
ar
X

iv
:1

51
0.

04
82

3v
2 

 [
m

at
h.

O
C

] 
 1

1 
M

ar
 2

01
6

The vector linear program solver Bensolve – notes on

theoretical background

Andreas Löhne

Friedrich Schiller University Jena
Department of Mathematics

07737 Jena

Germany

Benjamin Weißing∗

Martin Luther University Halle–Wittenberg
Department of Mathematics

06099 Halle (Saale)
Germany

Abstract

Bensolve is an open source implementation of Benson’s algorithm and its dual
variant. Both algorithms compute primal and dual solutions of vector linear
programs (VLP), which include the subclass of multiple objective linear pro-
grams (MOLP). The recent version of Bensolve can treat arbitrary vector linear
programs whose upper image does not contain lines. This article surveys the
theoretical background of the implementation. In particular, the role of VLP
duality for the implementation is pointed out. Some numerical examples are
provided. In contrast to the existing literature we consider a less restrictive
class of vector linear programs.

Keywords: vector linear programming, linear vector optimization, multiple
objective optimization
2010 MSC: 90C29, 90C05, 52B55, 15A39

1. Introduction

Let us start with the formulation of amultiple objective linear program, which
is a special case of a vector linear program. Given positive integers n,m, q and
data of the form

P ∈ R
q×n,

B ∈ R
m×n, a ∈

(

R ∪ {−∞}
)m×1

, b ∈
(

R ∪ {+∞}
)m×1

,

and

l ∈
(

R ∪ {−∞}
)n×1

, s ∈
(

R ∪ {+∞}
)n×1

,

∗corresponding author
Email addresses: andreas.loehne@uni-jena.de (Andreas Löhne),

benjamin.weissing@mathematik.uni-halle.de (Benjamin Weißing)

Preprint submitted to ejor October 1, 2018

http://arxiv.org/abs/1510.04823v2


we consider the problem

minPx subject to a ≤ Bx ≤ b, l ≤ x ≤ s. (MOLP)

Minimization is understood with respect to the component-wise ordering in R
q.

In the more general setting of a vector linear program, one considers a partial
ordering ≤C generated by a polyhedral convex ordering cone C ⊆ R

q that does
not contain lines, or equivalently in this setting, is pointed. For vectors y, z ∈ R

q,
we define

y ≤C z : ⇐⇒ z − y ∈ C.

The polyhedral cone C can be given either by a matrix Y ∈ R
q×o as

C = {y ∈ R
q| ∃v ∈ R

o : y = Y v, v ≥ 0} , (1)

or by a matrix Z ∈ R
q×p as

C =
{

y ∈ R
q| ZT y ≥ 0

}

. (2)

Throughout, (1) is referred to as cone-representation and (2) is called dualcone-
representation. This can be motivated as C is generated by the columns of the
matrix Y (in the sense of (1)), whereas the dual cone

C∗ :=
{

w ∈ R
q| ∀y ∈ C : yTw ≥ 0

}

of C is generated by the columns of the matrix Z. The latter statement is a
consequence of Farkas’ lemma. The resulting vector linear program is

minCPx subject to a ≤ Bx ≤ b, l ≤ x ≤ s. (VLP)

The recent version of Bensolve assumes further that the cone C is solid,
i.e., it has dimension q, or equivalently, nonempty interior. This assumption is
equivalent to rankY = q. Further, C is free of lines if and only if rankZ = q.
This implies that necessarily o ≥ q and p ≥ q.

We close this section with some bibliographical remarks. It seems that Dauer
[1] and Dauer & Liu [2] started to propagate the objective space approach in
multiple objective linear programming, saying that on the one hand it is more
efficient, and on the other hand it is sufficient in practice to generate only the
minimal (or non-dominated) vertices in the objective space (or image space).
The algorithms of Bensolve are based on the papers by Benson [3, 4] from 1998.
Since then, several extensions, simplifications and improvements have been pub-
lished, among them the introduction of a dual algorithm in [5], the extension to
the unbounded case in [6], approximate variants in [7], the extension to pointed
solid polyhedral ordering cones in [8], a simplification which requires only one
LP per iteration (independently) in [9] and [8], and a complexity analysis in
[10]. Recently, it was shown that Bensolve can be used to compute projections
of polyhedra [11]. In contrast to the literature, see e.g. [8], we make weaker
assumptions: The geometric duality parameter vector c ∈ R

q is required to
satisfy cq 6= 0 rather than cq = 1. The choice of ordering cones is therefore
less restricted. Moreover, we derive geometric dual programs for maximization
problems as well as for problems with box constraints.

2



2. Solution concepts

In contrast to most classical textbooks on vector optimization and multiple
objective programming, Bensolve is based on a recent solution concept, which
has been introduced in [12] and [6]. This concept entails the notions of mini-
mality and infimum attainment, which are equivalent in the scalar linear pro-
gramming case, but do diverge with increasing image space dimension. While in
the classical literature essentially only minimality is taken into account, we will
show in the following that both conceptions are essential for a proper solution
concept. To this end, we start with the classical scalar theory and extend it to
the case of multiple image space dimensions.

