 and T = 182.
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Figure 4: Change in the weight function in the dual utility (6) when X = 1
n ∑n

i=1 ri is included in the acceptance
set. The blue curve is the same as in Figure 3b, whereas the green one corresponds to the modified dual utility.

(i) For X∗ = (x∗1 , . . . , x∗T), being the rate of return of the optimal mean-variance portfolio (see Example
1(i)), the system (40) has a solution, and the found weights in mixed CVaR (14) are shown in Figure
3a, whereas the the weight function φ(α) of the same solution in the dual utility form (6) is depicted in
Figure 3b. Figure 4 shows how the weight function in the dual utility (6) changes when X = 1

n ∑n
i=1 ri is

included in the acceptance set (in this case, the system (40) includes extra contsraint ρ(X) 6 0).

(ii) For X∗ = (x∗1 , . . . , x∗T), being the rate of return of the FTSE 100 index (see Example 1(ii)), the system
(40) has no solution.

In general, the system (40) may have no solution in the following cases:

(a) If there exists Y ∈ X such that (24) holds, the inverse problem (19) has no solution in the form of mixed
CVaR (5), and therefore, there is no solution in the form (14). This is the case in Example 4 (ii).

(b) For a general probability space, the inverse problem (19) may have no solution in the form (14) even if
conditions (a)–(e) in Proposition 2 hold.

(c) If the probability space Ω is finite uniform with T atoms, and the inverse problem (19) has a law-invariant
solution, then the solution can be chosen in the form (14) with m = T and αj = j/T, j = 1, . . . , T.
Obviously, this does not apply when m < T.

In these cases, the investor may seek to find an approximate solution to the inverse problem (19). There are
at least three different approximation approaches.

4.1 Approximation in the space of risk measures

Suppose conditions (a)–(d) in Proposition 2 hold, so that the inverse problem (19) has an exact solution ρ∗ in
the form of mixed CVaR (5). Then an approximate solution ρ in the form (14) with fixed m can be found by
minimizing the distance to ρ∗ in the space of risk measures:

min
ρ∈R

d (ρ∗, ρ) , (41)

where d(·, ·) is a metric defined by

d(ρ1, ρ2) = sup
X∈L∞(Ω): |X|61

|ρ1(X)− ρ2(X)|,
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and R is either the 2m-parameter family of all risk measures (14) with fixed m or the m-parameter family
of all risk measures (14) with fixed m and fixed α1, . . . , αm. In [12], the problem (41) was formualated for
deviation measures [27, 28] and was reduced to finding a piecewise linear approximation of a convex function
on (0, 1). The drawback of this approximation approach is that it requires knowing the exact solution ρ∗, which,
moreover, may not exist.

4.2 Approximation in the space of random variables

An alternative formulation of the inverse problem (19) is: given optimal (preferred) rate of return X̂ ∈ X , find
such ρ ∈ R that a solution X∗ of (16) has the least underperformance with respect to X̂:

min
ρ∈R, X∗∈X

‖[X∗ − X̂]−‖p subject to X∗ ∈ argmin
X∈X

ρ(X), (42)

where R is the m-parameter family of all risk measures (14) with fixed m and fixed α1, . . . , αm, [t]− =
max{0,−t}, and ‖ · ‖p is the Lp-norm with some p ∈ [1, ∞] (typically, p = 1 or p = ∞). The objec-
tive function ‖[X∗ − X̂]−‖p can be replaced by any other suitable function f (X̂, X∗).

In fact, the problem (42) can be viewed as optimal tracking control, in which X̂ and ρ are a target and a
control “variable,” respectively, or even as shape optimization, where λ1, . . . , λm constitute the “risk shape.”
However, the disadvantage of the optimization problem (42) is that its objective value as a function of λ1, . . . λn:

f (λ1, . . . λn) = min
X∗∈argmin

X∈X
ρ(X)
||[X∗ − X̂]−||p (43)

is non-convex and even discontinuous. The following example shows that the function (43) has its minimum
exactly at a point of removable discontinuity, which is unlikely to be found by standard optimization methods.

