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Abstract 
The Cyclic Inventory Routing Problem (CIRP) is concerned with finding a cyclic schedule for the 

distribution of a single product to a number of customers. The problem involves multiple vehicles 
that can be dispatched several times during their shift. Each customer has a local inventory capacity, 
a constant consumption rate and stockouts are not allowed. The goal is to compose multiple trips 
which serve all customers and minimize the combination of transportation, inventory and vehicle 
costs, in a cyclic distribution pattern. Each trip can have a different frequency in the vehicle 
schedule. This is an important aspect that makes this so called CIRP, with its non-linear non-convex 
objective function and a set of non-linear constraints, more complex than the basic Inventory 
Routing Problem (IRP). 

 
Our solution approach decomposes the problem into two subproblems: routing and scheduling, 

which are dealt with in an iterative way. For each subproblem, we propose a new heuristic. Our first 
heuristic composes trips, based on the cost estimation of moving customers from one trip to 
another (routing). The second heuristic tries to combine these trips in an acceptable cyclic schedule 
(scheduling). In order to search the feasible area efficiently, our heuristic branches one-by-one on 
the edges of obtained local optima. The proposed algorithm is capable of finding high quality 
solutions in a reasonable time. When the algorithm is tested on 80 available benchmark instances, 
the best known solution is improved for 60 of these instances and on average a 3.5% improvement is 
obtained compared to previously best known results. 

 
Keywords: Cyclic inventory routing problem, decomposition heuristic, two-phase iterative 

algorithm, saving-based routing heuristic, infinite-time cyclic scheduling 
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1. Introduction 
Over the last decades, there has been an increased interest in the integration of logistics and 

resource management, both within and between companies. This has led to the emergence of 
concepts such as Enterprise Resource Planning (ERP), Supply Chain Management (SCM), Vendor 
Managed Inventory (VMI), etc. The main idea in these concepts is the collaboration and integration 
among different stages in the supply chain. Therefore, decisions for the different stages are 
integrated in order to obtain a better overall performance. Focusing on VMI, the distributor faces 
the problem of integrating its vehicle routing decisions with the inventory management at the 
customers. This integrated problem is known as the Inventory Routing Problem (IRP).  

 
In this paper, we discuss a specific variant of the IRP, called the cyclic IRP (CIRP) which deals with 

the long-term decision making rather than the rolling horizon modeling concept that normally arise 
in the tactical/operational decision making process. CIRP belongs to the class of long-term and 
infinite planning horizon inventory routing problems. As a result, the cycle time of the vehicles will 
be an important decision variable. The cyclic replenishment pattern was first introduced by Larson 
(1988). This can be considered as a strategic level IRP that aims to minimize the required fleet size 
over a long period. He studied a cyclic IRP for the New York City Department of Environmental 
Protection that planned a barge fleet acquisition. Raa (2006) solved a cyclic IRP for a paper goods 
distributor in the Benelux region (Europe) to set up long-term cyclic replenishment schemes from its 
single warehouse to a set of customers with stable consumption rates. Another example of the 
application of the long-term IRPs is in the ship fleet sizing for a liner shipping company with fixed 
long-term cargo contracts (Christiansen et al. 2007). Ekici et al. (2015) performed a computational 
study to find cyclic delivery schedules in a perpetual time horizon for real-life instances provided by 
an industrial gases manufacturer. 

 
Together with clearly defining the problem and presenting the first complete mathematical 

formulation of the problem (with all its practical assumptions), we will in this paper also provide 
some insights in the complexity of the problem. These include the fact that the vehicles are allowed 
to perform multiple trips on a single day, the importance of the compatibility of the trips in a vehicle 
schedule, and the bounds on cycle time of the vehicle schedule. Based on these insights, we will 
then develop a heuristic solution approach for the CIRP. This solution approach is based on 
decomposing the problem in a routing and a scheduling subproblem. These two subproblems are 
iteratively solved in separate phases. Within this approach, one can firstly assign the customers to a 
set of trips, which is the routing problem, and then estimate the minimum required number of 
vehicles to handle the trips, which is similar to a bin packing problem. In other words, a set of 
feasible trips is constructed and then the trips will be assigned to vehicles and the optimal frequency 
will be determined. Our algorithm outperforms existing algorithms in both the quality of the 
solutions and the calculation time. Another interesting outcome of our algorithm is that high quality 
initial solutions are calculated in less than half a second. All this makes it possible to apply the 
algorithm in practice.  
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The rest of this paper is organized as follows. In Section 2, the CIRP and its practical assumptions 
are defined in detail. In Section 3, a comprehensive discussion about the state of the art is given. In 
Section 4, we present the mathematical model of the CIRP. In Section 5, our algorithm is presented. 
Section 6 discusses the computational experiments and in Section 7 our contributions and findings 
are summarized and we suggest some directions for further research and real world applications. 
For the reader’s convenience we present a summary of all notations in the Appendix A.1. 

 

2. Problem definition 
CIRP deals with a set ܰ of ݊ customers ݅ ∈ ܰ with deterministic and constant demand rates, ݀௜ 

units per day for a single commodity and capable of maintaining a local inventory with the capacity 
of ݇௜ units. A single depot, 0, has to distribute the commodity among the customers in a long-term 
(infinite) planning horizon. Handling time (ߠ௜) and cost (߮௜) at the customers and the depot (hours 
(currency) per delivery and hours (currency) per dispatch, respectively), as well as the inventory cost 
at the customers, ߟ௜ (currency per unit per day) are also considered. Each customer should be served 
with equidistant intervals between services. In addition, travel times, ݐ௜௝, between the customers are 

considered stable over time. This assumption implies that the vehicle route and delivered quantities 
remain valid (and can be repeated) over the planning horizon. A homogeneous fleet of vehicles, ݒ ∈ ܸ, each with a capacity of ߢ units, is available. A maximum driving time per day, ܪ, is considered 
for each vehicle. A fixed cost (߰) is considered for using each vehicle and the size of the fleet is a 
decision variable. Every route over a sub-set of customers should start from and end at the depot. 
The Traveling Salesperson Problem (TSP) route will be considered as a trip. Each customer is served 
in a cyclic manner (with equidistant intervals between services). As such, a trip cycle time, ߁௣, is 
introduced, meaning that trip ݌ is performed once every  ߁௣ time units. Stockouts and split delivery 
are not allowed and each customer will always be replenished by the same vehicle, in the same trip. 
This means every feasible solution for the problem is a fixed partition (Anily & Bramel 2004; Zhao et 
al. 2007) of the customers into different trips (but not necessarily a geographical partition).  

 
In the CIRP, for each trip cycle time, a lower bound and an upper bound can be determined. The 

minimum trip cycle time, ߁௠௜௡௣ , must be greater than or equal to the shortest travel time required to 

visit all selected nodes. Furthermore, in each trip, the sum of the deliveries over all visited nodes is 

limited by the vehicle capacity. More precisely, the trip cycle time is bounded from above by ߁௠௔௫௣ , 
based on the capacity of the vehicle and the nodes visited in the trip. For each trip, the ideal cycle 
time would be the “economic-order-quantity” (EOQ) cycle time (Blumenfeld et al. 1985; Aghezzaf et 

al. 2006). However, the EOQ cycle time can only be applied if it lies between ߁௠௜௡௣  and ߁௠௔௫௣ . If the 

EOQ cycle time is longer than ߁௠௔௫௣ ௠௔௫௣߁ ,  is the optimal cycle time; if it is shorter than ߁௠௜௡௣ ௠௜௡௣߁ ,  is 

the optimal cycle time. Note that changing the selection of nodes for a trip obviously changes the 
values for these lower and the upper bounds together with the EOQ cycle time. 

 
Every vehicle can make multiple trips per day as long as the driving time limit is not violated, 

assuming an average vehicle speed of ߪ (distance/hour) and the vehicle operating costs of ߜ 
(currency/distance). The concept of “multi-trips”, has been proposed for the CIRP first by Aghezzaf 
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et al. (2006). More generally, Fleischmann (1990) suggests that allowing multi-trips to happen can 
significantly reduce vehicle numbers and therefore the replenishment costs. In the multi-trip 
distribution scheme of the CIRP, each trip can have its own frequency. The generalized concept of a 
multi-frequency multi-trip is called a “vehicle schedule”. In each schedule of vehicle ݒ , a subset of 
trips ݌ ∈ ܲ is repeatedly performed by the same vehicle. In another word, there is also a fixed 
partition of the trips into different vehicle schedules. Note that each trip can be executed a different 
number of times per vehicle cycle ܶ௩, meaning that trip ݌ is performed ܶ௩/߁௣ times per vehicle 
cycle. All vehicle schedules together are called a “distribution pattern”.  

 
For this class of problems the appropriate objective function to be minimized contains the long-

run distribution and inventory costs. Hence the objective function should be in form of the rate over 
a time period (currency/day) as described in Aghezzaf et al. (2006). The cost rate includes the fixed 
operating cost per vehicle, vehicle transportation costs, cargo handling costs (loading and unloading) 
at the depot and customers, and inventory cost at the customers. In order to solve this problem, 
three important decisions need to be taken: 

 The assignment of all customers to trips (and the order of visiting these customers per 
trip);  

 The optimal cycle time for each trip that allows to avoid stockouts at the customers and 
minimizes the costs; and 

 The assignment of trips to the vehicles and the distribution pattern for all vehicles. 
 

3. Literature 
In this section, we first extensively situate the (C)IRP in the state of the art and then we discuss 

its features making it a complex problem to tackle. Finally, a number of solution techniques for the 
CIRP and its most closely related variants will be discussed.  

 
The severe economic environment pressure in 1979 with both recession and double digit 

inflation was the main reason that motivated Air Products and Chemicals, Inc. top management to 
seek for possible improvement in integrating inventory management and vehicle scheduling and 
dispatching within their industrial gas distribution system at their customer locations. This led to the 
early works on the IRP as described by Bell et al. (1983) based on the recognition of the fact that in 
the real world, inventory costs should play a role in routing problems. Although they considered the 
joint decision of inventory management and routing decisions over time periods, they did not 
consider the inventory holding costs in the objective function. Federgruen & Zipkin (1984) were the 
firsts who attempted to integrate the inventory and routing in a single nonlinear mixed integer 
model. They considered a continuous time inventory cost function and a single delivery to each 
customer during the planning period. Very soon, the trade-off between routing and inventory costs 
suggested researchers (Blumenfeld et al. 1985; Burns et al. 1985) to use the Economic Order 
Quantity (EOQ) model in routing problems. They considered distribution, inventory and production 
set-up costs in a constant demand rate environment. Also, they proposed the use of approximation 
methods for TSP route estimation in their work. Gallego & Simchi-Levi (1990) showed that when the 
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EOQ for the customers are close to the vehicle capacity, direct delivery is an efficient long-term 
policy. 

 
The basic IRP assumes that adequate vehicles are available, such that the problem of assigning 

trips to vehicles is simply ignored. A trade-off between transportation and inventory costs is 
considered, without taking fixed vehicle costs into account (Coelho et al. 2014). The problem of 
integrating inventory and distribution decisions has been approached in different ways depending, 
among others, on inventory policies, service level restrictions, and the time horizon considered. 
Several extensive literature reviews on IRPs appeared in the last two decades to summarize the state 
of the art. Some of these reviews are Kleywegt et al. (2002), Adelman (2004), Moin & Salhi (2007), 
Andersson et al. (2010), Schmid et al. (2013), Coelho et al. (2014) and Papageorgiou et al. (2014). IRP 
and its variants are now well-developed. The majority of the IRP literature may be classified into 
models of continuous time (Anily & Federgruen 1990; Gallego & Simchi-Levi 1990; Aghezzaf et al. 
2006), usually with a constant demand rate over an infinite horizon, and models in discrete time 
(Bertazzi et al. 2002; Campbell & Savelsbergh 2004; Li et al. 2010), with a finite horizon and mostly 
varying demand for the customers. For the first class of models with continuous time, the visit 
frequency is normally modeled as a continuous decision variable that introduces a nonlinear term to 
the objective function (Francis et al. 2006). Naturally, the objective function in this class of models 
with infinite time horizon often targets minimizing the long-run average, or mean average, costs 
involved (Moin & Salhi 2007). Several models for the case of an infinite horizon have also been 
developed. Burns et al. (1985) are among the first to consider an inventory replenishment problem 
with vehicle routing costs for an infinite horizon and one warehouse multiple retailer system. 