Consider the scalar linear program

minx 7→ cx s.t. x ∈ S, (LP)

where S ⊆ R
n is some feasible set defined by linear inequalities. Finding a

solution to (LP) means to find a feasible variable x̄ ∈ S whose image cx̄ equals
the minimum of the set of objective values {cx | x ∈ S} =: c [X ].

The generalization of minimality to higher image space dimension with re-
spect to the ordering induced by C is a standard notion:

Definition 1. A point y ∈ A ⊆ R
q is called C-minimal in A, if for every point

ỹ ∈ A the following implication holds:

ỹ 6C y ⇒ ỹ = y.

The set of all C-minimal points of a set A is denoted by MinC A.

The generalization of the term ’solution’, however, is not so obvious. Like-
wise to the scalar case, a solution to a problem should be a single entity. But, a
single minimizer is not an appropriate solution, even though it is referred to as
efficient solution in the classical literature. The reason is that a single minimizer
can be obtained by solving a scalarized problem, which in the present setting
is usually a linear program. The problem to determine a single minimizer is
therefore a matter of scalar optimization. Thus, the single entity mentioned
above should be a set of minimizers.

The problem to compute all extreme minimizers has been investigated, see
[13, 14], but for many applications, this approach does not seem to be tractable.
This can be seen already by considering the scalar case: The problem to compute
all extreme minimizers (i.e. a representation of all solutions) of a linear program
is NP hard: Consider the feasibility problem. This leads to vertex enumeration,
which is NP hard, see e.g. [15, Proposition 5].

Dauer [1] and many followers aimed at characterizing every minimal element
in the objective space. A corresponding set of minimizers is what we understand
to be a solution to a vector linear program. Surprisingly this idea can be defined
via infimum attainment.

Let us consider the scalar case first. An alternative characterization of a
solution for (LP), which does not rely on minimality, is provided by means of
infimum attainment: The image cx̄ of a solution x̄ to (LP) is the infimum of
the image of the feasible set c[S], which may be expressed equivalently by

{cx̄}+ R+ ⊆ c [S] + R+. (3)

3



The generalization of the right hand side of inequality (3) in the case of multiple
image space dimensions features prominently in the solution concept for (VLP)
and is therefore denoted by a dedicated term:

Definition 2. The upper image of (VLP) is the Minkowski sum of the image
P [S] of the feasible set S and the ordering cone C:

P := P [S] + C. (4)

The lower image, in contrast, is obtained by adding the negative of the ordering
cone to the image:

P [S]− C. (5)

As a generic term for both notions we use extended image.

The upper image can be understood as an infimum, too: It serves as infimum
in a complete lattice which embeds the image space Rq. As the theoretical details
are beyond the scope of the present article, the interested reader is referred to
[12, 6] for a thorough discussion. Here, we focus on the practical implications
the consideration of the upper image yields. Observe that the right hand side
of inequality (3) describes all the information in the image space that matters
for a solution to (LP): While the image c[S] may be a closed interval [cx̄, y], the
actual value of y or even the existence of y is not of interest for a minimization
problem. Adding the ordering cone (R+ in the case of scalar minimization)
to the image c[S] of the feasible set conveys this fact. Before showing that
this feature of the upper image is retained in higher image space dimensions
(Proposition 8), we provide the notion of minimal directions in order to be
able to describe the upper image geometrically. Hitherto we recapitulate that
polyhedra may be represented by different means:

(i) In terms of finitely many points and directions, called V-representation.

(ii) As intersection of finitely many affine halfspaces, called H-representation.

Definition 3. yh ∈ R
q \{0} is a C-minimal direction in A ⊆ R

q if for some
y ∈ A the point y + µyh is C-minimal in A for every scalar µ ≥ 0.

Minimizers now can be defined as feasible elements generating minimal points
and minimal directions. We set kerP := {x ∈ R

n| Px = 0}.

Definition 4 (Feasibility).
A point x̄ ∈ R

n is called feasible for (VLP) if

x̄ ∈ S := {x ∈ R
n | a ≤ Bx ≤ b , l ≤ x ≤ s} .

A direction x̄h ∈ R
n \ kerP is called feasible for (VLP) if

x̄h ∈ Sh := {x ∈ R
n | 0 · a ≤ Bx ≤ 0 · b , 0 · l ≤ x ≤ 0 · s} ,

where we define 0 · ±∞ = ±∞.

Definition 5 (Minimizer). A feasible point x ∈ S is calledminimizer for (VLP)
if its image Px is C-minimal in P [S]. Likewise, a direction xh ∈ Sh \ kerP is
called minimizer for (VLP) if Pxh is a C-minimal direction in P [S].

