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Abstract

We introduce a parallel machine scheduling problem in which the processing
times of jobs are not given in advance but are determined by a system of linear
constraints. The objective is to minimize the makespan, i.e., the maximum job
completion time among all feasible choices. This novel problem is motivated
by various real-world application scenarios. We discuss the computational com-
plexity and algorithms for various settings of this problem. In particular, we
show that if there is only one machine with an arbitrary number of linear con-
straints, or there is an arbitrary number of machines with no more than two
linear constraints, or both the number of machines and the number of linear
constraints are fixed constants, then the problem is polynomial-time solvable
via solving a series of linear programming problems. If both the number of ma-
chines and the number of constraints are inputs of the problem instance, then
the problem is NP-Hard. We further propose several approximation algorithms
for the latter case.

Keywords: parallel machine scheduling, linear programming, computational
complexity, approximation algorithm

1. Introduction

A scheduling problem aims to allocate resources to jobs, so as to meet a
specific objective, e.g., to minimize the makespan or the total completion time.
One common assumption in the classical scheduling problem is that the pro-
cessing times of jobs are deterministic and are given in advance. However,
in practice, the processing times are usually uncertain/unknown or could be
part of the decisions. A number of works in the literature have proposed var-
ious scheduling models in which the processing times are uncertain/unknown,
such as the stochastic scheduling problem (Möhring et al., 1984, 1999; Dean,
2005) and the robust scheduling problem (Daniels & Kouvelis, 1995; Kasperski,
2005; Kasperski & Zielinski, 2008). In the stochastic scheduling problem, it
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is assumed that the processing times are random variables and the expected
makespan is considered. In the robust scheduling problem, it is assumed that
the processing time of each job belongs to a certain set and the objective is
to find a robust schedule under some performance criterion (e.g., minimize the
maximum absolute deviation of total completion time, or the total lateness).
Note that in either the stochastic or the robust scheduling problems, the pro-
cessing times are still exogenously given.

In the presented paper, we introduce a new scheduling model. In our model,
the processing times of jobs are not exogenously given, instead they can be cho-
sen as part of the decisions, but they must satisfy a set of linear constraints.
We call this problem the “scheduling under linear constraints” (SLC) problem.
Note that the SLC problem reduces to the classical parallel machine scheduling
problem P ||Cmax when the processing times of jobs are given (or equivalently,
when the linear constraints have a unique solution). This problem is related to
the scheduling problem with controllable processing times studied in the litera-
ture (Nowicki & Zdrzalka, 1988, 1990; Shabtay & Steiner, 2007). In the latter
problem, the processing times of jobs are controlled by factors such as the start-
ing times and the sequence of the jobs, while in our problem, the processing
times are part of the decision variables. The SLC problem is also related to
the lot sizing and scheduling problem in production planning, which decides
the type and amount of jobs to process at each time period over a time hori-
zon (Drexl & Haase, 1995; Drexl & Kimms, 1997; Haase, 1994). However, in
the SLC problem, each task must be completed in a consecutive time interval,
while in the lot sizing and scheduling problem, an activity can be scheduled
in multiple non-consecutive periods. Furthermore, the objective of the lot siz-
ing and scheduling problem is to minimize the total costs, including the setup
costs, the inventory holding costs, etc, which is significantly different from the
objective in our problem (Kreipl & Pinedo, 2004).

In the following, we provide a few examples that motivate the study of the
SLC problem.

1. Industrial Production Problem. Perhaps the earliest motivation for the
scheduling problem came from manufacturing (e.g., see Pinedo, 2009,
2012). Suppose a manufacturer requires certain amounts of different raw
metals, and he needs to extract them from several alloys. There are sev-
eral machines that can extract the alloys in parallel. We focus on the
procedure of extracting the alloys, of which the goal is to finish as early
as possible. In this problem, the processing times of extracting each alloy
depend on the processing quantities, and traditionally, they are predeter-
mined in advance. However, in practice, those quantities are determined
by the demands of the raw metals and can be solved as a feasible solution
to a blending problem (Danø, 1960; Eiselt & Sandblom, 2007). Some-
times, each alloy also has its own maximum quantity. An example of such
a scenario is given in Table 1.

In the example shown in Table 1, the demand of iron is 56, and each
unit of alloy 1 contains 24 units of iron, each unit of alloy 2 contains 8
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Composition Alloy Demand
1 2 3 · · · n

iron 24 8 3 · · · 2 ≥ 56
copper 3 3 3 · · · 1 ≥ 30

...
...

...
...

...
...

...
aluminium 4 33 137 · · · 100 ≥ 1000

Max. of alloy Quantity
1 1 0 0 · · · 0 ≤ 10
2 0 1 0 · · · 0 ≤ 7
3 0 0 1 · · · 0 ≤ 20
...

...
...

...
...

...
...

n 0 0 0 · · · 1 ≤ 15

Table 1: Example for the Industrial Production Problem

units of iron, etc. Let xi be the quantity of alloy i to be extracted. Then
the requirement on the demand of iron can be represented as a linear
inequality 24x1 + 8x2 + 3x3 + · · · + 2xn ≥ 56. Furthermore, the max-
imum amount of alloy 1 available is 10, which can be represented as a
linear inequality x1 ≤ 10. Similarly, we can write linear constraints for
the demand of other metals and the quantity for other alloys. In this prob-
lem, the decision maker needs to determine the nonnegative job quantities
x1, . . . , xn satisfying the above linear constraints, and then assign these
jobs to the parallel machines such that the last completion time is min-
imized. This problem can be viewed as a minimum makespan parallel
machine scheduling problem, where the processing times of jobs satisfy
some linear constraints.

