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Logistics System Dynamics Group, Cardiff Business School, Cardiff University,
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Abstract

Production plans often span a whole week or month, even when independent
production lots are completed every day and service performance is tallied
daily. Such policies are said to use staggered deliveries, meaning that the
production rate for multiple days are determined at a single point in time.
Assuming autocorrelated demand, and linear inventory holding and backlog
costs, we identify the optimal replenishment policy for order cycles of length
P. With the addition of a once-per-cycle audit cost, we optimize the order
cycle length P* via an inverse-function approach. In addition, we characterize
periodic inventory costs, availability, and fill rate. As a consequence of stag-
gering deliveries, the inventory level becomes cyclically heteroskedastic. This
manifests itself as ripples in the expected cost and service levels. Nevertheless,
the cost-optimal replenishment policy achieves a constant availability by using
time-varying safety stocks; this is not the case with suboptimal constant safety
stock policies, where the availability fluctuates over the cycle.

Keywords: inventory, autoregressive demand, order-up-to-policy, staggered
deliveries, planning cycles

1. Introduction

Our paper is motivated by a recent experience with two manufacturers who
planned on a weekly basis. One of the manufacturers had a local customer,
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just a few hours away by truck. The other manufacturer had a customer
on another continent, six weeks away by container ship. Production and
distribution planning in each case was conducted once per week in SAP, which
automated the order-up-to (OUT) replenishment policy calculations. For
the manufacturer with the remote customer, products were loaded into 40ft
containers that were dispatched at the end of the week. This matches well
the literature on periodic review inventory systems, such as the base stock
policy and the OUT policy.

For the manufacturer with the local customer, whilst production and dis-
tribution plans where still generated at the start of the week, daily production
lots were loaded onto trucks that were dispatched to the local customer at the
end of each day. Here we have a planning cycle of one week, and an inventory
inspection period of one day. This scenario, with mismatched order cycles and
inspection periods, is quite popular in the just-in-time / lean environment.
Nevertheless, this phenomenon has received little attention and is not well
understood. The case when goods can be received every day, but when orders
may be placed only once every P days is called staggered deliveries.

1.1. Literature review

The pioneering work on staggered deliveries was done by Flynn and Garstka
(1990), who developed an inventory-optimal control policy under staggered
deliveries and independent and identically distributed (i.i.d.) demand. Flynn
and Garstka (1990) call the problem of finding the optimal replenishment
policy the ordering problem, while they call the problem of identifying the
optimal planning cycle length the auditing problem. They find for the infinite
horizon case, with a fixed audit cost (a cost incurred when production plans
are generated), that the optimal policy is a base-stock policy (a variant of the
OUT policy). This model was expanded to include a fixed cost for each cycle
with a non-zero order quantity; then an (s,5)-type policy is optimal (Flynn,
2000). Prak et al. (2015) investigated the same problem with an arbitrary
order cycle length (which they termed periodic review) and continuously
staggered deliveries (termed continuous ordering). They found that the
optimal ordering policy for the continuous-time problem is OUT.

Chiang (2001) investigated an OUT (termed [R,S]) inventory system with
service constraints, inventory holding costs, an audit cost, and a fixed cost per
receipt. The study demonstrated that lot splitting, i.e. staggering, may lead
to reduced costs, particularly when the audit cost is high. A particular type
of staggered delivery system was studied by Chiang (2009), who considered
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two variations of a staggered policy. In one of these, which we shall refer to as
Chiang’s simplified policy, the order quantity was arbitrary in the first period
of the order cycle, and constant in the remaining periods. The other policy
included a non-negative ordering constraint; it also permitted a variable order
quantity (bounded from above by some constant) for several periods following
the first, potentially extending to every period in the cycle.

In staggered systems, and in some periodic review systems, it is common
to ignore cycle stock and to apply inventory costs to the inventory level at
the end of each replenishment cycle, just before new receipts arrive. This can
be compared with the non-staggered models in Silver and Robb (2008) and
Chiang (2007), which permit inventory inspections (with associated costs)
between two subsequent receipts.

The lean literature often suggests planning as frequently as set-up costs
allow (Bicheno and Holweg, 2009, p. 155; Burbidge, 1983), but this is
not always reflected in practice. A recent survey of 292 Swedish companies
revealed that when using the OUT policy, 21% planned on a daily basis or more
frequently, 37% planned on a weekly basis, and 42% planned fortnightly or less
frequently (Jonsson and Mattsson, 2013). The same survey reported that, over
the period 1993-2013, planning cycles have been shrinking. However Flynn
and Garstka (1990) showed that an optimum order cycle length, P* > 1, may
exist if there is an audit cost — a fixed cost per planning cycle. Approximate
solutions for finding P* were given in Flynn and Garstka (1997), Flynn
(2000), and Flynn (2008). For i.i.d. demands the problem of identifying P*
for coordinating multiple items was investigated in Flynn (2001). Lian et al.
(2006) used simulation to find the optimal length of the planning cycle.

With autocorrelated demand, the demand in one period may be affected
by random demand fluctuations that have occurred in previous periods.
Autocorrelated demand has been observed in industry (Erkip et al., 1990),
and it is known that autocorrelation may affect inventory cost and service
levels significantly (Lee et al., 2000). Zhang (2007) considers the consequences
of heteroskedastic demand on the OUT policy, whereas we notice, as did Lian
et al. (2006) and Flynn (2008), that heteroskedasticity of inventory levels can
be induced by the staggered delivery mechanism.