4



An infimizer of (VLP) is a pair of sets that generates the upper image. For a
set B ⊆ R

q, convB denotes its convex hull. The cone generated by a non-empty
set B ⊆ R

q is denoted by coneB := {tx| x ∈ B, t > 0}. We set cone ∅ := {0}.

Definition 6 (Infimizer). A pair (S̄, S̄h), where S̄ is a nonempty finite set
of feasible points and S̄h is a finite set of feasible directions is called a finite

infimizer of (VLP) if

convP [S̄] + coneP [S̄h] + C ⊇ P [S] + C. (6)

We note here that minimality is a kind of “local” property, whereas infimum

attainment characterizes the relevant parts of the image of (VLP) “as a whole.”
A solution to (VLP) combines both conceptions:

Definition 7 (Solution). A finite infimizer (S̄, S̄h) is said to be a solution of
(VLP) if the sets S̄ and S̄h consist of minimizers only.

It is imperative, of course, that no minimal point is lost during the transition
from the image P [S] to the upper image P . This is ensured by the following
proposition:

Proposition 8. Suppose P contains a vertex. Then

(i) MinC P = MinC P [S].
(ii) Every vertex of P is C-minimal.

(iii) An extreme direction of P is C-minimal if and only if it does not belong

to C.

Proof. The first two statements are well-known and can be proven straight-
forward. To prove (iii), first note that no c ∈ C \{0} may serve as a minimal
direction, as for any y ∈ P we have

y 6C y + c and y 6= y + c.

Now let an extremal direction ȳ ∈ P be given, that is, there exists y ∈ P such
that F := {y + tȳ | t ≥ 0} is a 1-dimensional face of P . Now consider an element
ỹ ∈ P with ỹ 6C y + tȳ for given t ≥ 0, which means that there exists c ∈ C
with ỹ + c = y + tȳ. For any given λ ∈ (0, 1) we have ỹ + 1

1−λ
c ∈ P . From

y + tȳ = λỹ + (1− λ)
(

ỹ + 1

1−λ
c
)

∈ F we conclude ỹ ∈ F and ỹ + 1

1−λ
c ∈ F .

This means either ȳ is a nonnegative (as P does not contain lines) multiple of
c or c = 0. Therefore, if ȳ /∈ C, y + tȳ is C-minimal for every t ≥ 0, proving
minimality of ȳ.

The preceding proposition shows that for obtaining a solution to (VLP) it
is sufficient to find the vertices Px and minimal extreme directions Pxh of the
upper image as well as preimages x ∈ S, xh ∈ Sh which generate them. In fact,
this is how Bensolve works: A vertex representation of the upper image is found
along with corresponding preimages for the vertices and minimal directions.
Actually, Bensolve does even more: The V-representation found by Bensolve is
irreducible, that is, if any element of the solution is left out, it will not generate
the upper image P in the sense of (6).

Those extremal directions in the V-representation which are not minimal
(namely those belonging to C) are not a part of the solution, but nevertheless
they are necessary for a complete description of the upper image. To emphasize
their significance, these directions are labeled specifically:

5



Definition 9. The set of extreme directions of P belonging to C is called cone

compartment.

3. Dual problem and dual solutions

Duality plays an important role for Bensolve. For the user of the software
the following aspects are important:

(i) The extended image D of the dual problem contains information about
the extended image P of the primal problem: Bensolve outputs a V-
representation of D, which can be used to obtain an H-representation
of P . Likewise, an H-representation of D can be obtained from the V-
representation of P computed by Bensolve.

(ii) A dual algorithm can be chosen, which can be advantageous for certain
problem instances. The dual algorithm constructs an outer and inner
approximation of D which corresponds, by duality, to an inner and outer
approximation of P .

(iii) A duality parameter vector c ∈ R
q can be chosen by the user. The dual

problem and the dual solution (but not the primal problem and primal
solution) depend on this vector. It has influence on numerical issues of
both the primal and the dual algorithm.

To introduce the reader into the main ideas of duality for vector linear pro-
gramming (in the sense of “geometric duality” established in [16]), we begin
with the following special case of (MOLP):

minPx subject to a ≤ Bx. (7)

The dual problem to (7) is the following vector linear program with ordering
cone K := {y ∈ R

q| y1 = 0, . . . , yq−1 = 0, yq ≥ 0} :

K-maximize D(u,w) s.t. BTu = PTw, u ≥ 0, w ≥ 0, eTw = 1, (8)

where the objective function is defined as

D : Rm × R
q → R

q, D(u,w) :=
(

w1, w2, . . . , wq−1, a
Tu
)T

and e = (1, . . . , 1)T denotes the all-one vector in R
q. In this special case, the

duality parameter vector c ∈ R
q has been chosen as c = e. Later on, the

constraint eTw = 1 will be replaced by cTw = 1. The feasible set is denoted by

T :=
{

(u,w) ∈ R
m × R

q| BTu = PTw, u ≥ 0, w ≥ 0, eTw = 1
}

.

