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Abstract

In this paper we consider the Asymmetric Quadratic Traveling Salesman Problem. Given
a directed graph and a function that maps every pair of consecutive arcs to a cost, the
problem consists in finding a cycle that visits every vertex exactly once and such that the
sum of the costs is minimum. We propose an extended Linear Programming formulation
that has a variable for each cycle in the graph. Since the number of cycles is exponential
in the graph size, we propose a column generation approach. We compare the bounds
resulting from this new formulation with those obtained by some linearization techniques
for 0-1 quadratic optimization or specifically proposed for the QTSP. Computational results
on some set of benchmarks used in the literature show that the column generation approach
is very promising.

Keywords: Traveling salesman, Integer programming, Quadratic Traveling Salesman
Problem, Column Generation, Lower bound, Cycle cover.

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most studied optimization problems.
Given a graph G = (V,A) with costs ce, e ∈ A, the problem consists in finding a cycle C
that visits each vertex in V exactly once (i.e., a Hamiltonian cycle), and such that the total
cycle cost is minimum. In its most common form, the TSP has a linear cost function, equal
to the sum of the costs ce of each edge in C. Now, consider a variant of the TSP having a
non-negative interaction cost Qef for every pair of consecutive arcs e, f ∈ A. Because the
cost of a cycle can be computed as a quadratic function, this problem is called Quadratic
TSP (QTSP) and is NP-hard as shown in [1]. As for the linear counterpart, the QTSP has
a symmetric and an asymmetric variants (SQTSP and AQTSP, respectively). In this paper
we focus on the asymmetric version which appears to be more challenging.
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The QTSP was introduced with an application to bioinformatics in [2] and also has
application in robotics and telecommunications. In robotics, a variant of QTSP called Angle-
TSP can be used for the optimization of robot paths with respect to energetic aspects. The
Angle-TSP problem seeks to minimize the total angle of a TSP tour for a set of points in the
Euclidean space where the angle of a tour is the sum of the direction changes at all points
[3]. Also the QTSP can be viewed as a generalization of the Reload Cost TSP (RTSP)
introduced in [4]. In the RTSP, one is given a graph whose every edge is assigned a color
and there is a reload cost when passing through a node on two edges that have different
colors.

The QTSP has been introduced quite recently and its literature is rather limited. In par-
ticular, the QTSP has been tackled in [1] with heuristic algorithms based on a well-known
heuristics for the TSP, with an ad-hoc branch-and-bound, and with a branch-and-cut ap-
proach based on a linearization of a 0-1 Quadratic Programming formulation of the problem.
In [5] and [6] the polyhedral structure of a linearized integer programming formulation has
been used to develop a branch-and-cut algorithm for the SQTSP and AQTSP respectively
that are the current state-of-the-art for QTSP.

In this paper we study a lower bounding procedure for the Asymmetric QTSP (AQTSP).
Considering the special structure of the quadratic costs of the AQTSP, we present an ex-
tended Linear Programming formulation of the problem with an exponential number of
variables that is solved via Column Generation (CG). The basic idea is to have a variable
for each cycle of G. This yields a pricing subproblem that consists in finding a cycle of min-
imum quadratic cost. We formulate the pricing subproblem as a 0-1 Quadratic Program,
which is linearized and solved with standard techniques. We resort to stabilization tech-
niques to overcome the tailing-off effect of the CG approach. We also present the linearized
integer programming formulation proposed in [6] and show how it can be obtained using a
partial application of the Reformulation-Linearization technique (RLT) [7, 8]. This formu-
lation is, in fact, based on the standard Asymmetric Traveling Salesman Problem (ATSP)
formulation of Dantzig et al. [9] which has an exponential number of constraints. In order
to avoid this complication we use the compact formulation of Miller, Tucker and Zemlin
[10] with a polynomial number of variables and constraints. In order to generate superior
bounds, we also develop a mixed 0-1 linear formulation based on using the first-level RLT
and show how to handle it via a Lagrangian relaxation where the Lagrangian function has
block-diagonal structure. Our computational experiments show that the column generation
approach outperforms all other lower bounding schemes.

2. Problem formulation

Consider a complete directed graph G = (V,A) with vertex set V = {1, 2, . . . , n}, arc set
A, and cost function Q that maps every pair of consecutive arcs to a non negative integer
cost. The AQTSP seeks a directed tour (i.e., a directed cycle passing through each vertex
exactly once) of minimum cost. Let binary variable xij be equal to 1 if the arc (i, j) ∈ A
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belongs to the minimum cost tour, and zero otherwise. The AQTSP then call for

AQTSP: min
∑

(i,j)∈A

∑
(j,k)∈A

Qijkxijxjk

s.t.
∑

j:(i,j)∈A

xij = 1 ∀i ∈ V (1)

∑
i:(i,j)∈A

xij = 1 ∀j ∈ V (2)

∑
i∈S,j /∈S:
(i,j)∈A

xij ≥ 1 ∀S ⊂ V, 2 ≤ |S| ≤ n− 2 (3)

xij ∈ {0, 1} ∀(i, j) ∈ A.

Constraints (1) and (2) force to select a single outgoing arc and a single incoming arc for each
node, respectively, and constraints (3) are the well known subtour elimination constraints
[9].

Note that the AQTSP formulation, presented here, is based on the ATSP formulation
of Dantzig et al. [9] which has an exponential number of constraints. In order to avoid this
complication we can take advantage of some known compact formulations of the ATSP, i.e.,
formulations with a polynomial number of both variables and constraints. Let us consider
the MTZ formulation of Miller, Tucker and Zemlin [10] which fixes node 1 as a “depot”,
which the salesman must leave at the start of the tour and return to at the end of the tour.
Let ui be a continuous variable representing the position of node i in the tour. Then the
MTZ formulation replace constraints (3) with the following constraints:

ui − uj + (n− 1)xij 6 n− 2 2 6 i, j 6 n− 2; i ̸= j (4)

1 6 ui 6 n− 1 ∀i = 2, . . . n, (5)

where constraints (4) ensure that, if the salesman travels from node i to node j, then the
position of node j is one more than that of node i, and constraints (4) together with the
bounds (5) ensure that each non-depot node is in a unique position.

3. Linearizations and lower bounds

The main difficulty of the AQTSP, in addition to the TSP problem structure, lies in
the quadratic structure of the objective function. One of the most natural ways to obtain
a lower bound is to linearize the quadratic terms xijxjk for all (i, j), (j, k) ∈ A using the
standard linearization technique of Glover and Woolsey [11]. The approach is based on
introduction of new non-negative binary variables yijk = xijxjk which satisfy the following
set of constraints:

yijk ≤ xij, yijk ≤ xjk, and yijk ≥ xij + xjk − 1.

