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A New Mixture Model for the Estimation of Credit Card Exposure at Default  

 

Abstract 

Using a large portfolio of historical observations on defaulted loans, we estimate Exposure at 

Default at the level of the obligor by estimating the outstanding balance of an account, not 

only at the time of default, but at any time over the entire loan period.  We theorize that the 

outstanding balance on a credit card account at any time during the loan is a function of the 

spending by the borrower and is also subject to the credit limit imposed by the card issuer.  

The predicted value is modelled as a weighted average of the estimated balance and limit, 

with weights depending on how likely the borrower is to have a balance greater than the limit.  

The weights are estimated using a discrete-time repeated events survival model to predict 

the probability of an account having a balance greater than its limit.  The expected balance 

and expected limit are estimated using two panel models with random effects. We are able 

to get predictions which, overall, are more accurate for outstanding balance, not only at the 

time of default, but at any time over the entire default loan period, than any other particular 

technique in the literature. 

 

Keywords: risk management, forecasting, panel models, survival models, macroeconomic 

variables, time-varying covariates 
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1. Introduction 

 

Predictions of Exposure At Default (EAD) are useful to banks for at least two reasons.  First, 

the Basel Accords define expected loss as the product of Probability of Default (PD), Loss 

Given Default (LGD) and EAD, so predictions of EAD are needed to compute Regulatory 

Capital.  Second, predictions of EAD are needed for the prediction of Economic Capital that a 

bank believes it needs to protect its depositors in the event of severe unexpected events.  

Since the credit crisis of 2008, there has been increased awareness of the models for these 

components, and in particular, for retail loans.  However, these have been mainly focused on 

PD and LGD models, and how they should and can be improved (see Thomas (2010) for a 

review).  The analysis and modelling of EAD at account level has so far been relatively 

neglected. For loans with fixed loan amounts over fixed terms and pre-agreed monthly 

repayment amounts, it is possible to estimate at least a reasonable range for EAD should the 

loan be expected to default in the following time horizon, e.g. in the next 12 months.  

However, in the case of revolving loans, the subject of this paper, i.e. loans with no fixed loan 

amount or term, debtors are given a line of credit, with a credit limit up to which they can 

draw upon at any time (as long as they have not gone into default).  This could make it difficult 

for financial institutions to predict account level outstanding balance should an account go 

into default, especially if accounts deteriorate into default quickly and draw heavily on the 

card just before default.   

 

Another issue associated with the analysis and modelling of EAD is the measurement of EAD.  

EAD is similar to LGD in that its value is only of interest in the event default occurs (although 

its value still needs to be estimated for the calculation and preparation of economic capital).  

However, unlike LGD, where loss is predicted to be at some time point after default, EAD is 

known the very instant the account goes into default.  Therefore, although default-time 

variables could be used in the modelling of LGD, they cannot be used for EAD models.  As 

such, practitioners and the literature create various indicators to be estimated instead of EAD, 

taking into account the current balance and available limit.  Unfortunately, each method has 

limitations. 
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Our aim is to propose a new method to predict EAD for each loan in a portfolio and to 

demonstrate its accuracy by comparisons with methods currently in use and in the literature.  

Unlike conventional cross section methods, our proposed approach exploits the panel nature 

of a typical credit card dataset to model the values of balance and limit over time in a way 

that allows extrapolation from the time of prediction to the time of default. To evaluate our 

model, we use a large portfolio of defaulted loans and their historical observations, to directly 

estimate EAD at the level of the obligor by estimating the outstanding balance of an account, 

not only at the time of default, but at any time over the entire loan period, up to the time of 

default.   

 

Our methodology has several advantages over current methods. First for revolving credit 

loans, balance typically approaches the limit as an account moves over time towards default. 

We exploit this observation, to the extent that it is true, and the observation that  modelling 

an account’s limit at each time in its history can be done more accurately than the balance to 

more accurately predict the balance at default (that is EAD) than if this information is not 

used.  Second  we avoid several of the problems associated with current methods of modelling  

EAD which we describe in section 2, for example the considerable sensitivity to very small 

values of a denominator.  Third by using panel models we can more accurately include the 

effects of macroeconomic variables and so enable EAD estimates to be fixed as in a down-

turn scenario than cross sectional models. Further our method yields predictions of balance 

at any time in an account’s history and a bank would benefit from such predictions to estimate 

expected future interest income and so a component ofn expected profit from an account.  

 

The development and validation of the new Mixture model contributes to the literature in 

two ways.  First, this is the first paper to predict the outstanding balance for defaulted loans 

at any time during the life of a revolving loan.  Second, we incorporate macroeconomic 

variables into the model and so provide a framework suitable for stress testing later.  The rest 

of this paper is structured as follows.  Section 2 reviews the literature and Section 3 explains 

the model.  In Section 4, we illustrate the use of the method and compare its performance to 

methods in the literature. Section 5 shows an empirical application and Section 6 concludes.   

 

2. EAD in the literature 
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Only a few papers have examined EAD and usually for corporate loans (see e.g. Araten and 

Jacobs (2001), Jacobs Jr. (2008), Jiménez and Mencía (2009), Jiménez et al. (2009), Yang and 

Tkachenko (2012) and Barkova and Pathasarathy (2013)).  Few consider account level models, 

and they do not model EAD directly (e.g. see Taplin et al. (2007), Risk Management 

Association (2004)).  Instead, they typically model the Loan Equivalent Exposure (LEQ) Factor, 

the Credit Conversion Factor (CCF) or the Exposure At Default Factor (EADF)1, and then 

transform them back to an estimate of EAD (a more comprehensive review can be found in 

Moral (2006)).  Thus, Jacobs Jr. (2008), using corporate data and a GLM modelling framework, 

models all three factors. Barakova and Parthasarrathy (2013) model four ratios using four 

algorithms applied to corporate level variables for large syndicated loans over 2007 to 2009.  

Yang and Tkachenko (2012) model EADF using eight account level variables and compare 

seven estimators applied to 500 commercial borrowers. The closest to our work is Qi (2009), 

who used unsecured credit card data, to model LEQ  by looking at the level of credit drawn at 

one year before default.  No macroeconomic variables were included in the above models.  

All come to the conclusion that EAD plays an important part in the calculation of the provision 

of capital and should be more carefully incorporated into risk and loss calculations.   