Duality provides a relationship between the upper image P of the primal prob-
lem (7) and the lower image D of the dual problem (8), defined as

D := D(T )−K.

In addition to weak and strong duality, for details see e.g. [6], there is a third
type of duality relation, called geometric duality. It states that there is a one-
to-one correspondence between the proper faces of the polyhedron P and the
non-vertical (i.e. the last component of the corresponding normal vector does not

6



vanish) proper faces of the polyhedron D. The dimension of a proper face of P
and the dimension of the corresponding face of D add up to q−1. In particular,
facets ((q − 1)-dimensional faces) correspond to vertices (0-dimensional faces).

In order to be able to formulate duality results we consider the following
bi-affine coupling function, which was introduced in [16]:

ϕ(y, y∗) :=

q−1
∑

i=1

yiy
∗

i + yq

(

1−

q−1
∑

i=1

y∗i

)

− ξ(y)y∗q , (9)

where

ξ(y) =

{

1 if y is a point
0 if y is a direction.

The next theorem is a consequence of the geometric duality theorem [16,
Theorem 3.1]. It points out the facts relevant for users of Bensolve and does not
aim to cover the complete idea of geometric duality. For simplicity, we assume
that P has a vertex, which corresponds exactly to the setting of the recent
version of Bensolve [17].

Theorem 10. If P has a vertex, then the following statements hold true:

(i) A finite set Ȳ of points and directions in R
q is an irredundant V-representation

of P if and only if

ϕ(y, y∗) ≥ 0, y ∈ Ȳ

is an irredundant H-representation of D.

(ii) A finite set W̄ of points combined with the direction (0, . . . , 0,−1)
T
in R

q

forms an irredundant V-representation of D if and only if

ϕ(y, y∗) ≥ 0, y∗ ∈ W̄

is an irredundant H-representation of P.

Proof. Statement (i) follows from Corollary 3.3 in [16] and Theorem 4.62 in [6].
One has to take into account the following facts: (a) If a polyhedron P has a
vertex, then an irredundant V-representation of P consists exactly of all vertices
and all extreme directions of P , see e.g. [18]; (b) Every vertex of P is weakly
minimal (and even minimal), see e.g. [6, Corollary 4.67]; (c) The vertical facets
are exactly the ones which are not K-maximal, see e.g. [6, Lemma 4.60].

Statement (ii) follows from Corollary 3.2 in [16] and the following facts: (d)
D has a vertex, see [16, Lemma 5.2], hence an irredundant V-representation of
D consists of its vertices and extreme directions; (e) every proper face and hence
any facet of P is weakly minimal, see e.g. [16, Lemma 5.6].

Let us now consider the general case of (VLP). Given a (fixed) duality
parameter c ∈ R

q with cq 6= 0, the dual problem of (VLP) is the following vector
linear program with ordering cone K := {y ∈ R

q | y1 = 0, . . . , yq−1 = 0, yq ≥ 0}:

K-maximize D(u,w, v) s.t. BTu = PTw+v, Y w ≥ 0, cTw = 1 (10)

with objective function

D(u,w, v) =

(

cq
|cq|

w1,
cq
|cq|

w2, . . . ,
cq
|cq|

wq−1, d(u, v)

)T

. (11)

7



The function d : Rm × R
n → R is defined as

d(u, v) = aTu+ − bTu− + lT v− − sT v+, (12)

where we define ±∞ · 0 = 0 and

α+ := max(0, α), α− := max(−α, 0),

for α ∈ R, and

(α1, . . . , αm)+ := (α+
1 , . . . , α

+
m), (α1, . . . , αm)− := (α−

1 , . . . , α
−

m)

for (α1, . . . , αm) ∈ R
m.

Theorem 11. Let c ∈ intC such that cq 6= 0. Then Theorem 10 also holds for

the general case of problem (VLP) and the dual problem (10) if the following

generalized coupling function is used:

ϕ(y, y∗) := cq

q−1
∑

i=1

yiy
∗

i + yq

(

|cq|

cq
−

q−1
∑

i=1

ciy
∗

i

)

− ξ(y)|cq|y
∗

q . (13)

Proof. The generalization of geometric duality to the case of a polyhedral convex
ordering cone C that does not contain lines and has nonempty interior and a
duality parameter vector c ∈ intC with cq = 1 can be found in [8]. In this
setting the dual problem is

K-maximize D(u,w) s.t. BTu = PTw, u ≥ 0, Y Tw ≥ 0, cTw = 1

with objective function D(u,w) :=
(

w1, w2, . . . , wq−1, a
Tu
)T

. The coupling
function in this setting is

ϕ(y, y∗) :=

q−1
∑

i=1

yiy
∗

i + yq

(

1−

q−1
∑

i=1

ciy
∗

i

)

− ξ(y)y∗q . (14)