The main disadvantage of the standard linearization is that it does not take the problem
structure into account. In the following subsections we present some reformulations for the
problem which take advantage of the TSP structure.
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3.1. Cycle reformulation

In this section we present a new formulation of the AQTSP that considers an exponential
number of variables, one for each cycle of the given graph. Let C be a cycle of G described
as set of arcs. The cost of cycle C is the sum of the costs of the pairs of consecutive arcs
contained in the cycle, i.e.

q(C) =
∑

i,j,k∈V :(i,j),(j,k)∈C

Qijk.

Let C and T denote the collection of all cycles and all tours of G, respectively. Clearly,
we have that T ⊆ C, and hence

min
C∈C

q(C) ≤ min
T∈T

q(T ).

Following the approach of Held and Karp to the TSP [12], we associate a penalty πi with
every vertex i in V , and define π(C) =

∑
i∈C πi. Although C is a set of arcs, here we extend

the notation so that i ∈ C means i ∈ V and ∃j ∈ V : (i, j) ∈ C ∨ (j, i) ∈ C. Let us consider
a new cost function defined as follows: d(C) = q(C) + π(C). Let T ∗ denote an optimal tour
of G, i.e. q(T ∗) = minT∈T q(T ). Then, the following relations hold:

min
C∈C

d(C) = min
C∈C

{q(C) + π(C)} ≤ d(T ∗) = q(T ∗) + π(V )

min
C∈C

{q(C)− π(V \ C)} ≤ q(T ∗).

For any vector of penalty terms π we get a lower bound. However, we are interested in
finding π that maximizes the lower bound:

max
π∈ℜn

min
C∈C

{q(C)− π(V \ C)}, (6)

which is linearized by introducing a variable z as follows:

P:max z

s.t. z + π(V \ C) ≤ q(C) ∀C ∈ C (7)

z, π unrestricted.

Let λC be the dual multipliers of constraints (7). We can write the dual of problem P as
follows:

D1:min
∑
C∈C

q(C)λC

s.t.
∑

C∈C:i/∈C

λC = 0 ∀i ∈ V (8)∑
C∈C

λC = 1 (9)

λC ≥ 0 ∀C ∈ C. (10)
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Since all multipliers in (8) are non-negative, an optimal solution must satisfy λ∗
C = 1 for

some C∗ ∈ C and λ∗
C = 0 for all C ∈ C \C∗. It follows that the cycle C∗ (single or multiple)

is optimal and q(C∗) provides a lower bound for the original QTSP.
By subtracting each constraint (8) from (9) and removing (9) from D1, one can find a

relaxation of the problem D1 as follows:

D2:min
∑
C∈C

q(C)λC

s.t.
∑

C∈C:i∈C

λC = 1 ∀i ∈ V (11)

λC ≥ 0 ∀C ∈ C.

Problem D2 seeks a minimum-weight “combination of cycles” such that each vertex appears,
on average, in one cycle.

3.2. Reformulation-Linearization technique applied to the AQTSP

The Reformulation-Linearization technique (RLT), which was introduced in [7, 8] for
general zero-one polynomial programs, transforms the original problem into a mixed 0-1
linear program via two basic steps of reformulation and linearization. In the reformula-
tion step, the constraints are multiplied by the binary variables and their complements
to construct redundant nonlinear constraints. In the linearization step, the objective and
constraints of the reformulated problem are linearized by substituting a continuous vari-
able for each distinct nonlinear term. Depending on how many times this process is ap-
plied, different levels of RLT can be obtained. In this section we concern ourselves with
the application of the level-1 RLT for the AQTSP. For ease of notation we define the set
I = {(i, j, k, l) : (i, j) ∈ A, (k, l) ∈ A, i ̸= k, j ̸= l, (i, j) ̸= (l, k)}. The level-1 RLT represen-
tation is generated via the following two steps:
Reformulation: Multiply each constraints (1)-(3) by each of the |A|2 binary variables xkl, and
append these new constraints to the formulation. When the variable xij in a given constraint
is multiplied by xkl, express the resulting product as xijxkl in that order. Substitute x2

kl with
xkl throughout the constraints and set xijxkl = 0 if i = k and j ̸= l or i ̸= k and j = l.
Moreover set xijxji = 0 to eliminate subtours involving only two nodes.
Linearization: For all (i, j, k, l) ∈ A, substitute each product xijxkl with yijkl and enforce
the following equalities to the problem:

yijkl = yklij ∀(i, j, k, l) ∈ I, i < k. (12)
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The level-1 RLT results as follows:

RLT1: min
∑

(i,j,k,l)∈I

Dijklyijkl

s.t.
∑

j:(i,j,k,l)∈I

yijkl = xkl ∀i ∈ V, ∀(k, l) ∈ A, k ̸= i

∑
i:(i,j,k,l)∈I

yijkl = xkl ∀j ∈ V, ∀(k, l) ∈ A, k ̸= j

∑
i∈S,j /∈S:(i,j,k,l)∈I

yijkl ≥ xkl S ⊂ V, 2 ≤ |S| ≤ n− 2, ∀(k, l) ∈ A

yijkl = yklij ∀(i, j, k, l) ∈ I, i < k

yijkl ≥ 0 (i, j, k, l) ∈ I
x ∈ X , x ∈ {0, 1}

where
X =

{
0 ≤ x ≤ 1 : (1)− (3)

}
and Dijkl = Qijl for all (i, j, k, l) ∈ I with i ̸= l and j = k, Otherwise, Dijkl = 0.

Note that one can also multiply constraints (3) by (1 − xkl) as a complete application
of RLT [7, 8]. However, to keep the block-diagonal structure of the problem which lends to
efficient solution methods, we do not consider these inequalities.

In order to solve the LP relaxation of RLT1, we construct a Lagrangian dual by placing
constraints (12) into the objective function as proposed by Adams and Johnson [13] for the
Level-1 RLT representation of the QAP. To obtain an optimal solution (x̃, ỹ) to the resulting
problem we can use the well known Gilmore-Lawler procedure [14, 15] as follows. We first
solve |A| LP relaxation of separate ATSP in G, one for each arc (k, l) ∈ A:

D̄kl = min

 ∑
(i,j)∈A:(i,j,k,l)∈I

Dijklyijkl : ykl ∈ X

 . (13)

Then solving the following problem gives the lower bound:

min

 ∑
(k,l)∈A

D̄klxkl : x ∈ X

 . (14)

Once (14) is solved, the optimal solution of RLT1 is obtained as x̃ = x̄ and, ỹkl = x̃klȳkl

for (k, l) ∈ A. where x̄ and ȳ are the optimal solution of problems (14) and (13), respectively.
In our lower bound computation we used a dual-ascent strategy similar to those proposed

in [16, 17] for solving the Lagrangian dual arising in RLT representations of the QAP. This
approach uses the dual information retrieved from (13) and (14) to transform the problem
to a series of equivalent AQTSP. Then it generates a monotonic nondecreasing sequence of
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lower bounds on the LP relaxation of RLT1. Since each of problems (13) and (14) contains
an exponential number of constraints (3), explicitly keeping track of the dual values for (3)
is not practical. To overcome this problem, we consider a different relaxation of ATSP using
the MTZ constraints (4) and (5). In fact we replace X with X ′ where

X ′ =
{
0 ≤ x ≤ 1 : (1), (2), (4), (5)

}
.