 
One of the many variants of the IRP that has been considered is the cyclic IRP (Aghezzaf et al. 

2006). As mentioned in the introduction, this problem is actually an IRP with an infinite planning 
horizon and a constant demand rate, requiring a decision on the cycle time of visiting each 
customer. Therefore, it has both the complexity of IRPs and cyclic scheduling problems (Levner et al. 
2010; Raa 2015). According to Schmid et al. (2013) and Lahyani et al. (2015), the CIRP can be 
classified as a rich routing problem and is, as previously discussed, another attempt to close the gap 
between vehicle routing models and reality. Viswanathan & Mathur (1997) proposed a CIRP for a 
stationary nested joint replenishment policy with multiple products and deterministic demand rates. 
Specifically they considered equally spaced replenishments for the customers. But they did not 
assume a fixed vehicle cost in the objective function of their model. Zhao et al. (2007) present a fixed 
partition policy for the CIRP, in which the replenishment interval of each of the customers’ partition 
region as well as the depot is accorded to the power-of-two principle. Ekici et al. (2015) solve a CIRP 
with a simpler objective function that only considers the variable transportation cost which yields to 
the minimization of the average transportation / routing cost per day. Zenker et al. (2015) 
considered a CIRP when all customers are located on a line that may occur in liner shipping (when 
feeder ships service inland ports along a stream) and in facility logistics (when tow trains deliver part 
bins to the stations of an assembly line). Raa (2015) discusses a subproblem of the CIRP in which the 
set of routes that need to be repeated in an infinite time horizon are considered given. The route 
frequencies can be adjusted for the optimization purposes. The objective is to minimize the overall 



 

 
6 

 
 

cost rate, including the fixed vehicle costs, route-specific costs and inventory costs at the customers 
being periodically replenished. The last two cost items depend on the selected/modified frequency 
of the routes within a lower and upper bound for the frequencies. Similar to what Archetti et al. 
(2007) and Solyali & Süral (2011) proposed for a single vehicle case of the IRP, the Single-Vehicle 
Cyclic Inventory Routing Problem (SV-CIRP) occurs naturally as a subproblem of the CIRP. This is 
when one vehicle is considered for replenishing and when not all customers need to be visited 
(Zhong & Aghezzaf 2011; Aghezzaf et al. 2012; Vansteenwegen & Mateo 2014). 

 
In order to assure that IRP solutions are also acceptable for practitioners, “consistency” features 

are introduced. Consistency is discussed extensively in Coelho et al. (2012). One example is that 
irregular visits to customers should be avoided. As we will discuss further in this section, the CIRP 
model proposes a cyclic and fixed visit schedule for each customer. Another consistency feature is 
that customers prefer no large variations in the amounts delivered. The CIRP model guarantees 
equal delivery quantities for each customer. A third element is that different visits to a certain 
customer should be performed by the same driver (or in terms of the mathematical modeling, the 
same vehicle). Again, the CIRP assumes a fixed partition of the customers and assigns each subset to 
one driver (vehicle). In addition to the consistency features, as mentioned before, the CIRP model 
takes fixed vehicle costs into account and also the fact that a single vehicle can make more than one 
trip in a certain period. 

 
CIRP has some more complicating features; as the demand rate of each customer is assumed to 

be constant, the time between two visits to a customer (visiting frequency) also determines the 
amount that should be delivered. This significantly complicates the vehicle capacity constraint. 
Dividing the customers in trips and integrating this with assigning trips to the minimum number or 
required vehicles is highly complex. The problem of assigning customers to different trips and trips 
to vehicles and deciding on the cycle time for the trips and vehicles is a real challenge. Moreover, the 
problem of assigning trips to vehicles and of making a trade-off between transportation, inventory 
and fixed vehicle costs should be solved (Raa 2015). Together with an infinite planning horizon, this 
will result in a CIRP, with a cyclic distribution pattern for each vehicle. This distribution pattern 
consists of different trips with different frequencies (Aghezzaf et al. 2006). The latter is an important 
aspect of the CIRP which distinguishes it from other variants of the IRP. Also, when inventory 
capacities at the customers are smaller than the vehicle capacity, the IRP becomes significantly more 
difficult (Bertazzi et al. 2008). In addition to all these, as we will discuss, the CIRP objective function 
is nonlinear, non-continuous piecewise and therefore, non-differentiable. That is why solving the 
CIRP is highly complex (Haughton 2013). 

 
In Raa & Aghezzaf (2009), a heuristic algorithm based on column generation is implemented to 

solve the CIRP. Considering a cyclic planning approach where a long-term distribution pattern can be 
derived, they have developed an algorithm allowing vehicles to perform multiple trips. Initially, 
customers are partitioned over vehicles using a column generation algorithm. Then, for each vehicle, 
the set of assigned customers is partitioned over different trips for which frequencies are then 
determined. For each partition of customers over trips and each combination of trip frequencies, a 
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delivery schedule is then made to check feasibility. This is the state-of-the-art approach for the CIRP. 
The SV-CIRP is also approached by the researchers in order to develop exact and metaheuristic 
algorithms for the solution of this problem. As the first step in this process, the formulation of the 
SV-CIRP removes the nonlinearity in the constraints of the original subproblem formulation. 
However, the objective function is inherently nonlinear and remains nonlinear in the proposed 
formulation. Nevertheless, Aghezzaf et al. (2012) succeeded to develop an exact algorithm for the 
SV-CIRP. Average computational times for solving small test instances (only 20 customers) by the 
exact method vary from around a quarter to one hour or more. The complexity of the problem 
makes it very hard to solve large instances to proven optimality in most cases. Zhong & Aghezzaf 
(2012) and Vansteenwegen & Mateo (2014) presented heuristic algorithms to reach near optimum 
solutions for the SV-CIRP. 

 

4. Mathematical model 
CIRP assumptions were initially proposed by Larson (1988) and Viswanathan & Mathur (1997). 

Aghezzaf et al. (2006) added the multi-trip concept to the model and further Raa and Aghezzaf 
(2009) considered the case of cargo handling (loading and unloading) times both at the depot and 
customers, although the associated costs were already considered in Aghezzaf et al. (2006). Also, 
Raa and Aghezzaf (2009) added the customer inventory capacities and maximum driving time for 
the vehicles in their study. These practical assumptions make the mixed integer model very 
complicated. That is probably why Raa and Aghezzaf (2009) only presented the (lower and upper) 
bounds on the vehicle cycle time rather than the entire model. As an attempt to close the modeling 
gap, here we present the nonlinear non-convex mathematical formulation of the problem (CIRP). To 
ease the reading of the text we use node instead of customer from this point forward in the paper. 

 
Let ௣ܰା be the set of nodes (݅ ∈ ௣ܰ and the depot) in trip ݌ ∈ ௩ܲ, where ௩ܲ is the set of trips in 

the schedule of vehicle ݒ ∈ ܸ. Let the decision variable ݔ௜௝௣  be a binary variable equal to 1, if node ݅ ∈ ௣ܰା was visited immediately before node ݆ ∈ ௣ܰା in trip ݌ ∈ ௩ܲ  by the vehicle ݒ ∈ ܸ, and 0, 

otherwise. Constraints (1) limit the in-degree to one for all vehicles and incoming arcs of each node. 
Constraints (2) balance the in-degree and out-degree for all nodes. Also, constraints (1) and (2) 
together prevent the split delivery and force each node to belong to exactly one trip and therefore 
only one vehicle schedule. This implements the driver consistency, discussed in the literature 
section. Constraints (3) state that for each trip we need a vehicle to be dispatched from the depot. 

 ෍ ෍ ෍ ௜௝௣௜∈ே೛శ௣∈௉ೡ௩∈௏ݔ = 1                                           ∀ ݆ ∈ ܰ                                     (1) 

෍ ௜௝௣௜∈ே೛శݔ − ෍ ௝௞௣ݔ = 0                        ∀ ݆ ∈ ௣ܰା, ݌ ∈ ௩ܲ, ݒ ∈ ܸ                      (2)௞∈ே೛శ  

଴௝௣ݔ − ௩ݕ ≤ 0                                          ∀  ݆ ∈ ܰ, ݌ ∈ ௩ܲ, ݒ ∈ ܸ                       (3) 

 

Suppose that the decision variable ݖ௜௝௣  is the sum of demand rates (units per day) of the 

remaining nodes in a trip ݌ ∈ ௩ܲ  served by vehicle ݒ ∈ ܸ when it travels to node ݆ ∈ ௣ܰା immediately 
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after it has visited node ݅ ∈ ௣ܰା. This variable equals zero when the trip is not served by vehicle ݒ ∈ ܸ or the vehicle is returning back to depot after visiting the last node in the trip. Constraints (4) 
are the flow conservation constraints assuring that the difference in cumulated demand rates of 
remaining nodes before and after visiting a certain node will be equal to the demand rate of that 

node. These constraints also prevent sub-tours. Constraints (5) relate ݖ௜௝௣  and ݔ௜௝௣  by forcing ݔ௜௝௣  equal 

to 1 if ݖ௜௝௣  has to accommodate some demand. Every execution of the trip ݌ will be done with the 

same ݖ௜௝௣  forcing the consistency in the delivered quantities to the customers. 

 ෍ ෍ ෍ ௜௝௣௜∈ே೛శ௣∈௉ೡ௩∈௏ݖ − ෍ ෍ ෍ ௝௞௣௞∈ே೛శ௣∈௉ೡ௩∈௏ݖ = ௝݀                      ∀ ݆ ∈ ܰ                                     (4) 
௜௝௣ݖ − (෍ ݀௞௞∈ே ௜௝௣ݔ( ≤ 0                                          ∀ ݅, ݆ ∈ ܰା, ݌ ∈ ௩ܲ, ݒ ∈ ܸ                    (5) 

 
Each trip (݌ ∈ ௩ܲ) schedule has limits on its cycle time, ߁௣ ∈ ℕ, which is expressed in days and is 

a decision variable. Constraints (6) impose, for each trip ݌ ∈ ௩ܲ, a maximum, ܪ, on the sum of the 
driving time for the TSP route and the cargo handling (loading at the depot and unloading at the 
nodes) time for visiting all its nodes. This also implies a lower bound of 1 day for each trip cycle time 
(1 ≤  ௣). Furthermore, in each trip, the sum of the deliveries over all visited nodes is limited by the߁
vehicle capacity. Also, the trip cycle time is bounded from above by the capacity of the vehicle and 
the nodes visited in the trip. The nonlinear constraints (7) and (8) introduce these upper bounds for 
the trip cycle time. Capacity of the vehicle in carrying the cumulative demand of the nodes in the trip 
is considered in constraints (7) forcing the vehicle to visit all the nodes in its schedule before the 
stockout. Each node’s inventory capacity also imposes a similar limit to the maximum duration of the 
trip cycle time (constraints 8). Constraints (8) also force equal trip cycle times of ߁௣ for each trip ݌ or 
the consistency in customer visit spacing.  