 

To define these terms, we adopt the definitions as in Jacobs Jr. (2008), Qi (2009) Barakova 

and Parthasarathy (2013) and Yang and Tkachenko (2012).  In terms of nomenclature from 

here on, outstanding balance of account i at duration time   is represented by iB , and limit 

of account i at duration time   is represented by iL . We also construct a binary variable id  

that takes on the value 1 if account i defaults at time   and id  that takes on the value 1 if 

account i defaults at some time in the future.  To simplify the notation, the subscript i 

representing account i is dropped for the equations in this sub-section.  The three variables 

DEADF , DCCF  and DLEQ  are defined in Table 1.   

 

                                                

1 Note that LEQ, CCF and EADF are not universally defined.  Basel II refers to a Credit Conversion Factor, “CCF”, 
but does not define it except to state that it is a factor of any further undrawn limit (see BASEL COMMITTEE ON 
BANKING SUPERVISION 2004. International Convergence of Capital Measurement and Capital Standards: A 
Revised Framework., Paragraph 316, 474-478), so it is not clear that there is a standard industry practice towards 
EAD modelling. 
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Table 1: Definition of EAD measures in use and in the literature 

Variable Explanation 





 


0 forEADF lD
lD

D
D L

L

B
 

Ratio of the balance at default time D, over the limit at 

observation time lD ; limit is usually the limit at the 

time of application and is known once account is 

opened 



















0if 0

0if 
  CCF

lD

lD
lD

D

D

B

B
B

B

 

Ratio of the balance at default time D over the balance 

at some observation time lD  ; this tries to get better 

predictions for balance by taking into account the 

outstanding balance of an account at some observation 

time before default. 

























lDlD

lDlD
lDlD

lDD

D

BL

BL
BL

BB

if 0

if 
LEQ  

A more sophisticated prediction for balance by not only 

taking into account balance at some observation time 

before default, lD , but also the undrawn limit at that 

time, i.e. the remaining amount of credit the debtor is 

able to draw upon. 

 

However, modelling EAD in terms of these ratios involves a number of difficulties, some of 

which are rehearsed by Jacobs Jr. (2008) and Qi (2009).  In the case of DEADF , although we 

expect its value to range between 0 and 1, it is possible and quite common to see outstanding 

balances greater than the assigned limits, perhaps due to accumulated interest or banks 

allowing borrowers to go over their limits, giving values much greater than 1.  This makes the 

choice of distribution slightly more challenging.  A further problem noted by Qi (2009) is that 

as an account moves towards default and its balance increases, lenders may respond 
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differently between accounts; in some cases increasing the limit, in others reducing the limit.  

This may introduce unexplained heterogeneity in a cross sectional model of DEADF .  

 

Considering DCCF , it is possible that the outstanding balance at the selected observation time 

happens to be £0, or even negative (the account is in credit), which would give 0CCF D , and 

this raises the issue of the treatment of these accounts.  It is also possible that some of these 

accounts then deteriorate quickly into delinquency and default.  Also, should the account 

have a very low balance during observation time and defaults with a large balance, DCCF  could 

become an extremely large value, causing difficulties with data analysis and model 

estimation.  Although on the one hand, it is likely that accounts that go into default have large 

balances on their account prior to default (for example, debtors who default due to 

behavioural issues), it is also possible that accounts go from a low or zero balance to default 

within a short period of time (for example, debtors who default due to unexpected 

circumstances), which could then imply a different set of predictors for each group.  From the 

point of prediction, a value of 0 for DCCF  does not make any sense as this would mean a 

prediction of £0 for balance at some time in the future, and possibly at default.   

 

Our method does not suffer from the theoretical inability to deal with zero or negative values  

of balance or the difficulty in modelling a dependent variable which is composed of a ratio 

where its value is very sensitive to different values of the denominator. In our approach we 

use panel data that incorporates unexplained heterogeneity unlike cross sectional models 

that have been used for the above ratios. 

 

The different values that the DLEQ  can take could arise due to a number of different 

situations and which would give different implications.  Should the account have zero 

undrawn limit, i.e. outstanding balance equal to limit, at the time of observation, we get an 

DLEQ value of 0.  This is a group of debtors who have used their maximum available limit and 

are likely to default, but would be difficult to include and handle in the modelling because the 

DLEQ  value computed does not have the same implications as the other DLEQ  values 

computed for when balance and limit are not equal.   
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The majority of accounts would have a positive DLEQ , which could be due to one of two 

situations: (a) when balance at default is greater than balance at observation, and balance at 

observation is below the credit limit at observation, which would be the most common 

progression into default; or (b) when balance at observation is greater than balance at default, 

and balance at observation is already greater than the limit at observation.  The latter would 

represent debtors who are actually recovering from a large balance (and where perhaps 

extending the credit without putting the account into default might give lower loss).  Although 

these two groups of debtors would have DLEQ in the same range, we expect their 

characteristics and circumstances to be quite different.  It is also possible to have negative 

DLEQ  again in different situations2.  The possible range of DLEQ , coupled with the fact that 

different types of borrowers and circumstances could give DLEQ  in the same range, would 

make it difficult to estimate and model DLEQ . 

 

One weakness of several of the above methods is that according to how they are defined, 

these variables could become unstable3 if the denominator is very small, so some restrictions 

have to be imposed on the range of values.  Qi (2009) included only accounts at default time 

where undrawn limit is greater than 50 USD; Jacobs Jr. (2008) restricted the values of LEQ to 

between 0 and 1 and replaced outliers with the maximum and minimum values of his selected 

range. In his CCF model, he restricted the range of CCF to between the 1 and 99 percentiles, 

and replaced outliers with these maximum and minimum values.  Both authors effectively 

ignored accounts that go from up-to-date to default suddenly or within a short time period, 

but this was the only way to get plausible results. Barakova and Parthasarathy (2013) 

winsorise LEQ and CCF at the 99th percentile. Yang and Tkachenko (2012) capped EADF at 1 

and floored it at 0.  Taplin et al. (2007) did not attempt to estimate LEQ (referred to as “CCF” 

in their paper) as they would have to exclude about 50% of their observations.  They proposed 

regression models that estimate EAD as a function of balance and limit, but did not give any 

                                                

2 These are: (a) when balance at observation is larger than limit at observation and balance at default is larger 
than balance at observation, which would represent debtors who are spiralling further into debt and default; or 
(b) when balance at observation is larger than balance at default, but both are below the limit at observation.  