Note that the only difference is that subtour elimination constraints (3) are replaced
with constraints (4) and (5).

3.3. Fischer linearization and its compact form

To generate lower bounds, Fischer [6] introduced a mixed integer linear programming
with n(n− 1)(n− 2)/6 continuous variables yijk such that

yijk = xijxjk for all (i, j), (j, k) ∈ A with i ̸= k.

The formulation has the following form:

LP1: min
∑

(i,j)∈A

∑
(j,k)∈A:k ̸=i

Qijkyijk

s.t.
∑

k:(j,k)∈A,k ̸=i

yijk = xij ∀(i, j) ∈ A (15)

∑
k:(k,i)∈A:k ̸=j

ykij = xij ∀(i, j) ∈ A (16)

yijk ≥ 0 (i, j), (j, k) ∈ A, i ̸= k (17)

x ∈ X , x ∈ {0, 1}.

Notice that problem LP1 was proposed in [6] without applying the RLT. In practice, it
can be obtained using a partial application of the RLT to the AQTSP as follows. First, we
multiply equations (1), for each i ∈ V , by each of the (n− 1) variables xki for k ̸= i. Then,
for each j ∈ {1, . . . , n}, we multiply equations (2) by each of the (n − 1) variables xjk for
k ̸= j. All 2n(n− 1) such quadratic equations are included within the formulation. We then
set xijxji = 0 for all (i, j) ∈ A with i ̸= j. The linearization step makes the substitution of
yijk = xijxjk for all (i, j), (j, k) with k ̸= i and enforces that all resulting variables yijk are
nonnegative, to rewrite the problem as the mixed 0-1 linear program LP1.

Using the compact formulation of the AQTSP discussed in Section 2, we define a compact
formulation of LP1, called CLP1 as follows:

CLP1: min

 ∑
(⟨i,j⟩,⟨j,k⟩)∈A

Qijkyijk : (15)− (17), x ∈ X ′

 .

Padberg and Sung [18] showed that the LP relaxation of the MTZ formulation yields an
extremely weak lower bound for the ATSP. However, our computational results show that
this is not true for the AQTSP.
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4. A column generation approach

In this section we develop a column generation approach to solve the cycle based formu-
lations D1 and D2 presented in section 3.1. Since the number of cycles in C is exponential
with respect to the number of vertices, we first consider a master problem with a feasible
subset of cycles, C̄ ⊆ C. Note that the subset C̄ for problem D1 must include at least one
tour, while an initial set C̄ for problem D2 must satisfy constraints (11). Let us first start
with problem D1 and suppose that π = (π1, π2, . . . , πn) and z are the dual variables corre-
sponding to constraints (8) and (9), respectively. The reduced cost of the variable λC for
each C ∈ C is

q(C) = q(C)− π(V \ C)− z.

A column entering the basis can be found by computing a minimum cost cycle with
respect to Qijk + πj for each (i, j) ∈ E, (j, k) ∈ E. Let q(Cp) = minC∈C q(C). If q(Cp) ≥ 0
then the current solution is optimal. Otherwise we select column Cp to enter the basis.

Theorem 1. If the column Cp entering the basis corresponds to a tour, then it is an optimal
tour.

Proof. Consider any cycle C. Since column Cp is the selected column to enter the basis we
have

q(Cp) = q(Cp)− π(V \ Cp)− z ≤ q(C)− π(V \ C)− z.

If cycle C is also a tour, then q(Cp) ≤ q(C).

Note that for problem D2, the reduced cost of the variable λC for each C ∈ C is modified
to:

q(C) = q(C)− π(C).

4.1. Pricing subproblems

As is clear from the previous section, a column entering the basis can be found by
computing a minimum cost cycle in the original graph G with respect to Qijk +πj. Looking
for a cycle having minimum negative cost with respect to a quadratic objective is itself an
interesting combinatorial optimization problem, which is NP-hard [3, 19]. In this section
we explain how to update the linearized models, presented in Section 2, to solve the pricing
problems.

Consider LP1 formulation. We first present a revised formulation of the problem similar
to the one proposed in [20] for the RLT representation of the Quadratic Assignment Prob-
lem. The new formulation, which is obtained by removing constraints (1) from the LP1
formulation, has a graph representation as follows. Consider a directed graph G = (V ,A).
For each arc (i, j) ∈ A we create a node ⟨i, j⟩, and for each pair of arcs (i, j), (j, k) with i ̸= k,
we introduce arc (⟨i, j⟩, ⟨j, k⟩) with weight wijk = Qijk. If we partition the set of nodes of G
into n clusters V1,V2, . . . ,Vn such that Vi = {⟨i, j⟩ : j = 1, 2, . . . , n, j ̸= i} for i = 1, 2, . . . , n,
then all arcs in the original graph are defined between nodes ⟨i, j⟩ and ⟨j, k⟩ from different
clusters such that Qijk > 0; therefore there are no intra-set arcs. Figure 1 represents the
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Figure 1: Extended graph K4 of the complete graph K4

extended graph, K4, of a directed complete graph, K4. The bold lines illustrate a 4-arc cycle
that goes through each cluster exactly once.

It is worth to mention that a similar transformation has been proposed in [1]. However,
in the transformation of [1] infeasible arcs are also created, though penalized by big costs.
More precisely they define a cost function c and set cijkl = Qijk for all (i, j), (k, l) ∈ A with
j = k, i ̸= l, otherwise they set cijkl = 2M , where M is big constant.

The following lemma is a straightforward result implied by construction of G.

Lemma 2. For any tour T ∈ T in G there exists an n-arc cycle ¯̄T in G that goes through
each cluster exactly once with q(T ) = w(T̄ ) and vice versa.

Now consider the problem of finding a minimum cost n-arc cycle on graph G which
includes exactly one node from each cluster. This problem is called Asymmetric Generalized
TSP (AGTSP) and is NP-hard, as it can be reduced to an Asymmetric TSP [21, 22]. The
following theorem formally relates the problems AQTSP and AGTSP.

Theorem 3. An optimal solution for AQTSP can be obtained by solving an AGTSP on G.