 ෍ ෍ ௜௝௣௝∈ே೛శ௜∈ே೛శݔ௜௝ݐ + ෍ ௜௜∈ே೛శߠ ≤ ݌ ∀                          ܪ ∈ ௩ܲ, ݒ ∈ ܸ                             (6) 

଴௜௣ݖ௣߁ ≤ ݅  ∀                                             ߢ ∈ ௣ܰ, ݌ ∈ ௩ܲ, ݒ ∈ ௣݀௜߁ (7)                      ܸ ≤ ݇௜                                            ∀  ݅ ∈ ௣ܰ, ݌ ∈ ௩ܲ, ݒ ∈ ܸ                      (8) 

 
There are also some limits associated with the vehicle (ݒ ∈ ܸ) schedule cycle time, ܶ௩ ∈ ℕ, 

which is expressed in days as well and is a decision variable. The nonlinear constraints (9) state that 
every vehicle schedule cycle time should be an integer multiple of each of its trips’ cycle time. In 
other words, for a vehicle schedule to be feasible and complete, the frequency (݂௣) of every trip in 
its schedule, which is a decision variable, has to be an integer number. These constraints imply that 
the ܶ௩ should be equal to the least common multiple of all trip cycle times and no vehicle schedule 
cycle time can be less than the cycle time of its trips since ݂௣ ∈ ℕ. If some trips eventually have to 
be executed in a certain day of the same vehicle schedule due to their cycle times, then their total 
duration should be bounded by the maximum driving time, ܪ. In other words, for every subset of 
trips (݌ ∈ ܲ, ܲ ⊆ ௩ܲ, |ܲ| ≥ 2) in a vehicle schedule, the nonlinear constraints (10) should be valid in 
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order to have a feasible vehicle schedule. These inequalities imply that if the greatest common 
divisor (݃ܿ݀) of the frequency of some trips is equal to one, then those trips will have a common day 
in the vehicle schedule meaning that the vehicle needs to execute them within its available driving 
time limit. We discuss this issue in detail later in Section (5.4.2) with an illustrative example. There is 
an exponential number of these inequalities since they are formulated for all the subsets of the trips.  

 ܶ௩ = ݂௣߁௣                                           ∀ ݌ ∈ ௩ܲ, ݒ ∈ ܸ                                   (9) ෍ ቌ ෍ ෍ ௜௝௣௝∈ே೛శ௜∈ே೛శݔ௜௝ݐ + ෍ ௜௜∈ே೛శߠ ቍ௣∈௉ − .ܪ ݃ܿ݀௣(݂௣) ≤ ݌ ∀         0 ∈ ܲ, ܲ ⊆ ௩ܲ, |ܲ| ≥ 2, ݒ ∈ ܸ         (10) 
 
The appropriate objective function (11) contains the long-run distribution and inventory 

management cost rates. These cost rates include four items each expressed in currency/day. The 
first one is the fixed vehicle cost of ߰ unit per day and is applied for each used vehicle (ݕ௩). 
Considering the average vehicle speed of σ (distance/hour) and the vehicle operating costs of δ 

(currency/distance), every execution of a trip ݌, with route duration ∑ ∑ ௜௝௣௝∈ே೛శ௜∈ே೛శݔ௜௝ݐ  (hours per 

one trip execution) will have a transportation cost of ߪߜ ∑ ∑ ௜௝௣௝∈ே೛శ௜∈ே೛శݔ௜௝ݐ  for a single execution of 

the trip. This term needs to be multiplied with ݂௣ to determine the transportation cost for all its 
iterations in one vehicle cycle time. This gives the second cost item which is the variable 

transportation cost of 
ఋఙ்ೡ ∑ ݂௣ ∑ ∑ ௜௝௣௝∈ே೛శ௜∈ே೛శ௣∈௉ೡݔ௜௝ݐ  per day of each vehicle schedule. The third 

cost item is the fixed vehicle loading (at the depot) and unloading (at the nodes) of ߮௜ which will be 
applied for each dispatch from the depot and node visit. The last item is the inventory cost at the 

nodes. The quantity delivered to each node ݅ covers the demand for 
்ೡ௙೛ days up to the next delivery 

which will be equal to 
்ೡ௙೛ ݀௜ units. The average inventory level at node ݅ during this period is 

்ೡௗ೔ଶ௙೛  

which gives the cost of 
்ೡఎ೔ୢ౟ଶ௙೛  for each node and ∑ ்ೡఎ೔ୢ౟ଶ௙೛௜∈ே೛  for each trip. Then, the total cost of the 

distribution pattern including all the vehicles can be written as the following nonlinear non-convex 
function. 

 min ܥ  = ෍ ቎߰ݕ௩ + ௩ܶߪߜ ෍ ݂௣ ෍ ෍ ௜௝௣௝∈ே೛శ௜∈ே೛శ௣∈௉ೡݔ௜௝ݐ + 1ܶ௩ ෍ ݂௣ ෍ ߮௜௜∈ே೛శ௣∈௉ೡ + ܶ௩2 ෍ 1݂௣ ෍ ௜݀௜௜∈ே೛௣∈௉ೡߟ ቏௩∈௏  (11) 
 
Based on this, the mathematical formulation of the CIRP is to minimize the cost rate function 

(11) subject to the constraints (1) to (10) while the decision variables are as shown in (12).  
 

ቐݕ௩ ∈ {0,1}, ܶ௩, ∈ ℕ            ∀ ݒ ∈ ,௣߁               ܸ ݂௣ ∈ ℕ            ∀ ݌ ∈ ௜௝௣ݔܲ ∈ {0,1}, ௜௝௣ݖ ≥ ݌ ∀     0 ∈ ܲ, ∀ ݅, ݆ ∈ ܰାቑ                          (12) 
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5. Two-phase Algorithm 
In this section, we discuss in detail our two-phase heuristic to tackle the CIRP. As mentioned 

above, we decompose the problem into two subproblems and iteratively try to improve the solution 
quality in order to reach a local optimum. Then a simple local branching scheme is used to explore 
other parts of the feasible area, looking for better solutions. We start this section with presenting 
some insights in the complexity of the problem and the consequences of these insights for our 
solution approach. Then we discuss the general structure of our algorithm and all the different 
components.  

 
5.1. Fast cost estimation 
The complexity of the problem makes it impractical to try to solve the mixed integer nonlinear 

programming formulation of the CIRP directly for all but the smallest instances (Aghezzaf et al. 
2006). The structure of the problem, though, argues for some type of decomposition algorithm. 
Similar problems such as IRP (Campbell & Savelsbergh 2004) and production routing problem (Absi 
et al. 2013) are also approached with two-phase decomposition algorithms. The nonlinear mixed 
integer problem and the non-convex nature of the feasible solution space (Zhong & Aghezzaf 2011; 
Vansteenwegen & Mateo 2014) demand an algorithm that should be capable of investigating as 
many local optima as possible. Since each local optimum exploration takes a huge computational 
and algorithmic effort regard to the complex problem structure, a fast solution value estimation 
procedure is our key to overcome this complexity.  

 
The core idea of this estimation is based on the linear relaxation of the required vehicles (ݕ௩) to 

replenish all the nodes. First, we introduce the trip utilization (ݑ௣) out of a vehicle schedule which 
equals to the share of the trip ݌ duration (considering its frequency, ݂௣) out of a vehicle schedule to 
drive around and visit all nodes of that trip, or: 

௣ݑ  = ݂௣൫߁௧௦௣௣ ൯/ܶܪ௩ ݌ ∀                         ∈ ܲ                        (13) 

 

Where ߁௧௦௣௣ = ∑ ∑ ௜௝௣௝∈ே೛శ௜∈ே೛శݔ௜௝ݐ + ∑ ௜௜∈ே೛శߠ . When we relax the integrality constraint of the 

number of the necessary vehicles (ݕ௩ ∈ [0,1]), then it is trivial to see that the amount of necessary 
vehicles to execute all the trips is equal to ∑ ௣௣∈௉ݑ . Also, from constraints (9) we know that ߁௣ = ܶ௩ ݂௣⁄ . These help us to rewrite the objective function as follows (when the integrality 
constraint on the number of vehicles is relaxed): 

ܥ  = ෍ ቎߰ ෍ ௣௣∈௉ೡݑ + ߪߜ ෍ ௣߁1 ෍ ෍ ௜௝௣௝∈ே೛శ௜∈ே೛శ௣∈௉ೡݔ௜௝ݐ + ෍ ௣߁1 ෍ ߮௜௜∈ே೛శ௣∈௉ೡ + 12 ෍ ௣߁ ෍ ௜݀௜௜∈ே೛௣∈௉ೡߟ ቏௩∈௏  (14) 
or: 
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ܥ = ෍ ෍ ቎߰ݑ௣ + ௣߁ߪߜ ෍ ෍ ௜௝௣௝∈ே೛శ௜∈ே೛శݔ௜௝ݐ + ௣߁1 ෍ ߮௜௜∈ே೛శ + ௣2߁ ෍ ௜݀௜௜∈ே೛ߟ ቏௣∈௉ೡ௩∈௏  (15) 
 
What is inside the brackets in the relaxed objective function (15) is actually the trip execution 

cost, ܧ௣. Therefore, the cost of a solution can be estimated as the sum of the costs of all its trips 
(∑ ௣௣∈௉ܧ ), according to their trip cycle time (߁௣) and the fixed costs we need to pay for the 

minimum necessary vehicles (ݑ௣) to execute all the trip schedules. Within this assumption and 
reformulation of the objective function, we will be able to avoid some important sources of the 
problem complexity; necessary vehicles (ݕ௩), assignment of the trips to the vehicles ( ௩ܲ) and their 
schedule cycle times (ܶ௩) as well as the trip frequencies (݂௣). This leads us to an approximation of 
the objective function instead of its exact value but within considerably less computational time. 

 

Let ߁௠௔௫௣  be the maximum cycle time of the trip ݌. According to the constraints (7) and (8) we 
can obtain this upper bound for every trip as presented in equations (16). 

௠௔௫௣߁  = ݉݅݊ ቊඌmin௜∈ே೛ ݇௜݀௜ඐ , ቞ ∑ߢ ݀௜௜∈ே೛ ቟ቋ                   ∀ ݌ ∈ ܲ                             (16) 

 
We define a lower bound on the trip utilization (ݑො௣) out of a vehicle schedule based on the 

maximum cycle time limit (or minimum trip execution frequency) by using ߁෠௣ = ௠௔௫௣߁ . Then we can 
write: 

ො௣ݑ  = ௧௦௣௣߁ ෠௣߁ܪ/ ݌ ∀                                 ∈ ܲ                             (17) 
 
As an example, consider the nodes 1 to 7 in 3 different trips as illustrated in Table 1 with given 

demand rates (݀௜), storage capacities (݇௜), TSP route duration (߁௧௦௣௣ ) and the vehicle capacity of ߢ = 30 units. We can calculate the maximum cycle time for each trip (߁௠௔௫௣ ) and then trip utilization 
 according to the equations (16) and (17) as presented in this table. It is interesting to notice that (ො௣ݑ)
while the first node can be visited every 6 days according to its demand rate and storage capacity 

(
௞೔ௗ೔ = 6), the limited vehicle capacity (

఑∑ ௗ೔೔∈ಿ೛ = 3) forces more frequent visits to this node since it is 

combined with two more nodes into one trip. Also, although the second trip can be executed every 5 

days based on the vehicle capacity (
఑∑ ௗ೔೔∈ಿ೛ = 5), the demand rate and storage capacity of node 4 

limits the maximum cycle time of this trip to 4 days (
௞೔ௗ೔ = 4). This simple example reveals the fact 

that transferring a node from one trip to another trip not only changes the TSP route durations but 
also changes the maximum cycle time of both trips engaged in the transfer. 
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Table 1. An example of different nodes combined in different trips  

Trip 
 (݌)

Node 
(݅) 

Demand 
rate (݀௜) 

Storage 
capacity 

(݇௜) 
௧௦௣௣߁  

(hours) 

݇௜݀௜ min௜∈ே೛ ݇௜݀௜ ෍ ݀௜௜∈ே೛ ∑ߢ  ݀௜௜∈ே೛ ௠௔௫௣߁   
(days) ݑො௣ = ௧௦௣௣߁ ௠௔௫௣߁ܪ/  

1 
1 2 12 

5 
6

6 10 3 3 0.208 2 4 32 8
3 4 40 10

2 
4 2 8 

5 
4

4 6 5 4 0.156 
5 4 24 6

3 
6 1 7 

6 
7

7 3 10 7 0.107 
7 2 20 10

 
Having the ߁෠௣ and ݑො௣, the trip execution cost estimation, ܧ෠௣, can be calculated using equation 

෠௣ܧ  .(18) = ො௣ݑ߰ + ෠௣߁ߪߜ ෍ ෍ ௜௝௣௝∈ே೛శ௜∈ே೛శݔ௜௝ݐ + ෠௣߁1 ෍ ߮௜௜∈ே೛శ + ෠௣2߁ ෍ ௜݀௜௜∈ே೛ߟ ݌ ∀                 ∈ ܲ                  (18) 

 
This fast trip cost estimation function (18) can efficiently be used to evaluate the potential cost 

saving of moving a node from one trip to another trip or in other words, the neighborhood 
evaluation of a current solution. The fast evaluation of moving a node from one trip to another will 
be discussed in detail in the routing subproblem (section 5.4.1) of our algorithm. 

