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Abstract
The p-faeilitv Huff location problem aims at locating facilities on a compet­
itive environment so as to maximize the market share. While it has been 
deeply studied in the held of continuous location, in this paper we study the 
p-faeilitv Huff location problem on networks formulated as a Mixed Integer 
Nonlinear Programming problem that can be solved by a braneh-and-bound 
algorithm. We propose two approaches for the initialization and division of 
subproblems, the first one based on the straightforward idea of enumerating 
every possible combination of p edges of the network as possible locations, 
and the second one defining sophisticated data structures that exploit the 
structure of the combinatorial and continuous part of the problem. Bound­
ing rules are designed using DC (difference of convex) and Interval Analysis 
tools.

In our computational study we compare the two approaches on a battery 
of 21 networks and show that both of them can handle problems for p < 4 
in reasonable computing time.
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1. Introduction

Competitive location models (Eiselt et al,, 1993; Plastria, 2001) were orig­
inally introduced by Hotelling (1929), considering the location of two com­
peting facilities on a linear market. In the seminal work of Hotelling, users 
patronize the facility closest to them. In contrast with this all-or-nothing as­
sumption, it was introduced the Huff location model (Huff, 1964), in which 
the probability that a user patronizes a facility is proportional to its attrac­
tiveness and inversely proportional to a power of the distance to it. The Huff 
location problem has been extensively studied in the held of continuous loca­
tion (Blanquero and Carrizosa, 2009; Drezner and Drezner, 2004; Fernandez 
et ah, 2007; Huff, 1964, 1966) and successfully applied in the marketing held, 
in problems such as location of petrol stations, shopping centers or restau­
rants (Ghosh et al,, 1995; Okabe and Kitamura, 1997; Okunuki and Okabe, 
2002), The natural extension of this problem to that of locating p-faeilities 
on the plane, has also received certain attention in the literature (Drezner, 
1998; Drezner et al,, 2002; Redondo et ah, 2009a,b; Tóth et al,, 2009), 

Network optimization models (Bertsekas, 1998) are widely used in prac­
tice due to their methodological aspects and intuitive formulations. They 
arise naturally in the context of assignment, how, transportation or loca­
tion problems among others. For a comprehensive introduction to location 
models on networks see Labbé et al, (1995),

The combination of the Huff location problem and network optimization 
has been already addressed in the literature (Berman et al,, 2011; Blanquero 
et al,, 2014) and applied to market area analysis (Okabe and Kitamura, 1997) 
and demand estimation (Okabe and Okunuki, 2001), The single-facility ease 
has been solved in Berman et al, (2011) by means of Interval Analysis (IA) 
bounds, and in Blanquero et al, (2014) using IA and difference of convex 
(DC) bounds. Different metaheuristies have been proposed for the p-faeilitv 
ease in Roksandié et al, (2012), but no attempt has been made so far to 
address the multifaeilitv ease with exact methods. This lack of progress in 
the state of the art is due to the difficulty of the problem, caused by its 
combinatorial component added to the continuous global optimization: one 
has to decide which edges are to contain facilities, and, for the choice of edges 
given, the location is to be decided. Thanks to the recent results described 
in Blanquero et al, (2015), in which a new data structure is introduced to



address multifacility location problems on networks via branch and bound 
algorithms, we solve in this paper the p-faeilitv Huff location problem on 
networks, formulated as a Mixed Integer Nonlinear Programming (MINLP) 
problem.

The remainder of this paper is organized as follows. In Section 2 we 
set up the notation for networks and introduce the p-faeilitv Huff location 
problem. In Section 3, a braneh-and-bound method with different initializa­
tion and branching rules is described. Section 4 is devoted to procedures for 
calculating lower and upper bounds. Computational results are reported in 
Section 5, where the p-faeilitv Huff location problem is solved using the dif­
ferent branching and bounding rules for 12 real-life and 9 artificial networks. 
Finally, Section 6 contains a brief summary, final conclusions and some lines 
for future research,

2. The model

Let N  = (V, E ) be a network, with node set V and edge set E. The length 
of the edge e E E is denoted by le. The distance between two nodes ai, aj E V  
is calculated as the length of the shortest path (Labbe et ah, 1995) from a» 
to aj. For each e E E, with end-nodes a», a j  we identify each x E [0, le] with 
the point in the edge e at distance x from ai and le — x from aj. This wav, 
we obtain that, for any vertex ak E V and x e e, the distance d(x, ak) from 
x to ak, as a function of x, is a concave piecewise linear function, given by 
d(x, ak) =  min{x + d(ai, ak), (le — x) + d(aj, ak)}.