Example 5 Let Ω = (ω1, ω2) with P[ωi] = 1/2, p = ∞, n = 2, r0 = 0, r1 = (0, 0), r2 = (−1, 2),
X̂ = 2

3 r1 +
1
3 r2 = (−1/3, 2/3), m = 2, α1 = 0, α2 = 1, λ1 = λ, λ2 = 1− λ. Suppose short sales are not

allowed. Then the objective function (43) is given by

f (λ) =

{
2/3, λ ∈ [0, 1/3) ∪ (1/3, 1],
0, λ = 1/3.

(44)

Detail. In this case, mixed CVaR (14) takes the form ρ(X) = λ1 CVaR0(X)+λ2 CVaR1(X) = λ(− inf X)+
(1 − λ)(−E[X]), λ ∈ [0, 1], and X = {X |(1− x)r1 + x r2 = (−x, 2x), x ∈ [0, 1]}, so that ρ(X) =
λ(−(−x)) + (1 − λ)(−(x/2)) = x(3λ − 1)/2. Thus, X∗ = (−x∗, 2x∗) is an optimal rate of return,
where x∗ = 1 when λ ∈ [0, 1/3), x∗ ∈ [0, 1] when λ = 1/3, and x∗ = 0 when λ ∈ (1/3, 1], and the optimal
value of (43) is determined by f (λ) = ‖[(−1, 2)− (−1/3, 2/3)]−‖∞ when λ ∈ [0, 1/3), f (λ) = 0 when
λ = 1/3, and f (λ) = ‖[(0, 0)− (−1/3, 2/3)]−‖∞ when λ ∈ (1/3, 1], which simplifies to (44). 2

In the next section, the problem (42) is “modified” into a convex one: instead of minimizing distance in the
space of r.v.’s, we can approximate the value of an optimal risk measure for a given X̂.

4.3 Approximation of the optimal value

For given X̂ ∈ X , a solution ρ ∈ R can be sought to minimize ρ(X̂)− ρ(X∗) for X∗ ∈ argminX∈X ρ(X):

min
ρ∈R,X∗∈X

(
ρ(X̂)− ρ(X∗)

)
subject to X∗ ∈ argmin

X∈X
ρ(X). (45)

Let X be given by (17). Then with the optimality conditions (22), the problem (45) can be written as
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min
ρ∈R, X∗∈X

(
ρ(X̂)− ρ(X∗)

)
subject to ∃Q ∈ Qρ : E[ri Q] 6 −ρ (X∗) , i = 1, . . . , n, (46)

where Qρ is the risk envelope of ρ. This problem is equivalent to

min
ρ∈R, X∗∈X ,Q∈Qρ

(
ρ(X̂)− ρ(X∗)

)
subject to E[ri Q] 6 −ρ (X∗) , i = 1, . . . , n, (47)

or, with a new variable z = ρ(X̂)− ρ(X∗), to

min
z∈R, ρ∈R, X∗∈X , Q∈Qρ

z subject to z = ρ(X̂)− ρ(X∗), E[ri Q] + ρ(X̂)− z 6 0, i = 1, . . . , n. (48)

Suppose R is the family of all risk measures (14) with fixed m and fixed α1, . . . , αm. With Λ = {λ =
(λ1, . . . , λm) | ∑m

i=1 λi = 1, λi > 0, i = 1, . . . , m}, the problem (48) reduces to

min
z∈R, λ∈Λ,X∗∈X , Q∈Qλ

z subject to z = ρλ(X̂)− ρλ(X∗), E[ri Q] + ρλ(X̂)− z 6 0, i = 1, . . . , n,

(49)
where ρλ(X) = ∑m

j=1 λj(CVaRαj(X)) and Qλ is the corresponding risk envelope.