 
5.2. General structure of the algorithm 
Here, we discuss the general structure of our heuristic (presented in Algorithm 1). In the next 

subsections all building blocks are discussed in detail. The algorithm starts with constructing a 
feasible initial solution (Section 5.3, Initialization). Then the current trips are improved in the routing 
subproblem (Section 5.4.1, Routing) based on fast trip cost estimation and neighborhood exploration 
until no feasible cost saving node transfer can be found. Afterwards, the trips are assigned to 
feasible schedules for the vehicles in the scheduling subproblem (Section 5.4.2, Scheduling) to obtain 
the integer number of required vehicles (feasible vehicle schedules). This will enable us to calculate 
the actual cost of the current solution. The routing and scheduling subproblems are iteratively 
solved in two integrated loops: an inner loop with routing and scheduling and an outer loop with a 
Vehicle Decrease heuristic (Section 5.4.4). This integrated process is referred to as Local Search 
(Section 5.4, Local Search) in the remaining of this paper. Therefore, the Local Search algorithm 
includes the two main subroutines of Routing and Scheduling plus a heuristic (Vehicle Decrease 
heuristic) for intensification. Each time a better solution ܵ∗ (incumbent solution) is found during the 
Local Search algorithm, ܵ∗ is updated and all the edges that are not adjacent to the depot in the 
solution ܵ∗ will be added to the set ܤ. These arcs will be used as the branching elements for our 
simple local branching scheme. To branch on an arc of the set ܤ, a large value will be assigned to its 
travel time and also its opposite direction’s travel time. This will prevent the branched element from 
being selected during the remainder of the search. Then, the Local Search will be used to continue 
the search based on the current set of trips. Using this branching tool, in each iteration, we branch 
on one of the edges of the branching set ܤ, in order to escape from the local optimum and to better 
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explore the search area. This will be done for a maximum number of different edges of the set ܤݔܽܯ .ܤݔܽܯ ,ܤ is a parameter of the algorithm and will be discussed in Section 6.2. This branching 
scheme is used as a diversification phase of the algorithm.  

ℎ݉ݐ݅ݎ݋݈݃ܣ  1: ݈ܽݎ݁݊݁ܩ  ݇ݎ݋ݓ݁݉ܽݎܨ
0. Initialization 
ܤݎ݁ݐ݅ .1 ← 0 & ܤ ← ∅ 
2. Run the Local Search algorithm, ܵ∗ ← ܵ 
3. Add all edges (݅, ݆) ∈ ܵ∗: ݅, ݆ ≠ 0, to ܤ 
4. Do while ܤ ≠ ∅ and ݅ܤݎ݁ݐ ≤  ܤݔܽܯ
5. | Choose element ܾூ௧௘௥஻ ∈  branch on this element ,ܤ
6. | Run the Local Search algorithm 
ܤݎ݁ݐ݅ | .7 ← ܤݎ݁ݐ݅ + 1 
8. End  
9. Output:ܵ∗ 

 
5.3. Initialization 
In order to create an initial solution, each node is assigned to a separate trip. Then, for each trip, 

the TSP travel time and the maximum cycle time are calculated and the trip cost is estimated based 
on Eq. 13.  

 
5.4. Local Search 
The Local Search (Algorithm 2) starts by solving the Routing and Scheduling subproblems. Each 

time a better solution is found, the best found solution, ܵ∗, is updated, all the edges (not adjacent to 
the depot) of the solution ܵ∗ will be added to the set ܤ. Then, the cost estimations for the different 
trips are updated to be used in the next iteration. The “update trip values” module (Section 5.4.3) is 
used to update the cost estimation of each trip and the cost estimation of moving each node to 
another trip. This update will lead to new opportunities for the next routing and scheduling iteration.  

ℎ݉ݐ݅ݎ݋݈݃ܣ  2: ݈ܽܿ݋ܮ  ℎܿݎܽ݁ܵ
0. iterP ← 0, ܷݎ݁ݐ݅ ← 0 
1. Do while ݅ܲݎ݁ݐ ≤  ܲݔܽܯ
2. | Do while ܷ݅ݎ݁ݐ ≤ min {݅ܲݎ݁ݐ,  {ܷݔܽܯ
3. | | Run the Routing algorithm 
4. | | Run the Scheduling algorithm 
5. | | If ܵ∗ is updated, reset ݅ܲݎ݁ݐ &  ܤ add all new edges of ܵ∗ to ,ܷݎ݁ݐ݅
6. | | Update trip values 
ܷݎ݁ݐ݅ | | .7 ← ܷݎ݁ݐ݅ + 1 
8. | End 
9. |  Run the Vehicle Decrease heuristic 
ܲݎ݁ݐ݅ | .10 ← ܲݎ݁ݐ݅ + 1, ܷݎ݁ݐ݅ ← 0 
11. End 
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The experimental results will show that using this update strategy helps our algorithm to find 
better solutions. The inner loop with Routing, Scheduling and trip value updating, stops when a 
maximum number of iterations, ݉݅݊ {݅ܲݎ݁ݐ,  is reached. In the outer loop, the Vehicle {ܷݔܽܯ
Decrease heuristic is applied and ݅ܲݎ݁ݐ is increased by one in each iteration. The Vehicle Decrease 
heuristic (Section 5.4.4) tries to find a distribution pattern with one vehicle less. Both bounds on the 
number of iterations, ܷݔܽܯ, and ܲݔܽܯ, will be discussed and set in Section 6.2. 

 
5.4.1. Routing 

In this phase, a steepest descent framework is implemented to improve the assignment of nodes 
to trips (Algorithm 2-1). We define a neighborhood of a solution based on all its feasible node (݅) 
transfers from current trips (݌଴) to other trips (݌). Based on the trip cost estimations function (18), it 
is determined, for each node and for each trip, which (estimated) total saving can be expected when 

moving a node to a trip. Obviously, the cost saving associated with its current trip (ܧ෠௣బ −  ෠௣బି{௜}) asܧ

well as its destination trip (ܧ෠௣ −  ෠௣∪{௜}) will be taken into account. The move of a node that leads toܧ

the best (estimated) saving (ܧ෠௣బ + ෠௣ܧ − ෠௣బି{௜}ܧ −  ෠௣∪{௜}) is selected and actually performed. Theܧ
way we try to save costs could be considered as a generalization of the Clarke & Wright (1964) 
heuristic to save not only the travel time but also the trip cost estimation.  

ℎ݉ݐ݅ݎ݋݈݃ܣ  2 − 1:  ݃݊݅ݐݑ݋ܴ

0. For all feasible node transfers, calculate the saving: ܧ෠௣బ + ෠௣ܧ − ෠௣బି{௜}ܧ −  ෠௣∪{௜}ܧ
1. Do until no cost saving transfer is found 
2. | Execute the node transfer with the best saving 
3. | Remove ݅∗ from ݌଴ and add ݅∗ to ݌∗ 
4. | Update all savings for ݌଴ and ݌∗ 
5. End 6. Apply 2-Opt and Relocate 

 
During the routing phase many changes in cost need to be calculated each iteration and that is 

exactly the reason fast cost estimations (Section 5.1) are used instead of exact calculations. After the 
node is actually moved, the cost estimations for all the affected trips and nodes are updated and the 
procedure is repeated until no more cost saving node transfers are found. Notice that one 
interesting property of the algorithm is that for all other node-to-trip transfers the saving values 
remain as in the previous iteration and we do not need to update them. The saving update is only 
necessary for all the trips that had a change in the current iteration (the trip with a leaving node and 
the trip with an incoming node). Also, for all other nodes, the transfer saving to these two trips 
should be updated. This process will not get trapped in an infinite loop. Since every node transfer is 
done based on a strictly greater than zero saving. The routing algorithm works with the trip cost 
estimations and stops when no improvement in the estimated costs can be found. Therefore, the 
algorithm will reach a local optimum after a number of finite iterations. At the end of the routing 
phase, when no more cost saving is possible, the well-known 2-Opt and Relocate (Laporte 1992; 
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Gendreau& Potvin 2010) local search moves are applied to each trip, in order to improve the travel 
time of the trip. These local search moves are applied (first improvement) until no more 
improvements can be found.  

 
5.4.2. Scheduling 

The scheduling subproblem, about assigning the trips to the vehicles, is related to the well-
known problem of bin packing. However, in this case the different frequencies of the deliveries 
significantly complicate the process. Nevertheless, the scheduling algorithms (Algorithms 2-2-1 and 
2-2-2) are based on the best-fit decreasing (BFD) bin packing heuristic (Coffman et al. 1996). A cyclic 
schedule is required in which the vehicle visits the nodes (divided in trips) in order to prevent 
stockouts. This should be done such that the time between consecutive iterations of the same trip 
remains constant, i.e. a cyclic pattern per trip. In addition, two or more trips of a vehicle should 
either not occur on the same day or the combination of trips should not exceed the maximum 
driving time of the vehicle per day. Holding these criteria, two or more trips are called “compatible”.  

 
Notice that the minimum number of required vehicles for a set of trips to be scheduled is not 

necessarily equal to the roundup amount of the estimations calculated in the routing phase, it can 
easily be more. This may happen because of different and non-compatible trip cycle times. For 
instance, consider trips 1 and 2 in the Table 1 which both require more than half a day of driving 
time. The first trip has a maximum cycle time of three days and the second has a maximum cycle 
time of four days. These two trips cannot be assigned to the same vehicle and are non-compatible 
trips due to the constraints (10). Indeed, assume that the first trip is scheduled on the first day (and 
therefore the fourth, seventh, tenth, etc.). As a result, the second trip cannot be scheduled on the 
second day then it would conflict with the first trip on the tenth day. This is illustrated in Figure 1-a, 
where the second trip has to be executed in the 10th day of the vehicle schedule together with the 
first trip which also requires five hours. The execution of these two trips needs a total driving time of 
10 hours for the same vehicle. Also, it is not feasible to schedule the second trip on the third day 
(then it would conflict with the first trip on the seventh day) or any other day of this vehicle. Sticking 
to these trip cycle times (߁ଵ = 3 and ߁ଶ = 4), we need two vehicles to execute these two trips as 
drawn in Figures 1-b and 1-c. If the cycle time of the first trip would be (changed to) two days, ߁ଵ = 2, the trips would be compatible and can be assigned to the odd and even days of a vehicle 
schedule (Figure 1-d). It is also possible to change the cycle time of the second trip to three days 
ଶ߁) = 3) and schedule both trips as illustrated in Figure 1-e. In other words, the cycle time of three, 
instead of four, for the second trip makes it possible to combine these two trips into one vehicle 
schedule. Reducing the cycle time of any of the trips (Figures 1-d and 1-e) results in more frequent 
trip execution during the vehicle schedule and hence more transportation and cargo handling costs 
but it also saves one vehicle to schedule both trips.  
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Figure 1. Different trips and vehicle schedules 

a) an infeasible schedule due to the incompatible trips; b) and c) feasible schedules for two vehicles each with only one 
trip; d) feasible schedule for trips 1 and 2 in one vehicle after changing the cycle time of trip 1 from 3 to 2; e) feasible 
schedule for trips 1 and 2 in one vehicle after changing the cycle time of trip 2 from 4 to 3; f) feasible schedule for trips 1 
and 3 in one vehicle after changing the cycle time of trip 3 from 7 to 6; g) feasible schedule for trips 1, 2 and 3 in one 
vehicle after changing the 2nd and 3rd trip cycle times to 3 and 6, respectively; 

 
Solving this subproblem of scheduling to optimality is computationally expensive. Actually, Raa 

(2015) wrote an entire paper about only this part of the CIRP. Therefore, we propose a fast greedy 
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heuristic. In each iteration, the algorithm starts with the current set of trips and an empty schedule 
for every vehicle. Then, it starts with the first vehicle and tries to add the trips one by one until no 
more trips can be added to this vehicle. This procedure fills the days of the vehicle schedule one by 
one. The procedure continues with a new vehicle until all trips are scheduled. Since each extra 
vehicle in the solution brings a significant extra cost, each included vehicle should be filled as much 

as possible. Therefore, we use the maximal cycle time of each trip (߁௠௔௫௣ ), instead of the EOQ or 
optimal cycle time, when filling the vehicle schedules. In this way, more trips can be added to each 
vehicle. 