Again, we have two groups of debtors with negative DLEQ  values but where they have arrived via different 

circumstances.   
3 These variables could have large volatility over short periods of time, most likely coinciding with the period 
just before default occurs as balance on accounts go from small to large in a short period of time. 
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indication of covariates used or any performance measures.  Note also that predictive results 

from most papers in the literature that used these dependent variables have generally been 

poor.   

 

3.  The new Mixture model 

 

We propose the prediction of outstanding balance using a Mixture model.  The random 

variable, balance of account i at duration time   could be above, equal to or below the 

account limit.  The expected balance for account i at time   is therefore given in Equation 1: 

      
    
    11

11

111







iiiiiii

iiiiiii

iiiiiiiii

dLBBEdLBP

dLBBEdLBP

dLBBEdLBPdBE

,||

,||

,|||







.   (1) 

 

Typically, as an account moves towards default, the balance increases towards and may 

exceed the limit.  Often, borrowers stop increasing the balance when it reaches the limit.  We 

exploit this occurrence in our method.  Balance is less systematically governed by a model 

than is the limit, which is the result of a model.  Instead of modelling  1,|  iiii dLBBE   

directly, we assume, as an approximation, that such accounts have an expected balance equal 

to their limit and replace Equation 1 by Equation 2. 

 

 
      

    11

111





iiiiiii

iiiiiiiii

dLBBEdLBP

dLBLEdLBPdBE

,||

,|||




  .   (2) 

 

We therefore propose the parameterisation of three models.  First, a model of the probability 

that the outstanding balance of an account is larger than the credit limit, conditional on 

default; second, a model to predict the outstanding balance, conditional on default; and third, 

a model to predict the credit limit conditional on default, where the parameters to predict 

balance and limit are allowed to differ.   

 

There are cases where the limit may not increase and may even decrease as balance increases 

(see Qi (2009) for a good discussion of this). But our method is robust to this situation in that 

for such cases the survival model would be expected to predict a higher probability that in 
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the next month the predicted balance will exceed the limit and so the weight on predicted 

balance in that month will be correspondingly lower and the weight on the predicted limit 

correspondingly higher, as Equation 2 shows. 

 

From a training dataset based on only default accounts, i.e. accounts that eventually go into 

default, we propose the estimation of the probability that the outstanding balance at any 

duration time   is equal to or greater than the limit at duration time  .  This is done by 

defining the event ‘overstretched’, iS , for account i at time   which takes the value 1 if 

outstanding balance is greater than the limit at time  ; 0 otherwise, given in Equation 3: 

 



 


otherwise0

if 1 



ii

i

LB
S      .     (3) 

 

Given this definition, it is possible for an account to experience the event more than once (at 

different times of the loan), so a discrete-time repeated events survival model, given in 

Equation 4, is estimated.    

 
  llii

i

i ZYX
SP

SP
 
















  3,21)(
1

log ,   (4) 

where  is the intercept term; )( is a function of time since the last event; iX  are account-

dependent, time-independent covariates, i.e. application variables; liY ,  are account-

dependent, time-dependent covariates, lagged l months, i.e. behavioural variables; lZ   are 

account-independent, time-dependent covariates, lagged l months, i.e. macroeconomic 

variables; and 321 ,,   are unknown vectors of parameters to be estimated. 

 

To predict either balance or limit, we propose the estimation of two sub-models using two 

separate training datasets (where we use entire histories of the accounts in each training set).  

The datasets consist of accounts that at some time in their history defaulted as shown in 

Figure 1.  The training dataset is segmented according to whether accounts ever had balance 

exceeding limit (but not necessarily in default) at any point in the loan, or accounts that never 

had balance exceeding limit throughout the life of the loan.  The subset consisting of accounts 

(represented by subscript a) where balance exceeded credit limit at some point during the 
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loan is the limit training set, and used to estimate the limit at time  , conditional on default.  

By structuring a sample in this way, our method involves parameterising the distribution of 

aL  given  aa LB   and given default.  The other subset consisting of accounts (represented 

by subscript b) where balance never exceeded limit throughout the observation time of the 

loan is the balance training set, and used to estimate the balance at time  .  Hence, our 

method parameterises the bB  given the  bb LB   distribution.  By segmenting the accounts 

in this way, we use the full history of each account in the estimation of either balance or limit 

as it changes over time and over the course of the loan period.  This methodology, as well as 

the training and test sets created (details in the next section), is represented in Figure 1.   
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Figure 1: Flowchart of methodology and training and test set splits, where dotted lines 

represent subsets of the test and training sets that only consist of observations at default 

time. 

 

The limit, aL , and balance, bB , for accounts a and b, respectively, at time   could be 

estimated using panel models with random effects given in Equations 5 and 6 (see Cameron 

and Trivedi (2005), Gujarati (2003) and Verbeek (2004) for details).   

    aal
L

la
L

a
LL

aa ZYXdL   3,211|ˆ    (5) 

Portfolio of loans 

Defaults Non-Defaults 

Training set: all observations 
for accounts opened pre 

2009 
* used to estimate 

 1|  iii dLBP   

Test set I:  
Defaults; all 
observations 
for accounts 
opened from 

2009 

Limit training 
set: accounts 

that have 
balance≥ limit 
at any point in 

the loan 
* used to 

estimate aL   

Balance training 
set: accounts 

where balance 
< limit 

throughout the 
loan 

* used to 

estimate bB   

Predicted balance =  

    
     1|ˆ1|1

1|ˆ1|





iiiii

iiiii

dBdLBP

dLdLBP




 

Test set II: 
Observations 
of accounts 
at time of 

default  

Observations of 
accounts at time 

of default 
* used to 

estimate EADF, 
LEQ and CCF 
models, with 
some outliers 

removed  
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    bbl
B

lb
B

b
BB

bb ZYXdB   3,211|ˆ    (6) 

where BL  ,  are the intercept terms, ba XX ,  are account-dependent, time-independent 

covariates, i.e. application variables; lbla YY   ,, ,  are account-dependent, time-dependent 

covariates, i.e. behavioural variables, lagged l months; lZ   are account-independent, time-

dependent covariates, i.e. macroeconomic variables, lagged l months; 321 ,,   are unknown 

vectors of parameters to be estimated; and   bbaa  ,  are the error terms, with 

 2,0~,  IIDba  and  2,0~,   IIDba . 