1.2. Contribution

This paper extends the inventory-optimal model of Flynn and Garstka
(1990) to autocorrelated demand, and demonstrates how availability and fill
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rates fluctuate between the days in a delivery cycle. This is linked to the
heteroskedastic inventory variance, which depends on demand autocorrelation.

Lian et al. (2006) and Flynn (2008) find that time-varying safety stocks
are optimal for i.i.d. demand. We build on these results and identify the
optimal time-varying safety stocks for autocorrelated demand.

We identify the inventory performance in terms of cost, availability, and
fill rate when optimal safety stocks are used, and compare this with the
performance of two practical (but suboptimal) constant safety stock settings.
The problem of the optimal order cycle length P* has already been considered
by Flynn (2000), Flynn (2001) and Lian et al. (2006) for i.i.d. demand. We
generalise this to autocorrelated demand and characterise the exact solution
to P* by an inverse function approach.

1.3. Paper structure

The structure of this paper is as follows. In section 2 we describe the model
in a natural seven-day setting to introduce the concept of staggering. Then,
in section 3, we derive the optimal ordering rule for arbitrary planning cycle
lengths and autocorrelated demand. Here we also define how performance is
measured via inventory costs, availability and the fill rate. We also provide
an exact solution to the problem of finding the length of the optimal planning
cycle for autocorrelated demand. Section 4 considers the staggered OUT
policy under first-order autoregressive (AR(1)) demand and provides some
numerical insights. First we operationalize the staggered delivery policy
to demonstrate how one actually generates production plans. Then we
investigate the inventory cost and service level consequences of the staggered
policy. Finally we provide an example of how to find the optimal planning
cycle length. Section 5 concludes. Proofs are presented in appendices.

2. Model description in a natural setting

To ease understanding, let us initially define the model in a weekly setting
of seven days, where we plan once per week, but produce every day. Later,
we generalize this to arbitrary planning periods of length P, but for now we
consider the planning cycle to be seven days long.

Every morning the inventory level is tallied. If it is Monday, a production
plan is made immediately after the inventory inspection. This production
plan contains seven orders, to cover an entire week of production. This reflects
the planning cycle length P = 7. In more general terms, staggering deliveries

4



Hedenstierna, C.P., and Disney, S.M., (2016), “Inventory performance under staggered deliveries and auto-correlated demand”,
European Journal of Operational Research, in press.

means that we must determine the production rate for P days once every P
periods. Between two such occasions, no new production plans are calculated,
as we are committed to the established plan; figure 1 illustrates this. Let ¢

,[> P orders ,[bP orders <g:>

\ 1
t t+P t+2P

New orders are planned every P periods, nothing in between

Figure 1: A total of P orders are issued every P periods.

number the individual days (periods), and let Mondays occur when ¢/P is
an integer. Suppose it is the start of Monday morning, and that we must
plan the orders for the next cycle {O; 1, O 2, ..., Oy 7}, numbered in the same
sequence as they will be produced. Every order O corresponds to a future
inventory receipt R, according to

(1)

0 R, = R,y when t/P is an integer,
sk - .
‘ otherwise;

where k € {1, 2, ..., P} is the order release offset due to staggering, L is a non-
negative integer lead time (i.e. the delay until the first order can be received),
and 7 = k + L is the effective lead time. In this case, L = 4, meaning that
these orders will register as received in the periods {t + 5, t +6, ..., t + 11},
as figure 2 illustrates.

The policy operates on the master production scheduling (MPS) level,
and is therefore concerned with due-date setting. Order releases are typically
handled by material requirements planning, using the MPS (generated by
the policy) as input (Pinedo, 2009, p. 10). Immediately when a cycle’s
order quantities have been determined, the required receipt rates R; ;.
are disaggregated into a detailed schedule of individual jobs. These jobs
must be released so that the production completions between ¢ + 7 — 1 and
t + 7 equal R;,,. We need not know the exact timing of job releases, as
long as the planned quantity arrives in the right period. The lead time L is
the delay until the first order is received, reflecting the time to effect a new
production plan, including the time to schedule jobs, to allocate resources,
and to produce. Note that if L = 0, the first order would be released to
production immediately, and be completed in less than one day. It would
therefore contribute to the inventory level measured at time ¢ + 1.

5
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Figure 2: Staggering means that even though we plan intermittently, we receive orders
every period.

The receipts resulting from the staggered deliveries are placed in inventory.
We assume that there is no shrinkage, and that the inventory level increases
with receipts (R;) and decreases with demand (D),

It — It—l + Rt — Dt. (2)

If there are no goods on-hand, the excess demand is backlogged and subtracted
from the inventory level; then the inventory level falls below zero. Backlogged
demand is satisfied immediately when new goods are received. We assume
that the system is linear, therefore negative orders are permitted, reflecting
costless returns (in distribution scenarios), or that goods are sold off at a
price equalling the variable cost of production (in manufacturing scenarios).
Negative demand is also permitted, reflecting returns from customers to our
inventory. Both the storage and the production facilities have unlimited
capacity.