 
To fill a vehicle schedule, the algorithm starts by selecting the trip with the smallest maximum 

cycle time (݉݅݊௣ ௠௔௫௣߁ ) as the base trip for developing the vehicle schedule. Notice that the one with 

the shortest cycle time needs to be visited more frequently, thus it will fill the vehicle schedule more 
than any other trip and therefore it is interesting (greedy) to start with this trip. In all cases, if there 
would be a tie in maximum cycle time of some trips, it selects the trip with the maximum travel time 
(again, since that trip will fill the schedule the most). Based on this first trip (݌∗) and its cycle time 

∗௣߁) = ∗௠௔௫௣߁
), the vehicle will have other days available that can only be filled with trips with a cycle 

time compatible with ߁௠௔௫௣∗
 days. For example, in Figure 1-b, the first trip has the maximum cycle 

time of three days and needs five hours of travel time. By selecting this trip first in the vehicle 
schedule, it will leave two whole days available in the vehicle schedule and three hours in the same 
day of its schedule available for other trips. The next compatible trip to be added to this vehicle 
schedule should have a cycle time of three or a multiple of it. Each day in the vehicle schedule 

should have the same base cycle time (ܶ௕௔௦௘) to keep the schedule feasible. In this example, the 
base cycle time is three. Therefore, for the remaining vehicle driving time in every day of the vehicle 
schedule, again, the algorithm selects the compatible trip with the smallest cycle time that fills the 
remaining schedule the most. After examining a wide range of different functions evaluating the 
compatibility, a simple function is selected to find a proper trip to be added to the vehicle schedule 

in ܱ(݊): It is clear that the best fitting trip is the one with a cycle time equal to ܶ௕௔௦௘  and a travel 
time that most fits the remaining vehicle driving time in the specific day of the vehicle schedule. 
Therefore, among all feasible trips for a specific day, nearest maximum cycle times as well as longer 

travel times (or smaller 1/߁௧௦௣௣ ) are preferred. In case there would be no trip available with a similar 

maximum cycle time, one with a longer (compatible) trip cycle time should be selected. Otherwise 
we need to modify (decrease) the trip cycle time to make it compatible. This can be stated as 

choosing a trip with the smallest ߁௠௔௫௣  ௕௔௦௘. Note that no shorter cycle times are availableܶ ݀݋݉ 
since the smallest one was selected as the base trip cycle time.  

 
For example, suppose that we have already added trip 1 to a vehicle schedule as in Figure 1-b 

and need to schedule trips 2 and 3 (from Table 1) as well. Trip 2 has a travel time of 5 hours and a 
maximum cycle time of 4 days (Figure 1-c) while trip 3 has a travel time of 6 hours and a maximum 
cycle time of 7 days. Adding the first trip to the vehicle schedule, it imposes a base cycle time of 3 

days (ܶ௕௔௦௘ = 3) on the vehicle schedule. The algorithm needs to select one of them first to add to 

the schedule. If trip 2 is selected we have ߁௠௔௫ଶ ௕௔௦௘ܶ ݀݋݉  = 1 and 
௰೘ೌೣమ்್ೌೞ೐ = 4/3. Therefore, its cycle 
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time should be modified to 3 to be both feasible and compatible with this schedule (Figure 1-e). 

Similarly, if trip 3 is selected we have ߁௠௔௫ଷ ௕௔௦௘ܶ ݀݋݉  = 1 and 
௰೘ೌೣయ்್ೌೞ೐ = 7/3. Then its cycle time can 

be modified to 6 to be compatible with the current schedule of the Figure 1-b resulting in the 
schedule of the Figure 1-f. Note that adding trip 3 with the cycle time of 6 to the vehicle schedule 
will split that specific day of the schedule in two new days (days 2, 8, 14, etc and days 5, 11, 17, etc) 
each with a new base cycle time of 6 while it fills just one of these new spaces (Figure 1-f). Then the 
rest of these days need to be scheduled with trips compatible with this new base cycle time of 6 (for 
these days of the schedule). Generally, trip 2 should be preferred over trip 3, since, in the context of 
bin packing, it can be considered as a bigger item to be picked up. As shown in Figure 1-g it is also 
possible to add all trips into one vehicle schedule with modified cycle times. This results in having 
less vehicles for scheduling non compatible trips.  

 
For the purpose of developing an acceptable criterion, several possible functions were 

developed and tested. Finally, for each day, the best compatible trip ݌∗is chosen with the minimum 

value of ൣ߁௠௔௫௣ ௕௔௦௘߁ ݀݋݉  + ௠௔௫௣߁൫ݐ݊݅ ߤ /ܶ௕௔௦௘൯ + ௧௦௣௣߁/1 ൧ . To make it possible to distinguish 

between the amount we need to modify a trip cycle time and the times a trip cycle time differs from 
the base, the first two terms are added to the formula but with different weights (ߤ is a weight 
adjustment parameter). Since in case of a tie between trip cycle times, the trips with bigger travel 
times are preferred, the last term is added to the formula. Then the trip maximum cycle time will be 
modified using function (19) to obtain a compatible trip cycle time. For example, if trips with 
maximum cycle times of four, five, seven and ten need to be scheduled on a day with base cycle 
time of three, function (19) modifies their cycle times to three, three, six and nine respectively. 

∗௣߁  ← ∗௠௔௫௣߁ − ∗௠௔௫௣߁  ௕௔௦௘        (19)ܶ ݀݋݉ 
 
Each time a trip ݌∗is added to a vehicle schedule, the vehicle schedule cycle time (ܶ௩) will be 

changed to the least common multiple (݈ܿ݉) of all trip cycle times (݌ ∈ ௩ܲ) to reach to a full length 
vehicle schedule. Algorithm 2-2-1 shows the general structure of the first scheduling heuristic. For 
the instances where the number of required vehicles is smaller than or equal to three, an alternative 
algorithm to solve the scheduling problem is designed. In this alternative, the focus lies on finding 
solutions with only one or two vehicles. This second scheduling heuristic (Algorithm 2-2-2) will 
benefit from the fact that trips with even values of cycle times are always compatible. After 
scheduling the trips with a maximum cycle time of one day (the minimal cycle time), this algorithm 
partitions the vehicle schedule into two parts: odd and even days. It reduces all the odd values of 
trip maximum cycle times by one. This will result in even maximum cycle times for all trips. Then, it 
starts filling up the even days of the schedule. When no more trips could be added to the even days, 
it continues with filling the odd days. This is the only difference with the original algorithm. 
Generally, the first version works better for larger instances, with more trips and more possibilities 
for fitting the trips into vehicle schedules. The alternative will work better for smaller instances with 
only a few vehicles. 
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ℎ݉ 2ݐ݅ݎ݋݈݃ܣ − 2 − 1: ݐݏݎ݅ܨ ݈݃݊݅ݑℎ݁݀ܿݏ ℎ݁ܿ݅ݐݏ݅ݎݑ
I-0. ܲᇱ: set of all current trips 
I-1. Pick the first vehicle ݒ ← 1 
I-2. Do until all trips are scheduled (ܲᇱ = ∅) 

I-3. | Find trip ݌∗with minimum ߁௠௔௫௣  cycle time 
I-4. | remove ݌∗ from ܲᇱand add ݌∗to vehicle ݒ 

I-5. | Vehicle schedule cycle time ߁௩ ← ∗௠௔௫௣߁
 

I-6. | Do until no trip ݌ ∈ ܲᇱcan be added to vehicle ݒ 
I-7. | | Do until no trip ݌ ∈ ܲᇱ can be added to the current day  
I-8. | | | Select the next trip: 

∗݌                                                  ← ௣݊݅݉݃ݎܽ ൤߁௠௔௫௣ ݀݋݉ ܶ௕௔௦௘ + ߤ ݐ݊݅ ൬ ௰೘ೌೣ೛்್ೌೞ೐൰ + ଵ௰೟ೞ೛೛ ൨  

I-9. | | | Remove ݌∗ from ܲᇱ and add ݌∗ to the current day 
I-10. | | | Modify the cycle time of the selected trip (if necessary): 

                                                 Calculate ܶ௣∗
from using function (19)  

I-11. | | | Update vehicle cycle time (if necessary): ܶ௩ ← ݈ܿ݉൫ܶ௩,  ௣∗൯߁

I-12. | | End 
I-13. | | Choose next non-scheduled day in vehicle ݒ 
I-14. | End 
I-15. | Choose a new vehicle: ݒ ← ݒ + 1 
I-16. End 

ℎ݉ 2ݐ݅ݎ݋݈݃ܣ  − 2 − 2: ݀݊݋ܿ݁ܵ ݈݃݊݅ݑℎ݁݀ܿݏ ℎ݁ܿ݅ݐݏ݅ݎݑ 

II-0. ܲᇱ: set of all trips with ߁௠௔௫௣ = 1 
II-1. Schedule all trips ݌ ∈ ܲᇱ by the first scheduling heuristic 
II-2. ܲᇱ ← ܲ − ܲᇱ 
II-3. For all trips ݌ ∈ ܲᇱ with an odd value of ߁௠௔௫௣ ௠௔௫௣߁ , ← ௠௔௫௣߁ − 1 
II-4. Lines I-1 to I-5 
II-5. Do until no trip ݌ ∈ ܲᇱ can be added to the even days of vehicle ݒ 
II-6. | Lines I-7 to I-12 
II-7. | Choose next non-scheduled even day in vehicle ݒ 
II-8. End 
II-9. Do until no trip ݌ ∈ ܲᇱ can be added to the odd days of vehicle ݒ 
II-10. | Lines I-7 to I-12 
II-11. | Choose next non-scheduled odd day in vehicle ݒ 
II-12. End 
II-13. Lines I-15 to I-16 

 
 

5.4.3. Update trip values 
As a result of the scheduling algorithm, after all trips were scheduled, a feasible solution is 

determined and the exact cost of each trip can be calculated. At this point, the question remains if 
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nodes can be moved between trips in order to reduce the total cost further. To answer this question 
rapidly, the costs of these transfers should be calculated. Therefore, the "trip utilization" and the 
"maximum trip cycle time" need to be determined for all trips and nodes for the next iteration based 
on the latest available information. This information includes the trip utilization (ݑ௣) and cycle time 
(ܶ௣) for each trip at the end of the scheduling phase. Notice that the transfer of any node will 
change the trip cycle times of the involved trips. As a result, the involved vehicle schedules could 
become infeasible. Therefore, in the next iteration, the algorithm will use newly estimated values, 
based on the previous iteration, to estimate the costs. 