Now let us relax the assumption cq = 1 by cq > 0. Introducing new coordi-
nates in the image space of the primal problem by replacing the last component
yq → c−1

q yq (which effects the data Y and P of the primal problem as well as
the duality parameter vector c), we obtain the dual problem

K-maximize D(u, w̄) s.t. BTu = PT w̄, u ≥ 0, Y T w̄ ≥ 0, cT w̄ = 1, (15)

with objective function D(u, w̄) :=
(

w̄1, . . . , w̄q−1, a
Tu
)T

, where the dual vari-
able w ∈ R

q has been replaced by w̄ with w̄i := wi for i = 1 . . . , q − 1 and
w̄q := c−1

q wq. The coupling function is

ϕ(y, y∗) :=

q−1
∑

i=1

yiy
∗

i + c−1
q yq

(

1−

q−1
∑

i=1

ciy
∗

i

)

− ξ(y)y∗q . (16)

Of course, the statement of Theorem 10 remains valid if the coupling function
is replaced by (13) and the objective function is defined by (11) for the special
case d(u, v) = aTu.

8



Let us now consider the case cq < 0. We perform a coordinate transformation
y → −y which results in a primal problem with data P̄ := −P , Ȳ := −Y and a
duality parameter c̄ := −c. Since c̄q > 0, the result is known for this case from
the first part of the proof. The dual problem is

K-maximize D(u, w̄) s.t. BTu = P̄T w̄, u ≥ 0, Ȳ T w̄ ≥ 0, c̄T w̄ = 1

with objective function D(u, w̄) :=
(

w̄1, . . . , w̄q−1, a
Tu
)T

. Substitution of the
dual variable w̄ by −w leads to

K-maximize D(u,w) s.t. BTu = PTw, u ≥ 0, Y Tw ≥ 0, cTw = 1,

with objective function D(u,w) :=
(

−w1, −w2, . . . , −wq−1, a
Tu
)T

. The coor-
dinate transformation (y → −y, c → −c) transforms the coupling function (13)
for the case cq > 0 to (13) for the case cq < 0.

The constraints of the general case (VLP) can be expressed as








B
−B
I
−I









x ≥









a
−b
l
−s









, (17)

where I denotes the n× n unit matrix. This leads to the dual constraints

BTu′ −BTu′′ = PTw + v′ − v′′, u′, u′′, v′, v′′ ≥ 0, Y Tw ≥ 0, cTw = 1,

and the last component of the objective function D is

d(u, v) = aTu′ − bTu′′ + lT v′′ − sT v′.

If some components of the right-hand side in (17) are −∞, the corresponding
dual variables must vanish (i.e. they do not occur in the dual program). This
is taken into account by setting ±∞ · 0 = 0.

Finally, in the constraints we set u := u′ − u′′ and v := v′ − v′′, and in the
objective function we choose u′ := u+, u′′ := u−, v′′ := v−, v′ := v+. Since a ≤ b
and l ≤ s imply that aTu′− bTu′′+ lTv′′− sTv′ ≤ aTu+− bTu−+ lTv−− sT v+,
this specification does not influence the optimum in case of maximization.

We close this section by a short consideration of maximization problems:

maxCPx s.t. a ≤ Bx ≤ b, l ≤ x ≤ s. (VLPmax)

In this case we deal with a lower image P := P [S] − C of the primal problem
and an upper image D := D[T ] +K of the dual problem, which can be stated
as

K-maximize D(u,w, v) s.t. BTu = PTw+v, Y w ≥ 0, cTw = 1 (18)

with objective function

D(u, v, w) =

(

cq
|cq|

w1, . . . ,
cq
|cq|

wq−1, d̄(u, v)

)T

, (19)

where
d̄(u, v) = bTu+ − aTu− + sT v− − lTv+. (20)

The ordering cone is again K := {y ∈ R
q| y1 = 0, . . . , yq−1 = 0, yq ≥ 0}.

9



Theorem 12. Let c ∈ intC such that cq 6= 0. Then Theorem 10 holds for

(VLPmax) and for the dual problem (18) if the following coupling function is

used:

ϕ(y, y∗) := −cq

q−1
∑

i=1

yiy
∗

i − yq

(

|cq|

cq
−

q−1
∑

i=1

ciy
∗

i

)

+ ξ(y)|cq|y
∗

q . (21)

Proof. This follows from Theorem 11. We first replace maximization with re-
spect to C by minimization with respect to −C. This requires the transforma-
tions Y → −Y and c → −c. In the dual problem we substitute (u,w, v) →
−(u,w, v). The resulting maximization problem with respect to K is finally
expressed as a minimization problem with respect to K, which refers to a coor-
dinate transformation y∗q → −y∗q .