In the pfaeilitv Huff location model, the hnite set V of vertices of the 
network represents users, asking for a certain service. Each user a E V  has 
demand ua > 0, that is patronized by different existing facilities, located at 
points y \ , . . . ,  yr on the network. The demand captured by facility at yi from 
user a is assumed to be inversely proportional to a positive nondeereasing 
function of the distance d(a,yi), namely, aai/(d(a,yi))2 is used as the utility 
or attraction function of yi, where a ai > 0 denotes the attraction that user a 
feels towards the facility at yi. Therefore, the demand captured by the facility 
at yi from the user at a is given by

aai/(d(a,yi))2 m
^ a j  «aj/(d(a,yj ))2 ‘ 1 j

A new hrm is entering the market, by locating p new facilities at some



points x i , . . . ,  xp on the network. For simplicity, all new facilities are assumed 
to have the same attractiveness aa > 0, which is fixed. The new facilities 
perturb how the market is shared, since the new facilities will capture part 
of the demand from a G V,

u,
E p=i «a/(d(a,x , ))2

a E p = 1  aa/(d(a, xj ))2 + E  r= 1  «aj/(d(a, Vj ))2 ‘
(2)

Our goal is the maximization of the market share of the entering hrm. 
Thus, the problem we need to solve can be formulated as

*,€|0i,“ ai,€|0i,,l z J j  aa/(d(a,xj))2 + E '=1 «a,/(d(a, y,))2' 
ei,...,ep EE aE

Ep=1 «a/(d(a,x j )) 
,  ))2 +

2

(3)

In order to simplify the previous expression, the following positive con­
stant is considered for each a G V:

o = «aj/a a
Pa = (d(a, V,))2. (4)

Problem (3) can be rewritten then as the following MINLP:

max F (x1, . . . ,  xp)
X1 E[0,lei l,... ,Xp€|0,lepl 

e i , . . . ,epE E

(5)

where F  is dehned as

F  (x1,.. ) xp)
aEV

ua
1 + Vp 1

2-^j = 1 (d ( a , x j  ))2

1
a (6)

The MINLP problem (5) is formed by a combinatorial and a continuous 
part. First, we need to solve the combinatorial problem of choosing a set of 
p edges to locate the facilities, and then solve a continuous location problem 
on the edges.



3. The methodology

The natural wav to solve the MINLP formulation of the p-faeilitv Huff 
location problem is to use a braneh-and-bound method. We differeneiate 
two main phases: the initialization phase and the braneh-and-bound phase. 
In the initialization phase the initial exploration tree is prepared. In the 
braneh-and- bound phase, an element of the list is selected iteratively (until 
the termination rule is fulfilled) according to a selection criterion, and then 
is divided into new elements that are included into the list if they cannot 
be eliminated by their bounds. In this phase, division, bounding, selection, 
elimination and termination rules are required.

In this paper we propose different approaches for the initialization phase, 
division and bounding rules. As selection, elimination and termination rules, 
we always apply the usual ones from the literature (Berman et ah, 2011): 
the element to be evaluated is selected as the one with the largest upper 
bound, elements whose upper bound are lower than the current lower bound 
are eliminated, and the optimization is terminated when the relative error 
between the largest upper bound and the current lower bound is less than a 
fixed tolerance. This section is aimed at describing two types of initialization 
and division rules. Bounding rules will be discussed in Section 4,

The methodology proposed in Blanquero et al, (2014), where the single­
facility problem is tackled, has in common with the methodology herein con­
sidered the use of a braneh-and-bound algorithm with, essentially, the same 
upper bounds. However, the difficulty introduced by the combinatorial part 
of the problem leads us to use sophisticated data structures in the branch 
and bound recently introduced in Blanquero et al, (2015), so that the election 
of the p edges can be done in an optimal way during the algorithm running. 
The initialization and the division phases of the algorithm are deeply affected 
by the use of these structures,

3.1. Total enumeration
The straightforward way of solving Problem (5) is to separate the combi­

natorial and the continuous part of the problem: we first hx a set of p edges 
to locate the facilities, and then solve a continuous location problem on the 
edges. This means the braneh-and-bound approach starts with a partition 
of the search space formed by the cartesian product of puples. The p-uples 
are formed by every possible combination of p edges, taking into account 
that several facilities can be located at the same edge, i.e,, repetitions of



the same edge are allowed in the elements of the partition. But obviously, 
permutations of the p-uples are not taken into account.

During the algorithm running, the edges forming the initial elements of 
the partition are going to be divided into small pieces (segments of edge), 
which will be referred to as subedges throughout the paper.