3. The optimal ordering rule

The periodic inventory costs consist of a holding cost H per unit of
inventory, and a backorder cost B per unit of unsatisfied demand, which we
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model as negative inventory,
j)=HI) " +B(-I)" =HL+(B+H)(-I,)". (3)

where (X)* = max (X,0). Let the lead-time demand be denoted as F}, =
Y7 _i Di4n, and the work-in-progress as W, , = Z;;i Ry4,,; then the inventory
level can be expressed as Iy, = I, + Wy, + Oy — Fi -, when t/ P is an integer.
Equation (3) is thus convex in Oy, and the convexity is preserved when
taking the expectation,

J(Ityr) = Ej(Le47)| Dy, Dyy, - -] (4)

As Oy can be set freely, it can eliminate the influence of the system state
I;+ W, , on I, before costs are incurred. Therefore, J(/;;,) depends only on
the decision variable O, , and on the lead-time demand F; .. Consequently,
the optimal order policy is myopic, meaning that the optimal solution for
an n-period problem can be found by solving n independent single-period
problems (Heyman and Sobel, 1984, p. 63-71). In practice, we need only to
consider the immediate consequences of each decision, as it has no bearing on
the cost incurred in other (future) periods. The myopic nature of the optimal
policy can be verified by setting up a dynamic program. See Bertsekas (2005,
p. 162-164) for a problem with the same cost structure, compatible with
autocorrelated demand, but without staggering, and Flynn and Garstka (1990)
for a dynamic program with staggering, but without demand autocorrelation.
We exclude a dynamic programming formulation, as it adds complexity
without providing commensurate insights.

The expected inventory cost (4) is convex, and a minimum exists because
both B and H are positive. Therefore, there exists an optimal expected
inventory level that minimizes J(I;1,). This optimum is referred to as the
safety stock, I}, .. It is identified in the following lemma.

Lemma 1 (The optimal safety stock level). The expected inventory cost,
J(I4+), is minimized when

. ) B
L= (B n H) ’ )

where CI)I_tL is the inverse of the inventory level’s cumulative distribution
function at time ¢ 4 7.
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Proof. The expected inventory cost .J is structurally identical to the single-
period newsvendor problem, with B and H representing the underage and
overage costs. See Hopp and Spearman (2008, p. 67-69) or Cachon and

Terwiesch (2009, p. 232-236) for a simple proof. [ |
With I . known, all that remains is to specify the policy that sets

E[Iiy7|Dy, Dy—q ---] = I}, .. This is done in the following theorem.

Theorem 2. When there are P staggered orders per cycle, the expected
wnventory cost is minimized by the policy

(a) for the first order in a cycle, when k =1,
O1 = Ft,L-i—l + 1 — L — Wy, (6)
where EJ = E[F,;|Dt, Dy_1,---] is the forecast;
(b) for all subsequent orders in the cycle, when k > 1,
Ove =1 r — Ifyr g + ﬁtm (7)

where lA)tJ = E[Dy+|{Dy, Di_1, ...}] is the singe-period forecast, made
at time t, for Dy,.

Proof. Given in Appendix A. |

The policy can be interpreted as an OUT policy with increasing lead
times over the cycle and a simplified ordering rule for all periods but the
first. Note that our simplified rule, (7), is different from the simplified rule
in Chiang (2009), who assumes that O, 5 = O;3 = ---. Instead, we order
the single-period forecast of demand plus any desired change in safety stock,
I — 17 .. When P =1 the policy simplifies to the regular OUT policy.

3.1. Demand specification

To gain further insights about the optimal policy and its dynamic perfor-
mance, we shall assume that demand is autocorrelated,

Dt =u+ Z 5t—n9n7 (8>

n=0
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where 6, is the autocorrelation function, u = E[D;], and &, is an independent
and identically distributed (i.i.d.) random variable drawn from the normal
distribution. We call ; the error term. It has a mean of zero and a variance
of 2. The mechanism of such demand processes is well documented in Box
and Jenkins (1976), where they are described as moving-average processes.
One important property of this type of demand signal is that its variance can
be obtained as Var(D) = o2 > > _ 62.

To find I}, we exploit the linear system assumption, and the assumption of
normally distributed, i.i.d. random error terms. Consequently the inventory
level follows a normal distribution, hence the mean and variance are sufficient
to specify the inventory distribution. The mean inventory can be set to I}
with Ry, but the variance is a function of 7 and the demand process. Before
identifying the inventory variance required to calculate I}, let us define the
service levels.

3.2. Service levels

Not only does the optimal safety stock minimize the total cost of the
system, it also sets the system’s availability (Silver et al., 1998) to the critical
ratio B/(B + H). The availability («), or type 1 service level, refers to the
probability of not encountering a stock-out in any given period,

a=Pr(l; >0). (9)

The fill rate (), or type 2 service level, is sometimes considered a more
appropriate measure in customer-facing settings, as it measures the fraction
of demand fulfilled immediately from stock (Johnson et al., 1995). The exact
formula for the fill rate when demand is autocorrelated and possibly negative
(Disney et al., 2015) is of the following form:

g— E {[min(Dy, I, + D;)] "}
E[(Dy)*]

(10)

This exact fill rate takes the expectation of immediately satisfied demand, and
divides it by the expected positive demand. This works well when demand
is weakly stationary, but does not work for nonstationary demand. If the
variables in this expression are normally distributed, we can obtain the fill
rate via the following lemma.
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Lemma 3. The exact fill rate for normally distributed demand, where periods
with negative demand do not contribute to the fill rate, is

Joo ¥ (@)zdo
(D) G [=p/o(Dy)]

Here o(D;) = \/Var(Dy) is the standard deviation of D, ¢~ (z) is the proba-
bility distribution function (pdf) of the minimum of the normally distributed
bivariate random variables D, and (D; + I;). G (z) = ¢ (z) — 2 [1 — ® ()] is
the standard normal loss function, where ¢ () is the standard normal pdf,
and @ (z) is the standard normal cumulative density function (Axséter, 2006,

p. 91).
Proof. Given in Disney et al. (2015). [

f=- (1)

