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Abstract

This paper deals with empirical computation of Aumann-Shapley cost shares for
joint production. We show that if one uses a mathematical programming approach with
its non-parametric estimation of the cost function there may be observations in the data
set for which we have multiple Aumann-Shapley prices. We suggest to overcome such
problems by using lexicographic goal programming techniques. Moreover, cost allo-
cation based on the cost function is unable to account for differences between efficient
and actual cost. We suggest to employ the notion of rational inefficiency in order to
supply a set of assumptions concerning firm behavior. These assumptions enable us
to connect inefficient with efficient production and thereby provide consistent ways of
allocating the costs arising from inefficiency.

Keywords: Cost Allocation, Convex Envelopment, Data Envelopment Analysis, Aumann-
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1 Introduction

Aumann-Shapley (A-S) cost allocation, often interpreted as generalized average cost shar-
ing, is a well-known cost allocation method designed for regulation of multi-product natural
monopolies as well as for internal cost accounting and decentralized decision making in or-
ganizations, see e.g., Spulber (1989), Banker (1999), Mirman, Tauman and Zang (1985a). In
short, the idea is to determine a set of unit prices for each output, i.e., the Aumann-Shapley
(A-S) prices, and use these for the allocation of joint costs.

The theoretical literature has shown that the A-S method (and A-S prices) possesses a
number of desirable properties, see e.g., Billera and Heath (1982), Mirman and Tauman
(1982), Young (1985), Mirman, Tauman, and Zang (1985b), and it has essentially been the
unanimous recommendation of economists for decades when sharing the costs of joint pro-
duction, see e.g., Friedman and Moulin (1999). Yet, despite its sound theoretical foundation
there has been relatively few empirical applications. The reason seems at least twofold:

1. It requires an empirical estimation of the cost function that enables computation of all
relevant A-S prices.

2. In practice firms may not produce at efficient production cost. Hence, an allocation
based solely on the cost function will not account for differences between efficient
and actual costs.

In the present paper we examine how to cope with both these issues. While there has
been previous papers dealing with computation of A-S prices for given empirical cost func-
tions we believe the second issue, concerning inefficient production, has been ignored and
we offer a completely new approach here.

We follow up on papers by Samet, Tauman and Zang (1984), and Hougaard and Tind
(2009) and consider empirical estimation based on convex envelopment of observed cost-
output data as in the celebrated Data Envelopment Analysis (DEA) approach of Charnes,
Cooper and Rhodes (1978).1 The resulting piecewise linear cost function enables a rela-
tively simple computation of A-S prices for large parts of the output space: The A-S prices
associated with a given output vector are simply found as the weighted sum of gradients
of the linear facets of the estimated cost function along a radial contraction path of the ob-
served output vector, where the weights are proportional to the length of the projected line
segments. For every data point this can be computed using parametric linear programming.

1For a recent general DEA reference, see e.g., Bogetoft and Otto (2010).
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However, for certain data points, and in particular for the observed productions that help
span the empirical cost function, the cost function will in most cases be piecewise contin-
uous differentiable along the radial contraction path and hence there may be multiple A-S
prices for the same observation caused by lack of continuous differentiability on subinter-
vals along this path. For reasons of transparency and simplicity, we suggest to overcome this
problem by using a lexicographic goal programming approach with a predefined ordering
of outputs to determine which outputs should be allocated most costs. Such orderings may,
for instance, be the result of a managerial prioritization and will provide unique A-S prices
for all observations. 2

Our approach, however, does not exclude the possibility of having zero A-S prices for
some units (when these are referring to exterior facets). To solve this problem (as well as
excluding the possibility of infinite A-S prices), one can use the “extended facet” approach
in Olesen and Petersen (1996, 2003). This ensures well defined rates of substitution on the
boundary of the convex envelopment of the data points, but in general this approach lacks
operationability.

When it comes to inefficient production it seems that no previous papers have considered
the consequences in relation to A-S pricing. Yet, countless empirical studies have shown that
observed production data are often associated with considerable levels of technical ineffi-
ciency, see e.g., Bogetoft and Otto (2010).

To deal with inefficient production in the context of A-S cost allocation, we propose to
invoke the rational inefficiency paradigm introduced in Bogetoft and Hougaard (2003) and
further analyzed in Asmild, Bogetoft and Hougaard (2009, 2013). This allows us to formu-
late specific assumptions concerning the behavior of inefficient firms, which in turn enables
us to associate an efficient production with each inefficient observation in the sample. It
is worth emphasizing that, as such, our suggested approach and associated results are in-
dependent of the way we estimate the cost function (although we are using non-parametric
estimation for our empirical illustration).

In particular, firms can introduce inefficiency on either the cost (input) side or the pro-
duction (output) side. Considering cost inefficiency we assume that the inefficient firm has
revealed a constant fraction of overspending by its actual production choice. Thus, A-S
prices connected with the cost efficient production can be scaled up with a radial cost effi-
ciency index in order to obtain full cost allocation. We show that this approach is tantamount
to viewing inefficiency as a fixed cost and to sharing this fixed cost in proportion to the A-S
prices.

2A far less operational approach would be to determine all facets involved (for data point in question) and
define the associated A-S price as the (weighted) average of the gradients of these facets.
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Looking at the output side we assume that firms introduce inefficiency by consuming
outputs directly on the job. For example, some units of a given output may be produced in
inferior quality and we can regard this as a kind of internal ”consumption”, which should
not distort the estimation of A-S prices. A rationally inefficient firm would choose its actual
(unobserved) production so as to maximize potential revenue given output prices and its
observed cost. When we observe the actual output level lower than that it is because the firm
has consumed the difference (slack) itself. We shall therefore argue that it is the allocatively
efficient output combination that carries the cost and allocate costs accordingly using the
A-S prices related to the allocatively efficient production.

We illustrate our approach using a data set concerning Danish waterworks. We use the
same 2011 data that the regulator, the Water Division of the Danish Competition and Con-
sumer Authority, used in their first regulatory cost benchmarking model, and we show how
cost shares can be computed using our suggested A-S approach in case of a non-parametric
estimation of the cost function.

The rest of the paper is organized as follows: Section 2 defines the standard Aumann-
Shapley cost allocation rule for continuously differentiable cost functions. Section 3 intro-
duces the convex envelopment approach to the estimation of the empirical cost function.
We discuss how to calculate A-S prices from the estimated cost function and suggest how
to deal with the lack of well defined A-S prices for all production units in section 4. Sec-
tion 5 deals with inefficient production in the context of A-S cost allocation building on the
rational inefficiency paradigm. The illustrative application to data on Danish waterworks is
presented in section 6, and section 7 contains final remarks.