2. Advertising Media Selection Problem. A company has several parallel
broadcast platforms which can broadcast advertisements simultaneously,
such as multiple screens in a shopping mall or different spots on a web-
site. There is a customer who wants to broadcast his advertisements (ad
1, . . . , n) on these platforms.1 It is required that each individual adver-
tisement must be broadcast without interruption and the running time of
each advertisement has to satisfy some linear constraints. The company
needs to decide the running times xi allocated to each advertisement i,
and also which advertisement should be released on which platform as well
as the releasing order. The objective is to minimize the completion time.
An example of such a problem is given in Table 2.

Similar to the first example, the above-described problem can be naturally

1This example can be easily extended to cases with multiple customers.
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sum of
each unit time broadcast provides

ad 1 ad 2 ad 3 · · · ad n
attractions to women 20 100 100 · · · 10 ≥ 500
attractions to men 15 10 0 · · · 80 ≥ 500
attractions to teens 30 0 30 · · · 100 ≥ 200

...
...

...
...

...
...

...
max time for ad 1 1 0 0 · · · 0 ≤ 20
min time for ad 1 1 0 0 · · · 0 ≥ 10
max time for ad 2 0 1 0 · · · 0 ≤ 35

...
...

...
...

...
...

...

Table 2: Example for the Advertising Media Selection Problem

formulated as a minimum makespan parallel machine scheduling problem
in which the parameters (running times of the advertisements) are deter-
mined by a system of linear constraints.

3. Transportation Problem. Both linear programming and machine schedul-
ing problems have extensive applications in the field of transportation
management (Eiselt & Sandblom, 2007; Pinedo, 2009, 2012). The parallel
machine scheduling problem has many similarities with the transportation
scheduling models. For example, a fleet of tankers or a number of workers
can be considered as a parallel machine environment, and transporting or
handling cargo is analogous to processing a job (Pinedo, 2009). Mean-
while, the transportation problem can be formulated as a linear program.
Let xij be the capacity of cargo that needs to be transported from origin
i to destination j. They often have to satisfy certain supply and demand
constraints, which are usually linear constraints.

In practice, the decision maker decides how to assign cargo (jobs) to
tankers or workers (parallel processors), so as to finish the handling as
quickly as possible. This is a parallel machine scheduling problem. And
the processing times usually depend on xijs, which have to satisfy some
linear constraints as mentioned above. This also leads to a parallel ma-
chine scheduling problem with linear constraints.

In this paper, we study the SLC problem, discussing the computational
complexity and algorithms for this problem under various settings. In particular,
we show that if there is only one machine with an arbitrary number of linear
constraints, or there is an arbitrary number of machines with no more than two
linear constraints, or both the number of machines and the number of linear
constraints are fixed constants, then the problem is polynomial-time solvable
via solving a series of linear programming problems. If both the number of
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machines and the number of constraints are inputs of the problem instance, then
the problem is NP-Hard. We further propose several approximation algorithms
for the latter case. We summarize our results in Table 3. In Table 3, the
parameters n, m, k stand for the number of jobs, machines and constraints,
respectively. The upper line in each cell indicates the computational complexity
of the problem, where P refers to polynomial-time solvable and ? refers to
complexity unknown; the lower line indicates the running time if the problem
is polynomial-time solvable, or the performance ratios of our approximation
algorithms if it is NP-Hard. The superscripts indicate the section where the
corresponding result appears. The parameter L is the input size of the problem
and K is a value depending on k and m whose explicit expression will be given
in Section 5.2.

k = 1 k = 2 k ≥ 3 (fixed) k ≥ 3 (input)

m = 1
P P P P

O(n)[3.2] O(n2L)[4.1] O(n3L)[3.1] O((n+ k)3L)[3.1]

m ≥ 2 P P P NP-Hard

(fixed) O(n)[3.2] O(nmin{m+1,4}L)[4.1,5.1]O(nm+k−1L)[4.1] PTAS[4.2]

m ≥ 2 P P ? Strongly NP-Hard

(input) O(n)[3.2] O(n4L)[5.1] min{ m

m−K
, 2− 1

m
}[5.2]

Table 3: Summary of Results

One interesting conclusion from our result is that although parallel machine
scheduling is in general an intractable problem, a seemingly more complicated
problem — parallel machine scheduling with linear constraints — can be sim-
pler and tractable in many cases. This suggests that instead of finding a feasible
solution to the linear constraints and then assigning it to the machines, a deci-
sion maker should consider them jointly. In other words, it is often beneficial
to consider the problem with a big-picture perspective.

The remainder of the paper is organized as follows: In Section 2, we formally
state the problem studied in this paper and briefly review some existing results.
We study the simplest case in which there is only one machine or one constraint
in Section 3. In Section 4, we consider the case with at least two but still a fixed
number of machines. In Section 5, we investigate the case where the number
of machines is an input of the instance. Finally, some concluding remarks are
provided in Section 6.