 

The Mixture model could then be used to predict balance at any given time during the loan.  

This is done by first applying the survival model to all accounts to predict the probability of 

being overstretched at each duration time  .  Then, regardless of the estimated probability, 

one applies the balance panel model and the limit panel model onto all observations of all 

accounts to get an estimated balance and estimated limit, again at each time 4 .  Because 

the models would be estimated for the subsets described above, these predicted values, iB̂  

and iL̂ , are the values of iB  given  bb LB   and iL  given  aa LB   respectively, in both cases 

given default.  The final predicted value for balance of an account i at duration time  , given 

default, 1|~ ii dB  , is then a combination of the repeated events survival model estimating 

the probability of balance exceeding limit at time  , and the panel models estimating either 

balance or limit at time  .  This is the expected value of balance and limit, given the 

probabilities of the balance exceeding the limit at time  , and the assumed approximation, 

as defined in Equation 7 (which is just Equation 2 rewritten in a more efficient form): 

            1|ˆ11|ˆ1|~  iiiiiiii dBSPdLSPdB     ,  (7) 

where    1|  iiii dLBPSP   and is the estimated probability that account i is 

overstretched at time  , i.e. that the balance for account i at time   exceeds the limit for 

account i at time  ; and iL̂  and iB̂  are the estimated values for limit and balance 

respectively, from their respective panel models. 

 

                                                

4 When predicting balance and limit we set the random effect term at its mean (zero) in 

every case since its value is unknown for every case that is not in the training sample. 
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4. Data and variables  

 

4.1. Data 

 

Data is supplied by a major UK bank and consists of a large sample of credit card accounts, 

geographically representative of the UK market.  The accounts were drawn from a single 

product, and opened between 2001 and 2010.  Accounts were observed and tracked monthly 

up to March 2011 or until it was closed, whichever is earlier.  A minimum repayment amount 

is calculated in each month for each account and accounts progress through states of arrears 

depending on whether they are able to make the minimum repayment amount.  We set the 

minimum repayment amount at 2.5% of the previous month’s outstanding balance or £5, 

whichever is higher, unless the account is in credit, in which case the minimum repayment 

amount is £0, or the account has an outstanding balance of less than £5, in which case the 

minimum repayment amount would be the full outstanding amount.  It is also possible for 

accounts to recover from states of arrears should the borrower make repayment amounts 

large enough to cover accumulated minimum repayment amounts that were previously 

missed.  An account is then said to go into default if it goes into 3 months in arrears (not 

necessarily consecutive).  For more details on the movement of accounts between states, see 

Leow and Crook (2014), but note that the percentage used here is different.   

 

Accounts that have a credit limit of £0 at any point in the loan are removed, based on the 

assumption that these accounts would have been singled out as problem loans by the bank.  

It is possible for accounts to be in credit, such that balance is negative, so balance is 

constrained such that observations that have negative balance have £0 balance.  We 

experimented with various lags on the time-dependent covariates in all of the models and 

report results for lags of 12 and of 6 months.  Because of these lags, and the minimum time 

required for accounts to go into default, we also removed accounts that have been on the 

books less than 15 and 9 months respectively. 
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Figure 2: Distribution of ratio of balance over limit at time of default (for ratios less than 3) 

 

 

From the data, we see that some accounts go into default with an outstanding balance greater 

than their credit limit.  This is illustrated in Figure 2, which gives the distribution of the ratio 

of balance over limit at the time of default (only for ratios less than 3 for a clearer picture of 

the distribution).  The peak in the graph corresponds to borrowers defaulting with a balance 

equal to their credit limit, but we also do see a sizeable proportion of borrowers who default 

with balances on either side of their credit limits.   

 

4.2. Explanatory and macroeconomic variables 

 

Common application variables are available, including age, time at address, time with bank, 

income, presence of landline and employment type.  Behavioural variables are also available 

on a monthly basis, including repayment amount, credit limit, outstanding balance and 
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number and value of cash withdrawals or card transactions.  From these, further behavioural 

indicators can be derived, for example, the number of times an account oscillates between 

states of arrears and being up-to-date, the proportion of time the account has been in arrears 

and the average card transaction value.  Any behavioural variables used in the model are 

lagged 12 (or 6) months.   

 

The macroeconomic variables considered here are listed in Table 2.  The main source of 

macroeconomic variables is the Office of National Statistics (ONS), supplemented by data 

from Bank of England (BOE), Nationwide and the European Commission (EC) where 

appropriate.  We use the non-seasonally adjusted series unless unavailable because the 

balance and limit data are also not seasonally adjusted.  Any macroeconomic variables used 

in the model are also lagged 12 (6) months.   

 

Table 2: Description of macroeconomic variables  

Variable Source (id) Description 

AWEN ONS (KA5Q) Average earnings index, including bonus, including arrears, whole 

economy, not seasonally adjusted 

CIRN BOE (CFMHSDG) Monthly average of UK resident monetary financial institutions (excl 

Central Bank) sterling weighted average interest rate , credit card 

loans to households (%) not seasonally adjusted 

CLMN ONS (BCJB) Claimant count rate, UK, percentage, not seasonally adjusted  

CONS EC 

(CONS.UK.TOT.COF.BS.M) 

Total consumer confidence indicator, UK, seasonally adjusted  

HPIS Nationwide House price index Aall houses, seasonally adjusted 

IOPN ONS (K24V) Index of production, all production industries, not seasonally 

adjusted 

IRMA BOE Monthly average of Bank of England’s base rate  

LAMN ONS (BE1) Log (base e) of total consumer credit, amounts outstanding, not 

seasonally adjusted  

LFTN ONS Log (base e) of FTSE all share price index, month end, not seasonally 

adjusted 

10/4/62=100 

RPIN ONS (CHAW) All items retail price index, not seasonally adjusted, January 

1987=100 
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UERS ONS (YCNO) Labour Force Survey unemployment rate, UK, all, ages 16 and over, 

percentages, seasonally adjusted 

ONS denotes Office of National Statistics. BOE denotes Bank of England. Nationwide is Nationwide Building 

Society. ‘id’ denotes the data source’s identifier for the variable. 