4. A few remarks on the algorithms

Bensolve is an implementation of primal and dual Benson-type algorithms.
The origin of these algorithms is discussed in Section 1. The implementation is
closely related to the presentation in [8], therefore, we do not present too much
details here. Bensolve can handle problems which are generalized in comparison
to [8] with respect to the following two aspects:

(i) The assumption cq = 1 can be replaced by cq 6= 0, which allows to use
arbitrary solid and line-free polyhedral ordering cones.

(ii) Maximization is covered in addition to minimization.

These generalizations can be easily realized by the transformations and the dual
programs discussed in the previous section. A modification of the algorithms is
not necessary.

5. Numerical results

The VLP-solver Bensolve is a C-implementation of the algorithms discussed
above. In this section, we investigate and compare numerical properties of two
applications of multiobjective optimization problems.

The first example (Example 13) is used to show the improvements that could
be made in comparison to prior implementations. The second problem class
(Example 14) with image space dimension equal to ten shows that Bensolve is
well suited for problems with high image space dimensions.

The numerical examples were run on a computer with 8GB memory and an
Intel R© CoreTM i5-4200 CPU with 1.60GHz clock. The source code of Bensolve1

was compiled with the GNU Compiler Collection gcc 5.2.1 and linked against
the GNU Linear Programming Kit library libglp 4.55.

Example 13. In their paper [7], Shao and Ehrgott use a variant of Benson’s al-
gorithm to solve MOLPs originating from a model for optimizing radiotherapy
treatment planning. The clinical example (PL) from this paper has three objec-
tives, 1211 constraints and 595 variables (which are additionally nonnegative).

1The source code is available at http://bensolve.org along with documentation and ex-
ample problems.

10



The constraint matrix is sparse with 153936 nonzeros. Solving this problem
exactly is not tractable. Thus, an approximation variant of Benson’s algorithm
has been introduced in [7]: The algorithm stops as soon as the translation of an
approximation Pε of the upper image P by the duality parameter c is contained
in the upper image:

Pε + ε · c ⊆ P .

This problem instance is also used for numerical tests in [8] with a Matlab R©-
implementation preceding the current version of Bensolve. The implementation
used in [8] is similar to Bensolve v1.22. The major difference is the use of a
certain warm start heuristic in [8]. Approximations for various error-levels ε
were computed with both the primal and dual variant of Bensolve3, were we
used the primal simplex as LP-solver in both cases. The run times are listed
and compared with those of the implementation from [8] in Table 1. It can
be seen that Bensolve performs superior to the preceding implementation with
regard to the run times. This might be explained partially by the speed-up
gained through the transition from a Matlab R© to a C-based implementation
or by refinements in the algorithm itself. It should be noted that even better
results are expected as soon as a warm start heuristic similar to the one used in
[8] is implemented. Currently, a kind of “indirect” warm start technique is used,
which is imminent in the LP-solver4 we use for our implementation: between
subsequent calls to the solver, the basis factorization of the solution found last
remains in memory, hence speeding up the computation time due to the similar
structure of the LP’s.

A further explanation for the improved run times is the utilization of a
variant of the double description method (see e.g. [19]), adapted specifically
for the vertex enumeration part of Bensolve: In each iteration we are given
an H-representation and a V-representation of a polyhedron P . We intend to
compute the intersection P ∩ H of P with an affine halfspace H . We assume
that only a few vertices of P do not belong to H . The classical variant requires
a classification of vertices K1 of P belonging to H and vertices K2 of P not
belonging to H . The adjacency relation for every pair (v1, v2), where v1 ∈ K1

and v2 ∈ K2, needs to be checked in order to compute the new V-representation.
The new variant avoids this classification. One starts with some v1 ∈ K1 and
checks every neighboring vertex v2 whether it belongs to K2 or not. If not, the
procedure is repeated with v2.

While approximations with an error threshold below 5 · 10−3 where hardly
possible with the version used in [8], our new implementation is capable of
finding approximations with error level 1 · 10−5 in a reasonable amount of time.
Additionally, an improvement with respect to the approximation quality can
be observed: both the primal and dual variants of Bensolve are able to achieve
approximations of the upper image with the same approximation error ε with
fewer vertices (compare Table 2) and by solving less linear programs (Table
3). This behavior can be explained by a new implementation of the vertex
enumeration: If two vertices are very close to each other, they are replaced by
a single one, while maintaining the outer approximation property.

2Bensolve v1.2 is available in the download section at http://bensolve.org
3The authors thank Dr. Lizhen Shao for supplying the problem data.
4GNU Linear Programming Kit, http://www.gnu.org/software/glpk/glpk.html

11



Table 1: Run time comparison

Run times in seconds

error ε [8] primal dual

0.3 47 8 4
0.1 91 15 6

5 · 10−2 144 22 9
5 · 10−3 1411 87 36
5 · 10−4 355 153
5 · 10−5 1318 692
1 · 10−5 3376 2185

Table 2: Number of vertices computed.