2. Problem Description

The scheduling problem under linear constraints is formally defined as below:
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Definition 1. Given m identical machines and n jobs. The processing times
of the jobs are nonnegative and satisfy k linear inequalities. The goal of the
scheduling problem under linear constraints (SLC) is to determine the processing
times of the jobs such that they satisfy the linear constraints and to assign the
jobs to the machines to minimize the makespan.

Formally, let xi be the processing time of job i. The processing times x =
(x1, . . . , xn) should satisfy

Ax ≥ b, x ≥ 0, (1)

where A ∈ R
k×n and b ∈ R

k×1.
Parallel machine scheduling with the objective of minimizing the makespan is

one of the most basic models in various scheduling problems (e.g., see Chen et al.,
1998). This problem is NP-Hard even if there are only two machines, and it
is strongly NP-Hard when the number of machines is an input of the instance
(Gary & Johnson, 1979). On the algorithmic side, Graham (1966) proposed a
(2 − 1

m
)-approximation algorithm for parallel machine scheduling with m ma-

chines. This method, known as the list scheduling (LS) rule, is in fact one
of the earliest approximation algorithms. Later, Graham (1969) presented the
longest processing time (LPT) rule with an approximation ratio of (4

3
− 1

3m
)

and a polynomial-time approximation scheme (PTAS) when the number of ma-
chines is fixed. For the case of a fixed number of machines, Sahni (1976) further
proposed a fully polynomial-time approximation scheme (FPTAS). When the
number of machines is an input, Hochbaum & Shmoys (1987) showed that a
PTAS exists.

At first sight, the SLC problem can be formulated as the following optimiza-
tion problem:

min t
s.t.

∑m

j=1 yij = 1 ∀i = 1, . . . , n
∑n

i=1 xiyij ≤ t ∀j = 1, . . . ,m
Ax ≥ b

x, t ≥ 0
yij ∈ {0, 1} ∀i, j,

where yij = 1 indicates that job i is assigned to machine j. This can be
viewed as a nonconvex mixed integer (binary) quadratic programming problem
(Burer & Letchford, 2012; Köppe, 2011) or a mixed integer (binary) bilinear
programming problem (Adams & Sherali, 1993; Gupte et al., 2013). In general,
such problems are NP-Hard and extremely hard to solve. In fact, it is un-
known whether the mixed integer quadratic programming problem lies in NP
(Burer & Letchford, 2012; Jeroslow, 1973). However, with the special structure
of the problem, we will show that several cases of the SLC problem can be solved
in polynomial time or approximated within a constant factor.
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3. Single Machine or Single Constraint

3.1. Single Machine

If there is only one machine, then the classical parallel machine scheduling
problem becomes trivial since the makespan is simply the total processing time.
For the SLC problem, it is equivalent to solving the following linear program:

(LP1)

min
n
∑

i=1

xi

s.t. Ax ≥ b

x ≥ 0.

Therefore, we have the following conclusion. We refer the readers to Ye
(1997) for the complexity of the interior point methods.

Theorem 1. The SLC problem with a single machine can be solved in polyno-
mial time, in particular, in O((n + k)3L) time by the interior point methods,
where L is the size of input length.

3.2. Single Constraint

In this subsection, we study the SLC problem with only one constraint, that
is, k = 1 and A is a 1 × n matrix. In this case, the linear constraints can be
written as

n
∑

i=1

aixi ≥ b, x ≥ 0.

Without loss of generality, we assume that a1 ≥ a2 ≥ · · · ≥ an and b ≥ 0.
If all ai are nonpositive, then this problem is trivial (all xi = 0 if b = 0, or
infeasible if b > 0). Therefore, we assume that there is at least one ai > 0. We
define n′ = min{max{i|ai > 0},m}, where m is the number of machines, and

σ =
∑n′

i=1 ai. We have the following result:

Theorem 2. For the SLC problem with one constraint, the optimal decisions
are x1 = · · · = xn′ = b/σ and xi = 0 otherwise, and the optimal makespan is
b/σ.

Proof. Consider the following linear program:

(LP2)

min t

s.t.
n
∑

i=1

aixi ≥ b

n
∑

i=1

xi ≤ mt

xi ≤ t ∀i = 1, . . . , n
x, t ≥ 0.
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Note that (LP2) can be viewed as a relaxation of the SLC problem, since any
optimal solution to the SLC problem is feasible to (LP2) by choosing x as the
processing times and t as its makespan. Suppose we have an optimal solution
(x, t) to (LP2). If it is also feasible to the SLC problem, that is, the jobs have
processing times x and can be assigned to the m machines with makespan at
most t, then it must also be optimal to the SLC problem.

The dual problem of (LP2) is

(DP2)

max bu
s.t. aiu− yi − v ≤ 0 ∀i = 1, . . . , n

n
∑

i=1

yi +mv ≤ 1

u, v,y ≥ 0.