 

4.3. Training and test set split 

 

Although we are interested in the prediction of outstanding balance of an account in each 

time step, these predictions of balance only become EAD values if and when accounts go into 

default.  We also believe that balances of defaulted and non-defaulted accounts behave 

differently, and we see from Figure 3 that balances of non-default accounts are on average 

lower, and have more occurrences of 0 than the balances of default accounts.  As such, we 

only use accounts that do (eventually) go into default.  Because we only use observations 

from accounts that do go into default for the development of the EAD model, we do not need 

to be concerned with accounts that are inactive, e.g. have zero transactions and zero balance 

on the card for an extended period of time, but remain in the portfolio.   

 

In the Introduction we explained that the mixture model will both predict balance at each 

time in the history of a defaulted account as well as at the time of default. The former is useful  

because a lender does not know when, or if, an account will default. We compare the 

performance of the established and mixture model in these two settings by using two 

different test sets as follows. The dataset is divided to give the training set consisting of all 

accounts that do go into default at some time in their history and were opened on or before 

31 December 2008, giving about 94,000 unique accounts.  Test set I is an out-of-sample test 

set and is created using the remaining default accounts, consisting of all observations of all 

accounts opened on or after 01 January 2009.  Test set I consists of about 12,000 unique 

accounts, giving more than 66,000 month-account observations.  Test set II is created as a 

subset of Test set I, where only observations at the time of default are included.  Test set I 

would give an indication of how well the model is able to predict balance for accounts that 

are likely to be delinquent but may not yet have gone into default at each time in their account 

history, whilst Test set II would be an indication of how well the model is able to predict at 

default-time, regulatory EAD.  The relationship of the training and test sets are represented 
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in Figure 1.  We calculate several performance measures including r-squaredR-squared 

values, for the two test sets: Test set I, for all accounts, for all observation times; and Test set 

II, for all accounts, only at time of default.   

 

The portfolio of non-default accounts is not used in either the modelling or the testing as we 

estimate balance given default.  Applying the Mixture model to observations of non-default 

accounts would give us the predicted balance should the account go into default, which is 

different to the observed balance, as seen in Figure 3, which would mean that we will not be 

able to score how well the model is predicting. 

 

 

Figure 3: Distributions of observed balance, for default and non-default accounts, for balance 

less than £20,000. 

 

4.4. Model estimation  
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Both panel models were estimated using Generalised Least Squares (GLS) estimators.  We 

estimated models with lags of 12 months and of 6 months lags. Covariates include application 

variables, lagged behavioural variables, and lagged macroeconomic variables, defined in 

Equations 5 and 6.  We initially estimated the survival model and models for balance and limit, 

separately,  using a very large number of application, behavioural and macroeconomic 

variables with 12 month lags. Covariates were then retained or deleted based on their level 

of statistical significance including that of other variables, their relevance and the predictive 

accuracy of the overall model.  So for example in the limit and balance equations Time at 

address (TAAdd) and a binary variable indicator for missing or unknown time with bank 

(TWBank_MU) were not significant in the balance and limit equations and so were not 

included in the final equation (see the Appendix) whereas they were significant in the survival 

model and so were included in that5. Thus different sets of parameters are used in each model 

and between the lagged models. 

 

 The survival model did not include utilisation or credit limit because although they were very 

statistically significant, the overall accuracy of the model at lag 12 months was slightly lower 

when the combination of variables that included these two was used. At lag 6 months, 

inclusion or exclusion of these two variables actually made little difference to predictive 

accuracy.  We found the greatest predictive accuracy was gained when the training set of the 

balance model was restricted to cases when the minimum balance was over £200. Since each 

account typically has multiple observations (month-account observations), we adjusted for 

serial correlation by using a clustered sandwich estimator (on account ID) to estimate variance 

and standard errors Drukker (2003). 

 

To compare the predictive accuracy of the Mixture model with established methods, we use 

the training set with observations only at time of default to estimate the EADF, LEQ and CCF 

cross-sectional regression models (represented by the dotted square from the training set in 

Figure 1).  For all observations at time of default, EADF, CCF and LEQ are predicted based on 

observed covariates lagged 12 (6) months before default, according to the equations in Table 

                                                
5 The omission of lagged utilisation in the limit and balance equations  allows more flexibility 
in the estimated parameters  concerning lagged balance and limit. 
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1.  Similar to the EAD papers mentioned in the literature, some observations were further 

excluded from this subset due to some very extreme observations of CCF and LEQ.   The final 

number of accounts and observations used in each training set when covariates were lagged 

12 months is given in Table 3.   

 

Table 3: Number of observations for balance and limit subsets, lag 12 months 

Model Number of 

accounts 

Number of 

observations 

Minimum 

observations 

for any account 

Maximum 

observations 

for any account 

Average 

observations 

per account 

Balance 13,859 184,608 4 105 13.3 

Limit 36,453 798,486 4 107 21.9 

CCF 43,686 43,686 1 1 1 

EADF 68,4769 68,479 1 1 1 

LEQ 31,821 31,821 1 1 1 

 

EADF, LEQ and CCF were regressed on the same covariates as those used in the survival 

model6.  A variety of experimentation in terms of modelling functions and techniques was 

done for these competing models to improve the predictions for these variables.  For the 

modelling of EADF, we tried several functional forms including a beta function and logit link 

functions but found that a liner model with OLS estimators gave the greatest predictive 

accuracy. For LEQ, various values of outliers were deleted but the greatest predictive accuracy 

was gained when we took only values in the range 0 < LEQ < 1 and adopted a generalised 

linear model with a logit link function with a maximum likelihood estimator. For the CCF 

model we took a loge transformation to transform the distribution to be close to normal, then 

deleted various sizes of outliers and used an OLS estimator. The predictive accuracy was very 

poor until we deleted all observations above the 80th percentile. These models are then 

applied onto the test sets (Test set I and Test set II) and performance measures are calculated.  

These three regression models are not further documented in this paper. 

 

                                                
6 Except for time varying duration time since last event, duration time squared and number of times event has happened 
which are all survival model specific and time on books that was included in the competing models but not the survival 
model. 
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5. Results 

 

5.1. Survival model for being overstretched 

 

The parameter estimates for the discrete-time repeated events survival model predicting for 

the event overstretched is given in the appendix, Table A2.  We find that the signs of the 

parameter estimates are intuitive: for example, the probability of being overstretched 

decreases with age as well as with higher income.  In terms of behavioural variables, we find 

that the probability of being overstretched reflects how well borrowers manage their 

accounts, so borrowers who move in and out of arrears frequently (see rate of total jumps) 

or are frequently in arrears (see proportion of months in arrears) tend to have a higher 

probability of being overstretched.  In terms of macroeconomic variables, an increase in 

housing or financial wealth, for example, an increase in the House Price Index (HPI) would 

decrease the probability of being overstretched; but easier access to credit (indicated by an 

increase in credit amount outstanding) increases the probability of being overstretched. 