2 Aumann-Shapley Cost Allocation

Consider a joint production process resulting in n different outputs. Let q 2 Rn
+ be the (non-

negative) output vector where qi is the level of output i. The cost of producing any vector q
is given by a non-decreasing cost function C : Rn

+ ! R. Initially, we assume that C(0) = 0,
i.e., there are no fixed costs.

Let (q,C) denote a cost allocation problem and let f be a cost allocation rule. The cost
allocation rule specifies a unique vector of cost shares x = (x1, . . . ,xn) = f(q,C) for each
output vector q and cost function C. The cost shares satisfy budget-balance, i.e.

n

Â
i=1

xi =C(q)
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where xi is the cost share allocated to output i.
In particular, consider the class of continuously differentiable cost functions and let

∂iC(q) = ∂C(q)/∂qi be the partial derivative of C at q with respect to the ith argument.
Following Aumann and Shapley (1974), we define the Aumann-Shapley rule (A-S-rule)

f AS as

f AS
i (q,C) =

Z qi

0
∂iC(

t
qi

q)dt = qi

Z 1

0
∂iC(tq)dt for all i = 1, . . . ,n. (1)

It can be shown that this allocation is budget balanced, i.e., Âi2N f AS
i (q,C) =C(q).

Also,

pAS
i =

Z 1

0
∂iC(tq)dt

can be seen as the unit cost of output i. This is known as the Aumann-Shapley price (A-S
price) of output i. As such, the A-S cost shares, xAS

i , are given by

xAS
i = pAS

i qi (2)

for all outputs i = 1, . . . ,n.
The A-S rule can be seen as one (of several) possible extensions of average cost shar-

ing to the multiple product case, see e.g. Hougaard (2009). Axiomatic characterizations
are provided (independently) in Billera and Heath (1982) and Mirman and Tauman (1982).
Following the latter, we here shortly recall the axioms characterizing A-S pricing pAS(C,q) :

• (Rescaling) For some rescaling q 7! q̄ = (l1q1, . . . ,lnqn), let G(q) =C(q̄). Then, for
all i = 1, . . . ,n, pi(G,q) = li pi(C, q̄).

• (Consistency) Let C(q)=G(Ân
i=1 qi). Then, for all i= 1, . . . ,n, pi(C,q)= pi(G,Ân

i=1 qi).

• (Additivity) Let C(q) = G(q)+H(q). Then p(C,q) = p(G,q)+ p(H,q).

• (Positivity) Let C be non-decreasing at each q0  q. Then p(C,q)� 0.

Early examples of application can be found in Billera, Heath and Raanan (1978) and
Samet, Tauman and Zang (1983). More recent applications include Castano-Pardo and
Garcia-Diaz (1995), Haviv (2001), Tsanakas and Barnett (2003) and Bjørndal and Jörnsten
(2005).

Example 1: Consider the simple case where the cost function is homogeneous of degree k,
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i.e., C(tq) = tkC(q) for t 2 [0,1]. Here it is clear that for all i 2 N, the A-S prices become

pAS
i = ∂iC(q)

Z 1

0
tk�1dt = pMC

i
1
k
,

and hence,
f AS

i (q,C) = qi pMC
i

1
k
,

where pMC
i is the marginal cost price of i. 4

If the production involves fixed costs, C(0) > 0, the above procedure will not allocate
the full cost, only the variable part, C(q)�C(0). An obvious idea in this case is to allocate
the fixed part, C(0), in proportion to the variable shares, i.e., to let eC(q) =C(q)�C(0) and
use

f AS
i (q,C) = f AS

i (q, eC)+
f AS

i (q, eC)

Ân
j=1 f AS

j (q, eC)
C(0), (3)

for all i = 1, . . . ,n.
Mirman, Samet and Tauman (1983) presents an axiomatic characterization of an (ex-

tended) A-S pricing rule for cost functions with a fixed cost component corresponding to
the extended A-S cost allocation rule (3). It turns out that a slight modification of the orig-
inal axioms as stated above, and in particular, a modified version of additivity where it is
claimed that there exists a way to split the fixed cost between the different variable cost
components, is enough to achieve this:

• (Modified Additivity) For each G  eC there is a non-negative number C0
G such that if

eC = Âm
i=1 Gi then C(0) = Âm

i=1C0
Gi

and

p(eC+C(0),q) =
m

Â
i=1

p(Gi +C0
Gi
,q).

Moreover, Gi(q)� G j(q) implies C0
Gi

�C0
G j
.

3 Non-Parametric Cost Functions and Efficiency Measures

To apply the A-S rule in practice, the cost function C needs to be estimated. Let D =

{(q j,Cj)} j=1,...,h be a set of h observations of output vectors q j 2 Rn
+ and their associated

production cost Cj 2 R+. These observations can be construed as originating either from
the same firm over h time periods or from h individual firms at a given point in time.
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Based on such a data set, a cost function may be estimated using a traditional paramet-
ric approach where a given functional form is postulated and parameters associated with
this form are estimated. This approach is taken in numerous studies of cost functions, see
e.g., Kumbhakar and Lovell (2000). However, using a standard parametric approach (typi-
cally estimating parameters in log-linear or translog functional forms) may produce signifi-
cantly biased estimates and provide invalid inference as shown in Delis, Iosifidi and Tsionas
(2014), who argue that a semi-parametric smooth coefficient model yields better results. In-
deed, to use various approaches for smoothing represents one way of obtaining well-defined
A-S prices within a conventional econometric framework.

Alternatively, one may take a (non-smooth) non-parametric, mathematical programming
approach. Since this approach is widely used for regulation of various forms of natural
monopolies (see e.g., Bogetoft, 2012) we will focus on what is essentially the so called Data
Envelopment Analysis (DEA) approach, first introduced by Charnes, Cooper and Rhodes
(1978) and since then extended and applied in thousands of Operations Research papers. In
the context of cost functions, we can think of the approach as follows: We assume that the
underlying but unknown cost function C(·) have the following properties

A1 Increasing: q0 � q )C(q0)�C(q)
A2 Convex: C(aq+(1�a)q0) aC(q)+(1�a)C(q0),8a 2 [0,1]
A3(g) g � returns to scale: C(kq) kC(q), 8k 2 G(g)

where g represents different global returns to scale properties, namely, varying vrs, decreas-
ing drs, increasing irs, and constant crs returns to scale, with corresponding parameter sets
G(vrs) = {1}, G(drs) = [0,1], G(irs) = [1,•), and G(crs) = [0,•).

