
^facility Huff location problem on networks^

Rafael BlanquercA* *, Emilio Carrizosaa, Boglárka G,-Tóthb, Amava
Nogales-Gómez0’1

°Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas,
Universidad de Sevilla, {rblanquero,ecarrizosa}@us.es

bBudapest University of Technology and Economics, Hungary, bog@math.bme.hu
cMathematieal and Algorithmic Sciences Lab, Huawei Francc R&D, París, France,

amaya, nogales. gomez@huawei. com

Abstract
The p-faeilitv Huff location problem aims at locating facilities on a compet­
itive environment so as to maximize the market share. While it has been
deeply studied in the held of continuous location, in this paper we study the
p-faeilitv Huff location problem on networks formulated as a Mixed Integer
Nonlinear Programming problem that can be solved by a braneh-and-bound
algorithm. We propose two approaches for the initialization and division of
subproblems, the first one based on the straightforward idea of enumerating
every possible combination of p edges of the network as possible locations,
and the second one defining sophisticated data structures that exploit the
structure of the combinatorial and continuous part of the problem. Bound­
ing rules are designed using DC (difference of convex) and Interval Analysis
tools.

In our computational study we compare the two approaches on a battery
of 21 networks and show that both of them can handle problems for p < 4
in reasonable computing time.

Keywords: Huff location problem, location on networks, p-faeilitv,
difference of convex, global optimization

*This work has been partially supported by projects MTM2015-65915-R of Ministerio
de Economía y Competitividad, Spain, Pll-FQM -7603 and FQM-329 of Jun ta de An­
dalucía, Spain.

* Corresponding author.
1Most of this work was done when the author was at Departamento de Estadística e

Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla.

Preprint submitted to European Journal of Operational Research April 9, 2016

mailto:bog@math.bme.hu

1. Introduction

Competitive location models (Eiselt et al,, 1993; Plastria, 2001) were orig­
inally introduced by Hotelling (1929), considering the location of two com­
peting facilities on a linear market. In the seminal work of Hotelling, users
patronize the facility closest to them. In contrast with this all-or-nothing as­
sumption, it was introduced the Huff location model (Huff, 1964), in which
the probability that a user patronizes a facility is proportional to its attrac­
tiveness and inversely proportional to a power of the distance to it. The Huff
location problem has been extensively studied in the held of continuous loca­
tion (Blanquero and Carrizosa, 2009; Drezner and Drezner, 2004; Fernandez
et ah, 2007; Huff, 1964, 1966) and successfully applied in the marketing held,
in problems such as location of petrol stations, shopping centers or restau­
rants (Ghosh et al,, 1995; Okabe and Kitamura, 1997; Okunuki and Okabe,
2002), The natural extension of this problem to that of locating p-faeilities
on the plane, has also received certain attention in the literature (Drezner,
1998; Drezner et al,, 2002; Redondo et ah, 2009a,b; Tóth et al,, 2009),

Network optimization models (Bertsekas, 1998) are widely used in prac­
tice due to their methodological aspects and intuitive formulations. They
arise naturally in the context of assignment, how, transportation or loca­
tion problems among others. For a comprehensive introduction to location
models on networks see Labbé et al, (1995),

The combination of the Huff location problem and network optimization
has been already addressed in the literature (Berman et al,, 2011; Blanquero
et al,, 2014) and applied to market area analysis (Okabe and Kitamura, 1997)
and demand estimation (Okabe and Okunuki, 2001), The single-facility ease
has been solved in Berman et al, (2011) by means of Interval Analysis (IA)
bounds, and in Blanquero et al, (2014) using IA and difference of convex
(DC) bounds. Different metaheuristies have been proposed for the p-faeilitv
ease in Roksandié et al, (2012), but no attempt has been made so far to
address the multifaeilitv ease with exact methods. This lack of progress in
the state of the art is due to the difficulty of the problem, caused by its
combinatorial component added to the continuous global optimization: one
has to decide which edges are to contain facilities, and, for the choice of edges
given, the location is to be decided. Thanks to the recent results described
in Blanquero et al, (2015), in which a new data structure is introduced to

address multifacility location problems on networks via branch and bound
algorithms, we solve in this paper the p-faeilitv Huff location problem on
networks, formulated as a Mixed Integer Nonlinear Programming (MINLP)
problem.