 

5.2. Panel models for balance and limit 

 

The parameter estimates for both panel models are given in Table A2 in the appendix.  We 

acknowledge that the balance from 12 months previous is included as a variable in the 

balance model, and credit limit from 12 months previous is included as a variable in the limit 

model.  Although this would raise the issue of endogeneity in econometric interpretation, it 

is not an issue in this case as we are using the model solely for the purpose of prediction.  

Although the panel models are developed with random effects, these random effects are not 

known for accounts in the test set(s).  The random effects associated with each account in the 

test set is assigned to be the mean values of i  and it , that is zero in both cases. 

 

The goodness of fit statistics for the panel models for balance and limit, based on the training 

set with time varying covariates lagged 12 months are given in the appendix, Table A1.  We 

expect it to be easier to predict the limit, as this would be based on a combination of 

application time and behavioural indicators, and is reflected in the impressive r-squaredR-
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squared value for the limit model.  The panel model for balance does not predict as well as 

that for the limit, as factors affecting outstanding balance of an account would include 

borrower circumstances which would be impossible to take into account given the 

information we have. 

 

5.3. Overall performance  

 

After applying the Mixture model onto the test sets, we compute overall r-squaredR-squared, 

Mean Absolute Error (MAE), Mean Error (ME) and the symmetric Mean Absolute Percentage 

Error (sMAPE) for the predicted versus the observed balance, i.e. we transform the predicted 

CCF, LEQ and EADF into predicted balances, given in Table 4.  The sMAPE is able to circumvent 

the problem of having £0 balance that would mean dividing by 0 in the calculation of MAPE.   
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Table 4: Performance measures for Mixture, LEQ, EADF and CCF models, for test sets, based on predicted balances 

Model Test set   

No.of 
obs 

 

R-
squared 

Lag 12 

MAE 

 

ME:Obs-
Pred 

 

sMAPE 

  

No. of 
obs 

 

 

R-
squared 

Lag 6 

MAE 

 

ME:Obs-
Pred 

 

sMAPE 

Mixture model 
developed on 
default accounts, 
min balance 
>£200 

Test set I 

Test set II 

 

18,584 

 4,122 

0.5565 

0.6321 

646.20 

611.54 

-
125.9821.36 

21.36-
125.98 

 

0.5277 

0.4369 

66,460 

11,734 

0.5814 

0.6564 

652.26 

647.61 

-
187.4810.65 

-
10.65187.48 

0.5432 

0.3923 

LEQ model 
developed on 
default accounts 
at time of default,      
0 < LEQ<,1 

Test set I 

Test set II 

18,584 

4,122 

0.4928 

0.5673 

632.48 

632.37 

157.82 

292.53 

0.4900 

0.4114 

66,460 

11,734 

0.4790 

0.6272 

634.90 

638.83 

-263.02 

-154.60 

0.4510 

0.3109 

EADF model 
developed on 
default accounts 
at time of default 

Test set I 

Test set II 

18,584 

4,122 

0.5360 

0.6981 

613.01 

548.63 

-218.80-
35.06 

-35.02-
218.80 

 

 

0.3956 

0.2977 

66,460 

11,734 

0.3903 

0.5789 

692.46 

675.99 

-316.58 

-127.62 

0.44804 

0.3012 

CCF model (ln 
CCF) developed 
on default 

Test set I 

Test set II 

18.584 

4,122 

-0.0009 

0.0492 

962.94 

1024.80 

730.97 

807.10 

1.1890 

1.1183 

66,460 

11,734 

0.2275 

0.1975 

805.27 

931.02 

572.45 

732.56 

0.9463 

0.8282 
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accounts at time 
to default, CCF>0 
and truncated at 
80th percentile 
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We omit cases where both observed and predicted balance are £0 (i.e. the prediction is 

accurate and there is 0 error) from the calculation of sMAPE as they do not contribute to the 

error.  We see that when considering predictions 12 months in advance (left hand panel) the 

Mixture model is able to achieve an r-squaredR-squared of 0.56 when predicting for balances 

for accounts that are likely to be delinquent, at all times they are observed.  This is an 

improvement from the r-squaredR-squared values of between 0.54 for EADF, 0.49 for LEQ 

and -0.001 for CCF7 . The Mixture model also has the lowest ME. But in terms of MAE and 

sMAPE the EADF method gives lower errors. When considering balance at the time of default, 

the Mixture model has a lower ME at £21.36-£126 than the EADF (-£35.02-£219) and LEQ 

(£293); in terms of r-squaredR-squared and MAE its performance is inferior to the EADF 

though better than the other two methods, and in terms of sMAPE, its performance is below 

those of EADF and LEQ. 

 

The Mixture model gives a prediction at each duration time since the opening of the account. 

When we consider the performance at a prediction horizon of, say, 6 months (right hand 

panel) we see that for accounts at all observation times, the r-squaredR-squared of the 

Mixture model at 0.58 is considerably above those of the other methods, the largest of which 

is LEQ at 0.48 with EADF at 0.39.  In terms of ME, the Mixture model is also considerably more 

accurate than the other methods, with a ME of £11£187.48 whilst the closest of the other 

methods is -£263 for LEQ.  In terms of MAE, the Mixture model is more accurate than EADF 

but less so than LEQ.  At the time of default, the Mixture model has the highest r-squaredR-

squared at 0.66 althoughand  it is far more accurate than the other methods in terms of mean 

error with a mean error of just £10.65 compared with that of EADF of -£127.62. It is more 

accurate in terms of MAE as well, although less accurate on sMAPE.less accurate than the LEQ 

and EADF methods in terms of the error metrics. 

 

                                                

7 r-squaredR-squared is computed as 1-(sum of squared errors/total sum of squares). The predicted 

values are values of EAD predicted by the relevant model and the observed values are the values 

observed in the data. R-squared can be negative when predicted and observed values are compared 

and the implied model does not have a constant as is the case when predicting balance from the CCF 

model. 
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It is difficult to compare our results with those of the literature because many other studies 

quote only statistics relating to the regression model and not for values of predicted EAD. 