Remark. The pdf of the minimum of bivariate random normal variables,
o~ (), is given in Cain (1994), as ¢~ (x) = ¢ (z) + 5 (x), where

Z‘—E[It+Dt] .T—E[I,r‘rDt] _ T— M
) P\ ot 1Dn o P\ o+Dy) (D)

T(z) = , 12
901( 0([t+Dt) 1—/)2 ( )
T—p z— x—E[I:+Dy]
s (2) = 90<0(Dt)) o P <U(D’f)> = o(litDy) (13)
2 O'(Dt) A /1 — p2 ’
where the correlation coefficient is
I, + D, D
0 Cov (I; + Dy, Dy) (14)

N \/Var(lt + Dy)Var(Dy) '

It is often necessary to evaluate (11) numerically. This is usually done
with software like Mathematica or Matlab, but it can also be achieved with
Microsoft Excel using the macro provided in Disney et al. (2015).

To calculate the exact fill rate we must know the variances Var(/;) and
Var(I;+ D;), and also the correlation coefficient p. For autocorrelated demand,
we identify these according to

Theorem 4. If planning took place at time t — 7, the characteristics of the
inventory level are as follows:

10
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(a) The inventory variance is

T

Var(I,) = o? 7 (15)

3
[l
(en) _-
Y
3
[l S
()

S

3
~_

[\V)

(b) The variance of Iy + Dy is

7—1 m—1 2 [e's)

T—1 n—1
COV(Dt, ]t —+ _Dt> = 0'52 { [ <— 0m> Qn
n=1 m=0

Proof. Presented in Appendix B. |

The inventory variance (15) increases in 7, regardless of 6;, and is finite for
all demands, stationary or nonstationary. The variance of the state variable
I, + D, is also increasing in 7, but is only finite for stationary demand.
The covariance (17) between demand and initial inventory exists only for
stationary demand.

The main insight from (15) is that the inventory variance increases over the
cycle. As inventory costs are minimized when Pr (/; > 0) = B/(B + H), we
find a time-varying safety stock to be optimal. This safety stock is increasing
in 7. It is also clear from (15) that autocorrelation can amplify or attenuate
inventory heteroskedasticity.

3.3. Total cost and the optimal reorder cycle length, P*

Under normally distributed demand and linear transformations, the in-
ventory level is also normally distributed. The expected inventory cost is

B+H [° r— E[l..
J(Itsr) = Ellyyr | H — oo / @(ﬁ)ﬂ?dm

Oik

= HE[I,..] + (B + H)0:, G (E U”T]) . (18)

Ok

11
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where E[I;,,] denotes the safety stock, and o, = \/Var(ly4x+r). As the
error terms are i.i.d., J(I;) = J(I;;p). Therefore, the average cost is obtained
by averaging over P successive periods. When the optimal safety stocks I},
are used, the average cost from (18) simplifies to

Jp = %éj(wk) =a,p(B+H)p {qu (BfH)}, (19)

where 0, p = pt kazl o 1s the average standard deviation of the
inventory level. This variable is essential for characterizing P*.

Consider a fixed audit cost per cycle, V', leading to an average audit plus
inventory cost per period of Cp = Jj + V/P. Let A = V/1¢ where

¢:V+(B+H)¢[<D‘1<BfH>] (20)

The total cost can then be expressed as a linear function of A € [0, 1],
Cp (/\) =1 [5’i7p + A (Pil — 5','7p)] . (21)

With this formulation, it is possible to find a cost combination A\p for which
P minimizes the total cost.

Theorem 5. When o; p is increasing in P, the order cycle length P minimizes
Cp(N) for X € [Ap_1, A\p] where \g =0 and

1
Ap=1— . 22
r 1+ P(oipy1 — 0ip) (22)

Proof. Let Ap denote the intersection Cp(Ap) = Cpi1(Ap). Solving for Ap
provides (22). Suppose Ap is increasing in P. Then, as P = 1 minimizes the
cost for A € [0, \1], the reorder period P minimizes Cp(\) for A € [Ap_1, Ap].
To see that Ap is increasing in P, recall that o; p < 0; p41. This provides

P P41
Po;py1 — Zai,k < (P+1)o;psa— Zai,nu (23)
k=1 n=1

which leads to P (0; py1 — 7. p) < (P + 1) (04,p4+2 — 04,p+1). This is equivalent
to Ap < Apy1, completing the proof. [ |

12
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This procedure lets us specify a P and provides the range of cost configura-
tions [Ap_1, Ap| for which this P is optimal. Through this indirect approach,
several properties of P* are revealed: it is increasing in the audit cost V,
and it is decreasing in the factors that drive inventory cost, namely B, H, L,
and o.. This follows from the influence of (15) and (19) on A. Furthermore,
given a cost balance A and an arbitrary P, it is immediately clear if P < P*,
P = P* or P > P*, as \p is increasing in P. These observations hold for
generally autocorrelated demand as (15) is increasing in 7.

To find P*, it is sufficient to identify two values P, and P,, such that
Ap, < A < Ap,; a binary search between these values then provides the
optimum. As an alternative, we may plot the first few A\p, and then seek
P* graphically. This simpler approach does not guarantee that P* will be
in the range plotted, but it is nonetheless reasonable when the audit cost is
moderate in relation to the inventory cost.