The remainder of this paper is organized as follows. In Section 2 we
set up the notation for networks and introduce the p-faeilitv Huff location
problem. In Section 3, a braneh-and-bound method with different initializa­
tion and branching rules is described. Section 4 is devoted to procedures for
calculating lower and upper bounds. Computational results are reported in
Section 5, where the p-faeilitv Huff location problem is solved using the dif­
ferent branching and bounding rules for 12 real-life and 9 artificial networks.
Finally, Section 6 contains a brief summary, final conclusions and some lines
for future research,

2. The model

Let N = (V, E) be a network, with node set V and edge set E. The length
of the edge e E E is denoted by le. The distance between two nodes ai, aj E V
is calculated as the length of the shortest path (Labbe et ah, 1995) from a»
to aj. For each e E E, with end-nodes a», a j we identify each x E [0, le] with
the point in the edge e at distance x from ai and le — x from aj. This wav,
we obtain that, for any vertex ak E V and x e e, the distance d(x, ak) from
x to ak, as a function of x, is a concave piecewise linear function, given by
d(x, ak) = min{x + d(ai, ak), (le — x) + d(aj, ak)}.

In the pfaeilitv Huff location model, the hnite set V of vertices of the
network represents users, asking for a certain service. Each user a E V has
demand ua > 0, that is patronized by different existing facilities, located at
points y \ , . . . , yr on the network. The demand captured by facility at yi from
user a is assumed to be inversely proportional to a positive nondeereasing
function of the distance d(a,yi), namely, aai/(d(a,yi))2 is used as the utility
or attraction function of yi, where a ai > 0 denotes the attraction that user a
feels towards the facility at yi. Therefore, the demand captured by the facility
at yi from the user at a is given by

aai/(d(a,yi))2 m
^ a j «aj/(d(a,yj))2 ‘ 1 j

A new hrm is entering the market, by locating p new facilities at some

points x i , . . . , xp on the network. For simplicity, all new facilities are assumed
to have the same attractiveness aa > 0, which is fixed. The new facilities
perturb how the market is shared, since the new facilities will capture part
of the demand from a G V,

u,
E p=i «a/(d(a,x ,))2

a E p = 1 aa/(d(a, xj))2 + E r= 1 «aj/(d(a, Vj))2 ‘
(2)

Our goal is the maximization of the market share of the entering hrm.
Thus, the problem we need to solve can be formulated as

*,€|0i,“ ai,€|0i,,l z J j aa/(d(a,xj))2 + E '=1 «a,/(d(a, y,))2'
ei,...,ep EE aE

Ep=1 «a/(d(a,x j))
,))2 +

2

(3)

In order to simplify the previous expression, the following positive con­
stant is considered for each a G V:

o = «aj/a a
Pa = (d(a, V,))2. (4)

Problem (3) can be rewritten then as the following MINLP:

max F (x1, . . . , xp)
X1 E[0,lei l,... ,Xp€|0,lepl

e i , . . . ,epE E

(5)

where F is dehned as

F (x1,..) xp)
aEV

ua
1 + Vp 1

2-^j = 1 (d (a , x j))2

1
a (6)

The MINLP problem (5) is formed by a combinatorial and a continuous
part. First, we need to solve the combinatorial problem of choosing a set of
p edges to locate the facilities, and then solve a continuous location problem
on the edges.

3. The methodology

The natural wav to solve the MINLP formulation of the p-faeilitv Huff
location problem is to use a braneh-and-bound method. We differeneiate
two main phases: the initialization phase and the braneh-and-bound phase.
In the initialization phase the initial exploration tree is prepared. In the
braneh-and- bound phase, an element of the list is selected iteratively (until
the termination rule is fulfilled) according to a selection criterion, and then
is divided into new elements that are included into the list if they cannot
be eliminated by their bounds. In this phase, division, bounding, selection,
elimination and termination rules are required.