Proof. Let T̄ ∗ be the optimal solution of AGTSP on G. According to Lemma 2 there exists
a tour T ∗ in G with q(T ∗) = w(T̄ ∗). If T ∗ is not optimal for the AQTSP then there exists an
optimal tour T ∗∗ in G such that q(T ∗∗) < q(T ∗). From Lemma 2 there must exist an n-arc
cycle T̄ ∗∗ in G with w(T̄ ∗∗) = C(T ∗∗). This implies that w(T̄ ∗∗) = q(T ∗∗) < q(T ∗) = w(T̄ ∗)
which contradicts the assumption of optimality of T̄ ∗ in G.

Now we turn our attention to the integer linear programming formulation for the AGTSP
on G. Defining variables yijk to indicate whether arc (⟨i, j⟩, ⟨j, k⟩) is selected or not in the
optimal solution, the problem can be stated as follows:

9



AGTSP: min
∑

(⟨i,j⟩,⟨j,k⟩)∈A

Qijkyijk

s.t.
∑
j∈V

∑
k∈V :

(⟨i,j⟩,⟨j,k⟩)∈A

yijk = 1 ∀i ∈ V (18)

∑
k∈V

∑
j∈V :

(⟨k,i⟩,⟨i,j⟩)∈A

ykij = 1 ∀i ∈ V (19)

∑
k∈V :

⟨j,k⟩∈V

yijk −
∑
k∈V :

⟨k,i⟩∈V

ykij = 0 ∀⟨i, j⟩ ∈ V (20)

∑
i∈S

∑
j /∈S:

⟨i,j⟩∈Vi

∑
k∈V :

⟨j,k⟩∈Vj

yijk ≥ 1 S ⊂ V (21)

yijk ∈ {0, 1} ∀(⟨i, j⟩, ⟨j, k⟩) ∈ A. (22)

Constraints (18) require a solution to include exactly one of the arcs entering a clus-
ter, while constraints (19) require a solution to include exactly one of the arcs leaving a
cluster. Constraint (20) is equivalent to network flow conservation constraints and ensure
that a solution tour is uninterrupted and continuous. Finally, constraints (21) eliminate all
subtours.

Theorem 4. Constraints (18) in problem AGTSP are redundant and can be removed from
the model.

Proof. Suppose y∗ is a feasible solution for problem AGTSP after removing constraint (18)
and define, for each i ∈ V ,

ϵi =
∑
j∈V

∑
k∈V :

(⟨i,j⟩,⟨j,k⟩)∈E

y∗ijk.

We show that ϵi = 1 for all i ∈ V .
Consider cluster Vs. Then constraint (19) is satisfied for cluster Vs by u∗, i.e.,∑

k∈V

∑
j∈V

(⟨k,s⟩,⟨s,j⟩)∈E

y∗ksj = 1.

Therefore there exists a node ⟨s, t⟩ ∈ Vs with in-degree one in the tour, while the in-degree
of all other nodes in cluster Vs is zero. Hence by (20) the out-degree of node ⟨s, t⟩ must
be equal to one while the out-degree of all the other nodes in the same cluster must be
zero.
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As a consequence of Theorem 4, AGTSP simplifies as follows:

AGTSP’: min

 ∑
(⟨i,j⟩,⟨j,k⟩)∈A

Qijkyijk : (19)− (22)

 .

Now let us consider the pricing problem of D1. As we explained above, each feasible
tour in G corresponds to a tour in G that goes through each cluster exactly once. Therefore,
finding a negative reduced cost directed cycle for problem D1 is equivalent to solving a
modified version of problem AGTSP’ which visit each cluster at most once. By defining a
binary variable wi to indicate whether the Cluster Vi is on the cycle or not, the minimum
negative cost cycle is then found by solving the following problem:

Sub: min
∑

(⟨i,j⟩,⟨j,k⟩)∈A

Qijkyijk −
∑
i∈V

πi(1− wi)− z

∑
k∈V

∑
j∈V :

(⟨k,i⟩,⟨i,j⟩)∈A

ykij = wi ∀i ∈ V (23)

(20)− (22)

wi ∈ {0, 1}.

Considering the definition of the wi variables, one can obtain an equivalent formulation
for the pricing problem by replacing constraint (23) with the so-called resource constraint
(24) and removing variables wi from the model:∑

j,k∈V
(⟨k,i⟩,⟨i,j⟩)∈A

yjik ≤ 1 ∀i ∈ V. (24)

It should be observed that by forcing the solution of the pricing problem to be a cycle with
negative cost one can easily remove constraints (21) from the pricing model. Therefore,
finding a cycle with negative reduced cost is simply a matter of finding a path originating
and ending at each node ⟨i, j⟩ of graph G having a negative cost and satisfying the resource
constraint (24). Since dual variables π are defined on each cluster Vi, the problem of finding
a negative reduced cost cycle can be formulated as resource-constrained elementary shortest
path problem. Let q̄st denote the cost of the resource-constrained elementary shortest path
from origin node ⟨s, t⟩ to itself in G . The pricing problem can be written as:

min
⟨s,t⟩∈V̂

{qst}.

The solution of the subproblems provides either a certificate of optimality of the current
solution (λ, π, z) or a new column Cp that will be added to the master problem. It is worth
pointing out that solving the pricing subproblem to optimality is only needed to prove
optimality of the current primal and dual solutions; one can stop solving the subproblem
whenever a negative reduced cost column is found [23]. This happens because adding this
column to C̄ ensures that the new dual solution (π, z) will be different, and therefore the
termination of the algorithm.
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4.2. Stabilized column generation

Column generation methods usually suffer from slow convergence to the optimal solution
and tailing off effects. Primal degeneracy, dual degeneracy and instability in the behavior
of dual variables are well known to be the main causes of this behavior [24, 25].

To control the dual variables during the solution process, we use the stabilized column
generation approach proposed in [26]. This approach combines the box step method [27]
with a kind of descent method proposed in [28]. The box step method introduces a box
around the previous dual vector and modifies the master problem such that the feasible
dual space is limited to the area defined by these boxes, while the latter tries to adapt the
master problem so that the distance separating a dual solution from the previous optimal
dual solution is linearly penalized.

In order to present the idea, let us rewrite the restricted version of the master problem
D1, for C̄ ⊆ C, as the following model:

RD1:min
∑
C∈C̄

q(C)λC

s.t.
∑

C∈C̄:i∈C

λC ≥ 1 ∀i ∈ V (25)

(9), (10).

Note that since the set partitioning constraints admit negative dual values which can be
problematic for the sub-problem, we used a relaxed version of the problem as the first step
of the stabilization approach.