It follows that the initial uncertainty about how to represent the cost function can be
expressed as uncertainty within the following broad classes of cost functions:

C (crs) = {C : Rn
+ ! R+ |C is increasing, convex, crs}

C (drs) = {C : Rn
+ ! R+ |C is increasing, convex, drs}

C (irs) = {C : Rn
+ ! R+ |C is increasing, convex, irs}

C (vrs) = {C : Rn
+ ! R+ |C is increasing, convex, vrs}

Thus, the idea of the non-parametric approach is that there is considerable a priori un-
certainty about the functional form of the cost function. In a g-model, all we know is that

C(·) 2 C (g)
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i.e., we know that C(·) is increasing and convex, but otherwise we know nothing about
the cost function. Our a priori uncertainty does not stem from a lack of information about
a few parameters, as in a Coob-Douglas or a Translog statistical model. Rather, we lack
information about all of the characteristics of the function except for a few general properties
such as its convexity and tendency to increase.

Now, to estimate a specific cost function from the available data D = {(q j,Cj)} j=1,...,h

we can rely on the the minimal extrapolation principle. We estimate the non-parametric cost
function as the largest function with these properties that is consistent with data in the sense
that Cj �C(q j), j = 1, . . . ,h, i.e., as

bC(q) := max{C(q) |C(·) 2 C (g),Cj �C(q j), j = 1, . . . ,h}

An important feature of the class of cost functions considered above is that a largest function
of this type actually exists – or, to put it differently, that the bC(·) defined above inherits the
properties from the C (g) class. This is shown for example in Bogetoft (1997).

It is easy to show that the estimated cost function in the drs case is the solution to the
following program

bCdrs(q⇤) = min q (4)

s.t.
h

Â
j=1

l jq j � q⇤ (5)

h

Â
j=1

l jCj  q (6)

h

Â
j=1

l j  1 (7)

l j � 0,8 j. (8)

For the other classes of cost functions we get similar mathematical programs; the only
difference is that the constraint (7) is modified. It is Âh

j=1 l j = 1 in the vrs case, Âh
j=1 l j � 1

in the irs case, and it is ignored in the crs case. We say that an observation (q⇤,C⇤) is efficient
if C⇤ = bCg(q⇤).

It follows from this expression of the estimated cost function that it will be convex and
piecewise linear.3 Consequently, it is clear that the estimated cost function will not be

3The convexity assumption may be relaxed (see, e.g., Bogetoft 1996, Bogetoft, Tama and Tind 2000) but,
for the present purpose and the ease of exposition, we stick to convexity.
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differentiable in general. In fact, local non-differentiability of bC(q) may create problems
when determining the A-S prices (and thereby the A-S cost shares) for specific data points.
A problem which we return to in the next section.

Since we will also be concerned with cost allocation in the presence of inefficiency,
we further introduce a few efficiency measures. In the spirit of Debreu (1951) and Farrell
(1957) we can measure the efficiency of the observation (q⇤,C⇤) relative to the (estimated)
cost function bC using the radial indexes,

Eq((q⇤,C⇤), bC) = max{q 2 R |C⇤ � bC(qq⇤)} 2 [1,•) (9)

and

Ec((q⇤,C⇤), bC) = min{q 2 R | qC⇤ � bC(q⇤)} 2 [0,1] (10)

By (9) we get that, given the cost level C⇤, the firm could have produced output level
Eqq⇤ if it was efficient. By (10) we get that, given the output production q⇤, the firm could
have produced at costs EcC⇤ if it was efficient. Under crs it is well known that4,

Ec((q⇤,C⇤), bCcrs) =
1

Eq((q⇤,C⇤), bCcrs)
(11)

4 Estimation of Aumann-Shapley Cost Shares

Following the approach in Hougaard and Tind (2009), calculation of A-S cost shares with
respect to an estimated cost function bC can be done using parametric programming.5 Indeed,
the A-S prices (and hence cost shares) are easily determined as a finite sum of gradients of
the linear pieces of bC along the line segment [0,q] weighted with the normalized length of
the subintervals where bC has constant gradient.

Specifically, consider a given output vector q⇤ and a parameter value t 2 [0,1]. Now, we
4see e.g., Bogetoft and Otto (2010).
5See, e.g., Bazaraa, Jarvis and Sherali (1990).
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can solve the following linear programming problem

min
h

Â
j=1

l jCj (12)

s.t.
h

Â
j=1

l jq j � tq⇤ (13)

h

Â
j=1

l j 2 G(g) (14)

l j � 0,8 j. (15)

for all values of the parameter t 2 [0,1] and g representing different global returns to scale
properties with G(vrs) = {1}, G(drs) = [0,1], G(irs) = [1,•), and G(crs) = [0,•). Note that
in the crs case (14) and (15) coincide. The dual problem of (12) - (15) is given by

max
n

Â
i=1

ui(tq⇤i )+u0 (16)

s.t.
n

Â
i=1

uiqi � vC+u0 � 0 (17)

n

Â
i=1

uiqi 2 G(g) (18)

u,v � 0, u0 free. (19)

As a result we obtain the subintervals of [0,q⇤] for which the gradients are constant, i.e.,
a series of values tm for which the gradient is constant on the interval [tm�1, tm]. The values
of the gradients are equal to the optimal values u in (16) as illustrated in the example below.

Example 2: Consider the following data from five observed production plans and a classi-
fication of each observations efficiency according to the returns to scale assumption of the
estimated cost function:

Obs. q1 q2 C Efficient drs Efficient irs Efficient vrs Efficient crs
1 8 3 12 yes no yes no
2 3 1 4 yes yes yes yes
3 2 2 3 yes yes yes yes
4 4 7 13 yes no yes no
5 1 1 2 no yes yes no

Because G(crs) = G(drs)[G(irs), the efficient crs observations are efficient both in the
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drs and irs cases.
Now, let q⇤ = (5,3) and define q̄ = (q̄1(t), q̄2(t)) = (q⇤1t,q⇤2t) = (5t,3t). Since the es-

timated cost function differs under the four different returns to scale assumptions we get:
bCdrs(5,3) = bCvrs(5,3) = 8.25, and bCcrs(5,3) = bCirs(5,3) = 7.