# vertices of P # vertices of D

error ε [8] primal dual [8] primal dual

0.3 46 41 21 29 29 40
0.1 104 91 54 61 60 88

5 · 10−2 176 156 75 94 94 146
5 · 10−3 1456 1097 548 597 595 1078
5 · 10−4 7887 3944 4072 7829
5 · 10−5 47293 23877 24190 47310
1 · 10−5 117981 65235 65354 118668

Table 3: Number of LP’s solved

#LP’s solved

error ε [8] primal dual

0.3 75 72 66
0.1 165 157 145

5 · 10−2 270 258 227
5 · 10−3 2053 1772 1710
5 · 10−4 12549 12348
5 · 10−5 75656 75419
1 · 10−5 194893 195458

12



Figure 1: Approximation of the upper image of the problem instance (PL) from [7] with
ε = 10−4

Example 14. In [9] Csirmaz presents a rather fascinating application of Ben-
son’s algorithm: Exploring the entropy region formed by the entropies of the
nonempty subsets of four random variables, which consists basically in finding a
V-representation of a 10-dimensional projection of a high dimensional polytope.
Csirmaz used a revised version of Benson’s algorithm to solve several instances
of vector linear programs, which are generated by a procedure involving so
called “copy steps”. The problem instances have been solved with Bensolve5

and we compared the run times with those of [9] (compare table 4). Here we
used the default options of Bensolve, the primal algorithm was used with an
approximation error of ε = 10−8. Although we used a machine with slightly
higher specifications than the one used in [9], our implementation seems to be
much faster, especially for large problem instances. One explanation might be
the adapted vertex enumeration method used in Bensolve: In [9] it is stated
that due to the huge number of vertices of intermediate polytopes the vertex
enumeration (the double description method) becomes the bottleneck of the al-
gorithm. It should be noted that the author of [9] put a lot of effort in reducing
numerical errors to a minimum. Therefore, we also list the number of vertices
and facets computed by the different implementations in Table 5. While the
number of primal vertices concur for all problem instances, the number of dual
vertices (which corresponds to the number of facets of the upper image) differs
slightly for different instances. This may be the result of numerical errors or
imprecision due to the approximating character of Benson’s algorithm.

5The authors are indebted to Prof. László Csirmaz for providing the perl-script that gen-
erates the problem instances.

13



Table 4: Run time comparison of different instances of entropy region mapping problems

Run times in hh:mm:ss

problem instance (copy string) result of [9] Bensolve

r=c:ab; s=r:ac; t=r:ad 00:00:01 00:00:01
rs=cd:ab; t=r:ad;u=s:adt 00:06:19 00:00:07
rs=cd:ab; t=a:bcs;u=(cs):abrt 00:06:51 00:00:08
rs=cd:ab; t=a:bcs;u=b:adst 00:17:40 00:00:14
rs=cd:ab; t=a:bcs;u=t:acr 00:18:27 00:00:09
rs=cd:ab; t=(cr):ab;u=t:acs 00:22:58 00:00:12
r=c:ab; st=cd:abr;u=a:bcrt 00:29:18 00:00:21
rs=cd:ab; t=a:bcs;u=c:abrt 01:04:32 00:00:49
rs=cd:ab; t=a:bcs;u=s:abcdt 01:07:01 00:00:43
rs=cd:ab; t=a:bcs;u=(at):bcs 01:39:30 00:01:04
rs=cd:ab; t=a:bcs;u=a:bcst 04:30:26 00:04:51
rs=cd:ab; t=a:bcs;ua:bdrt 05:11:25 00:47:44
rs=cd:ab; tu=cr:ab; v=(cs):abtu 01:10:10 00:01:27
rs=ad:bc; tu=ar:bc; v=r:abst 03:24:37 00:01:25
rs=cd:ab; t=(cr):ab;uv=cs:abt 03:34:31 00:01:59
rs=cd:ab; tu=cr:ab; v=t:adr 09:20:19 00:02:21
rs=cd:ab; tu=dr:ab; v=b:adsu 13:20:08 00:03:01
rs=cd:ab; tv=dr:ab;u=a:bcrt 14:34:42 00:02:44
rs=cd:ab; tu=cs:ab; v=a:bcrt 22:02:39 00:02:42
rs=cd:ab; t=a:bcs;uv=bt:acr 37:15:33 00:08:27
rs=cd:ab; tu=cr:ab; v=a:bcstu 427:43:30 18:53:29