Let xi = b/σ for i = 1, . . . , n′ and xi = 0 otherwise, and t = b/σ be a
primal solution. If n′ < m, then let u = 1/σ, v = 0, yi = ai/σ for i = 1, . . . , n′

and yi = 0 otherwise be a dual solution; if n′ = m, let u = 1/σ, v = am/σ,
yi = (ai − am)/σ for i = 1, . . . ,m and yi = 0 otherwise be a dual solution. In
either case, we can verify that (x, t) and (u, v,y) are both feasible and have
the same objective values. Consequently, (x, t) is an optimal solution to (LP2).
Since n′ ≤ m and all the jobs have processing times either t = b/σ or 0, we can
see that (x, t) is feasible to the SLC problem, and hence it is optimal. �

4. Fixed Number of Machines (m ≥ 2)

In this section, we discuss the case where the number of machines m is at
least two but is still a fixed constant. We consider two further cases: when the
number of constraints is also fixed and when the number of constraints is an
input of an instance.

4.1. Fixed Number of Constraints (k ≥ 2)

We show that when bothm and k are at least two but are still fixed constants,
the SLC problem is polynomial-time solvable. First, we prove the following
property of the SLC problem:

Lemma 1. The SLC problem has an optimal solution in which at most m+k−1
jobs have nonzero processing times.

Proof. We prove that given any optimal solution to the SLC problem, we
can find an optimal solution that satisfies the desired property. To show this,
suppose we have an optimal solution to the SLC problem in which Il is the set of
jobs that are assigned to machine l. We construct the following linear program:

(LP3)

min t
s.t. Ax ≥ b

∑

i∈Il

xi ≤ t ∀l = 1, . . . ,m

x, t ≥ 0.
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It can be seen that any optimal solution to (LP3) is optimal to the SLC problem.
Note that there are totally m+ k linear constraints (except for the nonnegative
constraints) in (LP3), therefore each of its basic feasible solutions has at most
m+k nonzero entries. Now consider the variable t in any basic feasible solution.
If t = 0, then all the processing times are zero and the lemma holds. Otherwise,
there are at most m+ k− 1 nonzero xis in this basic feasible solution. This im-
plies that there exists an optimal solution which has at most m+ k− 1 nonzero
processing times and thus the lemma holds. �

By Lemma 1, there exists an optimal solution that contains a constant num-
ber of nonzero processing times. In view of this, we can find the optimal solution
by enumeration. Our approach is to first enumerate all the nonzero processing
time jobs and fix their assignments. Then we solve (LP3) to find the best pro-
cessing times. We denote J as the job set and state the details of this procedure
in Algorithm 1:

Algorithm 1 Enumeration algorithm for fixed m and fixed k

1: for each subset J ′ of J with m+ k − 1 jobs do
2: for each possible assignment of the jobs in J ′ to the m machines do
3: Solve (LP3) while setting xi = 0 for i 6∈ J ′.
4: if (LP3) is feasible then
5: Let the processing times of jobs be the optimal solution to (LP3),

and record the schedule and the makespan.
6: end if
7: end for
8: end for
9: return the schedule with the smallest makespan among all these iterations

and its corresponding processing times.

Theorem 3. Algorithm 1 returns an optimal solution to the SLC problem and
its computational complexity is O(nm+k−1L).

Proof. The optimality follows from Lemma 1, and the fact that there must be
an assignment in the enumeration which is identical to the assignment in the
true optimal solution. Then when one solves (LP3) with that assignment, an
optimal solution will be obtained.

Now we study the total running time of Algorithm 1. There are at most

O

((

n

m+ k − 1

)

(m+ k − 1)m
)

= O(nm+k−1) cases in the enumeration algo-

rithm. In each case, we need to solve one linear program (LP3), which has m+k
variables (m+k− 1 for x and 1 for t) and the same number of constraints. The
running time for solving the linear program is O((m+k)3L). Therefore, in total,
Algorithm 1 requires O

(

nm+k−1(m+ k)3L
)

= O(nm+k−1L) operations. �
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We close this subsection by considering the simple cases where m = 1 and
k = 2. In Section 3.1, we show that these cases can be solved in O(n3L) time via
solving the linear program (LP1). Notice that using the enumeration algorithm
above, the worst-case running time in this case can be improved to O(n2L).

4.2. Arbitrary Number of Constraints (k ≥ 2)

Now we consider the case in which the number of constraints k is also an
input in the problem. In this case, it is easy to see that the classical parallel
machine scheduling problem is a special case of the SLC problem, as we can set
A in (1) to be an identity matrix and b to be the predetermined processing times
of the jobs. Therefore, the hardness result for the parallel machine scheduling
problem also stands for the SLC problem, i.e., the SLC problem is NP-Hard
when the number of machines is fixed and is strongly NP-Hard when the number
of machines is an input (Gary & Johnson, 1979). In the following, we focus on
designing approximation algorithms for this case.

We first design a PTAS for the case where the number of machines is fixed
and the number of constraints is an input. The result is based on guessing
the optimal values of the large jobs and the PTAS for the parallel machine
scheduling problem with a fixed number of machines by Graham (1969).

Before describing our algorithm, we define P to be the optimal value of the
following linear program:

min
n
∑

i=1

xi

s.t. Ax ≥ b

x ≥ 0.

Apparently, P is an upper bound and P/m is a lower bound of the optimal
makespan to the SLC problem. In addition, P is polynomial in the input sizes,
n and k. We use ⌈x⌉ to denote the smallest integer that is greater than or equal
to x. The PTAS for this case is described in Algorithm 2.

Theorem 4. Algorithm 2 is a PTAS for the SLC problem when the number of
constraints k is an input of the instance, and the number of machines m is a
fixed constant.