Solving (16)-(19) above we get

t obj. func., drs obj. func., irs obj. func., vrs obj. func., crs
0  t < 0.2 1.25q̄1 +0.25q̄2 0q̄1 +0q̄2 +2 0q̄1 +0q̄2 +2 1.25q̄1 +0.25q̄2

0.2  t < 0.5 1.25q̄1 +0.25q̄2 q̄1 +0q̄2 +1 q̄1 +0q̄2 +1 1.25q̄1 +0.25q̄2

0.5  t < 0.77 1.43q̄1 +0.43q̄2 �0.71 1.25q̄1 +0.25q̄2 1.43q̄1 +0.43q̄2 �0.71 1.25q̄1 +0.25q̄2

0.77  t  1 1.25q̄1 +1.5q̄2 �2.5 1.25q̄1 +0.25q̄2 1.25q̄1 +1.5q̄2 �2.5 1.25q̄1 +0.25q̄2

First, consider the drs-case. From the above table we get Aumann-Shapley cost shares

xAS
1 = 5⇥{1.25⇥0.5+1.43⇥ (0.77�0.5)+1.25⇥ (1�0.77)}= 6.49

xAS
2 = 3⇥{0.25⇥0.5+0.43⇥ (0.77�0.5)+1.5⇥ (1�0.77)}= 1.76

Observe that xAS
1 +xAS

2 = 8.25 which is equal to the objective function value of the above
program when t = 1, as it should be. The third constraint of the primal problem (14) is
binding and receives in this case a non-zero dual variable value which is equal to the element
-2.5 in the last row of the table. Again from the last row we see that the optimal dual variable
corresponding to the first element in the output vector is equal to 1.25. Multiplication of this
price by the output quantity q̂1 = 5 gives the value of 6.25. The difference between xAS

1 and
this value is 0.23. The similar difference corresponding to the second element of the output
vector is -2.74. The two differences add to 2.5 (ignoring small rounding errors) which is
equal to the value of the optimal dual variable corresponding to the convexity constraint, as
it should be. In this way the dual variable for the convexity constraint is distributed on to
the values of the output vector.

Second, for the irs-case the Aumann-Shapley cost shares are (xAS
1 ,xAS

2 ) = (4.63,0.38)
which sum up to 5, while the value of the objective function is 7. The difference is due
to a fixed cost of 2, which is not surprising, since for t close to zero the objective function
is given by 0q̄1 + 0q̄2 + 2 (corresponding to a flat exterior facet). For the same reason, for
vrs, we get (xAS

1 ,xAS
2 ) = (4.87,1.39) which sum up to 6.25 while the value of the objective

function at this point is 8.25 (including the fixed cost of 2). The allocation is unchanged for
any positive fixed cost since the gradients (A-S prices) are not affected by changes in the
level of the whole cost possibility set: thus allocation of such fixed costs is naturally done
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in proportion to the A-S prices as suggested below. Finally, in the crs-case there is no fixed
cost, and the allocated cost shares are (xAS

1 ,xAS
2 ) = (6.25,0.75) summing up to 7 exactly as

they should. Note that the gradients are the same for all values of t and can therefore be
directly used as A-S prices. 4

In the vrs- and irs-cases, the above approaches does not work directly, as we saw in
Example 2 above, since there may be fixed costs, i.e., bC(0)> 0. In this case we may proceed
in two steps. First, we calculate the variable part of the cost function,

eC(q) = bC(q)� bC(0)

It is easy to show that when bC 2 C vrs, the variable part eC 2 C drs, and similarly when bC 2
C irs, the variable part eC 2C drs. We can therefore use the variable part to determine A-S cost
shares and then, second, allocate the fixed costs in proportion to these as explained above,
i.e., as

f AS
i (q, bCvrs) = f AS

i (q, bCvrs � bCvrs(0))+
f AS

i (q, bCvrs � bCvrs(0))

Ân
j=1 f AS

j (q, bCvrs � bCvrs(0))
bCvrs(0) (20)

for all i = 1, . . . ,n, and similarly for the irs-case.

Consider now again the drs- or crs-cases. Although the Hougaard and Tind (2009) ap-
proach provides A-S prices for many production possibilities q, there are several limitations
of the approach. First of all, the approach only allocates the efficient cost (as do indeed
any allocation method based on the cost function). Firms that are inefficient will therefore
not in general get a full allocation of their actual costs. Second, for the efficient firms, A-S
prices may not be a unique because of multiple dual solutions associated with the parametric
linear programming problem. Moreover for some efficient firms A-S prices may be zero.
We will illustrate the latter problems below and suggest a solution to multiplicity (as men-
tioned in the introduction the problem of zero A-S prices can in principle to solved using
the ”extended facet” approach of Olesen and Petersen, 1996). The problem of inefficient
production will be addressed in Section 5.

Example 3: Imagine that we only have one observation (q⇤,C⇤) and assume that the un-
derlying cost function satisfy constant returns to scale. In this case, it is intuitively obvious,
that we do not have enough information to allocate costs C⇤ onto the different outputs. An
example with two outputs is illustrated in Fig. 1 below. Here q⇤ = (q⇤1,q

⇤
2) = (1,1) and
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the observed cost is C⇤ = 1. Using crs we can construct a cost function along the ray from
the origin (0,0,0) through (1,1,1). The cost estimate along this ray is bC(t, t) = t. For other
points in the output space, the estimated costs can be derived using an additional assumption
of free disposability, i.e., for a given cost level, say C⇤, outputs can be freely discarded. This
leads to iso-cost lines as illustrated by the dotted lines in Fig. 1 below for cost level C = 1
and C = 2.

Every point of the ray from (0,0,0) through (1,1,1) belongs to two intersecting hy-
perplanes and hence partial derivatives are not uniquely defined. On the other hand, for
given cost levels, when q1 > q2, the partial derivatives are 1 and 0, respectively, and the A-S
prices associated with the two products are consequently 1 and 0, respectively. Likewise,
when q1 < q2 all costs are associated with the second output. As such, even a slight pertur-
bation of any ray-point (t, t, t) will dramatically change the A-S prices: either all costs will
be assigned to the first or the second output.

Moreover, note that A-S prices of zero result from the presence of exterior facets (added
to the cost function through the additional assumption of free disposability) with partial
derivatives of 0 as seen above.

Figure 1: Simple case with multiple allocations in crs

Allowing for diseconomies of scale (as in drs) we encounter an additional problem.
The cost estimate for points that are not weakly dominated by q⇤ is infinite. Intuitively,
this follows from the fact that for points that are not dominated by our observation, we
have no way to claim that production is feasible. The set of points with non-existing A-S
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prices in this case is composed of the shaded areas in Fig. 2. For such productions, small
perturbations will not suffice to establish marginal costs.

Figure 2: Simple case with multiple allocations in drs

4

Example 3 above identified three potential problems:

1. For some observations parts of the projected path from 0 to q may belong to intersect-
ing hyperplanes causing multiple alternative solutions.