14



Table 5: Computed vertices and facets of entropy region mapping problems

#vertices/#facets

problem instance (copy string) result of [9] Bensolve

r=c:ab; s=r:ac; t=r:ad 5/20 5/20
rs=cd:ab; t=r:ad;u=s:adt 40/132 40/133
rs=cd:ab; t=a:bcs;u=(cs):abrt 47/76 47/77
rs=cd:ab; t=a:bcs;u=b:adst 177/261 177/263
rs=cd:ab; t=a:bcs;u=t:acr 85/134 85/136
rs=cd:ab; t=(cr):ab;u=t:acs 181/245 181/247
r=c:ab; st=cd:abr;u=a:bcrt 209/436 209/438
rs=cd:ab; t=a:bcs;u=c:abrt 363/599 363/601
rs=cd:ab; t=a:bcs;u=s:abcdt 355/591 355/593
rs=cd:ab; t=a:bcs;u=(at):bcs 484/676 484/677
rs=cd:ab; t=a:bcs;u=a:bcst 880/1238 880/1239
rs=cd:ab; t=a:bcs;ua:bdrt 2506/2708 2506/2710
rs=cd:ab; tu=cr:ab; v=(cs):abtu 19/58 19/58
rs=ad:bc; tu=ar:bc; v=r:abst 40/103 40/101
rs=cd:ab; t=(cr):ab;uv=cs:abt 30/102 30/102
rs=cd:ab; tu=cr:ab; v=t:adr 167/235 167/235
rs=cd:ab; tu=dr:ab; v=b:adsu 318/356 318/356
rs=cd:ab; tv=dr:ab;u=a:bcrt 318/356 318/356
rs=cd:ab; tu=cs:ab; v=a:bcrt 297/648 297/650
rs=cd:ab; t=a:bcs;uv=bt:acr 779/1269 779/1271
rs=cd:ab; tu=cr:ab; v=a:bcstu 4510/7966 4510/7972

15



Bibliography

References

[1] J. P. Dauer, Analysis of the objective space in multiple objective linear
programming, J. Math. Anal. Appl. 126 (2) (1987) 579–593.

[2] J. P. Dauer, Y.-H. Liu, Solving multiple objective linear programs in ob-
jective space, European J. Oper. Res. 46 (3) (1990) 350–357.

[3] H. Benson, Further analysis of an outcome set-based algorithm for multiple-
objective linear programming, Journal of Optimization Theory and Appli-
cations 97 (1) (1998) 1–10.

[4] H. Benson, An outer approximation algorithm for generating all efficient
extreme points in the outcome set of a multiple objective linear program-
ming problem, Journal of Global Optimization 13 (1998) 1–24.

[5] M. Ehrgott, A. Löhne, L. Shao, A dual variant of Benson’s outer approxi-
mation algorithm, J. Glob. Optim. 52 (4) (2012) 757–778.

[6] A. Löhne, Vector Optimization with Infimum and Supremum, Vector Op-
timization, Springer, Berlin, 2011.

[7] L. Shao, M. Ehrgott, Approximately solving multiobjective linear pro-
grammes in objective space and an application in radiotherapy treatment
planning, Math. Methods Oper. Res. 68 (2) (2008) 257–276.

[8] A. H. Hamel, A. Löhne, B. Rudloff, Benson type algorithms for linear vector
optimization and applications, J. Global Optim. 59 (4) (2014) 811–836.

[9] L. Csirmaz, Using multiobjective optimization to map the entropy region,
Computational Optimization and Applications (2015) 1–23.

[10] F. Bökler, P. Mutzel, Output-sensitive algorithms for enumerating the ex-
treme nondominated points of multiobjective combinatorial optimization
problems, in: N. Bansal, I. Finocchi (Eds.), Algorithms – ESA 2015, Vol.
9294 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2015, pp. 288–299.

[11] A. Löhne, B. Weißing, Equivalence between polyhedral projection, mul-
tiple objective linear programming and vector linear programming,
arXiv:1507.00228 (2015).

[12] F. Heyde, A. Löhne, Solution concepts in vector optimization: a fresh look
at an old story, Optimization 60 (12) (2011) 1421–1440.

[13] J. Evans, R. Steuer, A revised simplex method for linear multiple objective
programs., Math. Program. 5 (1973) 54–72.

[14] R. Steuer, Adbase multiple objective linear programming package, Tech.
rep., University of Georgia, Athens, Georgia (1989).

[15] M. E. Dyer, The complexity of vertex enumeration methods, Math. Oper.
Res. 8 (3) (1983) 381–402.

16



[16] F. Heyde, A. Löhne, Geometric duality in multiple objective linear pro-
gramming., SIAM J. Optim. 19 (2) (2008) 836–845.

[17] A. Löhne, B. Weißing, Bensolve - VLP solver, version 2.0.1.
URL http://bensolve.org

[18] A. Schrijver, Theory of linear and integer programming, Wiley-Interscience
Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986,
a Wiley-Interscience Publication.

[19] K. Fukuda, A. Prodon, Double description method revisited, in: Combi-
natorics and computer science (Brest, 1995), Vol. 1120 of Lecture Notes in
Comput. Sci., Springer, Berlin, 1996, pp. 91–111.

17

http://bensolve.org
http://bensolve.org

	1 Introduction
	2 Solution concepts
	3 Dual problem and dual solutions
	4 A few remarks on the algorithms
	5 Numerical results