Thus the regression models developed for credit cards LEQ by Qi (2009) achieved adjusted r-

squaredR-squared values of between 0.06 to 0.37, on a sample of default time observations 

depending on whether the accounts were current or delinquent, and whether outliers were 

excluded from the model development.  Jacobs Jr. (2008), working on corporate data, 

achieved pseudo median r-squaredR-squared values of 0.15, 0.19 and 0.13 for LEQ, CCF and 

EADF respectively.  Barakova and Parthasarathy (2013) find adjusted r-squaredR-squared 

values for different models for corporate loans of between 1% and 33% depending on the 

model and treatment of outliers. In contrast, Yang and Tkachenko quote an r-squaredR-

squared of 0.91 for EAD using EADF with a least squares logit algorithm but that is for a sample 

of corporate borrowers and we do not know if this applies to a testing sample.   

 

 

 

 

 

 

Figure 4 compares the distributions of predicted and observed balances for Test set II, i.e. 

only default time observations for all default accounts.  The values of balance are limited to 

between £0 and £20,000 for clearer representation of the distributions and all values of 

balances are indexed on some value of observed balance.  The Mixture model predicts the 

mean with considerable accuracy (a difference in indexed value of +0.0003) compared with 

the EADF and LEQ models (with differences of +0.0027 and -0.0156 respectively). The CCF is 

again the least accurate by a large margin.  
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Figure 4: Comparative histogram of predicted and observed balances, indexed on observed 

balance, for Test set II, only observations at time of default (where observed balance lies 

between £0 and £20,000).   

 

It is interesting to note that, although with variables lagged 12 months, the EADF model has 

a higher r-squaredR-squared and lower MAE and sMAPE than the Mixture model at default 

time (Table 4), when we plot the distributions (Figure 4), the Mixture model yields more 

accurate predictions compared to the EADF model in terms of the mean. This suggests that 

whilst the MAE value for the Mixture model shows the deviations from the observed values 

are, on average, larger for the Mixture than for the EADF model at default time, the net value 

is closer to the observed value for the Mixture than for the EADF model. Looking at the 

distributions, the Mixture model is less accurate than EADF for the smaller values of balance 

but more accurate for the larger values. Arguably, the larger values are the balances that a 

portfolio manager would be most concerned about.  Overall then, we believe that the Mixture 
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model is a more accurate and useful model to use to predict EAD and outstanding balances 

for accounts likely to default at pre-default times than are conventional models. 

 

6. Concluding Remarks 

 

We propose a Mixture model to predict for credit card balance at any time  , given that an 

account has defaulted.  We exploit the advantage that this model has over conventional cross-

section models of incorporating the movement in balance and in limit over time as the 

account moves towards default. Specifically the method involves first estimating a discrete-

time repeated events survival model to estimate the probability of an account being 

overstretched, i.e. having a balance greater than its limit, at any time  .  Next, two panel 

models with random effects are developed to estimate balance and limit separately, at any 

time  .  The final prediction for balance at duration time   is then taken as the sum of two 

products, all at time  : the probability of being overstretched multiplied by the estimated 

limit; and the probability of not being overstretched multiplied by the estimated balance in 

both cases given default (c.f. Equation 7).   

 

Applying this Mixture model to a large portfolio of default loans and their historical 

observations, we find that we are able to get good predictions for outstanding balance for 

accounts that at some time default, not only at the time of default, but at any time over their 

entire loan period. This would allow us to make predictions for outstanding balance and hence 

EAD before default occurs, for delinquent accounts. Considering predictions 12 months into 

the future Wewe find that at the time of default, the EADF model gives results that are, on 

three some measures, more accurate and on one measureothers less accurate than the 

Mixture model. However the Mixture model is more accurate in terms of the mean and mean 

error and has the added advantage of giving more accurate predictions for larger balances 

than EADF. Turning to predictions before the time of default, the Mixture model has the 

highest r-squaredR-squared and smallest mean error of any of the methods. If one wishes 

predictions a mere 6 months into the future the Mixture model has the highest r-squaredR-

squared at both default time and at earlier times and the lowest mean error by a considerable 

margin. However, Overall, whilst we believe the Mixture model is a competitive methodology 

better methodological choice for the prediction of balance for accounts that are likely to 
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default, especially if a prediction 6 months into the future is required, further research is 

desirable to explore its accuracy in other datasets. 

 

It is appropriate to remark that some types of portfolios, such as corporate portfolios will 

differ in the proportion of cases where the balance at default exceeds the limit and so the 

sampling variance of the estimated parameters of the survival model would differ between 

portfolios. 

 

Following this work, we plan to incorporate stress testing into our risk models.  We plan to 

combine PD, LGD and EAD models, and to stress test each component model independently 

yet retain the knock-on effects in an adverse economic situation, if any.  The obvious 

covariates to stress test within the models would be the macroeconomic variables; however, 

we would also like to consider methods which would allow us to stress the behavioural 

variables as well.  It is not always clear how behavioural variables are affected by the 

economy, especially in the case of retail loans where the economy is expected to affect 

individuals differently and to varying degrees.  The different combinations of iPD , iLGD  and 

iEAD  computed would enable us to get a distribution for iloss , from which we expect to be 

able to predict for expected and unexpected losses better. 
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APPENDIX 

 

Table A1: Performance indicators for panel models, for training set 

Model Overall R-squared (train) 
u  e    

Balance 0.4673 866.3302 828.6274 0.5159 

Limit 0.9005 403.5576 482.6812 0.4114 

 

Table A2: Parameter estimates of survival model for event overstretched and panel models for balance and limit lag 12 

Code Parameter Discrete-time repeated events 

survival model for P(B>=L) 

Panel model with random 

effects for balance 

Panel model with random 

effects for limit 

Estimate WaldChiSq ProbChiSq Estimate z P>|z| Estimate z P>|z| 

Intercept Intercept -9.7726 20.1402 <.0001 -1,752.36 -3.40 0.001 37,574.49 37.11 <.0001 