2. For some observations, some outputs may be associated with a zero A-S price.

3. For some data points A-S prices may be infinite relative to the estimated cost function
bC.

The first problem arises when a line segment [aq,bq], a< b, a,b2 [0,1], belongs to mul-
tiple supporting hyperplanes simultaneously. One way to proceed in this case is therefore to
induce an ordering of the products and to always allocate most costs to product 1, next most
to product 2, etc. Such a principle serves to select which of the intersecting hyperplanes we
shall use to derive the marginal costs. On such a hyperplane, marginal costs (and thereby
A-S prices) are unique. Yet, if the chosen hyperplane is axis parallel it implies that one of
A-S prices is zero (see also the illustrative example in Section 6). To select hyperplanes in
case of multiple feasible hyperplanes, one can use lexicographic or pre–emptive goal pro-
gramming. Ignizio (1976) gives an algorithm showing how a lexicographic goal program
can be solved as a series of linear programs.6

6The idea is similar to the idea of using infinitesimal elements e in a DEA program to eliminate slack, see
e.g. Cooper, Seiford and Tone (2000).
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To be more precise, consider the cost minimization problem associated with some output
vector q⇤:

min b (21)

s.t.
h

Â
j=1

l jq j � q⇤ (22)

h

Â
j=1

l jCj  b (23)

h

Â
j=1

l j  1 (24)

l j � 0,8 j. (25)

where (24) is ignored if bCcrs is considered.
The dual program is to find inputs and output prices v and u (u,v � 0) such that

max uq⇤+h (26)

s.t. v  1 (27)

�vCk +
n

Â
i=1

uiqk
i +h  0 8k = 1, . . . ,h (28)

h  0 (29)

where (29) becomes an equality requirement in the constant returns to scale case.
We can reformulate this as a lexicographic goal programming problem by indicating the

sequence in which the objectives shall be optimized:

max P0(uq⇤+h)+P1(u1q⇤1)+P2(u2q⇤2)+ · · ·+Pn(unq⇤n) (30)

s.t. v  1 (31)

�vCk +
n

Â
i=1

uiqk
i +h  0 8k = 1, . . . ,h (32)

h  0 (33)

with the interpretation that we first optimize P0, then for fixed value of P0, we optimize P1,
etc.

16



In practice, such an ordering of outputs may for instance be derived from various man-
agerial priorities or pricing policies of the firm.

To ensure that all A-S prices are positive we may, for instance, use the extended facet
approach of Olesen and Petersen (1996, 2003), but this will not be pursued further in the
present paper.7

Finally, the third problem, i.e., that data points may not have finite cost estimates, is
addressed by restricting attention to,

Q = {q⇤ 2 Rn
+|9C⇤ : C⇤ � bC(q⇤)} (34)

i.e., to the set of feasible productions q given the observed data set D . In the drs-case, this
can be rewritten as

Q = {q⇤ 2 Rn
+|9C⇤ :

h

Â
j=1

l jq j � q⇤,
h

Â
j=1

l jCj C⇤,
h

Â
j=1

l j  1, l j � 0,8 j} (35)

where Âh
j=1 l j  1 is ignored in the crs-case.

5 Inefficient Production

We will now consider how firms with inefficient production can be handled in the context
of A-S cost allocation. Since A-S prices are only defined for efficient production we need
specific assumptions about firm behavior in order to link the observed inefficiency to some
underlying efficient counterpart. To do this transparently and in a consistent manner we will
employ the notion of rational inefficiency introduced in Bogetoft and Hougaard (2003).

The main idea behind the notion of rational inefficiency is that what appears as inefficient
production may actually benefit the firm. In particular, it is suggested that inefficiency may
represent a form of indirect, on-the-job compensation to agents in the firm and therefore
serves an important purpose as alternative means of payment. Hence, it is often reasonable
to assume that inefficiency may be the result of a deliberate (rational) choice by the firm
and not just a consequence of ignorance, bad organization of processes, wrong incentives
etc. As such, we will generally think of firms as seeking not only to maximize profit by
minimizing costs, but also to enjoy slack in the production process.8

7Using the extended facet approach would also solve the problem of infinite A-S prices.
8For further discussion about the various types and origins of inefficiency, see e.g., Bogetoft and Hougaard

(2003).
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Firms may introduce slack (inefficiency) on the input side as well as the output side. In
the present cost context, the input side is represented by the aggregate (joint) cost and the
introduction of slack on the input side naturally corresponds to assuming that firms delib-
erately allow for a constant fraction of overspending. The size of that fraction is revealed
by the inefficiency level that the firm actually chose. This approach will be formalized in
Subsection 5.1 below. In Subsection 5.2 we will subsequently consider the case where firms
introduce slack on the output side. That is, for given costs, firms benefit from the lost (or
rather self consumed) outputs. Specifically, we assume that firms actually produce at the
revenue maximizing point (given output prices or preference weights set by a regulator)
and when we observe something else we can directly infer the preferred slack mix by com-
parison with the allocatively efficient output mix. Thus, according to this assumption the
relevent A-S prices are those associated with revenue maximizing production given (q⇤,C⇤)

and estimate bC. These A-S prices will generally differ from the preference weights set by
the regulator and reflect the internal (unit) production costs of the firm.

Finally, note that our approach, and associated results, do not depend on the way we
estimate the empirical cost function.

5.1 Cost inefficiency

The fundamentals are the observed output-cost data (q⇤,C⇤) 2 D and the associated (esti-
mated) cost function bC. Note that C⇤ � bC(q⇤) by definition of bC. A strict inequality means
that the firm is inefficient.

One way to think of inefficiency is simply as an excess use of inputs. Instead of the
minimal cost bC(q⇤), the firm has actually chosen to spend C⇤. Following the notion of
rational inefficiency we find it reasonable to assume that this tendency to use extra costs is
not restricted to the particular output level q⇤, i.e., that the firm would use a similar share of
excess resources for any other production level as well. Indeed, if there would be efficiency
gains from changing the size of production a rational firm would already have have done
so. Note that efficient firms have revealed that they do not gain utility from excess use of
resources.

Assumption 1: (Rational Cost Inefficiency) An inefficient firm with observed output-cost
combination (q⇤,C⇤), in effect, faces a cost function

q 7! 1
Ec((q⇤,C⇤), bC)

bC(q)

where Ec is the cost efficiency score given by (10).
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Conceptually this means that we see the firm as deliberately spending a fraction (1�
Ec((q⇤,C⇤), bC)) in excess of what is necessary in order to produce any level of output q.

The idea that inefficiency shows up as a general scaling of the costs is convenient in the
context of A-S pricing since in general, A-S prices are linear in the cost level, i.e.,

pAS(q,aC) = a pAS(q,C), (36)

for a 2 R+.9

Assumption 1 allows us to use the Aumann-Shapley rule in case of inefficient production
in a straightforward way.

Proposition 1: Consider a set of observations D with specific inefficient observation (q⇤,C⇤).
Given Assumption 1, we have for all outputs i = 1, . . . ,n, that,

f AS
i (q⇤, bC

Ec ) = 1
Ec f AS

i (q⇤, bC)

= f AS
i (q⇤, bC)+

f AS
i (q⇤,bC)

Ân
j=1 f AS

j (q⇤,bC)
(1�Ec)C⇤.