Proof. First we calculate the computational complexity of Algorithm 2. Fixing

ǫ, Step 3 requires

(

n

h

)

enumerations. Note that (1 + ǫ)l−2ǫP/m < P , thus

l < log m
ǫ
/log (1 + ǫ) + 2 ≤ 2

ǫ
log m

ǫ
+ 2, where the last inequality follows from

the fact that log(1 + ǫ) ≥ ǫ/2 when 0 < ǫ < 1. Therefore, the number of
iterations in Step 4 is lh ≤ (2

ǫ
log m

ǫ
+ 2)h, which is polynomially bounded by

the input size. In each iteration, solving the linear program (LP4) requires
O((n + k)3L) operations. The number of iterations in Step 9 is O(mh) and
the list scheduling requires O(n log n) time. By the fact that m and ǫ are fixed
constants, the total running time is polynomial time.
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Algorithm 2 PTAS for fixed m and arbitrary k

1: Given ǫ ∈ (0, 1) and P defined as before.
2: Let h = ⌈(m− 1)/ǫ⌉, and divide [0, P ] into T0 = 0, T1 = ǫP/m, . . . , Ti+1 =

(1 + ǫ)iǫP/m, . . . , Tl−1 = (1 + ǫ)l−2ǫP/m, Tl = P , where l is defined such
that (1 + ǫ)l−2ǫP/m < P ≤ (1 + ǫ)l−1ǫP/m.

3: for each subset Jh of J with h jobs do
4: for each combination of Pi ∈ {T1, . . . , Tl}, i ∈ Jh do
5: Set Qi = Tj−1 if Pi = Tj, ∀i ∈ Jh

6: Let Jr = J \ Jh. Solve the following linear program:

(LP4)

min
n
∑

i=1

xi

s.t. Ax ≥ b

xj ≤ xi ∀j ∈ Jr, i ∈ Jh

Qi ≤ xi ≤ Pi ∀i ∈ Jh

x ≥ 0.

7: if (LP4) is feasible then
8: Let the processing times of jobs be the optimal solution to (LP4),

and J0 be the jobs in Jh that have processing times in [T0, T1].
9: for each possible assignment of the jobs in Jh \J0 to the m machines

do
10: Apply list scheduling to the remaining jobs in J0 ∪ Jr, and record

the schedule and the processing times.
11: end for
12: end if
13: end for
14: end for
15: return the schedule with the smallest makespan among all these iterations

and its corresponding processing times.

Now we prove that the returned schedule has a makespan no larger than
1 + ǫ of the optimal makespan. Let x∗ and C∗

max be the processing times
and the makespan of the true optimal solution, respectively. We consider the
iteration in Algorithm 2 in which the jobs of Jh are exactly the h largest jobs
in the optimal schedule, the value x∗

i falls in [Qi, Pi] for each i ∈ Jh, and the
assignment of jobs in Jh \J0 is the same as those of the optimal solution, where
J0 are the jobs in Jh which have processing times in [T0, T1] = [0, ǫP/m].

In this iteration, the linear program must be feasible as x∗ is a feasible
solution to (LP4). Denote the processing times and the makespan returned in
this iteration by x and Cmax, respectively. We study the last completed job j
of the schedule. First, suppose that j is in Jh \ J0. Consider the schedule in
which we keep only the jobs in Jh \ J0, and the jobs are assigned to the same
machines as the optimal schedule. We denote Cx

∗ and Cx as the makespans
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of the above schedule with processing times x∗ and x respectively. Notice that
xi ≤ (1 + ǫ)x∗

i for all i ∈ Jh \ J0 by the third set of constraints of (LP4),
therefore Cx ≤ (1 + ǫ)Cx

∗ . By Step 9 of the algorithm, the last completed job
j ∈ Jh \J0 implies that the machine that job j is assigned to only contains jobs
in Jh \ J0. Therefore, Cmax = Cx in this case and it follows that Cmax = Cx ≤
(1 + ǫ)Cx

∗ ≤ (1 + ǫ)C∗
max.

Next we consider the case in which the last completed job j is in J0 ∪ Jr.
There are two further cases. If j ∈ J0, then we have xj ≤ ǫP/m ≤ ǫC∗

max ≤
mǫ
m−1

C∗
max, since P/m is a lower bound of the optimal makespan to the problem.

If j ∈ Jr, then since j is not one of the largest h jobs, we must have xj ≤
1
h

∑n

i=1 xi. And since x∗ is feasible to (LP4) and x is the optimal solution to
(LP4), it follows that xj ≤ 1

h

∑n

i=1 xi ≤ 1
h

∑n

i=1 x
∗
i ≤ m

h
C∗

max ≤ mǫ
m−1

C∗
max.

Therefore, xj ≤ mǫ
m−1

C∗
max for all job j in J0 ∪ Jr.

Then since the jobs in J0 ∪ Jr are scheduled by list scheduling, we have

Cmax ≤ 1

m

n
∑

i=1

xi +

(

1− 1

m

)

xj ≤
1

m

n
∑

i=1

x∗
i +

(

1− 1

m

)

xj ≤ (1 + ǫ)C∗
max

where the first inequality is because j is the last job in the schedule and we
used the list scheduling rule, the second inequality is because xis are optimal
to (LP4) in that iteration, and the last inequality is because xj ≤ mǫ

m−1
C∗

max as
discussed above.