4. The staggered OUT policy for first-order autoregressive demand

To better understand the model, it is helpful to consider a simple case.
Here we choose the AR(1) demand process. It is stationary and invertible
for |¢| < 1 (Box and Jenkins, 1976). The corollary below provides necessary
expressions for calculating inventory costs, availability, the fill rate, and Ap.

Corollary 6 (AR(1) demand). Using 6,, = ¢™ as the autocorrelation function
of demand in theorem 4, we obtain the following variance expressions:

(a) The inventory variance,

I R ) et )
Var””‘a[w—l)?* CEICEE } 24

(b) The variance of I, + Dy,

[T 20 1462—(9=2)¢")
Var (I; + D) = €|:(¢_1)2 (p—1)3 (6 =13 (p+1) }

(25)

(¢) The covariance between I; + D; and Dy,

2 [(@+1)g7 — ¢ — ¢+
Cov(Dy, It + Dy) = o { -1 (611 } : (26)

13
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Knowing the inventory variance for AR(1) demand (24), we have sufficient
information to compute the optimal order quantities for each period in the
planning cycle.

4.1. Determining the production quantities

To understand how this policy works in practice, consider the following
numerical example using this type of demand process.

Example 1. Consider the staggered system in figure 2, where L = 4 and
P = 7. The current period is t = 0, and we are ordering for the receipts
in periods 5 through 11. Demand is known to be first-order autocorrelated
(i.e. 0, = ¢") with ¢ = 0.70, with a mean p = 10, and error terms that are
normally distributed e ~ N(0,1). We have also observed that the inventory
level is [y = 5.20, and that the work-in-progress inventory is Wy 5 = 41.30.
Adding these we obtain the current inventory position Iy + Wy 5 = 46.50. The
optimal order quantities are calculated as follows:

1. Make the lead-time demand forecast for the first period. As demand
is autocorrelated, our last demand observation, Dy = 8.71, is sufficient
to make a forecast of lead time demand u + (Do — ) ZLJF% o =

10 + (8.71 — 10) x 1.94117 = 47.5. )

2. Make the single period forecasts for the remaining periods, k£ = 2 to
k = 7, or equivalently 7 = 6 to 7 = 11. We obtain this as F;, =
p+ (dy — p)¢™, which for the second order of the cycle gives Fig =
10 + (8.71 — 10) x (0.7)® = 9.85. The remaining periods are obtained in
the same way, after incrementing 7.

3. Calculate the time-varying safety stocks. These are of the form I, = =
0, x®7 ! [B/ (B + H)], where 0, is the square root of the inventory
variance found in (24). Thus, the first safety stock for £k = 1 is [} =
V22.7923 x @71 (0.9) = 6.12. For the following periods, increment k and
perform the calculation again. For example [} = 1/31.4428 x®~1 (0.9) =
7.19.

4. Determine the safety stock increase between periods. Starting with
k = 2, this is done by the subtraction I — I}, ;. The first change in
safety stock, occurring at 7 =6 is [ — [7 = 7.19 — 6.12 = 1.07. The
remaining safety stock changes are obtained by incrementing 7.

14



Hedenstierna, C.P., and Disney, S.M., (2016), “Inventory performance under staggered deliveries and auto-correlated demand”,
European Journal of Operational Research, in press.

5. Calculate the first receipt according to the standard OUT policy. We
order the lead-time forecast of demand, plus the safety stock, minus the
inventory position, according to 15075 + 1 — (lp+Wys) =475+ 6.12 —
46.5 = 7.12.

6. Calculate the remaining receipts using a simpler formula. The second
receipt of the cycle, with 7 = 6, takes the single-period forecast, plus
the increase in safety stock, Rg = Doﬁ + I —IF =985+ 1.07 = 10.92.
The remaining receipts of the cycle are calculated in the same way, with
7 incremented.

Table 1 presents the optimal order quantities for the entire cycle, as well as
the intermediate results. Contrary to the worked example, the table has been
calculated with machine precision, so the last decimal of the calculations may
vary.

4.2. Impact of the heteroskedastic inventory levels on costs and service

Now consider the case where a plan made at time ¢ will generate its first
receipt in time for it to affect Iy, (that is, L = 0). The previous setting
L = 4 has been substituted for L = 0 to highlight the effects of inventory
heteroskedasticity.

Figure 3 illustrates the inventory standard deviation for a range of AR(1)
demands. The configurations where |¢| < 1 reflect stationary demand,
while other configurations reflect nonstationary demand. In either case,
the inventory level is stationary. As we can see from (15) the inventory
standard deviation is increasing in 7. The consequences of this are clear:
staggering increases the total inventory cost, particularly when there is
significant autocorrelation. Staggering is least harmful when demand is
negatively autocorrelated and stationary (—1 < ¢ < 0).

Corollary 7. Some special cases of the first-order autoregressive inventory
variance can be identified.

(a) When ¢ — 0 the inventory variance is a linear function of 7,
Var(I;) = o27. (27)
(b) When ¢ — 1 demand is a random walk in discrete time (Box and Jenkins,
1976, p. 123), and the inventory variance is a cubic function, increasing
in T,

Var(l,) = 03%(1 +7)(1 +27). (28)
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Table 1: Calculating the planned receipts for the numerical example.