In this paper we propose different approaches for the initialization phase,
division and bounding rules. As selection, elimination and termination rules,
we always apply the usual ones from the literature (Berman et ah, 2011):
the element to be evaluated is selected as the one with the largest upper
bound, elements whose upper bound are lower than the current lower bound
are eliminated, and the optimization is terminated when the relative error
between the largest upper bound and the current lower bound is less than a
fixed tolerance. This section is aimed at describing two types of initialization
and division rules. Bounding rules will be discussed in Section 4,

The methodology proposed in Blanquero et al, (2014), where the single­
facility problem is tackled, has in common with the methodology herein con­
sidered the use of a braneh-and-bound algorithm with, essentially, the same
upper bounds. However, the difficulty introduced by the combinatorial part
of the problem leads us to use sophisticated data structures in the branch
and bound recently introduced in Blanquero et al, (2015), so that the election
of the p edges can be done in an optimal way during the algorithm running.
The initialization and the division phases of the algorithm are deeply affected
by the use of these structures,

3.1. Total enumeration
The straightforward way of solving Problem (5) is to separate the combi­

natorial and the continuous part of the problem: we first hx a set of p edges
to locate the facilities, and then solve a continuous location problem on the
edges. This means the braneh-and-bound approach starts with a partition
of the search space formed by the cartesian product of puples. The p-uples
are formed by every possible combination of p edges, taking into account
that several facilities can be located at the same edge, i.e,, repetitions of

the same edge are allowed in the elements of the partition. But obviously,
permutations of the p-uples are not taken into account.

During the algorithm running, the edges forming the initial elements of
the partition are going to be divided into small pieces (segments of edge),
which will be referred to as subedges throughout the paper.

We denote by s = (s i , . . . , sk) an element of the partition, where each
component si is a (sub)edge that has a multiplicity m(sj), i.e,, the number
of facilities located at si is m(si). Hence, m (s1) + . . . + m (sk) = p. To avoid
symmetric sets, for any element of the partition s = (s1, . . . , sk), and any
si = [l,u] C [0, Ze], e G E ,si G s, the cartesian pro duet n ^ S ^ is replaced
by {l < x 1 < . . . < xm(si) < u}. For example, let us consider p = 2 and
the edge e = [0,1]; following a naive approach, one of the elements of the
initial partition would be e x e = {(x1,x 2) : 0 < x1 < 1 , 0 < x2 < 1},
related to the location of 2 facilities on e (i.e., m(e) = 2). However, e x e
leads to symmetric solutions (for instance, (0.2, 0.7) and (0.7, 0.2) are the
same solution since both components belong to the same edge e), making
the braneh-and-bound algorithm inefficient. In order to avoid this inefficient
approach, the set e x e is replaced by {(x1,x2) : 0 < x1 < x2 < 1} in the
partition.

The subdivision of each element of the partition is done by splitting each
(sub)edge by its midpoint, obtaining two new smaller segments for each
(sub)edge, namely lower and upper segments. Then, the new elements of
the partition are built by replacing each (sub)edge si by either its lower or
upper segment, sL, sU respectively. In the ease of (sub)edges with multiplic­
ity greater than 1, the above-described method is used to avoid symmetric
sets. For instance, Figure 1 depicts the subdivision process, for p = 2, of the
element s = (s1̂ , with m(s1) = 2, identified with the blue colored area of the
big square. Then, the subdivision of s leads to three new elements, identified
with the blue colored area of the small squares.

In order to illustrate the construction of the initial partition and the
subdivision process, a simple example is given next.

Exam ple 3.1 Let us consider the network in Figure 2, where all the edges
have length 1, and p = 2. The initial partition is obtained by considering
all pairs of edges (with repeats) and applying the procedure that has just been
described to avoid symmetry when the multiplicity of an edge is greater than
one. The six elements of such partition are shown in the following table,
where e1 = (1,2), e2 = (1,3), and e3 = (2, 3).

s L
S i1

Figure 1: Subdivision process of s = (si) with m(s1) = 2.

Element Multiplicities Description of the element
Si == (ei) m(e1) == 2 {(X1,X2) : X1. X2 G e1. 0 < x1 < X2 < 1}
S2 == (e1,e2) m(e1) == 1, m(e2) == 1 e1 x e2
S3 == (e1,e3) m(e1) == 1, m(e3) == 1 e1 x e3
S4 == (e2) m(e2) == 2 {(X1,X2) : x1, X2 G e2. 0 < x1 < X2 < 1}
S5 == (e2,e3) m(e2) == 1, m(e3) == 1 e2 x e3
S6 == (e3) m(e3) == 2 {(X1,X2) : X1. X2 G e3. 0 < x1 < X2 < 1}

Figure 2: Example network to illustrate the total enumeration algorithm

During the branch-and-bound procedure, the subdivision of each element of
the partition with multiplicity equals 1 can be carried out in a straightforward
manner. For instance, the subdivision of s2 leads to four new elements in the
partition, replacing s2:

Element Multiplicities
52.1 = (ei,i,e2,i) m(ei,i) = 1,m(e2,i)
52.2 = (ei,i,e2,2) m(ei,i) = 1,m(e2,2)
52.3 = (ei,2,e2,i) m(ei,2) = 1,m(e2,i)
52.4 = (ei,2,e2,2) m(ei,2) = 1,m(e2,2)

Description of the element
1 ei,i x e2,i
1 ei,i x e2,2
1 ei,2 x e2,i
1 ei,2 x e2,2______________

where

e i , i = {x E e i : 0 < x < 2 } e i>2 = {x E e i : 2 < x < 1}

e2, i = {x E e2 : 0 < x < 2 } e2,2 = {x E e2 : 2 < x < 1}

When any component of the element to be subdivided has a multiplicity
greater than 1, the split must be done following the above-described procedure
to avoid symmetric sets. For instance, the subdivision of si yields (see Figure
1):

Element Multiplicities Description of the element
51.1 = (ei,i) m(ei,i) = 2 {(xi,x2) : x i,x2 G ei,i, 0 < xi < x2 < 2}
51.2 = (ei,2, ei,i) m(ei,2) = 1, m(ei,i) = 1 ei,2 x ei,i
51.3 = (ei,2) m(ei,2) = 2___________ {(xi,x2) : x i,x2 G ei,2, 2 < xi < x2 < 1}

3.2. Superset
A more sophisticated data structure for location problems on networks

has been proposed in Blanquero et al, (2015), exploiting together the struc­
ture of the combinatorial and continuous part of a covering problem on net­
works, In order to avoid the enumeration of every possible combination of
p edges, Blanquero et al, (2015) propose to construct clusters of (sub)edges,
called hereafter edgesets, and define a subproblem of (5) over a collection of
edgesets called a superset.

To be precise, an edgeset is a finite collection of (sub)edges of E; a su­
perset 5 is any uple of the form (E ^ p p . . . ; E k ,pk), where E^ . . . , E k are
disjoint edgesets, pj are strictly positive integer numbers with

k

J2rp j = p ,
j = i

indicating, for each j = 1 , . . . , k, that exactly pj facilities are to be located
within the (sub) edges in E j .

For this data structure, the subproblem to be solved at this stage on
superset S has the form

max F (xi , . . . , xp)
(x i ,...,xp) es

with F defined as in (6), and (x 1 , . . . ,xp) G S understood as x 1 , . . . ,xpi G
E 1; xpi+G . . . , xpi+p2 G E2; . . . ; xp-Pfc + 1, . . . , xp G Ek-

Supersets will be identified with nodes in the braneh-and-bound tree.
The root node of the braneh-and-bound tree is the original superset S0 =
(E,p). E is first subdivided into a given partition E (1), ... ,E (p) of E: we
add to the braneh-and-bound exploration tree the supersets of the form
(E1,p1; . .. ; Ek,pk), where {E1, . . . , Ek} C {E(1), . . . , E (p)} andP1 + . . . + pk =
p. Each initial superset can be seen as the result of choosing p elements, not
necessarily distinct, from the set {E(1), . . . , E (p)}, and taking pj as the num­
ber of times that E j appears in the sample; the number of possible elections
of this kind corresponds to the concept of combinations with repetitions in
Combinatorial Theory, and is given by the combinatorial number (2p-1).

First, we need to define how the edges of the network conforming S0 , are
split into the partition of p edgesets E (1) , . . . , E (p) . In the first step, E is
divided into 2 edgesets by a distance criterion, namely the diameter of the
edgeset, defined as the maximum of the minimal distance between each pair of
nodes in V(E), the set of nodes that define the edges of E, Then, the nodes
giving the diameter are selected as centers of the two new (sub)edgesets.
Each edge of the edgeset is assigned to the closest (sub)edgeset, where the
distance from an edge to an (sub)edgeset is measured as the distance from
the edge to the (sub)edgeset center. In ease of tie, the edge is assigned
to the (sub)edgeset with the smallest cardinality, or randomly if a new tie
arises then. This process is repeated until obtaining p edgesets, selecting the

largest edgeset to be subdivided at each step, where the size of the edgeset
is understood as the sum of the (sub)edge lengths; if two edgesets yield
the maximum diameter, the edgeset with the biggest cardinality is chosen,
whereas a random election is carried out in ease of a new tie. An algorithmic
description of the whole initialization process is provided in Algorithm 1,