Finally, note that the makespan returned by Algorithm 2 cannot be worse
than this schedule, thus Theorem 4 holds. �

5. Arbitrary Number of Machines (m ≥ 2)

In this section, we discuss the case where the number of machines is an input.
We first consider the case where there are two constraints, and then look at the
case with more than two constraints.

5.1. Two Constraints (k = 2)

In this section, we demonstrate that when there are only two constraints, the
SLC problem can be solved in polynomial time even if the number of machines
is an input of the instance. We start from the following linear program, which
is similar to (LP2):

(LP5)

min t

s.t.
n
∑

i=1

a1ixi ≥ b1
n
∑

i=1

a2ixi ≥ b2
n
∑

i=1

xi ≤ mt

xi ≤ t ∀i = 1, . . . , n
x, t ≥ 0.
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Next, we show that all basic feasible solutions of (LP5) are feasible to the
SLC problem. Then since any optimal solution to the SLC problem is feasible
to (LP5) by choosing t as its makespan, we know that the optimal basic feasible
solution to (LP5) must also be an optimal solution to the SLC problem. We
start from the following lemma:

Lemma 2. In any basic feasible solution of (LP5), there are at most two vari-
ables in x satisfying 0 < xi < t. And it must be one of the following cases:
(a) exactly m variables in x satisfying xi = t with all other xi = 0; (b) exactly
m− 1 variables in x satisfying xi = t, and at most two variables in x satisfying
0 < xi < t with sum at most t; or (c) no more than m − 2 variables in x

satisfying xi = t, and at most two variables in x satisfying 0 < xi < t.

Proof. If t = 0, then the lemma trivially holds. Otherwise, we count the num-
ber of nonzero variables in the basic feasible solution. We add a slack variable
zi to the constraint xi ≤ t so that it is represented as xi + zi = t, ∀i = 1, . . . , n.
For any fixed i, if xi = 0 or xi = t, then the number of nonzeros (among xi and
zi) in the equality xi + zi = t is exactly one, otherwise it is two. However, since
there are n+ 3 constraints in total, there are at most n+ 3 nonzero entries in
a basic feasible solution of which at most n+ 2 are in xi and zi. Therefore, for
any basic feasible solution, there can only be at most two indices i ∈ {1, . . . , n}
such that 0 < xi < t. The remainder of the lemma follows immediately. �

Lemma 2 can be used directly to obtain an algorithm for the SLC problem.
We describe it as the LP-based algorithm (Algorithm 3). Notice that in Step
3 of Algorithm 3, Lemma 2 guarantees that the sum of the processing times of
the remaining jobs (at most two) is at most t if there is only one idle machine.
Therefore, the returned schedule is feasible and the makespan is t, the optimal
value of (LP5). Thus, we find an optimal solution to the SLC problem.

Algorithm 3 LP-based algorithm for arbitrary m and k = 2

1: Find an optimal basic feasible solution (x, t) to the linear program (LP5),
and let x be the processing times of the jobs.

2: Schedule the jobs with processing times xi = t solely.
3: For the remaining (at most two) jobs with 0 < xi < t, if there is only one

idle machine, assign these jobs on that machine; otherwise, assign the jobs
each on a solo machine.

4: Return x, Cmax = t, and the schedule.

The main computation in Algorithm 3 is to find an optimal basic feasible
solution. In Korte & Vygen (2012) (Theorem 4.16), a technique is introduced to
transform a feasible solution in a linear program to a basic feasible solution by
eliminating the inequality constraints one by one, and in each round, it solves a
linear program, which requires O(n3L) operations. Thus the total running time
of Algorithm 3 is O(n4L).
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Theorem 5. The SLC problem with arbitrary machines and k = 2 constraints
can be solved in O(n4L) by the LP-based algorithm.

Note that the LP-based algorithm can also be applied if the number of
machines is fixed. When the number of machines is large, the performance of
the LP-based algorithm is better than the enumeration algorithm we presented
in Theorem 3, which requires O(nm+1L) operations.

5.2. Fixed or Arbitrary Number of Constraints (k ≥ 3)

As mentioned in the previous section, the SLC problem is strongly NP-Hard
if the number of constraints is an input of the instance. In this section, we
design two approximation algorithms for this case. The first one is derived
from the property of parallel machine scheduling problems, and the other one is
based on the technique of linear programming. Notice that the approximation
algorithms can also be applied to the case where the number of constraints
is fixed and greater than two, however, the complexity of that case remains
unknown.

First, we design a simple approximation algorithm by adapting the well-
known list scheduling rule (Graham, 1966). We first decide the processing times
by solving a specific linear program, and then schedule the jobs via the list
scheduling rule. The details are given in Algorithm 4.

Algorithm 4 Modified list scheduling algorithm for arbitrary k and m

1: Solve the linear program below:

(LP6)

min 1
m

n
∑

i=1

xi +
(

1− 1
m

)

z

s.t. Ax ≥ b

xi ≤ z ∀i = 1, . . . , n
x ≥ 0, z ≥ 0.

Denote the optimal solution as x and z.
2: Let x be the processing times of the jobs. Schedule the jobs by the list

scheduling rule.
3: Return x and Cmax.