Proof: The first equality follows from Assumption 1 and (36). Consider the second equality
and a given output i. We have that

1
Ec f AS

i (q⇤, bC) =
C⇤

bC(q⇤)
f AS

i (q⇤, bC) = (1+
(1�Ec)C⇤

bC(q⇤)
)f AS

i (q⇤, bC) =

f AS
i (q⇤, bC)+

f AS
i (q⇤, bC)

Ân
j=1 f AS

j (q⇤, bC)
(1�Ec)C⇤

since Ân
j=1 f AS

j (q⇤, bC) = bC(q⇤) by budget-balance. Q.E.D.

By Proposition 1 we see that focussing on cost efficiency (as in Assumption 1) is indeed
natural since it opens up for an alternative way of looking at the problem: in fact, it gives
the same result as if we were assuming that the level of cost inefficiency for output vector
q⇤ can be construed as a general fixed cost F = (1�Ec)C⇤ in production. As such, we can
alternatively analyze the particular situation given by observation (q⇤,C⇤) as if a fixed cost
F = (1�Ec)C⇤ had been added to the cost function such that the efficient cost of any level
q is given by bC(q)+F .

9See e.g., Mirman and Tauman (1982).
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Proposition 1 shows that scaling A-S cost shares of the cost efficient production bC(q⇤)
by a factor 1/Ec is tantamount to splitting the fixed cost of inefficiency F in proportion to
these A-S cost shares and add this to the cost shares of cost efficient production.

The advantage of this result is furthermore that it works well with the way we handled
fixed costs C(0) in the case of vrs and irs technologies in Section 4. Here we also allocated
fixed cost in proportion to the variable cost A-S shares. By straightforward combination of
(20) and Proposition 1, we therefore obtain the following result.

Corollary 1: Consider a set of observations D with a corresponding minimal extrapolation
principle cost function bCg , where g is vrs, irs, drs or crs. Let

eCg = bCg � bCg(0)

be the variable part of the cost function, and consider a specific inefficient observation
(q⇤,C⇤). Given Assumption 1, we have for all outputs i = 1, . . . ,n, that,

f AS
i (q⇤, bCg

Ec ) = 1
Ec f AS

i (q⇤, bCg)

= f AS
i (q⇤, eCg)+

f AS
i (q⇤,eCg )

Ân
j=1 f AS

j (q⇤,eCg )
[(1�Ec)C⇤+ bCg(0)].

where Ec is the cost efficiency of (q⇤,C⇤) with respect to eCg .

In the case of crs, we know that cost efficiency Ec is the inverse of output efficiency
Eq. We can therefore also make an alternative interpretation of the A-S cost shares with
inefficiency. We record this as a Corollary.

Corollary 2: Consider a set of observations D with specific inefficient observation (q⇤,C⇤).
Given Assumption 1, in the crs-case we have that

f AS(q⇤, bCcrs

Ec ) = 1
Ec f AS(q⇤, bCcrs)

= Eqf AS(q⇤, bCcrs)

= f AS(Eqq⇤, bCcrs).

Proof: By Assumption 1 and (36) we have

f AS(q⇤,a bCcrs) = pAS(q⇤,a bCcrs)q⇤ = a pAS(q⇤, bCcrs)q⇤ = af AS(q⇤, bCcrs).

Thus, the first equality follows from the fact that bCcrs(q⇤) = EcC⇤. The second equality
follows from (11). The third equality follows from the fact that pAS(q,Ccrs) is constant (and
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equal to the marginal cost): Hence, we have that f AS(Eqq⇤, bCcrs) = Eqq⇤pAS(Eqq⇤, bCcrs) =

Eqq⇤pAS(q⇤, bCcrs) = Eqf AS(q⇤, bCcrs). Q.E.D.

In other words, the A-S cost shares of inefficient production can be found by multiplying
the A-S cost shares of the corresponding efficient production with the output efficiency score
Eq (given by (9)) or equivalently the inverse of the cost efficiency score Ec (given by (10)).
Moreover, it does not matter whether we allocate the actual cost C⇤ using A-S prices related
to q⇤ and scale up with a factor 1/Ec =Eq or the A-S-prices related to the efficiency adjusted
output level Eqq⇤ directly. Indeed, when the estimated cost function has constant returns to
scale, the A-S-prices are the same along the entire ray through 0 and q⇤.

5.2 Output Inefficiency

We now consider the case where firms introduce slack (inefficiency) on the output side. The
main postulate here is that firms benefit from self consumed outputs, broadly interpreted.
Let us assume that a firm with output-cost profile (q⇤,C⇤) is actually producing some other
efficient output level q � q⇤, but that only q⇤ is observed since the firm itself consumes
q�q⇤. In such cases, it would be natural to allocate costs based on the efficient production
level q rather than the observed level q⇤.

The problem with this line of thinking is of course that q is unobserved. Yet, by Propo-
sition 1 and Corollary 1 in Bogetoft and Hougaard (2003), it is proved that a firm with
preferences for both profit and slack will choose q as the allocatively efficient output mix.

Specifically, assume that output prices are given by the price vector p. This may be
market prices or as in the empirical example provided in the next section, the prices (prefer-
ence weights) set by a regulator. Given these prices, a rationally inefficient firm will choose
output vector q as the allocatively efficient solution qAE to

max
q

p ·q (37)

s.t. bC(q)C⇤ (38)

The intuition behind this result is that for a given cost level, the firms choice problem is
really one of choosing the underlying production q so as to maximize revenue. This leaves
the firm with maximal possibility to enjoy slack q�q⇤.

Of course, if this vector difference is not non-negative in all dimensions, we can say
that the firm has not behaved fully rational. Our assumption concerning rational output
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inefficiency can therefore be formulated as follows:

Assumption 2: (Rational Output Inefficiency) Given an output price vector p, an inefficient
firm with observed output-cost combination (q⇤,C⇤)) chooses the underlying production
plan q such as to maximize revenue subject to q � q⇤, i.e., as the solution to,

max
q

p ·q (39)

s.t. bC(q)C⇤ (40)

q � q⇤ (41)

Let qAE(p, bC;q⇤) solve the above programming problem.
Assumption 2 implies that when we observe output level q⇤, there is an underlying pro-

duction plan qAE(p, bC;q⇤), which the rational firm actually did produce (before consuming
slack internally) and, which should therefore be used when determining the A-S prices and
the associated A-S cost allocation.