We denote by s =  ( s i , . . . ,  sk) an element of the partition, where each 
component si is a (sub)edge that has a multiplicity m(sj), i.e,, the number 
of facilities located at si is m(si). Hence, m (s1) + . . .  + m (sk) =  p. To avoid 
symmetric sets, for any element of the partition s =  (s1, . . . ,  sk), and any 
si =  [l,u] C [0, Ze], e G E ,si G s, the cartesian pro duet n ^ S ^  is replaced 
by {l < x 1 < . . .  < xm(si) < u}. For example, let us consider p = 2  and 
the edge e =  [0,1]; following a naive approach, one of the elements of the 
initial partition would be e x e =  {(x1,x 2) : 0 < x1 < 1 , 0 < x2 < 1}, 
related to the location of 2 facilities on e (i.e., m(e) =  2). However, e x e 
leads to symmetric solutions (for instance, (0.2, 0.7) and (0.7, 0.2) are the 
same solution since both components belong to the same edge e), making 
the braneh-and-bound algorithm inefficient. In order to avoid this inefficient 
approach, the set e x e is replaced by {(x1,x2) : 0 < x1 < x2 < 1} in the 
partition.

The subdivision of each element of the partition is done by splitting each 
(sub)edge by its midpoint, obtaining two new smaller segments for each 
(sub)edge, namely lower and upper segments. Then, the new elements of 
the partition are built by replacing each (sub)edge si by either its lower or 
upper segment, sL, sU respectively. In the ease of (sub)edges with multiplic­
ity greater than 1, the above-described method is used to avoid symmetric 
sets. For instance, Figure 1 depicts the subdivision process, for p =  2, of the 
element s =  (s1̂ , with m(s1) =  2, identified with the blue colored area of the 
big square. Then, the subdivision of s leads to three new elements, identified 
with the blue colored area of the small squares.

In order to illustrate the construction of the initial partition and the 
subdivision process, a simple example is given next.

Exam ple 3.1 Let us consider the network in Figure 2, where all the edges 
have length 1, and p =  2. The initial partition is obtained by considering 
all pairs of edges (with repeats) and applying the procedure that has just been 
described to avoid symmetry when the multiplicity of an edge is greater than 
one. The six elements of such partition are shown in the following table, 
where e1 =  (1,2), e2 =  (1,3), and e3 =  (2, 3).
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Figure 1: Subdivision process of s = (si) with m(s1) = 2.

Element Multiplicities Description of the element
Si == (ei) m(e1) == 2 {(X1,X2) : X1. X2 G e1. 0 < x1 < X2 < 1}
S2 == (e1,e2) m(e1) == 1, m(e2) == 1 e1 x e2
S3 == (e1,e3) m(e1) == 1, m(e3) == 1 e1 x e3
S4 == (e2) m(e2) == 2 {(X1,X2) : x1, X2 G e2. 0 < x1 < X2 < 1}
S5 == (e2,e3) m(e2) == 1, m(e3) == 1 e2 x e3
S6 == (e3) m(e3) == 2 {(X1,X2) : X1. X2 G e3. 0 < x1 < X2 < 1}

Figure 2: Example network to illustrate the total enumeration algorithm



During the branch-and-bound procedure, the subdivision of each element of 
the partition with multiplicity equals 1 can be carried out in a straightforward 
manner. For instance, the subdivision of s2 leads to four new elements in the 
partition, replacing s2:

Element Multiplicities
52.1 =  (ei,i,e2,i) m(ei,i) =  1,m(e2,i)
52.2 =  (ei,i,e2,2) m(ei,i) =  1,m(e2,2)
52.3 =  (ei,2,e2,i) m(ei,2) =  1,m(e2,i)
52.4 =  (ei,2,e2,2) m(ei,2) =  1,m(e2,2)

Description of the element 
1 ei,i x e2,i
1 ei,i x e2,2
1 ei,2 x e2,i
1 ei,2 x e2,2______________

where

e i , i  = {x E e i  : 0 < x < 2 } e i>2 = {x E e i  : 2  < x  < 1}

e2, i  = {x E e2 : 0 < x < 2 } e2,2 = {x E e2 : 2  < x < 1}

When any component of the element to be subdivided has a multiplicity
greater than 1, the split must be done following the above-described procedure
to avoid symmetric sets. For instance, the subdivision of si yields (see Figure
1):

Element Multiplicities Description of the element
51.1 = (ei,i) m(ei,i) = 2 {(xi,x2) : x i,x2 G ei,i, 0 < xi < x2 < 2}
51.2 = (ei,2, ei,i) m(ei,2) = 1, m(ei,i) = 1 ei,2 x ei,i
51.3 = (ei,2) m(ei,2) = 2___________ {(xi,x2) : x i,x2 G ei,2, 2 < xi < x2 < 1}

3.2. Superset
A more sophisticated data structure for location problems on networks 

has been proposed in Blanquero et al, (2015), exploiting together the struc­
ture of the combinatorial and continuous part of a covering problem on net­
works, In order to avoid the enumeration of every possible combination of 
p edges, Blanquero et al, (2015) propose to construct clusters of (sub)edges, 
called hereafter edgesets, and define a subproblem of (5) over a collection of 
edgesets called a superset.