We prove that the modified list scheduling algorithm has the same approxi-
mation ratio for the SLC problem as for the classical parallel machine scheduling
problem.

Theorem 6. The modified list scheduling algorithm is a (2− 1
m
)-approximation

algorithm for the SLC problem.

Proof. The running time for solving the linear program is O((n + k)3L), and
for list scheduling is O(n logm). Therefore the total running time is O((n +
k)3L+ n logm), which is polynomial in the input size.
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Let x∗, x∗
max and C∗

max be the processing times, the maximum of the pro-
cessing times and the makespan of an optimal schedule, respectively. Let x,
xmax, and Cmax be those returned by Algorithm 4. Consider the last completed
job j. By the list scheduling rule, we have

Cmax ≤ 1

m

n
∑

i=1

xi +

(

1− 1

m

)

xj ≤
1

m

n
∑

i=1

xi +

(

1− 1

m

)

xmax

≤ 1

m

n
∑

i=1

x∗
i +

(

1− 1

m

)

x∗
max ≤

(

2− 1

m

)

C∗
max.

The second last inequality holds since the linear program (LP6) returns the
minimum value of such an objective function. And this bound is tight from the
tight example of the list scheduling rule for the classical problem. �

The second approximation algorithm is based on the idea presented in Sec-
tion 5.1. However, it is not clear how to directly extend (LP5) to obtain an op-
timal solution in polynomial time. To see this, consider a simple example with
n = 4, m = 3, and k = 3, and the constraints are x1+x2 = x1+x3 = x1+x4 = 5.
If we try to generalize (LP5), we will get the following linear program:

min t

s.t. x1 + x2 = x1 + x3 = x1 + x4 = 5

x1 + x2 + x3 + x4 ≤ 3t

0 ≤ x1, x2, x3, x4 ≤ t.

It can be verified that the unique optimal solution to this linear program
is (x1, x2, x3, x4, t) = (3, 2, 2, 2, 3). However, the jobs with processing times x2,
x3, x4 can not be assigned to the two remaining machines with makespan not
exceeding three. Therefore, (LP5) may not give a feasible solution to the SLC
problem in this case. In the following, we modify it to derive an approximation
algorithm.

We consider the following linear program:

(LP7)

min t
s.t. Ax ≥ b

n
∑

i=1

xi ≤ (m−K) t

xi ≤ t ∀i = 1, . . . , n
x ≥ 0,

where K is defined as:

K =

{

m− k
k+1−m

, if k̃ > m,

max
(

⌈k̃⌉ − k

k+1−⌈k̃⌉
, ⌊k̃⌋ − k

k+1−⌊k̃⌋

)

, if k̃ ≤ m,
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where k̃ = k+1−
√
k and ⌊x⌋ is the largest integer that is less than or equal to

x.
Notice that K = 0 for k = 1, 2 and 0 < K ≤ min{m, k} for k ≥ 3 (see

Table 4 for various values of K), and K is a rational number since k and m are
integers. When k = 2, (LP7) reduces to (LP5), as considered in Section 5.1. If
k ≥ 3, however, the optimal solution to the SLC problem may not be feasible
to this linear program. Therefore, the optimal solution to (LP7) may not be an
optimal solution to the SLC problem. Nevertheless, we prove that the optimal
solution to (LP7) is still feasible and has an objective value no larger than a
factor of the optimal makespan.

k k̃ = k + 1−
√
k

K ratio m/(m−K)
m = 100 m = 10 m = 100 m = 10

1 1 0 0 1 1
2 1.59 0 0 1 1
3 2.27 0.50 0.50 1.0050 1.0526
4 3 1 1 1.0101 1.1111
5 3.76 1.50 1.50 1.0152 1.1765
10 7.84 4.67 4.67 1.0490 1.8750
20 16.53 12 8.18 1.1364 5.5000
50 43.93 36.86 8.78 1.5837 8.2000
100 91 81 8.90 5.2632 9.1000

Table 4: Values of K and the Approximate Ratios for Different k and m

Similar to the case where k = 2, we have the following property:

Lemma 3. There are at most k variables in x satisfying 0 < xi < t for any
basic feasible solution of the linear program (LP7).

We omit the proof which is analogous to that of Lemma 2.

Lemma 4. For each basic feasible solution of the linear program (LP7) with
t > 0, if it has exactly l variable(s) in x satisfying xi = t, where l ∈ {m −
⌈K⌉,m−⌈K⌉−1, . . . ,max{m−k, 0}}, then it has additionally at most k variables
in x with each processing time 0 < xi < t and their total processing time is at
most k

k+1−m+l
t.

Proof. Notice that there are at most m− ⌈K⌉ variables in x satisfying xi = t
by the second set of constraints of (LP7), and at most k variables in x satisfying
0 < xi < t by Lemma 3. If there are exactly l variable(s) in x satisfying xi = t,
then the sum of the remaining (at most) k variables in x satisfying 0 < xi < t
is no larger than (m− l −K) t. It remains to show that m− l−K is no greater
than k

k+1−m+l
.