The variable X∗ in (49) is included only in the constraint z = ρλ(X̂)− ρλ(X∗) and can always be chosen
to satisfy it, so that the problem (49) simplifies to

min
z∈R,λ∈Λ,Q∈Qλ

z subject to E[ri Q] + ρλ(X̂)− z 6 0, i = 1, . . . , n, (50)

see Appendix A for the proof of the equivalence of (49) and (50).
The problem (50) has an interesting interpretation: it seeks to find a risk measure ρλ for which the optimality

conditions (22) can be satisfied for X̂ as accurately as possible.
Using (40), we can rewrite (50) as

min
z,λ1,...,λm,

S1,...,Sm

z subject to ∑m
j=1 E[ri Sj] + ∑m

j=1 λj CVaRαj(X̂)− z 6 0, i = 1, . . . , n,

E[Sj] = λj, Sj ∈ [0, λj/αj], j = 1, . . . , m,

∑m
j=1 λj = 1, λ1 > 0, . . . , λm > 0.

(51)

For a discrete probability space, (51) simplifies to a linear program.

Example 6 In the settings of Example 1(ii), let X be a feasible set with no short positions:

X =
{

X = (x1, . . . , xT)
∣∣∣ xt = ∑n

i=1 ritvi, t = 1, . . . , T, ∑n
i=1 vi = 1, v1 > 0, . . . , vn > 0

}
,

X̂ ∈ X be the rate of return of the FTSE 100 index, and m = 5, α1 = 0.01, α2 = 0.05, α3 = 0.2, α4 = 0.5,
and α5 = 1. Then optimal λ1, . . . , λ5 in (14) can be found from (51) and yield

ρ = 0.011 CVaR0.01 + 0.008 CVaR0.05 + 0.069 CVaR0.2 + 0.149 CVaR0.05 + 0.763 CVaR1.

Example 7 If the probability space Ω is finite uniform with T atoms, m = T, and αj = j/T, j = 1, . . . , T,
then the optimal value in (51) is zero if and only if condition (b) in Proposition 2 holds. In other words, (51)
is a linear programming test to determine whether X̂ is SSD-efficient within X . In contrast to the existing
SSD-efficiency tests [10, 17, 24], (51) has the advantage to return an explicit optimal risk measure (or dual
utility) for SSD-efficient portfolios as well as an “approximately optimal” risk measure for inefficient ones. In
the later case, the optimal value in (51) can also be interpreted as a measure of SSD-inefficiency for X̂.
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4.4 Geometric interpretation

Let Y ⊂ Rm be given by

Y = {y = (y1, . . . , ym) | ∃X ∈ X : CVaRαj(X) 6 yj, j = 1, . . . , m}.

Then the inverse portfolio problem (19) has an exact solution in the form (14) if and only if the point
y(X∗) = (CVaRα1(X∗), . . . , CVaRαm(X∗)) lies on the boundary of Y . Indeed, if y(X∗) is in the interior of Y ,
then CVaRαj(X∗) > CVaRαj(X′) + ε, j = 1, . . . , m, for some X′ ∈ X and ε > 0, so that ρ(X∗) > ρ(X′) + ε
for any ρ admitting the form (14), hence, X∗ cannot be optimal. Conversely, if y(X∗) is on the boundary of
a (convex closed) set Y , then there exists a supporting hyperplane for Y through y(X∗), and the coefficients
λ1, . . . , λm in the equation of that hyperplane are exactly the coefficients of the desired risk measure ρ in (14).

Now let X̂ be a portfolio such that y(X̂) is in the interior of Y , so that an exact solution of the inverse
problem (19) does not exist and we seek to find an approximate one. The problem (42) is then asks for a point
on the boundary of Y , which is “closest” to the given point y(X̂) in its interior, where a measure of closeness
can be defined in different ways. In contrast, the problem (45) requires finding a hyperplane A that contains
y(X̂) such that the distance from A to the supporting hyperplane parallel to A is as small as possible.