Period (t) 012 3 4 5 6 7 8 o 10 11
k 3 4 5 7 1 2 3 4 5 6 7
T 7 8 9 10 11 ) 6 7 8 9 10 11
Inventory level (1) 52 - - - - - - - - - -
Work-in-progress (W) 413 - - - - - - - - - - -
Demand (D) 871 - - - - - - - - - - -
Lead-time forecast® (F) - - - - - 4750 - - - - - -
Single-period forecast (D) - - - - - - 985 989 993 995 996 997
Safety stock required (I*) - - - - - 612 719 819 912 10.00 10.83 11.61
Change in safety stock - - - - - - 107 1.00 094 088 083 0.78
Planned receipts (R) - - - - - 712 1092 10.89 10.86 10.83 10.79 10.76

Dashes (-) refer to values not needed for calculating the order quantities in this cycle.
 Forecasted demand over the lead time.

'ssaud ul ‘yosessay [euoneladQ Jo [euinor ueadoing
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1=2
T=1

Inventory standard deviation

-2 -1 0 1 ¢ 2

Figure 3: The inventory standard deviation for AR(1) demand is increasing in 7.

This expression is the variance of the error term, multiplied with a square
pyramidal number.

(¢) When ¢ — (—1) the inventory variance is an increasing affine function
for odd or even values of 7,

Var(l,) = o {# + ﬂ . (29)

From this equation, we see that the inventory variance only increases
strictly for odd values of 7 when ¢ = (—1). Consequently, when
the lead time, L, is even, Var(lyyr+1) = Var(liipy9), Var(liipes) =
Var (I 1+4) and so forth. For odd L the pattern starts with Var(lyyr,2) =
Var(]t+L+3).

Equation (27) reveals that when demand lacks autocorrelation, the vari-
ance increases linearly, meaning that the inventory standard deviation is
proportional to the square root of 7. This is a fundamental result, demon-
strating that the staggered policy behaves like an iterated OUT policy with
increasing lead times for each order in the cycle. The inventory variance
increases step-wise in (29). This is noticeable in the inventory standard
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deviation of figure 3, where for ¢ = (—1) every curve coincides with another
curve (except for 7 = 7, which would coincide with 7 = 8 if P > 8).

Consider the costs B = 1 and H = 9. They imply that the inventory
costs are minimized when the availability, for every 7, is 90%. As we know,
the inventory variance changes with 7, and hence time-varying safety stocks
are optimal. If we insist on using constant safety stocks, the availability will
change over the cycle. For example, a constant safety stock can be based on
the worst-case inventory variance, obtained at the end of the cycle, providing
I eer = 05,p® 1 (0.9). This is not cost-optimal, but it simplifies the order
quantity calculations. The results of this alternative strategy can be seen in
figure 4, where the availability, «, is given by

a:q><ofk) (30)

For any constant safety stock setting, availability degrades as 7 increases.
This is due to o, being increasing in k. For the safety stock setting under
discussion, o; p > 0, making the availability lower-bounded at 90%.

A more sophisticated constant safety stock setting could be based on the
average inventory variance,

* — B P
[ =0 (B+ H) \/P—l anl o2, (31)

This safety stock setting is obtained if one ignores the cyclical heteroskedas-
ticity and takes the variance of the inventory process as a whole. The result-
ing availability is shown in figure 5, illustrating that the target availability
of 90% is no longer a lower bound. On average, however, the availabil-
ity is above the target of 90%. This always results when H < B and when
I} > &' {5, p®[B/(B + H)|} (which for this strategy is true, due to Jensen’s
inequality) as a consequence of lemma 8.

Lemma 8. For fixed safety stocks I} > 0,

P
I’ 1 I’
P t)<— @(t); 32
<5z’,P _P; Oik (32)

for I} < 0 the inequality is reversed.
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Proof. Observe that ®(z) is concave for x > 0. Then (32) is an immediate
result of Jensen’s inequality. On the domain z < 0, ®(z) is convex, and the
inequality in (32) is reversed. This completes the proof. |

The takeaway from this lemma is that the availability estimate & =
® (1} /5;p) is less than the realized availability, i.e. & < a, when & > 0.5, or
equivalently when H < B. Conversely, when & < 0.5, & overestimates .

100%
98% |

96% |

Availability

94%

92%|

90%1 =7 Target

-2 -1 0 1 ¢ 2

Figure 4: Availability for a fixed safety stock based on the inventory variance at the end of
the order cycle.

The cost differential between these three strategies is worth considering.
Figure 6 verifies that the optimal time-varying safety stock outperforms all
constant settings. The worst economic performance results from the constant
safety stock setting based on the end-of-cycle inventory variance. This is clear
for nonstationary demand, but when there is little autocorrelation, the two
fixed safety stock strategies are nearly cost-equal.

To see if these observations hold under different cost settings, we may
consult figure 7, where H and B assume different values, but in all cases
H + B = 10. These settings imply an optimal availability of 80%, 90%, 95%,
or 99%. Regardless of the cost configuration, we notice that autocorrelation
drives the cost differential between the constant and the time-varying safety
safety stock settings. This effect appears for all of the cost settings, particularly
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Figure 6: Average inventory cost over a seven-day cycle for three different safety stock
settings with H =1,B =9.
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when demand is nonstationary. For stationary demand, the cost varies less
between the three settings when H and B are close, as with the H =2, B =8
case, and it varies more when the difference between H and B is large. In the
H = 0.1, B = 9.9 setting, corresponding to an optimal availability of 99%, the
superior performance of the time-varying safety stock becomes clear, leading
to a fundamental insight: time-varying safety stocks are most important when
demand exhibits strong autocorrelation, and when high service levels are

required.
100 100
50 k.
10
5
» End-of-cycle
Q
o 1k Average var. 1k
g‘ Time-varying
E [ W T N W VU WU W [ U " - - r
g -2 -1 0 1 [0 2 -2 -1 0 1 [0} 2
© 100 100
P 50 H=0.5, B=9.5 50 F H=0.1, B=9.9
0
<C
10
5
AL .
2750 T 2 D70 T g 2

Figure 7: Average inventory cost over a seven-day cycle for various settings of H and B.