Consider the dual variables π associated with the constraints (25) and bound each πi

in the interval [δ−i , δ
+
i ]. These bounds are first given as parameters to the model and then

automatically updated during the process. The dual variable πi can take values outside the
given bounds, but the dual objective is then penalized by ε−i (δ

−
i − πi) if πi < δ−i and by

ε+i (δ
+
i − πi) if πi > δ+i . The dual of the problem RD1 then becomes:

SP:max z +
∑
i∈V

πi − ε−i w
−
i − ε+i w

+
i

s.t. z +
∑
i∈C

πi ≤ q(C) ∀C ∈ C̄

πi + w−
i ≥ δ−i ∀i ∈ V

πi − w+
i ≤ δ+i ∀i ∈ V

π,w−, w+ ≥ 0, z unrestricted.

The primal of the stabilized restricted master problem, and hence the dual of SP, is:
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SD1:min
∑
C∈C̄

q(C)λC +
∑
i∈V

−δ−i µ
−
i + δ+i µ

+
i

s.t.
∑

C∈C̄:i∈C

λC − µ−
i + µ+

i ≥ 1 ∀i ∈ V∑
C∈C̄

λC = 1

µ−
i ≤ ε−i ∀i ∈ V

µ+
i ≤ ε+i ∀i ∈ V

λ, µ−, µ+ ≥ 0.

This method is referred to as BoxPen stabilization since the bounds (δ−, δ+) on the
original dual variables π can be represented by a bounding box containing the current dual
solution. Note that the stabilized version of the problem D2 is the same as SD1 without the
convexity constraint and is called SD2. In order to use the stabilized models efficiently, one
must initialize and update the parameters correctly. In order to reduce the dual variables’
variations, select [δ−, δ+] to form a small box containing the current dual solution, and
solve the problem SD1 (SD2). At the first iteration, when no solution is available, the dual
variables π can be simply estimated. If the new π lies in the box [δ−, δ+], reduce its width
and augment the penalty given by ε− and ε+. Otherwise, enlarge the box and decrease
the penalty. The update could be performed in each iteration, or alternatively, each time
a dual solution of currently best value is obtained. In Section 5 we discuss more about the
updating process.

5. Computational experiments

In this section we present our computational experiments on the lower bound compu-
tations for the AQTSP. We used the AMPL modeling language [29] with Cplex 12.0.1 as
linear solver for the RMP and as a mixed integer linear solver for the pricing problem on
an Intel Core i5-2410M CPU with 2.30 GHz and 6 GB RAM in single processor mode.
We implemented the algorithms for solving the RLT and the LP models in C++ language.
In the following we present the test instances, the parameter setting of the stabilized col-
umn generation approach, and provide the comparison of the lower bounding approaches in
details.

5.1. Test instances

We considered six different benchmark sets introduced in [1].

• RandomClass: It consists of a class of randomly generated instances with size rang-
ing from n = 5 to n = 25. All instances are complete graphs with n vertices and
m = n(n − 1)/2 edges. The quadratic cost Qijk for (i, j), (j, k) ∈ A with i ̸= k is
defined as an integer number uniformly chosen within the set {0, 1, ..., 10000}.
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Table 1: Comparison of CG and SCG approaches in terms of CPU execution times on RandomClass data
set.

Size n=10 n=20

CG2 SCG2 CG1 SCG1 CG2 SCG2 CG1 SCG1

3.9 3.2 8.9 7.3 97.4 34.9 508.5 271.8

• ReloadClass: The random graphs G(V,A) with different number of nodes and arcs
are generated as follows: For each V with n ∈ {15, 20} arc (i, j), i, j ∈ V, i ̸= j
is present with probability p ∈ {1

2
, 1}. If an arc (i, j) is present, then it is colored

randomly with one of the colors in D = {1, . . . , d} where d ∈ {5, 10, 20}. Based on
the cost cts of changing from color t ∈ D to color s ∈ D, the following data set is
considered:

– ReloadClass1: For all (i, j), (j, k) ∈ A with colors t and s, respectively, Qijk =
cts = 1.

– ReloadClass2: For all (i, j), (j, k) ∈ A with colors t and s, respectively, Qijk =
cts where cst chosen uniformly at random in {1, . . . , 10}.

• RealClass1, RealClass2, RealClass3: Real instances, with n ∈ {6, . . . , 41},
arising in a computational biology applications [1, 2].

5.2. Stabilization parameter choice

We implemented the stabilized column generation approach using different sets of initial
values. In the following we present the results of some preliminary experiments whose
purpose was to initialize and update the parameters for both SD1 and SD2.

For the problem SD1, we initialized δ− and δ+ at −1000 and 1000 respectively. The
vector parameter ε− and ε+ were selected as −5 and 5 respectively and were kept fixed
throughout the solution process. We updated the parameter (δ−, δ+) from (−1000, 1000) to
(π̃ − 100, π̃ + 100), where π̃ is the current dual solution, only if the column returned by the
subproblem had a non-negative reduced cost and (µ−, µ+) ̸= (0, 0). The stopping criteria of
the stabilized column generation algorithm is r(C) ≥ 0 and (µ−, µ+) = (0, 0).

In order to find potentially good initial values of (δ−, δ+) for problem SD2, we first solved
the problem D2 with a feasible subset of cycles. By using the dual variables π̃ of problem
D2, we initialized (δ−, δ+) with (π̃ − 10, π̃ + 10). The vector parameter ε− and ε+ were
initially set to 0.0001. If the subproblem is able to find a negative reduced cost cycle, then
the values of ε− and ε+ were increased by 10%. However, when there was no more such
column and (µ−, µ+) ̸= (0, 0), the values of ε− and ε+ were decreased by dividing each
one by 100 and the parameter (δ−, δ+) were updated to (π̃ − 100, π̃ + 100), where π̃ is the
current dual solution of the SD2. The stopping criterion of the stabilized column generation
algorithm is the same as that of problem SD1.
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Table 2: Comparison of different lower bounding approaches on RandomClass data set.