The first approach identifies a risk measure ρ1 such that optimal portfolio with ρ1 is as “close” to X̂ as
possible, i.e. a similar portfolio is optimal, whereas the second approach finds a risk measure ρ2, such that risk
ρ2(X̂) is as close to the optimal risk as possible, i.e. a given portfolio is almost optimal.

5 Conclusions and Future Research

This work has proposed to identify agent’s risk preferences in the form of a coherent risk measure by solving the
inverse portfolio problem in single-period and multi-period formulations. The negative coherent risk measure is
viewed as agent’s utility functional and can be recovered either through identifying a convex set of admissible
probability measures (so-called risk envelope) or through finding either the risk profile in mixed CVaR or the
weight function in negative Yaari’s dual utility (the last two representations are law-invariant coherent risk
measures and may not exist). The inverse portfolio problem assumes that the rate of return of the portfolio that
the agent is most satisfied with minimizes the sought coherent risk measure and is given as a sequence of known
random variables (r.v.’s) for the multi-period case (single r.v. for the single-period case). In Examples 1-4 and
6, the coherent risk measure is recovered in all three forms based on the weekly historical rates of return of a
portfolio formed by 92 stocks from the FTSE 100 index for the period from 3-January-2011 to 30-June-2014.
As a future research, the suggested inverse portfolio problem approach can be extended to identifying risk
preferences in the frameworks of other decision theories.
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A Appendix: Proof of the equivalence of (49) and (50)

Let (z1, λ1, X∗1 , Q1) and (z2, λ2, Q2) be optimal solutions in (49) and (50), respectively, with ρ1 and ρ2 being
the corresponding risk measures.

First, we prove that
z1 6 ρλ(X̂)− ρλ(X∗1 ) ∀λ ∈ Λ. (52)
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Indeed, the original problem (45) can be rewritten as

min
λ∈Λ

max
X∈X

(
ρλ(X̂)− ρλ(X)

)
. (53)

For a fixed X, ρλ(X̂)− ρλ(X) is a linear function with respect to λ, and for a fixed λ, it is a concave function
with respect to X. Hence, by Sion’s minimax theorem [33], the optimal value of (53) is equal to that of the
problem

max
X∈X

min
λ∈Λ

(
ρλ(X̂)− ρλ(X)

)
= max

X∈X
min
λ∈Λ

∑m
j=1 λj(CVaRαj(X̂)−CVaRαj(X)). (54)

Observe that minλ∈Λ ∑m
j=1 λj(CVaRαj(X̂)−CVaRαj(X)) is an unweighted version of a continuous knapsack

problem, and [3, Proposition 17.1] implies that (54) simplifies to

max
X∈X

min
j∈{1,...,m}

(CVaRαj(X̂)−CVaRαj(X)),

or, equivalently, to

max
X∈X , z∈R

−z subject to − z 6 CVaRαj(X̂)−CVaRαj(X), j = 1, . . . , m. (55)

Since z1 is the optimal value of (49), the problem (55) implies that

z1 6 CVaRαj(X̂)−CVaRαj(X∗1 ), j = 1, . . . , m,

and (52) follows.
Now we prove the equivalence of (49) and (50). Since (z1, λ1, Q1) is a feasible solution to (50), z2 6 z1.

By contradiction, let z2 < z1. In addition,

z2 > E[X̂Q2] + ρ2(X̂) > 0,

where the first and second inequalities follow from the constraints in (50) and from Q2 ∈ Qλ2 , respectively.

Then f (β) = ρ2(X̂)− ρ2

(
β X̂ + (1− β)X∗1

)
, β ∈ [0, 1], is a continuous function with f (0) > z1 by (52)

and with f (1) = 0, so that f (β∗) = z2 for some β∗ ∈ [0, 1]. Then z2 = ρ2(X̂) − ρ2(X∗2 ) for X∗2 =

β∗ X̂ + (1− β∗)X∗1 ∈ X . Thus, (z2, λ2, X∗2 , Q2) is a feasible solution in (49) that yields z1 6 z2, which
contradicts the assumption that z2 < z1.
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