௣ݑ  = ∑ො௣ݑ ො௣௣∈௉ೡݑ ݌∀     ∈ ௩ܲ, ݒ ∈ ܸ       (20) 

 
The example of three trips in Table 1 and Figure 1 clarifies this. Suppose that these three trips 

are the only ones on the vehicle schedule as illustrated in Figure 1-g. Each of these trips has its own  ݑො௣ as presented in the last column of the Table 1. Using equation (20), for each of these three trips ݑ௣ equals 44.2%, 33.1% and 22.7%, respectively. In this way, the fixed vehicle cost is splitted over 
the trips in its schedule proportional to their share of the schedule even when they do not occupy 
the entire vehicle schedule. Then the algorithm modifies the "trip utilization" estimations for all trips 
to be used for the next iteration as presented in equation (21). 

ො௣ݑ  = ݌∀       ௣ݑ ∈ ௩ܲ, ݒ ∈ ܸ       (21) 
 
Furthermore, for each trip, the estimated maximum trip cycle time in the next iteration is set 

equal to its current cycle time. These new limits (upper bound for the cycle time and lower bound 
for the utilization) will affect the cost estimation (equation 18) of the trips during the next iteration. 
The third and last step is to assign, in each trip, these same upper and lower trip bounds to each 
individual node in the trip. This is to force them to temporarily hold the current bounds while 
moving between trips, instead of using many time consuming calculations during each iteration.  

 

5.4.4. Vehicle Decrease heuristic 
This heuristic tries to decrease the number of necessary vehicles by one. As the fixed vehicle 

costs are rather high, reducing the necessary vehicles in most cases can significantly decrease the 

total cost. This algorithm selects the vehicle with the minimum utility. Assume that ߁௠௔௫ௌ௜௡௚௟௘ ௜  is the 
maximum cycle time of serving node ݅ in a separate trip.Due to the vehicle capacity, this cycle time is 

always greater than or equal to the maximum cycle time of any trip (߁௠௔௫௣ ) including node ݅. All the 

nodes ݅ of the vehicle with minimal utility are sorted according to the increasing rate of (߁௠௔௫ௌ௜௡௚௟௘ ௜ ௠௔௫௣߁− ௠௔௫௣߁/( . Then, the first node in the sorted list, ݅∗, will be selected for transfer to one of the 
existing trips or an empty trip of another vehicle (empty space in another vehicle schedule). This is 
only considered if this vehicle’s schedule does not need to be changed due to this move. When it 
fails to find an option for transferring node ݅∗, the whole procedure stops and it is assumed that this 
vehicle cannot be removed from the solution. Otherwise it continues to try to transfer the other 
nodes from the sorted list, one by one. Moreover, after transferring every ߩ% of the nodes, the 
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algorithm will try to schedule the whole set of modified trips with one less vehicle. If this is feasible, 
the heuristic was successful and finishes. If not, the heuristic continues with the current solution and 
tries to transfer the second ߩ% of the nodes to other vehicles. (ߩ is a parameter of the algorithm and 
is discussed in Section 6.2) 
 

6. Computational results 
This section first describes the benchmark instances that were used to evaluate the performance 

of the heuristic and the setting of the parameters. Then, the performance of the algorithm on all the 
benchmark instances will be presented. 

 

6.1. Set of benchmark instances 
Almost all well-known IRP benchmark instances in the literature belong to the finite time 

(rolling) horizon versions of the problem (e.g. Archetti et al. (2007) and Archetti et al. (2012)) and 
cannot be used as benchmark instances for the CIRP. The only available benchmark instances of the 
CIRP are published by Raa (2006). In Raa (2006), 320 benchmark instances are presented for CIRP. 
Raa & Aghezzaf (2009) present the results they obtained on 80 out of these 320 benchmark 
instances. To assess the performance of our algorithm, we compare it with the results of the best 
existing solution approach in the literature, based on these 320 benchmark instances. The instances 
are available at www.mech.kuleuven.be/en/cib/op and fully described in both mentioned references.  

 

6.2. Parameter setting 
Our algorithm has 5 parameters to be set. ܷݔܽܯ determines the number of times the inner loop 

in the Local Search, with Routing and Scheduling is run consecutively. ܲݔܽܯ is the number of times 
that the outer loop, with the Vehicle Decrease heuristic, will be used as an intensification tool to 
improve the resulting solution of Routing and Scheduling in the Local Search. Within each execution 
of this Vehicle Decrease heuristic, after transferring every ߩ% of the nodes, the scheduling algorithm 
will be applied in order to reduce the number of vehicles. In the Scheduling algorithms (I and II) a 
parameter ߤ is used to distinguish between the extent to which we need to modify a trip cycle time 

compared to the base, ߁௠௔௫௣ ௠௔௫௣߁൫ݐ݊݅ ,௕௔௦௘, and the times a trip cycle time differs from the baseܶ ݀݋݉  /ܶ௕௔௦௘൯. ܤݔܽܯ is the maximum number of elements in set ܤ to branch on or in another 

word, is the number of times we look for the local optimum by executing the Local Search while we 
made one of the arcs (edges in both direction) present in the incumbent solution tabu. 

 
To set these parameters, a dataset of 32 instances is generated for this purpose: from each 32 

data sets, one instance is randomly chosen. First of all, without any branching iteration (ܤݔܽܯ = 0), 
we tried to set the parameters used in the Local Search including ߤ ,ܲݔܽܯ ,ܷݔܽܯ and ߩ. For each of 
these parameters some different values were tested as follows: 

 10 ,5 ,1 =ܷݔܽܯ and 20, 

 5 ,1 = ܲݔܽܯ and 10 (notice that in all cases examined the ܷݔܽܯ was less than or equal 
to ܲݔܽܯ with respect to the line 2 of Algorithm 2 that keeps the maximum ܷ݅ݎ݁ݐ 
iterations equal to the minimum of ݅ܲݎ݁ݐ and ܷݔܽܯ),  
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 1.1 ,1.05 ,1 ,0.95 ,0.9 ,0.8 = ߤ and 1.2, and  

 20 ,10 = ߩ, and 25. 
Based on a trade-off between the quality of the results (in terms of the average solution value) 

and the required computational effort, following values were selected after the preliminary 
experiments: 

 ܷݔܽܯ = ܲݔܽܯ ,10 = ߤ ,5 = ߩ ,0.95 = 20 
This procedure ensured us to have an effective Local Search. Then, for different values of ܲݔܽܯ ,ܷݔܽܯ andܤݔܽܯ we performed some more experiments to find the best value for the ܤݔܽܯ.  

 10 ,5 =ܷݔܽܯ and 20, 

 5 = ܲݔܽܯ and 10 , and 

 100 ,50 ,20 ,10 ,5 ,1 =ܤݔܽܯ and 200  
Note that some small instances (݊ ∈ [30,70]) did not need values of 100 and 200 since the total 

number of the edges in the new incumbent solutions were less than 100. This naturally happens 
because the quality of the first found solution limits the number of further best found (incumbent) 
solutions and therefore, the number of edges in set ܤ. Similarly, based on the quality of the results 
and the required computational effort, we accepted the ܷݔܽܯ = 10 and ܲݔܽܯ = 5 from our 
previous experiments and set ܤݔܽܯ = 50. 

 

6.3. Results 
Our heuristic algorithm was programmed in MS Visual Basic 6. Computational testing was done 

on a VAIO laptop with 2.30 GHz Intel® Core™ i5-2410M processor, 4.0 GB of RAM and a 64-bit MS 
Windows operating system. All 320 test instances are solved. Table 2 shows the computational 
results for all the 320 test instances. Each row represents the average amounts for 10 instances in 
the set. Columns 2 to 6 show each data set’s characteristics or the parameters used (in Raa (2006)) 
to generate 10 instances in that specific row. The rest of the columns present the results obtained by 
our algorithm: the objective function value, the average number of vehicles, the average number of 
trips, the average vehicle utilization, the average inventory level at the nodes and the average 
number of nodes per trip. Based on Table 2, it can be concluded that the average number of nodes 
per trip (obtained by the algorithm) is rather small, between 1.2 and 6.0, that the average number of 
trips varies between 8.2 and 86.4 and that the average utilization per vehicle is rather high, between 
72 and 89.1 percent. It should be noted here again that it is not the number of nodes per trip that 
determines the difficulty of the instances, but the fact that these (sometimes high number of) trips 
should be combined in multi-frequency multi-trip vehicle schedules. Furthermore, changing one 
node from one trip to another can cause different frequencies of trips and thus completely different 
schedules. All details about these results are available at: http://www.mech.kuleuven.be/en/cib/op. 

 
In Appendix A.2 we present an illustration of a feasible solution for the instance LNHLL-0 from 

the first data set with 86 nodes. Every TSP route starting from and ending to the depot forms a trip. 
The vehicle schedules then are determined by different colors. This solution uses 5 vehicles to 
schedule all the trips (expressed in red, purple, green, cyan and blue).  
 



 

 
23 

 
 

 
Table 2. Computational results for 320 instances 

Set 
Veh 
Cap 

Node 
Cap 

HC Node Nr Area 
Avg. Obj. 

value 
(currency/hr) 

Avg. No. of 
vehicles 

Avg. No. of 
trips 

Avg. 
utilization (%) 

Avg. 
inventory 

level 

Avg. No. of 
nodes per trip 

1 100 No 0.8 [80, 120] Large 4486.00 4.3 30.8 87.3 1412.8 3.5 
2 100 No 0.8 [80, 120] Small 3120.07 2.9 24.6 88.0 1125.4 4.1 
3 100 No 0.8 [30, 70] Large 2230.16 2.4 13.5 74.6 605.9 3.3 
4 100 No 0.8 [30, 70] Small 1721.12 1.8 12 77.5 533.8 4.2 
5 100 No 0.08 [80, 120] Large 3125.53 3.9 61.5 77.4 2827.3 1.7 
6 100 No 0.08 [80, 120] Small 2057.98 2.6 52.5 76.1 2391.8 1.9 
7 100 No 0.08 [30, 70] Large 1518.90 2 32 68.8 1433.1 1.4 
8 100 No 0.08 [30, 70] Small 1072.18 1.4 29.3 71.4 1295.8 1.7 
9 100 Yes 0.8 [80, 120] Large 5709.70 6.3 23.1 87.5 975.8 4.6 

10 100 Yes 0.8 [80, 120] Small 3635.17 4.1 16.8 81.6 773.3 5.9 
11 100 Yes 0.8 [30, 70] Large 3039.90 3.6 11.1 80.1 406.2 4.1 
12 100 Yes 0.8 [30, 70] Small 2022.00 2.4 8.2 76.4 371.8 6.0 
13 100 Yes 0.08 [80, 120] Large 4972.57 6.2 26.8 88.2 1119.3 4.0 
14 100 Yes 0.08 [80, 120] Small 3030.89 4.1 22 76.8 1012.1 4.5 
15 100 Yes 0.08 [30, 70] Large 2734.35 3.6 12.1 78.8 454.2 3.7 
16 100 Yes 0.08 [30, 70] Small 1721.09 2.4 10.4 72.0 470.6 4.8 
17 50 No 0.8 [80, 120] Large 5079.75 7.3 47.7 87.6 1121.1 2.2 
18 50 No 0.8 [80, 120] Small 3414.26 4.8 37 88.0 874.1 2.7 
19 50 No 0.8 [30, 70] Large 2434.67 3.8 21.1 77.5 490.3 2.2 
20 50 No 0.8 [30, 70] Small 1792.63 2.7 19.2 78.9 444.0 2.6 
21 50 No 0.08 [80, 120] Large 3969.98 6.8 86.4 83.6 1958.0 1.2 
22 50 No 0.08 [80, 120] Small 2473.01 4.2 76 84.7 1721.8 1.3 
23 50 No 0.08 [30, 70] Large 1913.52 3.5 38.1 75.1 845.5 1.2 
24 50 No 0.08 [30, 70] Small 1315.23 2.4 41.7 73.9 914.6 1.2 
25 50 Yes 0.8 [80, 120] Large 5634.33 8.6 37.7 87.8 863.4 2.9 
26 50 Yes 0.8 [80, 120] Small 3629.35 5.4 29.3 89.1 695.0 3.4 
27 50 Yes 0.8 [30, 70] Large 2743.03 4.4 16.8 82.5 373.3 2.7 
28 50 Yes 0.8 [30, 70] Small 1934.28 3.1 14.8 79.6 345.9 3.3 
29 50 Yes 0.08 [80, 120] Large 4917.26 8.4 48 87.9 1091.3 2.2 
30 50 Yes 0.08 [80, 120] Small 3022.72 5.3 43.6 84.7 1001.7 2.3 
31 50 Yes 0.08 [30, 70] Large 2459.69 4.4 20.1 81.4 435.3 2.2 
32 50 Yes 0.08 [30, 70] Small 1659.24 3.1 19.6 76.4 443.2 2.5 