Instance Gap(%) CPU Time CutGap(%)

n Opt. CLP1 RLT1 SCG2 SCG1 CLP1 RLT1 SCG2 SCG1 LP1 LP1+

5 12373.2 13.1 0.0 10.1 0.0 0.0 0.0 1.8 2.1 0.0 0.0
6 11883.1 13.4 10.1 10.8 10.1 0.0 0.0 1.8 1.5 0.0 0.0
7 13204.9 20.6 4.2 13.9 3.5 0.0 0.6 2.0 3.0 5.2 0.9
8 13363.4 24.3 9.2 16.2 3.6 0.0 1.9 2.1 3.2 9.0 4.7
9 13063.2 26.4 15.7 19.3 7.1 0.0 3.3 2.5 5.2 18.9 12.5
10 12921.5 27.0 19.5 19.0 3.3 0.0 7.8 3.3 7.4 20.9 14.3
11 12997.5 31.0 26.2 23.9 7.0 0.0 11.5 4.4 12.0 27.3 23.4
12 11629.5 25.0 21.7 16.7 6.3 0.0 15.7 5.8 10.9 20.8 19.3
13 12679.5 30.8 29.3 21.1 4.8 0.0 26.0 8.6 21.1 28.3 26.0
14 11838.3 30.9 29.5 23.9 10.2 0.0 35.1 10.0 20.7 29.2 25.8
15 12428.8 34.9 34.7 23.0 5.5 0.0 48.1 16.8 37.1 34.8 31.0
16 12135.7 36.3 36.3 27.8 8.4 0.0 81.4 16.6 47.3 36.5 34.0
17 11832.2 38.8 39.7 26.6 14.7 0.0 81.3 21.7 60.0 38.8 34.4
18 11662.2 36.7 37.9 26.7 4.8 0.0 109.2 24.4 119.2 36.7 33.2
19 12095.9 39.9 41.2 29.2 7.3 0.0 146.2 31.2 157.5 39.5 36.5
20 11802.8 41.1 42.9 30.5 6.2 0.0 182.6 34.9 271.8 41.0 37.1
21 11288.2 38.4 41.3 27.9 4.2 1.0 247.0 51.4 435.2 38.6 36.3
22 11741.0 41.0 44.6 32.3 10.4 1.0 317.7 51.6 480.2 40.8 38.0
23 11549.7 41.2 44.6 33.4 8.7 1.0 399.7 59.1 671.2 41.2 38.4
24 11239.1 41.5 46.0 31.3 9.4 1.0 503.2 84.0 877.8 41.4 39.7
25 11434.8 41.7 46.1 31.9 8.9 1.0 659.5 105.4 1698.3 41.7 40.3

In order to show the effectiveness of stabilization, we compare the computational time
of column generation to its stabilized version on two instances of different dimensions in
Table 1. Each row of the table reports the average computational time over ten instances
of the same size. CG1 and CG2 stand for Column Generation approach to the problem
SD1 and SD2 respectively. SCG1 and SCG2 are for the stabilized version of the CG1 and
CG2 respectively. The results show that stabilization is effective for both symmetric and
asymmetric instances.

5.3. Lower bound computation

As we proved in Theorem 4, if the column entering the basis corresponds to a tour, then
it is an optimal tour. Therefore, in our CG approach, a solution of the pricing problem,
which may contain a single cycle or multiple ones, is optimal for the master problem RD1 if
it covers all the nodes i ∈ V . Since looking for a single cycle in the pricing problem requires
some kind of subtour elimination constraint, we restrict the search to find a cycle (single or
multiple) with negative cost. Therefore, when no more new columns can be priced out, a
solution of the master problem RD1 gives a lower bound for the original problem. Note that
the optimal value of the problem RD2 always gives a lower bound for the original problem,
regardless of the solution being a single cycle or multiple ones.

In Tables 2 to 6 we present computational results of the lower bounding schemes for
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Table 3: Comparison of different lower bounding approaches on ReloadClass1 and ReloadClass2 data set.

Instance Gap(%) CPU Time CutGap(%)

n (p,c) Opt. CLP1 RLT1 SCG2 SCG1 CLP1 RLT1 SCG2 SCG1 LP1 LP1+

15 (5,5) 4.1 41.5 29.3 56.1 12.2 <1 22.9 5.1 1.5 25.6 12.2
15 (5,10) 6.5 20.0 13.8 20.0 9.2 <1 24.3 12.5 1.4 9.1 6.2
15 (5,20) 8.5 11.8 7.1 10.6 7.1 <1 27.5 18.9 1.4 3.1 0.0
15 (10,5) 0.4 100.0 100.0 100.0 100.0 <1 27.2 4.6 1.5 100.0 100.0
15 (10,10) 2.9 89.7 86.2 86.2 51.7 <1 27.1 4.9 1.8 79.7 55.2
15 (10,20) 5.1 29.4 27.5 33.3 9.8 <1 32.0 12.9 1.8 22.5 15.7

Ave. 4.5 48.7 44.0 51.0 31.7 25.8 9.2 1.5 40.0 31.5

20 (5,5) 3.2 71.9 71.9 81.3 40.6 <1 49.9 6.1 1.8 61.6 54.7
20 (5,10) 6.1 29.5 26.2 39.3 8.2 <1 57.3 12.8 1.9 24.3 18.0
20 (5,20) 9.3 16.1 12.9 17.2 5.4 <1 58.5 31.1 1.7 8.9 3.8
20 (10,5) 0.0 0.0 0.0 0.0 0.0 <1 68.5 6.8 1.9 0.0 0.0
20 (10,10) 2.4 100.0 100.0 100.0 91.7 <1 68.7 6.0 2.6 100.0 97.5
20 (10,20) 4.8 58.3 60.4 62.5 27.1 <1 66.7 7.4 2.8 56.5 41.9

Ave. 4.3 46.0 45.2 50.0 28.8 61.6 11.7 2.1 41.9 36.0

15 (5,5) 17.7 41.2 25.4 62.1 11.9 <1 24.7 5.6 1.5 30.5 22.1
15 (5,10) 23.3 26.6 58.8 27.5 8.6 <1 25.2 11.7 1.5 21.3 17.7
15 (5,20) 27.2 23.9 26.5 23.2 9.2 <1 23.3 12.7 1.4 18.1 12.0
15 (10,5) 2.1 100.0 100.0 100.0 100.0 <1 26.2 4.6 1.6 100.0 100.0
15 (10,10) 6.5 81.5 80.0 100.0 50.8 <1 27.0 5.0 1.8 79.1 59.8
15 (10,20) 11.7 47.9 45.3 47.9 17.1 <1 31.4 8.0 2.0 46.3 34.3

Ave. 14.8 53.5 56.0 60.1 32.9 26.3 7.9 1.6 49.2 41.0

20 (5,5) 8.3 69.9 68.7 89.2 25.3 <1 57.6 5.5 2.0 57.7 50.8
20 (5,10) 19.2 40.1 43.2 52.1 14.1 <1 68.4 9.4 1.9 33.0 25.2
20 (5,20) 26.8 25.4 51.5 23.1 7.5 <1 65.4 20.4 1.9 22.6 19.0
20 (10,5) 0.0 0.0 0.0 0.0 0.0 <1 74.7 6.2 2.1 0.0 0.0
20 (10,10) 4.5 100.0 100.0 100.0 100.0 <1 74.5 5.6 2.5 100.0 98.1
20 (10,20) 9.8 59.2 66.3 74.5 21.4 <1 73.9 7.7 2.9 58.8 44.5

Ave. 11.4 49.1 55.0 56.5 28.0 69.1 9.1 2.2 45.3 39.6

different test instances. We compare different lower bounding procedures proposed in the
paper in terms of average gap and average computational time. The formula we used to
compute the percent gaps is 100×(Opt−Lb)/Lb, where Lb stands for the value of the lower
bound. Each row of the tables reports the average results over ten instances of the same
size. Morover, we compare the bounding procedure proposed in the paper with bounds
presented in [6] in terms of average gap. The first one is the bound of LP1 formulation
obtained by dynamically separating the subtour elimination constraints (3) by means of
the LEMON Graph Library [30], while the second one LP1+ considers additional specific
valid inequalities to LP1. Since these results have been provided directly by the author [6],
computational times are not available.