The subdivision of a superset S = (E ^ p p . . . ; Ek,pk) during the braneh-
and-bound is done by partitioning the largest edgeset Ej. If Ej contains
only one (sub)edge, the subdivision is done by bisecting the (sub)edge at its
midpoint, otherwise Ej is partitioned to edgesets Ei1, Ej2 by its diameter as
done in the initial subdivision of S0, Th e pj facilities at Ej must be shared out
between Ej1 and Ej2, and all the possible combinations in this sharing out of
pj must be considered in order to continue having a partition of the solutions
space; therefore, if (nj1 , nj2) represents the number of facilities assigned to
Ej1 and Ej2, respectively, with nj1 + nj2 = pj, the subdivision process must
take into account the following facilities assignments: (0,pj), (1,pj — 1), (2,pj —
2) ,. . . , (pj — 2, 2), (pj — 1,1), (pj, 0), provided that these pairs make sense (i.e.,
all their elements are nonnegative). Thus, the following supersets substitute
S:

Sj (E1 , p1 ; . .. ; Ej- 1 , pj- 1 ; Ejj , pj ; E j+1 , pj+1 ; . . . ; E k, pk) , j 1 , 2

and additionally if 1 < p^ for j = 1 ,... ,pj — 1

S2+j (E1, p1; . . . ; Ej -1, pj - 1; E i1, j ; Ei2 , pi j ; Ei+1, pi+1; . . . ; Ek , pk) .

This means that, in each step, pj + 1 new supersets are created.

Exam ple 3.2 Let us consider the network N = (V, E) depicted in Figure 3,
with all lengths equal to 1, and suppose that p = 3 facilities are going to be
located. The initial superset is S0 = (E, 3) and we begin by dividing E into
a partition E (1),E (2),E (3) as is described next.

The diameter of E is given by the distance between the nodes 1 and 1,
which are considered as centers of two new edgesets. Assigning each edge to
its closest center, the new edgesets turn out to be E (1) = {(1,2), (2, 3), (2, 4)}
and E (2) = {(3, 5), (3, 6), (4, 6), (5, 7), (6, 7)} The -sizes of E (1) and E (2) are 3
and 5, respectively, and therefore, E (2) is divided into two new edgesets. The
centers E (2) are the nodes f and 5, since they provide the diameter of such
edgeset, and the assignment of each edge to its closest center yields the follow-

lb)

A lgorithm 1: Building the initial braneh-and-bound exploration tree

► I n i t ia l iz e the l i s t of edgesets
L — E
repeat

• Find the la rg e s t edgeset E*w in E
foreach Ew e L do

s(Ew) — S eGEw 1e
EW — argmax^w eL s(Ew)

end
• Compute the v e rtic e s defin ing the diam eter of EW
(ci ,c2) — argmax„.)a.ey(Ew) a-j)
EW,i — 0
EW,2 — 0
foreach e e EW do

if d(e,c1) < d(e,c2) then
| EW,i — EW,i u e

else
| EW,2 — EW,2 U e

end
end
• Updat e L
L — L\EW U EW,i U EW,2

until |L| = p;
► Generate combinations with re p e tit io n s of {1, 2 ,...,p }
CR —— {(ai, a2,. . . , ap) : ai < a2 < . . . < ap, â = 1 ,... ,p}
► Build supersets and add them to the B&B tre e
T — 0
foreach c e CR do

Let {ui , . . . , uk} be the set of unique numbers in c.
Let ui be the absolute frequency of ^ in c i = 1 ,. . . , k,
T — T U (E«i, Ui ; E«2 , U2; . . . ; Eufc , Uk)

end

ing subdivision of E (2).- E (2,1) = {(3,6), (4, 6)} E (2,2) = {(3, 5), (5, 7), (6, 7)};
note that other subdivisions are also possible since the edges (3, 6) and (6, 7)
are at the same distance from both centers. Renaming the edgesets that have
just been worked out, the initial partition of E is obtained:

E (1) = {(1, 2), (2, 3), (2, 4)}
E (2) = {(3, 6), (4, 6)}
E (3) = {(3, 5), (5, 7), (6, 7)}

Once the partition of E has been computed, we add to the branch-and-bound
exploration tree the (5) = 10 supersets of the form (E ^ p p ... ; Ek,pk) where
{Ei , . . . , E fc} C {E(1), E (2), E (3)} and p + . . . + pk = 3:

(E(1), 3)
(E(2), 3)
(E(3), 3)
(E(1), 2; E (2), 1)
(e (1), 2; E (3), l)

(E(1), 1; E (2), 2)
(e (1), 1; E (3), 2)
(e (2), 1; E (3), 2)
(e (2), 2; E (3), 1)
(e (1), 1; E (2), 1; E (3), 1)

In order to illustrate the subdivision of a superset during the execution of
the branch-and-bound algorithm, let us consider the superset (E(1), 2; E (2), 1).
The edge-set E (1) is choosen for splitting, since it is larger than E (2), and di­
vided into the edgesets E (1,1) = {(1, 2)} and E (1,2) = {(2, 3), (2, 4)} according
to the diameter of E (1) (other configurations are also admissible owing to
ties). The original superset is then replaced in the branch-and-bound tree by
the following supersets:

(E(M), 2; E (2), 1) (E(1’2), 2; E (2), 1) (E(M), 1; E (1’2), 1; E (2), 1)

4. Lower and Upper bounds

A braneh-and-bound algorithm requires the calculation of tight upper
and lower bounds. In this section we present different bounding approaches
for the braneh-and-bound used to solve (5), We propose two upper bounds
and two lower bounds: IA bound, DC bound as upper bounds, Huff discrete
bound (HD) and midpoint bound (MP) as lower bounds. Note that when
a superset contains edgesets with |Ej | = 1 Vj, it corresponds to a p-uple
of (sub)edges. Each p-uple of (sub)edges has its unique superset eorrespon-

dence. Thus, the following bounds are valid for p-uples of edges as well, i.e,,
for the enumeration approach in Section 3,1,

4-1. Upper hounds
Interval Analysis (IA) and Difference of Convex (DC) bounds have al­

ready been proposed for the single-facility case, in which bounds are com­
puted on intervals (subedges). We adapt these bounding strategies to the
multifacility case, when bounds of the objective function on supersets are to
be computed. The IA bound considers only endpoints of (sub) edges as pos­
sible location of facilities. For a superset S = (E1,p1; . . . ; E k,pk) we obtain
the IA bound by replacing in (6) d(a, Xj) by the distance from a to the closest
vertex of the edges that belong to Ej, i.e,, by

d(a,E j)= min {d(a,v1),d(a,v2)}.e=[vi,V2],eEEj

For any x G Ej it holds that d(a, E j) < d(a, x) Vj = 1 ,... ,p. Hence, the
following is a valid upper bound for (6):

UBia (S) := ^
a€V

Ua
1 +

1

jj =1
Pa

pj
(d (a , E j))2

The second upper bound approach is based on a DC bound of the single
facility Huff location problem on networks,

max Fsingie(x)
x€[0,le], e£E

with Fsingie(x) = ^ aeV Ua 1+Pa(](a,x))2, a particular case of (6) for p = 1 . This

problem has been already studied in Blanquero et al, (2014), First, for a
given edge e of the network, Fsingle(x) is expressed as a difference of convex
functions, Fsingle (x) = ^ aeV(F + (x)- F “ (x)), namely, its DC decomposition.
Then, an upper bound U B fF ^ s) for any segment s E e, e E E with v\, v2
being endpoints of s is defined as

U B single (s) = max{U (vl),U (v2)}

with
U(x) = E (F + (x) - Fa (x0) - Ca(x - x0))

aeV
for £a E dF- (x0) where dF- (x0) denotes the set of subgradients of F- at x0

(Horst and Pardalos, 1995),
Therefore, it holds that

U B single(e) > Fsingle(x), Vx E [0,1eL e E E . (7)
A DC bound over an edgeset Ej is dehned as the maximum DC bound of
the edges from Ej, i.e,,

UBdc(Ej) := max U B ^ ^ e) > Fsingie(x), Vx E [0, le], e E E.eeEj g

Given a superset S = (E1,p1; . . . ; Ek ,pk), a DC bound of (6) is calculated as

p
UBdc(S) := £ Pj ■ UBdc(Ej)

j=1
This DC bound is a valid upper bound since it holds that

E l Fsingle(xj) = EE 1
Ua

j=1 j=1 aeV 1 + Pa(d(a,xj))2

(8)

(9)

Since (d(1))2 < YJi 1(d(a,xj))2 — j=1

(9) = E E U
j=1 aeV

j=1 (d(a,Xj))2’ we have:

1/(d(a,xj))2
a 1/(d(a,xj))2 + Pa

> E E <
j=1 aeV

1/(d(a,xj))2
aE p=1 1/(d(a,xi))2 + Pa

1

= E
aev

E p=! 1/(d(a,xj))2
Ep=1 1/(d(a,xi))2 + Pa EaGV

^a
1 +

1______ _________1
^ j = 1 (d (a , x j))2

F (x i ,. . . ,xp).