To be precise, an edgeset is a finite collection of (sub)edges of E; a su­
perset 5  is any uple of the form (E ^ p p . . . ;  E k ,pk), where E^ . . . ,  E k are 
disjoint edgesets, pj are strictly positive integer numbers with

k

J2rp j = p ,
j = i

indicating, for each j  = 1 , . . . ,  k, that exactly pj  facilities are to be located 
within the (sub) edges in E j .

For this data structure, the subproblem to be solved at this stage on 
superset S has the form

max F (xi , . . . ,  xp )
(x i  ,...,xp ) es

with F  defined as in (6), and (x 1 , . . .  ,xp) G S understood as x 1 , . . .  ,xpi G
E 1; xpi+G . . . , xpi+p2 G E2; . . .  ; xp-Pfc + 1, . . . , xp G Ek-

Supersets will be identified with nodes in the braneh-and-bound tree. 
The root node of the braneh-and-bound tree is the original superset S0 = 
(E,p). E  is first subdivided into a given partition E (1), ... ,E (p ) of E: we 
add to the braneh-and-bound exploration tree the supersets of the form 
(E1,p1; . .. ; Ek,pk), where {E1, . . . ,  Ek} C {E(1), . . . ,  E (p)} andP1 + . . .  + pk = 
p. Each initial superset can be seen as the result of choosing p elements, not 
necessarily distinct, from the set {E(1), . . . ,  E (p )}, and taking pj as the num­
ber of times that E j  appears in the sample; the number of possible elections 
of this kind corresponds to the concept of combinations with repetitions in 
Combinatorial Theory, and is given by the combinatorial number (2p-1).

First, we need to define how the edges of the network conforming S0 , are 
split into the partition of p edgesets E ( 1 ) , . . . ,  E (p ) . In the first step, E  is 
divided into 2 edgesets by a distance criterion, namely the diameter of the 
edgeset, defined as the maximum of the minimal distance between each pair of 
nodes in V(E), the set of nodes that define the edges of E, Then, the nodes 
giving the diameter are selected as centers of the two new (sub)edgesets. 
Each edge of the edgeset is assigned to the closest (sub)edgeset, where the 
distance from an edge to an (sub)edgeset is measured as the distance from 
the edge to the (sub)edgeset center. In ease of tie, the edge is assigned 
to the (sub)edgeset with the smallest cardinality, or randomly if a new tie 
arises then. This process is repeated until obtaining p edgesets, selecting the



largest edgeset to be subdivided at each step, where the size of the edgeset 
is understood as the sum of the (sub)edge lengths; if two edgesets yield 
the maximum diameter, the edgeset with the biggest cardinality is chosen, 
whereas a random election is carried out in ease of a new tie. An algorithmic 
description of the whole initialization process is provided in Algorithm 1,

The subdivision of a superset S =  (E ^ p p . . . ;  Ek,pk) during the braneh- 
and-bound is done by partitioning the largest edgeset Ej. If Ej contains 
only one (sub)edge, the subdivision is done by bisecting the (sub)edge at its 
midpoint, otherwise Ej is partitioned to edgesets Ei1, Ej2 by its diameter as 
done in the initial subdivision of S0, Th e pj facilities at Ej must be shared out 
between Ej1 and Ej2, and all the possible combinations in this sharing out of 
pj must be considered in order to continue having a partition of the solutions 
space; therefore, if (nj1 , nj2) represents the number of facilities assigned to 
Ej1 and Ej2, respectively, with nj1 + nj2 =  pj, the subdivision process must 
take into account the following facilities assignments: (0,pj), (1,pj — 1), (2,pj — 
2 ) ,. . . ,  (pj — 2, 2), (pj — 1,1), (pj, 0), provided that these pairs make sense (i.e., 
all their elements are nonnegative). Thus, the following supersets substitute 
S:

Sj (E1 , p1 ; . .. ; Ej- 1 , pj- 1 ; Ejj  , pj ; E j+1 , pj+1 ; . . .  ; E k, pk ) , j  1 , 2

and additionally if 1 < p^ for j  =  1 ,... ,pj — 1

S2+j (E1, p1; . . .  ; Ej -1, pj - 1; E i1, j ; Ei2 , pi j ; Ei+1, pi+1; . . .  ; Ek , pk ) .

This means that, in each step, pj + 1 new supersets are created.

Exam ple 3.2 Let us consider the network N =  (V, E) depicted in Figure 3, 
with all lengths equal to 1, and suppose that p =  3 facilities are going to be 
located. The initial superset is S0 =  (E, 3) and we begin by dividing E  into 
a partition E (1),E (2),E (3) as is described next.