As the variable safety stock is the strategy of choice — providing the
required availability at the lowest cost — we may wish to understand how the
fill rate develops over a cycle, when time-varying safety stocks are in place.
Though the availability remains constant, we see in figure 8 (restricted to
|¢| < 1 as the fill rate can only be defined for stationary demand) that the
fill rate fluctuates over 7, and that it depends on ¢. Furthermore, figure 8
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indicates that the fill rate degrades as 7 increases, particularly when demand
is positively autocorrelated. Although the fill rate is undefined for |¢| > 1,
the numerical experiments consistently show that the fill rate approaches
100% as |¢| — 1.

From the definition of the fill rate (10) and the knowledge that the
inventory variance is increasing in 7, we can make some observations about
the fill rate under constant safety stock settings. For the end-of-cycle constant
safety stock setting, the fill rate at the end of the cycle, with 7 = 7, is identical
to the fill rate of the optimal time-varying safety stock. For 7 < 7, the fill
rate is higher. The other constant safety stock setting, based on the average
inventory variance, does not have the fill rate of the optimal time-varying
safety stock at 7 = 7 as a lower bound.

100% 1
k_ =1 J
99% F w
[ =3
08% | r=4
& [
© - =
= 97%} BN
[ [ T=6
96% F
[ =7
95% [
1.0 0.5 0.0 0.5 ¢ 1.0

Figure 8: Fill rates are affected by staggering and by autocorrelation.

4.3. Determining the optimal length of the planning cycle

Figure 9 shows P* equation for AR(1) demand under six different lead
times, using (22) and (24). Each area between the contour lines indicates that
a particular P* is optimal; P* is increasing in A (every time we cross a contour
in figure 9 from below, P* increases by one). For the setting ¢ = (—1), L+ P*
is always even, as a consequence of (22) in conjuction with the odd-even effect
in (29). Therefore, with an even lead time, P* is also even, and vice versa.
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The area a is figure 9 denotes the case when P* > 20 but we have not
drawn the contours as they become indistinguishable from each other. The
following numerical example describes the optimization procedure.

Example 2. To determine the optimal planning cycle length, start by iden-
tifying the auditing, inventory holding, and backlog costs. Then use (20) to
determine ¢ for this set of costs, and more importantly A = V/¢. Finally,
exploit theorem 5 to find P*, either by inspecting figure 9, or by finding
two reorder cycle lengths P and P, such that A\py < A < Ap,, and then
performing a binary search for A between P, and P, until a P is found such
that Ap_; < A < Ap. Then P* = P denotes the optimum.

Suppose V = 10,H = 1, B = 9. This leads to A = 0.695. With zero
lead time and i.i.d demand (¢ = 0), the open circle in figure 9 shows that
P* = 4. Were demand instead positively correlated with ¢ = 0.9, then P* = 2,
illustrated by the closed circle in figure 9. Were L = 4, then P* = 5 with
¢ =0, and P* = 2 with ¢ = 0.9. This illustrates that positive autocorrelation
favours short planning cycles, and also that the physical production lead time
influences P*.

5. Conclusion

5.1. Theoretical contribution

We have identified the inventory-optimal policy under staggered deliveries
and autocorrelated demand. The strategy is to correct all inventory errors for
the first order of the cycle, and then to order only the forecasted demand for
the period in question and the required change in the safety stock, according
to (6) and (7). This makes real the optimal policy identified by the Flynn
and Chiang papers by applying the OUT policy to autocorrelated demand.

Flynn and Garstka (1990) and Chiang (2009) present staggered models
with fixed audit costs, assuming i.i.d. demand. Our policy differs from Flynn
and Garstka (1990), as O, may be negative. Conservative settings of p,
and o, render the effect of negative orders negligible, making our policy
computationally consistent with Flynn and Garstka (1990). Our policy also
differs from the two policies in Chiang (2009), as we have a time-varying
production quantity in each period. Our policy ensures that the target
availability is maintained consistently. However, Chiang’s policies may be
practical for small P. Indeed, when P < 2, Chiang’s simplified policy is
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Figure 9: Optimal order cycle lengths P* for some values of ¢, A\, and L when P* < 20.
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optimal. The regular policy in Chiang (2009) has an added non-negativity
constraint, which in Chiang’s numerical examples caused an increased cost
over the simplified policy.

Our model allows for constant safety stocks if desired, but we find that
not only are time-varying safety stocks more economical, they also ensure
that the target availability is achieved consistently. The overall safety stock is
affected by the autocorrelation of demand and increases with the order cycle
length. In the special case of an AR(1) demand process with ¢ = (—1), the
safety stock only needs to be changed for periods when 7 is odd. Our model
and analysis also captures the nonstaggered case when P = 1, which results
in a regular OUT policy.

The inventory variance is increasing over the order cycle for any demand
autocorrelation function, and the heteroskedasticity affects fill rates, even
when the availability is kept constant. This causes the fill rate to fluctuate
cyclically. We have also provided an exact approach for determining P*, the
optimal length of the planning cycle, when auditing, holding, and backlog
costs are present. The optimization procedure reveals that P* is an increasing
function of the audit cost V', and a decreasing function of B, H, L, and o..