To illustrate the idea, imagine a firm that produces q but internally consumes a large
share of the first output q1. It may for example be a baker that produces multiple types of
bread but only consumes one of them himself. Now, if we allocate costs according to the
observed production q⇤ (i.e., what is left of q after his own consumption), the cost of the
bakers consumption will effectively be spread over all breads, but if we allocate the cost
according to q, it will be allocated to the first type of bread. Another example may be a
firm that have quality issues in the production process. Assume that a large share of the first
product generally have to be discarded. If we allocate cost according to the set of products
of good quality, all products will share the costs of the quality issue in the production of the
first product. If instead we take the rational inefficiency approach, we will allocate the extra
costs to the first product.

We now record the straightforward consequence of Assumption 2 with respect to A-S
cost allocation.

Proposition 2: Consider a set observations D with a corresponding minimal extrapolation
principle cost function bCg , where g is vrs, irs, drs or crs, and consider a specific inefficient
firm with observation (q⇤,C⇤). Given Assumption 2, we have that,

f AS(q⇤, bCg) = pAS(qAE(p, bCg ;q⇤), bCg)qAE(p, bCg ;q⇤).
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for output price vector p.

Notice that with a non-parametric estimation of the cost function there may be cases
with multiple allocatively efficient points for a given observation. The problem is of course
that these points typically will have different A-S prices. In such cases we therefore suggest
to apply the ordering of outputs similarly to the way we addressed the issue of multiple
supporting hyperplanes for given efficient point in Section 4 above.

6 An Illustrative Example

Water companies are by and large natural monopolies that usually provide two services,
namely the production of water and the distribution of water to households and firms. The
water network requires large infrastructure investments making it economically optimal to
only have one distribution network in each area. Water from different sources can in the-
ory be distributed using the same network. Much like the electricity sector, it is therefore
possible to have competition among producers of water and to reduce the natural monopoly
scope to the distribution. Still, preservation of ground water reserves and quality concerns
have in many jurisdictions led to natural geographical monopolies in water production as
well.

In most countries, the regulation of water companies has been low powered, typically
based on a cost plus regime. This seems to be changing. In recent years there have been
several attempts to move towards a more high powered regime like a revenue cap similar
to the regulation that has long been prominent for electricity distribution companies in for
example Europe, cf., Bogetoft (2012).

When the typical operators are responsible for both production and distribution of wa-
ter, it is interesting to allocate total costs among these activities. This may for example
guide which tariffs different consumer types shall pay, and it may guide the access fees an
incumbent waterworks with both production and distribution can charge external producers.

The first high powered regulation of Danish waterworks was introduced in 2012. The
regulation is a benchmarking based revenue cap regulation. The benchmarking model is a
crs DEA model with one main output, net volume. The net volume is the sum of several net
volume elements that are designed to measure the amount of activities in different areas.

In the following we will use the 2011 data used to make the 2012 regulation and illustrate
how this data can be used to allocate cost between water production and water distribution.
There are 210 waterworks in the data set, and the amount of water production and water
distribution activities (measured in netvolumes) as well as the operating costs (measured in
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DKK) are summarized in Table 1 below.

Mean Std. dev Min Max
Water Production, q1 2888260.25 8396426.53 0.00 109821313.10
Water Distribution, q2 3916069.50 7607266.44 571.20 74436410.28
Cost, C 7026759.82 15449475.55 55073.21 184313172.69

Table 1: Descriptive statistics.

6.1 The Estimated Cost Function

We will focus on non-parametric estimation of the empirical cost functions in case of crs (as
assumed by the Danish regulator) and drs for the sake of illustration. That is, the estimated
cost function is given by the program (4)-(8) (in case of drs), excluding (7) in case of crs.

In case of crs we find only three efficient waterworks: Hjerting Vandværk Amba, Bjøvlund
Vandværk, and, Nordenskov Vandværk. These three observations span the convex cone of
the estimated cost function. Under drs there turns out to be additionally seven efficient
waterworks spanning the cost function, all listed in Table 2 below.

Name Water Production, q1 Water Distribution, q2 Cost, C

KE Vand A/S 109821313.10 74436410.28 184313172.69
Vandcenter Syd A/S 19986564.36 34731824.80 47964952.93
Sjælsø Vand A/S 15061136.50 109336.00 14367705.59
Hjerting Vandværk Amba 835293.97 3760657.20 1882561.43
Bjøvlund Vandværk 1179982.57 188126.60 737445.92
Nordenskov Vandværk 590749.90 593366.00 436994.91
Helle Vest Vandværk 1163503.15 1068388.20 869824.16
Vestforsyning Vand A/S 8307093.20 13291457.40 15500628.99
Århus Vand A/S 1163503.15 1068388.20 869824.16
Hjørring Vandselskab A/S 8586097.67 10675079.00 12526393.57

Table 2: Efficient waterworks (drs).

The estimated cost function assuming drs is illustrated graphically in Figure 3, where
we have omitted the axis-parallel hyperplanes (arising from assumption A1).

6.2 A-S Cost Allocation with Rational Cost Inefficiency

In the following we shall allocate the total cost of each waterworks on the two outputs
using the Aumann-Shapley allocation rule and our assumption of rational cost inefficiency
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Figure 3: bCdrs based on the data set

(Assumption 1). In all cases the associated Aumann-Shapley prices are calculated using
Matlab to solve the program (16)-(19) where t is gradually increased from 0 to 1. Since
the constraints remain unchanged when going through the individual waterworks (only the
objective function varies) we can improve the computational speed by first finding the set
of vertices (extreme points of the frontier) defined by the intersecting hyperplanes given
by the constraints. For each of the waterworks we then evaluate the objective function on
all those vertices (since the solution will always lie in a vertex). In this way we obtain
two advantages; first, we can easily detect how many hyperplanes the production plan in
question lies on, and second, we get solutions significantly faster than by solving the LP
problem for each of the waterworks.

Turning to the drs-case: Obviously no waterworks will face the problem of infinite A-S
prices since they are all included in the estimation of the cost function. Three of the efficient
waterworks face the problem of multiple alternative solutions. For instance this is the case
for Nordenskov Vandværk, which is illustrated in Figure 4.

The green line lies on two hyperplanes simultaneously, and the two possible candidates
for A-S prices are pAS = (0.6033,0.1338) and pAS = (0.3050,0.4329), respectively. In both
cases all costs are allocated to the both outputs, because Nordenskov Vandværk is efficient.
To choose between the two possible A-S price candidates one can define an exogenous
ordering of outputs as described in section 4.

If most costs are allocated to output 1 and the A-S allocation becomes:
xAS

1 = 356405.15
xAS

2 = 80589.76
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Figure 4: Cost Possibility Set (zoomed in)

If most costs are allocated to output 2 we get:
xAS

1 = 180150.79
xAS

2 = 256844.12
Another efficient waterworks that faces the same problem is Hjerting Vandværk Amba.