The diameter of E  is given by the distance between the nodes 1 and 1, 
which are considered as centers of two new edgesets. Assigning each edge to 
its closest center, the new edgesets turn out to be E (1) =  {(1,2), (2, 3), (2, 4)} 
and E (2) =  {(3, 5), (3, 6), (4, 6), (5, 7), (6, 7)} The -sizes of E (1) and E (2) are 3 
and 5, respectively, and therefore, E (2) is divided into two new edgesets. The 
centers E (2) are the nodes f  and 5, since they provide the diameter of such 
edgeset, and the assignment of each edge to its closest center yields the follow-

lb)



A lgorithm  1: Building the initial braneh-and-bound exploration tree

► I n i t ia l iz e  the l i s t  of edgesets 
L — E
repeat

• Find the la rg e s t edgeset E*w in  E 
foreach Ew e L do

s(Ew) — S eGEw 1e
EW — argmax^w eL s(Ew) 

end
• Compute the v e rtic e s  defin ing  the diam eter of EW
(ci ,c2) — argmax„.)a.ey(Ew) a-j)
EW,i — 0
EW,2 — 0
foreach e e EW do

if d(e,c1) < d(e,c2) then
| EW,i — EW,i u e

else
| EW,2 — EW,2 U e

end
end
• Updat e L
L — L\EW U EW,i U EW,2 

until |L| =  p;
► Generate combinations with re p e tit io n s  of {1, 2 ,...,p }
CR —— {(ai, a2,. . . ,  ap) : ai < a2 < . . .  < ap, â  =  1 ,... ,p}
► Build supersets and add them to  the B&B tre e
T — 0
foreach c e CR do

Let {ui , . . . ,  uk} be the set of unique numbers in c.
Let ui be the absolute frequency of ^  in c  i =  1 ,. . . ,  k,
T — T U (E«i, Ui ; E«2 , U2; . . .  ; Eufc , Uk)

end



ing subdivision of E (2).- E (2,1) =  {(3,6), (4, 6)} E (2,2) =  {(3, 5), (5, 7), (6, 7)}; 
note that other subdivisions are also possible since the edges (3, 6) and (6, 7) 
are at the same distance from both centers. Renaming the edgesets that have 
just been worked out, the initial partition of E  is obtained:

E (1) =  {(1, 2), (2, 3), (2, 4)}
E (2) =  {(3, 6), (4, 6)}
E (3) =  {(3, 5), (5, 7), (6, 7)}

Once the partition of E  has been computed, we add to the branch-and-bound 
exploration tree the (5) =  10 supersets of the form (E ^ p p ... ; Ek,pk) where 
{Ei , . . . , E fc} C {E(1), E (2), E (3)} and p  + . . .  + pk =  3:

(E(1), 3)
(E(2), 3)
(E(3), 3)
(E(1), 2; E (2), 1) 
(e (1), 2; E (3), l)

(E(1), 1; E (2), 2)
(e (1), 1; E (3), 2)
(e (2), 1; E (3), 2)
(e (2), 2; E (3), 1)
(e (1), 1; E (2), 1; E (3), 1)

In order to illustrate the subdivision of a superset during the execution of 
the branch-and-bound algorithm, let us consider the superset (E(1), 2; E (2), 1). 
The edge-set E (1) is choosen for splitting, since it is larger than E (2), and di­
vided into the edgesets E (1,1) =  {(1, 2)} and E (1,2) =  {(2, 3), (2, 4)} according 
to the diameter of E (1) (other configurations are also admissible owing to 
ties). The original superset is then replaced in the branch-and-bound tree by 
the following supersets:

(E(M), 2; E (2), 1) (E(1’2), 2; E (2), 1) (E(M), 1; E (1’2), 1; E (2), 1)

4. Lower and Upper bounds

A braneh-and-bound algorithm requires the calculation of tight upper 
and lower bounds. In this section we present different bounding approaches 
for the braneh-and-bound used to solve (5), We propose two upper bounds 
and two lower bounds: IA bound, DC bound as upper bounds, Huff discrete 
bound (HD) and midpoint bound (MP) as lower bounds. Note that when 
a superset contains edgesets with |Ej | =  1 Vj, it corresponds to a p-uple 
of (sub)edges. Each p-uple of (sub)edges has its unique superset eorrespon-



dence. Thus, the following bounds are valid for p-uples of edges as well, i.e,, 
for the enumeration approach in Section 3,1,