Application variables 

ageapp_1 Age at application group 1 - - - - - - - - - 

ageapp_2 Age at application group 2 -0.1447 43.6769 <.0001 -39.6967 -1.43 0.152 24.2148 2.91 0.004 

ageapp_3 Age at application group 3 -0.1963 64.0319 <.0001 -2.0937 -0.06 0.950 51.2779 4.65 <.0001 

ageapp_4 Age at application group 4 -0.1413 25.8411 .<0001 11.4810 0.32 0.750 82.4971 6.10 <.0001 

ageapp_5 Age at application group 5 -0.1338 19.9317 <.0001 24.6703 0.63 0.531 137.193 8.37 <.0001 

ageapp_6 Age at application group 6 -0.2033 39.0898 <.0001 37.2720 0.89 0.374 158.7112 8.86 <.0001 

ageapp_7 Age at application group 7 -0.2078 31.5887 <.0001 81.8585 1.89 0.059 178.8056 8.24 <.0001 

ageapp_8 Age at application group 8 -0.3006 42.2476 <.0001 88.9510 1.90 0.058 186.5624 7.57 <.0001 

ageapp_9 Age at application group 9 -0.4161 51.8056 <.0001 155.425 2.84 0.005 172.7288 4.88 <.0001 
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ageapp_10 Age at application group 10 -0.5906 81.2618 <.0001 92.9561 1.69 0.090 127.999 3.78 <.0001 

ECode_A Employment code, group A - - - - - - - - - 

ECode_B Employment code, group B -0.0256 1.1698 0.2794 63.4967 1.68 0.093 -12.8937 -0.84 0.401 

ECode_C Employment code, group C 0.0962 2.3881 0.1223 -23.3239 -0.48 0.629 -12.7538 0.47 0.638 

ECode_D Employment code, group D -0.2193 49.4397 <.0001 -69.9821 -2.16 0.031 244.4278 20.87 <.0001 

ECode_E Employment code, group E -0.1671 81.3304 <.0001 -23.8745 -0.90 0.367 222.8055 18.53 <.0001 

INC_L Income, ln -0.1651 199.9145 <.0001 329.721 7.95 <.0001 389.5459 25.57 <.0001 

INC_M0 Binary indicator for missing or 0 income -1.5540 196.3966 <.0001 2927.806 7.72 <.0001 3421.209 24.18 <.0001 

LLine Binary indicator for presence of landline 0.0084 0.1865 0.6659 86.6014 3.28 <.0001 - - - 

NOCards Number of cards -0.0664 92.6344 <.0001 62.5053 4.86 <.0001 51.8571 10.34 <.0001 

TAAdd Time at address (years) 0.0008 0.6132 0.4336 - - - - - - 

TWBank_MU Binary indicator for missing or unknown time 

with bank 

-0.0792 11.6248 0.0007 - - - - - - 

TWBank Time with bank (years) -0.0014 211.2680 <.0001 -0.2347 -2.26 0.024 1.0901 17.73 <.0001 

X_A Variable X, group A - - - - - - - - - 

X_B Variable X, group B 0.3040 207.3578 <.0001 -9.3027 -0.32 0.751 --226.1428 -18.05 <.0001 

X_C Variable X, group C 0.3935 222.4255 <.0001 -71.7786 -2.34 0.019 -205.4936 -15.37 <.0001 

X_D Variable X, group D 0.2797 129.8488 <.0001 -26.8704 -0.98 0.326 -154.2192 -12.29 <.0001 

X_E Variable X, group E 0.5082 478.2932 <.0001 -9.7506 -0.29 0.772 -499.7334 -31.27 <.0001 

Behavioural variables, lagged 12 months 

ATRV_lag12 Average transaction value -0.0008 230.0800 <.0001 0.1461 8.74 <.0001 0.0491 3.40 0.001 

CASC_lag12 Number of cash withdrawals 0.0953 36.1581 <.0001 - - - - - - 

CASV_lag12 Amount of cash withdrawal 0.0001 4.3231 0.0376 - - - - - - 
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CRLM_lag12 Credit limit - - - 0.2910 13.67 <.0001 0.6948 59.02 <.0001 

JUMP_lag12 Rate of total jumps 0.1753 9.0396 0.0026 403.2316 6.96 <.0001 -97.3752 -4.23 <.0001 

PARR_lag12 Proportion of months in arrears 0.2543 12.7681 0.0004 -404.4825 -6.38 <.0001 112.979 3.92 <.0001 

PAYM_lag12 Repayment amount -0.0001 30.2486- <.0001 - - - 0.0283 6.27 <.0001 

SCBA_lag12 Outstanding balance - - - 0.1012 9.45 <.0001 0.0386 2.18 0.029 

Macroeconomic variables, lagged 12 months 

AWEN_lag12 Average wage earnings -.0.0020 6.6668  0.0098 -0.1042 -0.15 0.879 -1.4374 -9.60 <.0001 

CIRN_lag12 Credit card interest rate 0.1180 112.4658 <.0001 80.2595 6.48 <.0001 -116.2638 -32.44 <.0001 

CONS_lag12 Consumer confidence 0.0075 35.6671 <.0001 5.4994 3.74 <.0001 - - - 

HPIS_lag12 House Price Index -0.0024 22.7570 <.0001 -1.5996 -2.83 0.005 6.8107 45.93 <.0001 

IOPN_lag12 Index of production -0.0008 2.5745 0.1086 - - - - - - 

IRMA_lag12 Base interest rate -0.1107 93.8650 <.0001 --51.4505 -3.39 0.001 -125.5614 -27.29 <.0001 

LAMN_lag12 Amount outstanding, ln 0.8548 20.3212 <.0001 - - - -2996.797 -34.24 <.0001 

LFTN_lag12 FTSE Index, ln  - - -169.2373 -3.21 0.001 -686.573 39.86 <.0001 

RPIN_lag12 Retail Price Index - - - -0.4331 -0.16 0.875 13.3002 15.75 <.0001 

UERS_lag12 Unemployment rate -0.1843 58.6602 <.0001 -54.1236 10.39 <.0001 -219.8914 -24.13 <.0001 

Model specific required variables 

duration Survival time (months) since last event -0.0472 1433.3820 <.0001 - - - - - - 

durnsq Survival time since last event squared 0.0002 78.5404 <.0001       

period Number of times event has happened 0.2005 1178.3776 <.0001 - - - - - - 

Time on books Time on books (months) - - - 5.4430 10.33 <.0001 9.5058 37.11 <.0001 

 