5.2. Managerial insights

If a production system requires consistent availability, it is necessary to
take into account the time-varying inventory variance. Ignoring the het-
eroskedasticity of inventory will result in either excessive service levels and
unnecessary costs, or poor service on predictable days of the planning cycle.
However, if time-varying safety stocks are deemed impractical or too compli-
cated, we recommend a safety stock setting based on the average inventory
variance over the cycle. Then the availability will fluctuate over the cycle,
but on average it will exceed the critical fractile B/(B + H) when B > H.

Even with optimal time-varying safety stocks, fill rates may degrade over
the cycle, particularly when demand is positively autocorrelated. Reducing
the length of the planning cycle provides an opportunity to reduce inventory
costs, and is especially attractive when the initial planning cycle is long,
and demand exhibits strong autocorrelation. However, short planning cycles
require frequent audits, incurring a cost. The balance between inventory and
audit costs must be regulated carefully via the order cycle length.
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5.8. Limatations and further work

This investigation focused only on inventory performance and the optimal
order cycle length under autocorrelated demand. Our numerical investigation
of the fill rate reveals a rich behaviour that calls for further study. One might
also consider the impact of staggered deliveries on bullwhip or capacity costs.

Furthermore, we have assumed perfect knowledge of the autocorrelation
function (ACF) of demand, that the ACF does not change over time, and
that we can observe past demand from the beginning of time. In a real setting
we must estimate the ACF from a limited set of past observations. This
may introduce specification errors, and robustness tests could be considered,
perhaps along the lines set out in Hosoda and Disney (2009). Further
consideration could also be given to the mis-specification of the demand
distribution as in Akcay et al. (2011) and Lee (2014).
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Appendix A. Proof for theorem 2
Proof.

(a) Assume that we are to place an order at time ¢, to be received in period
t + 7. By setting the conditional expectation E [l |{ Dy, Di—1,---}| =
I, ., and solving for R, ,, we obtain the policy that minimizes the
inventory cost for any 7. Finally we set 7 = L 4 1, to obtain the solution
for the first order in a cycle.

To begin, we use induction on the inventory balance equation (2) to
obtain I;,y = I 1+ Ry + Ry 1 — Dy — Dyyq1. Extending this to [, yields

.
Lyvr =1 + Z (Rigr = Dyyr) = L + Wir + Repr — Fy 7, (A1)

n=1
The inventory costs are convex, and we seek to minimize them for an
arbitrary period by setting the expected inventory level to I}, .. Therefore,
let I}, . equal the expectation of (A.1), conditional on our observations

of demand up to time ¢, when the order is determined. We obtain
E [[t+7|{Dt> Dy q,--- }] = [;_T =1+ Rt+7' + Wt,r - Ft,T' (A-Q)
The receipt rate R, can be found by rearranging (A.2),

Rt+7— - Ftﬂ— + It*JrT - It - Wt,~r~ (A?))
Finally, we let £k = 1, so that 7 = L + 1 and obtain
Ou1 = Risri1=Frpp + Ip o — 1 — Win, (A4)

This concludes the first part of the proof.

(b) Assume that L +1 < 7 < L+ P, so that 7 + 1 corresponds to k > 1.
Inserting the receipts (A.3) back into the inventory equation (A.1) gives

It+7— == I:+T -+ Ftﬂ— - Ftﬂ—. (A5>

Rearranging the inventory balance equation (2) yields Ry, = Iy, —
I ; 1+ D¢y . Replacing both inventory levels with their equivalent form
in (A.5), we obtain

Rt-‘rT = Ot7k = It*—l—T - [t*-i-T—l + [)t,T? (A6)
where ZA?t,TH = Ft,fﬂ - Fm is the single-period forecast for D, .1 made

at time ¢. This completes the proof. [
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Appendix B. Proof for theorem 4

Proof. We shall express I; and I, + D, as a weighted sum of independent error
terms, and then take the variance or covariance.

(a) Recall the inventory equation (A.5)

T—1
L=I+F_,—) D, (B.1)
n=0

Let us express the lead-time demand as a weighted sum of error terms,

T—1 T—1 m ) T—1
Z Dy = (Z Et—m Z en) + <Z Et—z Z 0:py> ) (B2>
a=0 m=0 n=0 y=0

T=T

and express the corresponding forecast as a weighted sum of error terms,

00 T—1
Frovr=) 0 Y buy (B.3)
T=T y=0

Substituting the lead-time demand (B.2) and the forecast (B.3) into the
inventory equation, we obtain

T—1 m
L=I; =) em) On (B.4)
m=0 n=0

Clearly, E[I;] = I}. Taking the variance, we obtain

Var(I;) = o i (Z 9n> : (B.5)

completing the first part of the proof.

(b) Without loss of generality, assume I = 0. We can then characterize
I, + D, as

oo T—1 m
]t + Dt - (Z Et—x 01) - (th—m Z 871)
=0 m=0 n=0
00 T—1 m—1
_ (Z Ets ex) — |etbo+ > Erem <9m +> 9n>] (B.6)
=0 m=1 n=0

(B (8-llE) o))
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With I; + D; of this form, we take the variance

T—1 m—1 2 [e's)
Var(I, + D) =024 | Y (Z 9n> +y 6028, (B.7)

m=1 \n=0
completing this part of the proof.

(¢) To obtain Cov(Dy, I; + D), we exploit that (B.4) and (B.6) are already
of the required form. Taking the covariance gives (17), completing the
proof. |
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