4-1. Upper hounds
Interval Analysis (IA) and Difference of Convex (DC) bounds have al­

ready been proposed for the single-facility case, in which bounds are com­
puted on intervals (subedges). We adapt these bounding strategies to the 
multifacility case, when bounds of the objective function on supersets are to 
be computed. The IA bound considers only endpoints of (sub) edges as pos­
sible location of facilities. For a superset S = (E1,p1; . . . ;  E k,pk) we obtain 
the IA bound by replacing in (6) d(a, Xj) by the distance from a to the closest 
vertex of the edges that belong to Ej, i.e,, by

d(a,E j)=  min {d(a,v1),d(a,v2)}.e=[vi,V2 ],eEEj

For any x G Ej it holds that d(a, E j) < d(a, x) Vj = 1 ,... ,p. Hence, the
following is a valid upper bound for (6):

UBia (S) := ^
a€V

Ua
1 +

1

jj =1
Pa

pj
( d ( a , E j ))2

The second upper bound approach is based on a DC bound of the single 
facility Huff location problem on networks,

max Fsingie(x)
x€[0,le], e£E

with Fsingie(x) = ^ aeV Ua 1+Pa(](a,x))2, a particular case of (6) for p = 1 . This



problem has been already studied in Blanquero et al, (2014), First, for a 
given edge e of the network, Fsingle(x) is expressed as a difference of convex 
functions, Fsingle (x) =  ^ aeV(F + (x )- F “ (x)), namely, its DC decomposition. 
Then, an upper bound U B fF ^ s )  for any segment s E e, e E E  with v\, v2 
being endpoints of s is defined as

U B single (s) =  max{U (vl),U  (v2)}

with
U(x) =  E (F +  (x) -  Fa (x0 ) -  Ca(x -  x0 ))

aeV
for £a E dF- (x0) where dF- (x0) denotes the set of subgradients of F-  at x0 

(Horst and Pardalos, 1995),
Therefore, it holds that

U B single(e) > Fsingle(x), Vx E [0,1eL e E E . (7)
A DC bound over an edgeset Ej is dehned as the maximum DC bound of 
the edges from Ej, i.e,,

UBdc(Ej ) := max U B ^ ^ e )  > Fsingie(x), Vx E [0, le], e E E.eeEj g

Given a superset S =  (E1,p1; . . . ;  Ek ,pk), a DC bound of (6) is calculated as

p
UBdc(S) := £ Pj ■ UBdc(Ej )

j=1
This DC bound is a valid upper bound since it holds that

E l  Fsingle(xj ) =  EE 1
Ua

j=1 j=1 aeV 1 + Pa(d(a,xj ))2

(8)

(9)

Since (d( 1 ))2 < YJi 1(d(a,xj ))2 — j=1

(9) = E E  U
j=1 aeV

j=1 (d(a,Xj ))2’ we have:

1/(d(a,xj ))2 
a 1/(d(a,xj ))2 + Pa

> E E <
j=1 aeV

1/(d(a,xj ))2
aE p=1 1/(d(a,xi))2 + Pa

1



= E
aev

E p=! 1/(d(a,xj ))2
Ep=1 1/(d(a,xi))2 + Pa EaGV

^a
1 +

1______ _________1
^ j  = 1 (d ( a , x j  ))2

F (x i ,. . .  ,xp).

4-2. Lower bounds
Both of our lower bounding approaches are based on the calculation of 

the objective function at a feasible solution (x1, ... ,xp) G S, Then, a valid 
lower bound is given by

LB (S ) := F(x1, . . . , x p) < max F(x1, . . . , x p).(xi ,...,xp)es

Let us now focus on possible feasible solutions. The first lower bound, 
namely Huff discrete bound (LBHD), is a greedy procedure based on solving 
iteratively p times the single facility Huff location problem at the vertices 
of the edges of the superset. For a given superset S =  (E1,p1; . . . ;  Ek ,pk), 
let x1 be the optimal solution of a single facility Huff location problem on 
the vertices of the (sub)edges of E 1. In the next step, we will consider 
that a facility is already located at x1; and will locate x2 solving the single 
facility Huff location problem at the vertices of the edges of the corresponding 
edgeset. In the last step, we will choose location xp as the optimal solution 
of the single facility Huff location problem on the vertices of the edges of 
Efc, considering that p — 1 facilities are already located at x1, . . .  ,xp-1. Since 
only vertices are considered as candidates, each step of the greedy procedure 
is executed by complete enumeration of the candidate points.

The second lower bound, namely the midpoint bound LBMP, is calculated 
by randomly choosing an edge from an edgeset Ej, and locating pj facilities 
at its midpoint Vj < k,

5. Computational results

The approaches described in Sections 3 and 4 were implemented in For­
tran and executed on an Intel Core i7 computer with 16,00 Gb of RAM 
memory. The solutions were found within an accuracy of 10-3,

We tested the two approaches on a battery of 21 networks, whose charac­
teristics are shown in Table 1, The first 9 networks, referred to as group NT1 
in the sequel, are artificial networks generated as described in Averbakh et al.