Table 2 reports the results for RandomClass instances. The problem size n is found in
the first column of the table. The second column shows the average optimal values (Opt.)
of the 10 instances for each dimension. The next four columns, from left to right, give the
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Table 4: Comparison of different lower bounding approaches on RealClass1 data set.

Instance Gap(%) CPU Time

n Opt. CLP1 RLT1 SCG2 SCG1 CLP1 RLT1 SCG2 SCG1 LP1 (Gap(%))

20 14742 14.9 14.9 36.4 13.6 0.0 110.0 15.6 10.2 9.2
21 15514 14.9 14.9 35.7 13.7 0.0 134.0 17.9 11.3 9.8
22 16264 15.1 15.1 36.1 13.7 0.0 156.0 16.3 11.0 11.0
23 16919 14.9 15.1 35.4 13.8 1.0 186.0 15.4 12.8 9.8
24 17660 14.7 14.9 35.3 13.2 1.0 213.0 17.9 13.4 10.8
25 18327 14.6 14.7 35.1 12.9 2.0 247.0 23.7 14.2 12.0
26 19046 14.4 14.8 34.6 13.4 3.0 303.0 25.6 15.2 9.0
27 19687 14.1 14.4 34.6 12.6 3.0 359.0 26.3 22.1 10.6
28 20408 14.0 14.4 33.9 12.3 6.0 427.0 23.3 22.5 12.4
29 21123 13.9 14.5 34.1 12.3 6.0 475.0 28.2 25.4 10.2
30 21785 13.6 15.1 33.6 12.0 6.0 556.0 33.4 31.9 12.1
31 22478 13.6 14.5 33.6 11.8 9.0 632.0 33.8 38.8 12.1
32 23166 13.7 15.7 33.4 11.8 7.0 736.0 38.0 39.7 11.0
33 23894 13.7 15.3 33.5 11.6 9.0 829.0 31.5 46.0 12.3
34 24600 13.8 15.3 33.3 11.7 8.0 899.0 34.5 96.2 10.5
35 25337 13.8 15.9 33.4 11.7 12.0 970.0 37.1 71.6 10.6
36 26109 14.0 15.6 33.4 11.4 19.0 1107.0 48.2 163.7 9.6
37 26854 14.1 16.0 33.7 11.6 17.0 1262.0 56.7 130.8 12.9
38 27604 14.2 16.8 33.6 11.9 19.0 1406.0 50.6 128.9 13.0
39 28389 14.3 17.4 33.9 11.6 26.0 1581.0 50.9 229.3 13.1
40 29109 14.5 17.6 33.8 11.8 22.0 1791.0 62.3 235.6 12.4
41 29844 14.5 18.3 33.9 12.1 24.0 1993.0 55.1 287.5 12.9

percent gaps obtained using the compact formulation CLP1, the dual-ascent implementation
of RLT1, the Stabilized Column Generation approach applied to the problem SD2 (SCG2),
and the Stabilized Column Generation approach applied to the problem SD1 (SCG1). The
CPU execution times of each approach are given in the next four columns of the table. The
last two columns of the table report the percent gaps obtained using two lower bounds LP1
and LP1+ presented in [6].

As we can observe from the results in Table 2, SCG1 outperforms the best literature
bounds LP1 and LP1+ when the size of the instances grows, and the difference becomes
more evident for the largest instances. Also SGC2 has an interesting behavior since it
provides bounds that are comparable with LP1 and LP1+, but even better for the largest
instances. Though it does not provide a bound as good as SCG1, its computational times
are much shorter, especially for large instances. Note also that the results provided by RLT1
are not much better from those of the compact linearized formulation CLP1 when the size
is over a certain threshold, and actually in some cases it is even worse. The reasons can
be stated as follows: First, the dual-ascent strategy applied to solve the Lagrangian dual
problem does not actually calculate the RLT1 bound, but approximates it. In fact the dual
heuristic may stopped after reaching a sub-optimal solution. Although we used a simulated
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Table 5: Comparison of different lower bounding approaches on RealClass2 data set.

Instance Gap(%) CPU Time

n Opt. CLP1 RLT1 SCG2 SCG1 CLP1 RLT1 SCG2 SCG1 LP1 (Gap(%))

20 14703 15.0 15.1 40.9 13.7 0.0 111.0 21.1 11.7 11.4
21 15480 15.0 15.0 40.2 13.7 0.0 132.0 23.2 10.8 9.2
22 16233 15.2 15.3 40.8 13.8 1.0 154.0 26.5 12.6 11.3
23 16892 15.0 15.3 40.1 13.8 1.0 188.0 27.7 15.0 12.1
24 17638 14.7 14.9 40.1 13.3 2.0 218.0 24.6 14.8 9.6
25 18309 14.7 14.9 39.9 13.0 1.0 250.0 24.7 17.7 10.6
26 19033 14.5 14.9 39.5 13.4 4.0 297.0 30.8 15.8 11.3
27 19677 14.2 14.5 39.5 12.6 3.0 354.0 33.8 25.0 10.3
28 20402 14.1 14.8 38.9 12.4 4.0 409.0 40.2 23.8 12.4
29 21121 14.0 14.3 39.1 12.3 6.0 462.0 38.9 28.7 9.9
30 21793 13.7 15.1 38.7 12.0 7.0 550.0 42.8 33.4 12.2
31 22485 13.7 15.2 38.8 11.8 6.0 616.0 40.6 35.1 9.7
32 23177 13.7 15.8 38.6 11.9 8.0 719.0 50.7 39.6 11.4
33 23909 13.8 15.7 38.7 11.6 10.0 805.0 65.3 40.9 10.3
34 24619 13.8 16.1 38.6 11.7 10.0 922.0 64.4 69.2 10.0
35 25360 13.8 16.1 38.7 11.7 9.0 1029.0 66.4 121.8 9.6
36 26136 14.0 15.8 38.7 11.4 15.0 1183.0 78.8 133.2 9.6
37 26885 14.2 16.5 39.0 11.6 16.0 1270.0 75.1 125.0 12.9
38 27640 14.2 17.1 38.9 11.9 16.0 1423.0 75.9 191.7 11.8
39 28429 14.4 16.4 39.2 11.6 19.0 1655.0 90.4 194.1 11.9
40 29153 14.5 18.2 39.2 11.8 20.0 1819.0 96.0 124.4 12.4
41 29891 14.6 18.1 39.3 12.1 24.0 2002.0 110.1 198.1 12.2