Average 2955.96 4.1 30.7 80.7 963.4 3.0 

 
The results are also compared to the previous studies. Table 3 shows the comparison between 

our computational results with Raa (2006) for all the test instances and Table 4 shows only the 
comparison with Raa and Aghezzaf (2009) for 80 instances. Their computational testing was done on 
a 2.0 GHz Intel Centrino processor with 1 GB of RAM. Note that in Raa (2006), three algorithms were 
presented and tested on all the 320 test instances (plus one more algorithm for the single-vehicle 
version of the problem). One of their algorithms performs better than the two others, which is the 
one we compared our results with. The mentioned algorithm is a column generation based heuristic 
solution approach which is also presented in Raa & Aghezzaf (2009), but only for 80 instances with 
the most important results. These are the instances included in 8 data sets presented in Table 4 and 
also with odd numbers from 1 to 15 marked by an asterisk in Table 3. To compare the results, we 
used the following gap percentage formula: 

%݌ܽܩ  = 100 ∗ ݐ݈ݑݏ݁ݎ ݁ݏܽܤ) − ݐ݈ݑݏ݁ݎ ݁ݏܽܤ(݀݁ݎܽ݌݉݋ܿ ܾ݁ ݋ܶ                 (22) 
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Table 3. Results comparison for 320 test instances 
 

Raa (2006) Two-phase heuristic 

Set Obj. value CPU time (s) 
No. of best 

found 
Worst Gap % Obj. value CPU time (s) 

Nr of best 
found 

Avg Gap % Worst Gap % 

1* 4782.56 657.4 0 -10.38 4486.00 136.55 10 6.32 2.73 
2 3350.37 674.6 0 -12.06 3120.07 141.45 10 6.66 1.34 

3* 2297.03 65.2 1 -19.01 2230.16 28.39 9 2.63 -0.12 
4 1752.85 97.7 4 -10.07 1721.12 41.20 6 1.23 -0.94 

5* 3122.11 8020.5 7 -0.20 3125.53 332.38 3 -0.10 -0.51 
6 2017.27 12351 7 -0.77 2057.98 322.97 3 -2.27 -21.76 

7* 1514.77 620.5 8 -1.30 1518.90 28.43 2 -0.30 -1.27 
8 1068.38 1508.0 7 -0.83 1072.18 72.01 3 -0.32 -2.15 

9* 6135.86 336.6 0 -11.67 5709.70 87.65 10 6.87 1.41 
10 3719.20 340.2 0 -10.33 3635.17 101.46 10 2.09 0.51 

11* 3112.45 23.7 2 -21.90 3039.90 15.97 8 2.73 -0.99 
12 2025.38 40.4 5 -2.64 2022.00 26.28 5 -0.08 -3.16 

13* 5393.03 400.1 0 -13.61 4972.57 110.95 10 7.67 0.69 
14 3102.43 519.9 0 -4.17 3030.89 131.32 10 2.24 0.85 

15* 2804.01 35.8 2 -12.27 2734.35 18.67 8 2.19 -0.29 
16 1737.29 61.6 2 -2.67 1721.09 31.29 8 0.80 -4.55 
17 5287.07 883.8 0 -7.69 5079.75 132.54 10 4.09 2.31 
18 3570.91 816.8 0 -7.81 3414.26 124.16 10 4.25 1.59 
19 2445.34 76.6 2 -3.58 2434.67 21.68 8 -0.09 -10.24 
20 1825.22 127.1 1 -3.55 1792.63 34.91 9 1.59 -0.72 
21 3975.74 3814.0 8 -4.44 3969.98 114.73 2 0.02 -1.22 
22 2446.54 6041.2 10 0.35 2473.01 182.87 0 -1.11 -2.06 
23 1889.43 209.8 10 0.55 1913.52 12.90 0 -1.23 -2.39 
24 1295.79 613.3 10 0.30 1315.23 13.97 0 -1.72 -4.29 
25 5906.69 502.1 0 -7.29 5634.33 104.67 10 4.48 2.00 
26 3883.45 462.3 0 -9.71 3629.35 108.34 10 6.54 2.46 
27 2853.25 36.3 0 -12.10 2743.03 18.06 10 3.80 1.05 
28 2013.65 62.5 1 -12.26 1934.28 28.96 9 3.31 -0.52 
29 5163.67 571.9 0 -8.64 4917.26 137.49 10 4.75 0.43 
30 3178.95 821.5 0 -9.75 3022.72 148.05 10 4.64 1.41 
31 2528.04 37.4 2 -12.33 2459.69 18.76 8 2.73 -1.34 
32 1678.99 97.1 2 -3.36 1659.24 34.48 8 1.01 -0.53 

Average / 
Worst/ 

Sum 

3058.68 1278.98 

91 
-21.90 

2955.96 89.49 

229 

2.36 
-21.76 

* The results of these rows are also presented in Raa & Aghezzaf (2009) 

 
Since we compare our results with the results of Raa (2006) as a base, a positive gap means the 

base is outperformed. Next to the average gap over 10 instances of each set, we also report the 
“worst” gap over each of these instances. When this is a positive number, it means we outperform 
the base algorithm on each instance of that set. Raa (2006) was able to find 30 better results (each 
instance of sets number 22, 23 and 24), while our algorithm found better solutions for 13 complete 
sets out of 32. Moreover, our algorithm is on average around 14 times faster. For 229 of the 320 
instances, our algorithm improved the best known solution. Our algorithm improved the average 
gap by 2.36%.  

 
Considering the instance results published in Raa & Aghezzaf (2009), we were able to obtain 60 

new best known solutions (out of 80 instances) and the average gap was improved by 3.5% (Table 4). 
These results show the overall performance of our algorithm in tackling this complex problem. To 
illustrate in more detail the behavior of our algorithm, we present more details in Tables 4 and 5. 
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Table 4. Results comparison for 80 test instances (Raa & Aghezzaf, 2009) 
 

Raa & Aghezzaf (2009) Two-phase heuristic 

Set Obj. value CPU time (s) 
No. of best 

found 
Worst Gap % Obj. value CPU time (s) 

Nr of best 
found 

Avg Gap % Worst Gap % 

1* 4782.56 657.4 0 -10.38 4486.00 136.55 10 6.32 2.73 
3* 2297.03 65.2 1 -19.01 2230.16 28.39 9 2.63 -0.12 
5* 3122.11 8020.5 7 -0.20 3125.53 332.38 3 -0.10 -0.51 
7* 1514.77 620.5 8 -1.30 1518.90 28.43 2 -0.30 -1.27 
9* 6135.86 336.6 0 -11.67 5709.70 87.65 10 6.87 1.41 

11* 3112.45 23.7 2 -21.90 3039.90 15.97 8 2.73 -0.99 
13* 5393.03 400.1 0 -13.61 4972.57 110.95 10 7.67 0.69 
15* 2804.01 35.8 2 -12.27 2734.35 18.67 8 2.19 -0.29 

Average / 
Worst/ 

Sum 

3645.23 1269.98 

20 
-21.90 

3477.14 94.87 

60 

3.50 
-1.27 

* The results of these rows are also presented in Raa & Aghezzaf (2009) 

 
In Table 5, a summary of the gaps is presented. When comparing with Raa & Aghezzaf (2009), 

the table shows that we have only one gap in the interval of -5% to -1% compared to their results. 
Their results, on the other hand, have 24 gaps of worse than -5% compared to our results for those 
80 instances. When the best performing algorithm of Raa (2006) is compared to our results, they 
have 68 and 19 (out of 320 test instances) gaps worse than or equal to -5% and -10%, respectively. 
We just have one gap in the -20% to -10% interval (a gap of -10.24% in the set number 19) and one 
gap in the -10% to -5% interval. The results show that both our study and Raa (2006) have only one 
gap of worse than -20% compared to each other. 

 
Table 5. Comparison of gap distribution in the results  

Study 
Raa & Aghezzaf 

(2009) 
Two-phase 

heuristic 
Raa (2006) 

Two-phase 
heuristic 

Number of instances 80 320 

Number of best found solutions 20 60 91 229 

Gap Interval (%)     

< -20 1 0 1 1 

[-20, -10) 9 0 18 1 

[-10, -5) 14 0 49 1 

[-5, -1) 20 1 119 28 

[-1,0) 16 19 42 60 

All 60 20 229 91 

 
Table 6 shows the results obtained when the algorithm is stopped as soon as a first feasible 

solution is found (columns 2 to 6 of Table 6). This happens when a first iteration of the Routing and 
Scheduling heuristic are performed. These results show that the first obtained solution of the 
algorithm (even without the Vehicle Decrease heuristic), found 66 new best known solutions out of 
320 test instances in a very short period of time. These results have an average gap of -5% with the 
solutions of Raa (2006). The average running time for all test instances when the first solution is 
found is about 0.1 seconds. In other words, this approach of decomposing and solving the problem 
in two phases of Routing and Scheduling obtains acceptable results very quickly. It is a very fast way 
to obtain initial solutions and this can be useful for other (exact) algorithms as well. 
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Columns 7 to 11 of Table 6 present the results when the Local Search is executed only once and 
no branching is performed (ܤݔܽܯ = 0). The results show that in an average of 2.77 seconds per 
instance, the algorithm found 171 best known solutions with a negligible average gap of -0.01%. 
However, these results show a maximum gap of -45.51% in one of the instances. Then, the results 
after branching on 10 edges (ܤݔܽܯ = 10) are also presented in Table 6 in columns 12 to 16. The 
results show that in an average of 26 seconds per instance, the algorithm found 208 best known 
solutions with an average gap of 1.78% (thus performing clearly better than the previous results). 
However, the maximum gap becomes -21.8% in two of the instances. These results illustrate the 
importance of some decisions during the design of the algorithm, for example the branching as a 
diversification strategy and the Vehicle Decrease heuristic in the Local Search.  
 