(2014), The following 5 networks (group NT2)  are proposed for pmedian 
problems in Beasley (1990) and also used in Berman et al, (2011), Finally, 
the last 7 networks (group NTS)  are taken from (Corberan and Sanehis, 2007; 
Reinelt, 1991),

The number r of existing facilities is set as r =  10% of the number 
of edges of the network, |E|, Each instance is obtained by randomly and 
independently generating the demands (each vertex of the network is assumed 
to have a demand uniformly distributed in the interval (0,1) and in (0, 20) for 
the artificial networks from Averbakh et al, (2014)) and the location of the 
existing facilities. To generate the latter, r edges are randomly chosen with 
replacement; on each selected edge, the location of the facility is generated 
following a uniform distribution.

For each instance, the computer program written to solve the problem 
here considered runs until one of the following conditions is fulfilled:

• An optimal solution is found,

• The size limit (10s) of the braneh-and-bound tree is exceeded,

• The epu time exceeds six hours (21600 seconds).

Tables 2 and 3 show a comparison between the two branching rules: to­
tal enumeration (Section 3,1) and superset (Section 3,2), and the different 
bounding approaches: IA bound, IA bound with DC bound (IA+DC), mid­
point evaluation bound (MP), and the combination of Huff discrete bound 
with midpoint evaluation (HD+MP), Results for DC bound as the only up­
per bound are not reported because they were systematically outperformed 
by the other upper bounds; due to this reason, the outcomes of HD bound 
are also omitted. The results for the combinations of lower and upper bounds 
are shown in four blocks of columns. The first column of each block shows 
the average maximum size of the braneh-and-bound tree (MaxList) in each 
group of networks during the execution of the algorithm, whereas the second 
column reports the average CPU time in seconds. In what follows, the pair 
(LB,UB) will denote the combination of given lower and upper bounds used 
in the algorithm.

We start with the analysis of p = 2, All strategies are able to solve 
the problem on the 21 networks in less than an average time of 2 seconds 
in all the groups. For the enumerative approach, the best results in terms 
of epu time are obtained when (MP,IA) are used. If we focus on MaxList,



(Ill) MIMA DC) provides the best election, A good balance between mem­
ory requirement and epu time is obtained when one considers the combina­
tion (MIMA IK')- Regarding the superset approach, the best results are 
provided by (III) MIMA DC), although these results are only slightly bet­
ter that those obtained when the combination (MIMA DC) is used. The 
comparison of both methodologies shows that the superset approach is the 
fastest one and enumeration achieves the best MasList size as a rule.

For p = 3 , using supersets one achieves the best computing time, whilst 
enumeration provides the best Maxlist result. For the superset approach, the 
best combination turns out to be (III) MIMA DC) even though similar re­
sults are provided by (MIMA DC) and, to a lesser extent, by (HD+MP,IA) 
and (MP,IA) (the use of the DC upper bound seems to lead to better re­
sults), In the ease of the enumeration approach, the choice of the upper 
bound affects both the MaxI.Ft size and the epu time. Using IA+DC bound 
causes an important reduction of the MaxList size compared to using only 
IA bound, especially in the group NT3, and a moderate rise of epu time. On 
the other hand, the use of III) Ml’ as lower bound reduces on average the 
MaxList size by half and increases threefold the epu time. In terms of mem­
ory requirement, the best bounds choice is (III) MIMA DC), and when epu 
time is the relevant measurement, the best choice is (MP,IA), which is the 
least efficient combination in terms of memory use.

The ease p =  4 is considered now. The enumeration approach solves 
19 networks when IA+DC is used as lower bound and 20 networks with IA 
bound. Supersets solves 20 networks regardless of the bounds used. The 
RAT 195G network is not solved in any ease and its gap ranges from 9,93% 
when IA+DC is used as upper bound, to 15,94% with IA bound. In terms of 
time, the best results are provided by the superset approach, with III) MP 
the best choice as lower bound, while the choice of upper bound does not 
make big difference; as in the ease p =  3, the best epu times are given 
by the combination (HD+MP,IA+DC), which has a similar performance to 
(MP,IA+DC) and (HD+MP,IA), On the other hand, the enumerative ap­
proach is the most efficient when MaxList size is the target measurement, 
being (HD,IA) and (HD+MP,IA) the best combinations in that ease. For 
the superset approach, the use of IA as upper bound minimizes MaxI.Ft size.