The two possible candidates for A-S prices are pAS = (0.3050,0.4329) or pAS = (0,0.5006)
since now one of the supporting hyperplanes is axis parallel (creating an exterior facet). So
one can choose between a case where both A-S prices are strictly positive and one where
one price is zero. Here, it seems most reasonable to avoid the solution with a zero A-S price.
Figure 5 illustrates.

From the entire sample of 210 waterworks, 21 face the problem of having A-S prices of
zero if a specific ordering of the outputs is specified. Apart from Hjerting Vandværk Amba
mentioned above, Bjøvlund Vandværk is the only one where there is an alternative strictly
positive A-S price vector.

As mentioned, zero-prices appears when a supporting hyperplane is axis-parallel. This
is illustrated in figure 6. The brown points are all observations where one of the outputs has
A-S price zero.

In Figure 7 the costs of the inefficient waterworks are scaled down to efficient costs.

Next, we focus on A-S allocation for inefficient waterworks. Consider the case of Arwos
Vand A/S.
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Figure 5: Cost Possibility Set (zoomed in)
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Figure 6: Cost Possibility Set
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Figure 7: Cost Possibility Set

Name Water Production Water Distribution Cost
Arwos Vand A/S 2869541.62 3541004.80 8218777.91

First we find the A-S prices in the (hypothetical) situation where the production is cost
efficient (i.e., with a total cost of 3679269.17). These prices are pAS = (0.7066,0.4664) and
the A-S allocation of (efficient) cost hence becomes;

xAS
1 = 2027728.22

xAS
2 = 1651540.96

The remaining costs are inefficiency costs, which are allocated in proportion to the A-S
cost shares (cf., Proposition 1). For instance output 1 gets allocated an additional ineffi-
ciency cost of

f AS
1

f AS
1 +f AS

2
(C⇤ �C⇤Ec) =

2027728.22
2027728.22+1651540.96

(8218777.91�3679269.17)

= 2734589.54.

The final allocation thus becomes:
xAS

1 = 4529553.86
xAS

2 = 3689224.05
In the drs-case there are 200 inefficient waterworks with an average cost inefficiency of
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2262943.92 corresponding to 50.95 % of the total costs. No inefficient waterworks face the
problem of multiple A-S prices, and on average 40.36 % of the total costs are allocated on
output 1 and 59.64 % on output 2.

6.3 A-S Cost Allocation with Rational Output Inefficiency

Turning to output inefficiency, we shall assume that the relevant output prices are the same
for both outputs. The regulator effectively construct the total net volume by adding the net
volume of production and distribution. This means that the waterworks will use 1:1 prices
on the outputs when they try to “play the regulation”. Using 1:1 prices, we can calculate the
productions that maximize the revenue permitted by the regulator.

According to Assumption 2, the revenue maximizing allocatively efficient production
plan is the underlying production plan chosen by the waterworks. The difference between
this production plan and the observed production plan is the slack ”consumed” by the wa-
terworks.

In the case of Arwos we find the allocatively optimal production as

(q1,q2,C) = (5449306.06,7876775.60,8218777.91),

solving (37).
The corresponding A-S prices are pAS = (0.8173,0.4780)) and hence the resulting A-S

cost allocation becomes:
xAS

1 = 4453671.04
xAS

2 = 3765120.09
which is rather close to the allocation found by considering cost inefficiency (as is indeed

the case for the ”average observation”, cf., table below). The graphical interpretation of
input inefficiency and rational output inefficiency is illustrated in figure 8 for Arwos.

In other cases the results of using Rational Input and Output Inefficiency can differ
much more as shown in the following tables where absolute as well as relative differences in
allocated cost shares are found between cost and output inefficiency. If outputs are ordered
1 � 2 we get:

Output 1 (abs) Output 2 (abs) Output 1 (rel) Output 2 (rel)
mean -185009.53 185411.74 0.20% -0.20%
min -6976356.43 -8267539.27 -81.71% -71.60%
max 8268821.72 6977146.66 71.60% 81.71%

If outputs are ordered 2 � 1 we get:
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Figure 8: Arwos, inefficiency

Output 1 (abs) Output 2 (abs) Output 1 (rel) Output 2 (rel)
mean -182594.78 182996.98 1.01% -1.01%
min -6976356.43 -8267539.27 -81.71% -71.60%
max 8268821.72 6977146.66 71.60% 81.71%

Consider, for instance, the waterworks Mariager Vand Amba, which has the output
cost profile (q1,q2,C) = (150599.20,811534.80,642263.95). When using input cost in-
efficiency we see that the same output could be obtained at cost 406249.24, and the final
allocation of actual cost (for both orderings of outputs) is:

xAS
1 = 0

xAS
2 = 642263.95

This highlight the problem of allocating zero costs. If instead we use the rational output
inefficiency approach with price ratio 1:1, we get that the following allocatively efficient
point: (q1,q2,C) = (862377.82,818645.02,642263.95). The final allocation (for both or-
derings of outputs) therefore is:

xAS
1 = 524813.62

xAS
2 = 117443.18

The absolute difference here is 0�524813.62=�524813.62 for output 1 and 642263.95�
117443.18 = 524820.77 for output 2 (the slight difference is caused by rounding errors),
corresponding to relative differences of �81.71% and 81.71% respectively. When using
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rational output inefficiency no waterworks face the problem of allocating zero costs.
It is not surprising, as such, that the difference between A-S cost shares with respect

to cost and output efficiency can be rather big. Clearly, when deviating from an overall
assumption of constant returns to scale, the efficiency of certain observations can be very
different in cost and output space respectively. In a specific application, like the one above,
the choice between cost (input) or output orientation is in many ways a counterpart of the
similar type of choice in a conventional efficiency analysis: if focus is on cost savings and
inefficiency is mainly due to ”bad” utilization of resources it seems natural to allocate costs
using A-S prices associated with cost minimization; if focus is on quality issues or other
forms of ”slack” allocation in production it seems natural to employ A-S prices associated
with output efficient production. As such the decision is ad hoc and related to the data set at
hand.

7 Final Remarks

In the efficiency measurement literature it is well recognized that the non-parametric es-
timation of the efficient frontier (of either the production or cost function) is sensitive to
small changes in the data since the frontier is spanned by ”extreme” observations. Obvi-
ously non-parametric estimation of A-S prices inherits this sensitivity as the gradients on
the projected path (from 0 to q) may change dramatically moving from one efficient facet of
the convex polyhedral to another. The remedy is usually to bootstrap the estimated function,
see e.g. Simar and Wilson (1998). The sensitivity of A-S price estimates and the use of
bootstrapping techniques is a topic we leave for future research
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