For this, we define a function f(x) = x− k
k+1−x

for x ∈ {1, . . . , k}. It is easy
to see that f(x) is increasing when x ≤ k̃ and decreasing when x ≥ k̃. Therefore,
when k̃ > m, we have m− l−K = m− l− f(m) ≤ m− l− f(m− l) = k

k+1−m+l
;
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when k̃ ≤ m, we have m− l−K = m− l− max
x∈{1,...,k}

f(x) ≤ m− l− f(m− l) =

k
k+1−m+l

. Therefore, the lemma holds. �

Lemma 5. Let (x, t) be a basic feasible solution of (LP7), then we can construct
a feasible schedule of the SLC problem with a makespan of at most t.

Proof. If k ≤ m and this basic feasible solution has at most m − k variables
in x satisfying xi = t (those jobs must be assigned solely), then by Lemma 3,
there are at most k variables in x satisfying 0 < xi < t and those corresponding
jobs can also be assigned solely and we are done.

Next, we consider the case where m < k or m ≥ k but there are more than
m − k variables in x such that xi = t. Let l denote the number of variables
in x such that xi = t. By the case assumption and the constraint in (LP7),
l ∈ {m−⌈K⌉,m−⌈K⌉− 1, . . . ,max{m− k, 0}}. Without loss of generality, we
can assume there are exactly k jobs having processing times xi < t, with some
jobs having possibly zero processing times. We now show how to construct
a feasible schedule with a makespan at most t. First, we assign the l jobs
with processing times xi = t to l machines solely. Then we find the smallest
k + 1 − m + l jobs with processing times smaller than t. We claim that these
jobs have a total processing time of at most t, and hence can be fit into a single
machine. If not, it follows that any k + 1−m+ l of the k jobs with processing
times smaller than t have a total processing time greater than t. Then we have
the following k inequalities (mod k for each index):

x1 + x2 + · · ·+ xk+1−m+l > t,
x2 + x3 + · · ·+ xk+2−m+l > t,

...
xk−1 + xk + · · ·+ xk−1−m+l > t,

xk + x1 + · · ·+ xk−m+l > t.

(2)

On the one hand, summing up inequalities in (2) we obtain (k+1−m+ l)(x1+
x2 + · · ·+ xk) > kt, or x1 + x2 + · · ·+ xk > k

k+1−m+l
t. On the other hand, by

Lemma 4, the total processing time of the jobs with processing times xi < t is
at most k

k+1−m+l
t, which leads to a contradiction. Finally, there are at most

k−(k+1−m+ l) = m− l−1 jobs each with processing time smaller than t, and
m − l − 1 remaining machines. Assigning these jobs solely provides a feasible
solution with a makespan of at most t. �

Similar to LP-based algorithm for k = 2, we can find an optimal basic fea-
sible solution of (LP7) in polynomial time and obtain a feasible approximated
schedule for the SLC problem. We also call it LP-based algorithm and summa-
rize it in Algorithm 5. Next we study its approximation ratio.

Theorem 7. The schedule returned by the LP-based algorithm has a makespan
of Cmax = t ≤ m

m−K
C∗

max, where C∗
max is the optimal makespan of the problem.
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Algorithm 5 LP-based algorithm for general SLC

1: Find an optimal basic feasible solution (x, t) of the linear program (LP7),
and let x be the processing times of the jobs.

2: Let l be the number of jobs with processing times xi = t. Schedule these
jobs solely. If there is any remaining job, continue the following process.

3: Find the smallest k + 1 −m + l jobs with processing time 0 < xi < t, and
schedule them in a single machine.

4: Schedule the remaining jobs in the remaining m− l − 1 machines solely.
5: Return x, Cmax = t, and the schedule.

Proof. Let x∗ be the optimal schedule with makespan C∗
max. It suffices to

show that (x∗, m
m−K

C∗
max) is a feasible solution to (LP7). If that holds, then

since Algorithm 5 provides a schedule with makespan t, the optimal value of
(LP7), the results hold. To show that, note that x∗ satisfies the first set
of linear constraints of (LP7). C∗

max is the optimal makespan implies that
n
∑

i=1

x∗
i ≤ mC∗

max = (m−K) m
m−K

C∗
max, and x∗

i ≤ C∗
max ≤ m

m−K
C∗

max for each i.

Therefore, (x∗, m
m−K

C∗
max) is a feasible solution. Thus the theorem holds. �

We show some examples of the ratios m/(m − K) in Table 4. We can see
that the LP-based algorithm performs well when k is relatively small. The
performance deteriorates when k becomes large. Furthermore, if k is a fixed
constant, the approximate ratio is close to one when m is sufficiently large.

Finally, we note that in practice one can apply both approximation algo-
rithms 4 and 5, and choose the one that gives a better solution. The approxi-
mation ratio of the combined algorithm will be min{ m

m−K
, 2− 1

m
}.

6. Conclusion

In this paper, we present a scheduling problem in which the processing times
of jobs satisfy a set of linear constraints. We discuss the computational com-
plexity and propose several algorithms for the problem. There are two open
questions left: whether the case with a fixed number of constraints (more than
two) and an arbitrary number of machines is polynomial-time solvable or not
(Section 5.2), and how to design an FPTAS or prove that it does not exist for
the case with an arbitrary number of constraints and a fixed number of machines
(Section 4.2).

The current research may inspire further explorations about the scheduling
problems with other machine environments, such as uniformly related parallel
scheduling, shop scheduling problems, or under various restrictions, e.g., prece-
dences and release dates, or minimizing other objective criterion. One can also
consider other combinatorial optimization problems under linear constraints.
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