Finally, we analyze results for p =  5, Using enumeration we are able to 
solve the problem on 8 networks in NT1 using (HD+MP,IA+DC), (MP,IA+DC) 
and (MP,IA), Only when the combination (HD+MP,IA) was used, the solu­



tion of all the problems in NT1 could be obtained; none of the problems in 
NT2 and NT3 were solved and the gap ranged from 2,37% to 59,72%, The 
number of problems solved with the superset approach is seven in all eases, 
with a gap ranging from 4,13% to 48,90%, In terms of computing time, the 
combination (MP,IA) gives the best computational times in the enumerative 
approach, although these ones are clearly outperformed by the superset ap­
proach, where the best results are obtained when the HI) Ml’ lower bound is 
considered, regardless of the upper bound used. As for the MaxList size, both 
approaches provide similar results, slightly better when supersets are used. If 
one seeks a proper balance between memory requirements and epu time, the 
best choice for the superset approach is (HD+MP,IA) or (HI) MP.1A DC), 
and (MP,IA) for the enumerative approach.

In summary, it can be said that, to a certain extent, both approaches are 
comparable for p =  2, 3 while for p =  4, 5 the superset approach outperforms 
the enumeration approach. When faced with the choice of the best upper 
bound, using IA+DC bound as upper bound is the best choice for both 
approaches and all values of p; if we focus on epu time exclusively, IA is the 
best upper bound for the enumerative approach. In terms of lower bound, 
we found that using MP is, in general, the best choice, even though HI) MP 
provides slightly better results than MP for the superset approach.

For the sake of completeness, the influence of the number of existing fa­
cilities has been studied using the superset approach with IA+DC as upper 
bound and MP as lower bound. As in the previous computational experi­
ments, the number r of existing facilities was set to a certain percentage (5, 
10, 20, 40, 60, 80, and 90) of the number of edges of the network in each run 
of the algorithm; the demands and the location of the existing facilities were 
chosen as was described above for the general experimentation. For each 
group of networks and each number p of new facilities, the averages of the 
two indicators previously considered (maximum size of the braneh-and-bound 
tree and CPU time) were calculated; the results are graphically depicted in 
Figures 4 and 5, For p =  4 and r =  80% the results are omitted because only 
one problem could be solved in that ease. For p =  5, only results for smallest 
networks (group NT1) are shown in Figures 4 and 5 since the size limit of 
the braneh-and-bound tree was exceeded in the remaining problems; due to 
the same reason, the result corresponding to r =  90% is not displayed for the 
same value of p. The number of existing facilities r has influence over both 
the Max List size and the epu time, especially when the size of the networks



Table 1: Properties of the networks taken from Averbakh et al. (2014); Beasley (1990); 
Corberan and Sanchis (2007); Reinelt (1991)

G roup Network nodes edges
a r t l 20 38
art2 20 43
art3 20 51
art4 30 56

NT1 art4 30 71
art5 30 84
art7 40 74
art8 40 95
art9 40 115
p m ed l 100 196
pm ed2 100 191

NT2 pm ed3 100 196
pm ed4 100 194
pm ed5 100 194
KROB150G 150 296
KROA150G 150 297
PR152G 152 296

NT3 RAT195G 195 336
KROB200G 200 386
KROA200G 200 392
TS225G 225 306

grows; the larger r is, the larger the MaxList size and the cpu time are, A 
deeper analysis reveals that the relative increment originated by changes in 
r is more pronounced in group NT2, followed by group NT3 as a rule. For 
instance, the MaxList size for p =  4, group NT2 and r =  90% is 7,6 times the 
corresponding value for r =  5%, Generally speaking, this effect is smoother 
in terms of epu time; in the previous example, the epu time for r =  90% is 
3,3 times the corresponding value for r =  5%,



6. Conclusions

In this paper we have addressed the pfaeilitv Huff location problem on 
networks. We propose two braneh-and-bound based approaches and show 
results for p < 5, Computational results show that both division approaches 
are able to solve problems of rather realistic size up to p =  4 facilities while for 
p =  5 only small problems are solved. For small values of p, both approaches 
are comparable, and when the number of facilities increases, the superset 
approach outperforms the enumeration approach. We eonelude with four 
promising extensions.

As shown in Section 5, for high values of p and for both approaches, some 
problems remain unsolved because the MaxList size limit is reached. It could 
be interesting to design a heuristic approach able to reduce the number of 
elements of the partition, and exploit the benefits of the braneh-and-bound 
tree evolution.

As second extension, we have considered throughout the paper that the 
attractiveness of the new facilities is fixed in advance. Considering it as 
another decision variable, as, among others, in Fernández et al, (2007); Plas- 
tria and Carrizosa (2004); Tóth et al, (2009) calls for designing new upper 
bounds. While both IA and DC bounds can be adapted to this more general 
context, the empirical performance of such new bounds is unknown.

Third, the branch and bound strategies used in this paper can also be 
applied to different pfaeilitv location problems on networks, such as the 
pmedian problem with continuous demand on a network (Blanquero and 
Carrizosa, 2013),

Finally, parallelization techniques deserve further study. Parallelizing the 
approach can solve the problem of reaching the MaxList size limit and may 
reduce the computational cost linearly, which will definitely lead to solving 
the problem for higher values of p.
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