annealing step to shake the dual-ascent bound calculation out of local optima as proposed
in [16], it was not efficient. The second and most important reason is in using the Gilmore-
Lawler type procedure to solve the subproblem (13). When solving a subproblem for an
arcs (k, l) (an ATSP containing a fixed arc (k, l)) the optimal solution ȳ of subproblem will
be implied by an ATSP in which only the cost of two arcs adjacent to (k, l) is considered,
namely the arcs (i, k) and (l, j) with the smallest costs Qikl and Qklj. This fact suggests
how underestimated the costs Dkl may be for the computation of the Gilmore-Lawler lower
bound. Another interesting result observed from Table 2 is the quality of bounds obtained
using the compact formulation CLP1. The results indicate that the duality gaps implied
by the LP1 formulation of Fischer [6] and the compact formulation CLP1 are competitive
(especially when the dimension of the problem is increased). This shows that the main
difficulty of the AQTSP lies in the quadratic structure of the objective function rather than
the TSP structure.

Table 3 presents the computational results for the ReloadClass1 and ReloadClass2
instances. The first three columns indicate the problem size (n), the probability and number
of colors (p, c), and the average optimal values (Opt.) of 10 instances for each dimension.
The next four columns, from left to right, give the percent gaps obtained by CLP1, RLT1,
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Table 6: Comparison of different lower bounding approaches on RealClass3 data set.

Instance Gap(%) CPU Time

n Opt. CLP1 RLT1 SCG2 SCG1 CLP1 RLT1 SCG2 SCG1 LP1 (Gap(%))

20 14597 14.6 14.7 46.2 13.3 1.0 114.0 17.8 12.0 11.7
21 15391 14.6 14.8 45.9 13.1 1.0 134.0 17.6 12.9 11.5
22 16163 14.8 14.9 46.4 13.4 0.0 154.0 17.9 13.0 10.8
23 16840 14.6 14.8 46.0 13.4 1.0 187.0 23.5 13.3 11.1
24 17605 14.3 14.5 46.0 12.8 2.0 213.0 21.9 15.4 12.5
25 18296 14.3 14.5 46.1 12.6 2.0 255.0 24.3 15.8 9.9
26 19039 14.1 14.5 45.5 13.0 4.0 305.0 24.7 19.8 11.2
27 19704 13.7 14.2 45.9 12.1 2.0 352.0 27.7 18.4 11.3
28 20449 13.7 14.2 45.4 12.0 5.0 415.0 30.3 24.9 10.6
29 21190 13.6 14.0 45.6 11.9 4.0 471.0 31.5 27.0 10.2
30 21883 13.3 14.7 45.3 11.6 6.0 545.0 34.4 26.9 11.9
31 22596 13.2 14.4 45.5 11.4 7.0 618.0 34.9 36.1 11.8
32 23310 13.3 14.5 45.3 11.4 9.0 732.0 36.0 34.0 10.1
33 24064 13.4 15.0 45.5 11.2 9.0 825.0 46.8 41.4 9.9
34 24796 13.4 15.2 45.5 11.3 9.0 906.0 52.4 44.1 10.2
35 25559 13.4 15.2 45.6 11.3 14.0 990.0 53.7 85.0 11.6
36 26358 13.6 15.3 45.7 11.0 15.0 1114.0 61.1 69.5 10.9
37 27129 13.7 15.8 46.0 11.2 12.0 1282.0 63.0 106.0 12.1
38 27906 13.8 16.0 46.0 11.5 22.0 1409.0 61.4 194.2 11.2
39 28718 13.9 16.2 46.3 11.2 20.0 1606.0 63.9 189.1 12.8
40 29465 14.1 16.4 46.3 11.4 25.0 1784.0 92.1 213.6 13.0
41 30227 14.1 16.5 46.4 11.7 28.0 1960.0 88.7 276.9 13.1

SCG2, and SCG1. The CPU execution times of each approach are given in the next four
columns of the table. The last two columns report the best known literature lower bounds
LP1 and LP1+ for the ReloadClass presented in [6]. The results in this table confirm
the indications arising from the random instances, namely that SCG1, with the exception
of few classes of instances, is much better than all the other bounds, however this time the
computational times of SCG2 are not so competitive. Also in this case the results of RLT1
appear unattractive, but as in random instances the gaps implied by compact formulation
CLP1 are competitive with those of LP1.

Tables 4 to 6 present the computational results for RealClass1, RealClass2 and
RealClass3 instances, respectively. The structure of the tables is the same as Table 2.
For these data sets, the LP1+ bounds are not available. In this case we can observe that
the LP1 bound is tighter with respect to the previous classes of instances. The SCG1 is
comparable with LP1 (especially when the size of the instances grows), but SCG2 is the
worst. Considering the CPU times, the RLT1 results are still unattractive, while the CLP1
provides the best results.
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6. Conclusions

In this paper we studied different lower bounding scheme for AQTSP. We proposed a cy-
cle formulation for the problem and solved the resulting LP problem by a Column Generation
approach. We presented a linearized formulation proposed in the literature and developed
some reformulations to it. Moreover, we introduced a mixed 0-1 linear programming for-
mulation based on the reformulation-linearization technique and developed a Lagrangian
relaxation algorithm based on it. We have shown how the linearized formulations can be
applied to finding the negative reduced cost in the pricing problem of the Column Gener-
ation approach. To overcome the problems of instability in the behavior of dual variables
of the presented master problem, we used a stabilized column generation approach. The
specific main findings of the work presented in computational experiments are very interest-
ing. First, the linearized formulation of AQTSP combined with compact formulation (MTZ)
of Miller, Tucker and Zemlin [10] for the ATSP provides the bounds which (in contrast to
ATSP) are competitive to those obtained by the linearized formulation combined with the
Dantzig-Fulkerson-Johnson formulation [9]. Second, the dual-ascent algorithm applied to
RLT representation of AQTSP (in contrast to QAP) does not provide a good approxima-
tion of the optimal solution of the problem. Therefore, the lower bound obtained by a RLT
representation of AQTSP is unattractive. And finally, our column generation approach is
very promising as it outperforms the others in almost all the test instances.
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