Table 6. Computational results for the first obtained solution and MaxB=0 & 10 

Set 

First obtained solution MaxB=0 MaxB=10 

Obj. Value 
CPU 
time 
(s) 

Nr of 
best 

found 
Avg Gap % 

Worst 
Gap % 

Obj. Value 
CPU 
time 
(s) 

Nr of 
best 

found 

Avg Gap 
% 

Worst 
Gap % 

Obj. 
Value 

CPU 
time 
(s) 

Nr of 
best 

found 

Avg 
Gap % 

Worst 
Gap % 

1 4843.71 0.21 4 -1.35 -7.50 4589.27 4.86 10 3.88 0.58 4530.64 31.97 10 5.28 2.60 
2 3534.02 0.22 2 -5.49 -11.82 3205.32 3.67 10 4.06 0.65 3136.05 32.21 10 6.21 1.04 
3 2465.61 0.03 0 -7.97 -27.95 2252.14 0.90 6 1.66 -2.52 2232.19 7.27 8 2.53 -0.31 
4 2008.44 0.04 0 -16.90 -44.93 1766.24 1.08 1 -1.43 -7.79 1738.26 10.10 4 0.30 -3.31 
5 3178.51 0.09 0 -1.82 -2.40 3147.73 8.70 1 -0.82 -1.14 3134.07 81.83 1 -0.39 -0.68 
6 2147.07 0.10 0 -6.94 -25.55 2110.49 10.02 0 -5.16 -22.56 2067.76 87.28 1 -2.78 -21.76 
7 1677.81 0.01 0 -12.44 -48.07 1606.89 1.56 0 -7.66 -45.28 1519.13 17.57 2 -0.31 -1.27 
8 1300.62 0.02 0 -26.86 -58.36 1155.59 2.63 0 -9.50 -45.51 1075.20 25.06 1 -0.65 -2.15 
9 5984.95 0.21 7 2.57 -2.94 5805.41 2.25 10 5.32 0.61 5730.10 21.09 10 6.53 1.33 

10 3901.52 0.23 1 -5.34 -17.35 3718.42 3.00 6 -0.17 -9.64 3648.74 25.37 10 1.72 0.11 
11 3278.75 0.03 1 -4.79 -14.21 3118.16 0.39 4 0.45 -9.65 3056.87 4.60 6 2.18 -1.05 
12 2251.28 0.05 0 -11.48 -25.62 2084.42 0.69 2 -3.35 -23.10 2070.42 7.05 3 -2.71 -21.79 
13 5306.38 0.19 7 1.58 -9.37 5072.40 3.51 9 5.85 -0.41 4995.24 29.77 10 7.23 0.28 
14 3158.48 0.20 2 -1.84 -13.19 3102.81 4.12 8 -0.03 -11.56 3037.79 35.90 10 2.01 0.14 
15 2913.20 0.03 1 -4.67 -22.96 2862.78 0.60 1 -2.94 -21.27 2744.73 5.54 6 1.80 -1.15 
16 1885.63 0.05 2 -8.84 -30.13 1751.87 0.79 4 -0.80 -5.13 1724.43 8.90 8 0.60 -4.55 
17 5277.87 0.16 6 0.14 -3.57 5175.17 3.13 10 2.09 0.66 5108.28 34.53 10 3.43 2.05 
18 3560.76 0.18 4 0.18 -2.63 3456.04 3.12 10 3.08 1.25 3419.01 31.37 10 4.11 1.59 
19 2501.37 0.02 2 -2.96 -15.39 2452.54 0.77 7 -0.81 -10.70 2437.50 7.40 8 -0.20 -10.26 
20 1945.16 0.04 0 -7.02 -16.74 1824.30 0.99 7 -0.28 -10.08 1815.67 9.85 8 0.21 -9.65 
21 4028.04 0.06 1 -1.38 -2.53 4016.42 5.73 1 -1.10 -2.15 3974.66 63.06 2 -0.10 -1.43 
22 2550.85 0.06 0 -4.27 -12.37 2504.28 6.62 0 -2.38 -10.52 2475.95 71.45 0 -1.23 -2.06 
23 1994.56 0.01 0 -6.55 -25.68 1942.22 1.11 0 -2.92 -16.85 1913.52 10.49 0 -1.23 -2.39 
24 1374.32 0.01 0 -6.51 -21.92 1321.37 1.90 0 -2.11 -4.29 1315.23 14.57 0 -1.72 -4.29 
25 5835.08 0.17 7 1.06 -3.13 5708.98 3.03 10 3.19 1.09 5676.81 27.35 10 3.76 1.82 
26 3823.80 0.18 5 1.40 -3.32 3657.34 3.09 10 5.77 0.94 3640.20 27.86 10 6.23 2.46 
27 2979.32 0.03 1 -5.16 -16.81 2853.80 0.61 8 -0.25 -13.84 2815.72 5.50 9 0.87 -13.84 
28 2108.41 0.04 1 -6.77 -28.18 1974.51 0.74 8 1.53 -0.52 1938.90 7.81 9 3.11 -0.52 
29 5128.32 0.14 7 0.63 -0.94 5046.60 3.21 9 2.13 -0.75 4954.09 34.32 10 4.08 0.43 
30 3186.96 0.17 3 -0.48 -8.67 3045.99 4.16 10 3.89 0.59 3030.28 37.91 10 4.38 0.59 
31 2611.80 0.03 1 -3.50 -14.90 2532.59 0.72 6 -0.47 -12.11 2500.32 7.05 6 0.84 -2.29 
32 1779.47 0.05 1 -7.89 -33.61 1696.60 1.06 3 -1.11 -10.11 1663.17 10.40 6 0.75 -0.80 

Avg / 
Worst 
/Sum 

3141.31 0.10 

66 

-5.05 
-58.36 

3017.46 2.77 

171 

-0.01 
-45.51 

2972.53 26.01 

208 

1.78 
-21.79 
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7. Conclusions and further research 
In this paper, the cyclic inventory routing problem (CIRP) is discussed. It is a challenging complex 

combinatorial optimization problem. According to the new model presented in Section 4, the 
objective function is nonlinear and non-convex and on top of that we have sets of nonlinear 
constraints (constraints 7, 8, 9 and 10). Therefore one can understand that the feasible solution 
space and the convex hull are rather complicated. The idea of the linear relaxation of the number of 
vehicles helped us to evaluate the potential node transfers between trips and vehicles rapidly 
without the need for determining the actual number of necessary vehicles. This is the key to our fast 
and effective solution approach.  

 
This paper provided additional insights in the structure of the CIRP by proposing a two-phase 

deterministic algorithm decomposing the problem into two subproblems; one with the nature of 
routing and the other of scheduling. For each subproblem, we developed a new heuristic algorithm. 
Our heuristic for the routing phase is based on the steepest descent concept. The second heuristic 
solves the scheduling subproblem based on building vehicle schedules day by day. Then our 
algorithm improves the trip cost estimation for the next iteration of the routing algorithm. Trip 
utility out of a vehicle schedule and trip cycle times play a central role in our approach as they create 
a connection between the routing and scheduling phases. To escape the local optimum, we used a 
simple branching scheme. The results compared to what is presented in the literature show that our 
decomposition approach is very effective not only in obtaining high quality solutions but also in 
being very fast. 

 
Experimental results were obtained based on 320 test instances (available from the PhD thesis 

of Raa (2006)) including 30 to 120 nodes. The results show that our algorithm outperforms the 
former heuristic approaches on the benchmark test sets and provides high quality solutions. 
Applying our algorithm on all test instances, for more than 70% of them new best known solutions 
are found and the average solution values are improved by 2.36%. Also, among all 80 solutions 
presented in a journal publication by Raa & Aghezzaf (2009), our algorithm obtained 60 new best 
found solutions and improved the average solution values by 3.5%  .  

 
Another interesting contribution of our paper is that the first iteration of our algorithm can 

already generate very good initial solutions for this complex problem in less than half a second for 
problems with 120 nodes. Only the first iteration of Routing and Scheduling produces 66 best known 
solutions in an average running time of 0.1 seconds. Finding promising initial solutions in such a very 
short computation time can make our algorithm interesting for researchers working on CIRP to 
obtain high quality initial solutions for their heuristic or exact algorithms. Branch and cut or branch 
and price algorithms are the best known tools to solve complex inventory routing problems to 
optimality. Our heuristic can significantly help these algorithms since starting with a very good initial 
solution can result in reducing the running times by exploring fewer branches in the search tree and 
therefore it will be possible to tackle larger problems. Moreover, a further research direction could 
be the use of a complete branch and bound algorithm structure using upper bounds of our heuristic. 
This method of using heuristics in an exact algorithm structure is discussed, for instance, by Fischetti 
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& Lodi (2003). We also believe that our idea of the linear relaxation of the number of vehicles with a 
fixed cost in the objective function and then decomposing the problem into two main subproblems 
of Routing and Scheduling can help other researchers to develop even better algorithms for this 
complex problem or related problems with multi-frequency and multi-trip routing. 

 
Facing real life problems, our algorithm can help distribution operators to find promising results 

in a reasonable time frame. Note that it can work even faster if, in the routing phase, instead of best 
insertion, 2-OPT and Relocate heuristics, the approximation method offered in Burns et al. (1985) 
will be used to estimate the necessary time of the TSP route of each trip. The fact that our solution 
approach does not require a commercial solver like CPLEX or Gurobi could also be of interest to 
software development companies.  
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Appendix A.1 
Table A. Summary of the notations  

Sets ܰ, ܰା Set of all nodes and ܰ ∪ {0}, respectivelyܸ Set of all vehicles ܲ Set of all trips ݌ ௣ܰ, ௣ܰା Set of all nodes in trip ݌ and ௣ܰ ∪ {0}, respectively௩ܲ Set of all trips assigned to vehicle ݒ scheduleܲᇱ Set of all non-scheduled trips݌଴ The current trip of a certain node ܵ, ܵ∗ Solution and best solution identifiedܤ Set of edges non incident to the depot in best solution identified
Decision variables ݕ௩ Equals to 1, if vehicle ݒ ∈ ܸ is used, and 0, otherwiseܶ௩ Schedule cycle time of vehicle ݒ (days per vehicle cycle) , ܶ௩ ∈ ℕݔ௜௝௩  Equals to 1, if vehicle v ∈ V traverses the link between i and j directly, and 0, otherwiseݖ௜௝௣  Sum of demand rates (units per day) of the remaining nodes in a trip ݌ ∈ ௩ܲ served by vehicle ݒ ∈ ܸ when it travels to node ݆ ∈ ௣ܰା immediately after it visited node ݅ ∈ ௣ܰା ߁௣ Cycle time for the trip p, Γ୮ ∈ ℕ (days per one trip execution)݂௣ Frequency of the trip ݌ ∈ ௩ܲ, in the schedule of vehicle ݒ, ݂௣ ∈ ℕ (times per vehicle cycle)
Parameters ߰ Fixed cost of using a vehicle (currency per day)ߜ Vehicle operating cost (currency per distance)ߪ Average vehicle speed (distance per hour)߮௜ Handling cost at the node ݅ and the depot for ݅ = 0 (currency/node visit and 

currency/dispatch, respectively) ߠ௜ Handling time at node ݅ and the depot (hours/node visit and hours /dispatch, respectively)ߟ௜ Inventory cost at the node ݅ (currency per unit per day)ߤ Weight adjustment parameterߩ A percent of the nodes ݀௜ Demand of node i (unit/day)݇௜ local inventory capacity of node i (unit)ߢ Vehicle capacity (unit) ܪ Maximum driving time per day (hours per day)߁௠௜௡௣  Minimum cycle time for trip p (days per one trip execution)߁௧௦௣௣  TSP route travel time for trip ݌ (hours)߁௠௔௫௣  Maximum cycle time for trip ݌ (days per one trip execution)߁௠௔௫ௌ௜௡௚௟௘ ௜ Maximum cycle time for serving node ݅ in a single-node trip (days per one trip execution)߁௣, ,௣ݑcycle time and its estimation (days per one trip execution) ݌ ෠௣ Trip߁ ݌ ො௣ Vehicle utilization of tripݑ and its estimationܧ௣, cost and its estimation ݌ ෠௣ Tripܧ (currency per day)ܶ௕௔௦௘ Base cycle time for a certain day of a vehicle schedule (days per one trip execution) ݅ܤݎ݁ݐ, ,ܷݎ݁ݐ݅ܤ Iteration counter and the maximum number of different edges or elements of the set ܤݔܽܯ ,ܲݎ݁ݐIteration counter and the maximum number of Routing and Scheduling algorithms runs݅ ܷݔܽܯ  Iteration counter and the maximum number of Vehicle Decrease heuristic runs ܲݔܽܯ
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Appendix A.2 

 

 
Figure A.2. An illustration of a feasible solution for the instance LNHLL-0 of the data set with 86 
nodes 
* The circle radius around the node determines its demand rate magnitude where the green circles indicate demands 
greater than the nodes’ average rate and red circles show smaller ones. 
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