4-2. Lower bounds
Both of our lower bounding approaches are based on the calculation of

the objective function at a feasible solution (x1, ... ,xp) G S, Then, a valid
lower bound is given by

LB (S) := F(x1, . . . , x p) < max F(x1, . . . , x p).(xi ,...,xp)es

Let us now focus on possible feasible solutions. The first lower bound,
namely Huff discrete bound (LBHD), is a greedy procedure based on solving
iteratively p times the single facility Huff location problem at the vertices
of the edges of the superset. For a given superset S = (E1,p1; . . . ; Ek ,pk),
let x1 be the optimal solution of a single facility Huff location problem on
the vertices of the (sub)edges of E 1. In the next step, we will consider
that a facility is already located at x1; and will locate x2 solving the single
facility Huff location problem at the vertices of the edges of the corresponding
edgeset. In the last step, we will choose location xp as the optimal solution
of the single facility Huff location problem on the vertices of the edges of
Efc, considering that p — 1 facilities are already located at x1, . . . ,xp-1. Since
only vertices are considered as candidates, each step of the greedy procedure
is executed by complete enumeration of the candidate points.

The second lower bound, namely the midpoint bound LBMP, is calculated
by randomly choosing an edge from an edgeset Ej, and locating pj facilities
at its midpoint Vj < k,

5. Computational results

The approaches described in Sections 3 and 4 were implemented in For­
tran and executed on an Intel Core i7 computer with 16,00 Gb of RAM
memory. The solutions were found within an accuracy of 10-3,

We tested the two approaches on a battery of 21 networks, whose charac­
teristics are shown in Table 1, The first 9 networks, referred to as group NT1
in the sequel, are artificial networks generated as described in Averbakh et al.

(2014), The following 5 networks (group NT2) are proposed for pmedian
problems in Beasley (1990) and also used in Berman et al, (2011), Finally,
the last 7 networks (group NTS) are taken from (Corberan and Sanehis, 2007;
Reinelt, 1991),

The number r of existing facilities is set as r = 10% of the number
of edges of the network, |E|, Each instance is obtained by randomly and
independently generating the demands (each vertex of the network is assumed
to have a demand uniformly distributed in the interval (0,1) and in (0, 20) for
the artificial networks from Averbakh et al, (2014)) and the location of the
existing facilities. To generate the latter, r edges are randomly chosen with
replacement; on each selected edge, the location of the facility is generated
following a uniform distribution.

For each instance, the computer program written to solve the problem
here considered runs until one of the following conditions is fulfilled:

• An optimal solution is found,

• The size limit (10s) of the braneh-and-bound tree is exceeded,

• The epu time exceeds six hours (21600 seconds).

Tables 2 and 3 show a comparison between the two branching rules: to­
tal enumeration (Section 3,1) and superset (Section 3,2), and the different
bounding approaches: IA bound, IA bound with DC bound (IA+DC), mid­
point evaluation bound (MP), and the combination of Huff discrete bound
with midpoint evaluation (HD+MP), Results for DC bound as the only up­
per bound are not reported because they were systematically outperformed
by the other upper bounds; due to this reason, the outcomes of HD bound
are also omitted. The results for the combinations of lower and upper bounds
are shown in four blocks of columns. The first column of each block shows
the average maximum size of the braneh-and-bound tree (MaxList) in each
group of networks during the execution of the algorithm, whereas the second
column reports the average CPU time in seconds. In what follows, the pair
(LB,UB) will denote the combination of given lower and upper bounds used
in the algorithm.

We start with the analysis of p = 2, All strategies are able to solve
the problem on the 21 networks in less than an average time of 2 seconds
in all the groups. For the enumerative approach, the best results in terms
of epu time are obtained when (MP,IA) are used. If we focus on MaxList,

(Ill) MIMA DC) provides the best election, A good balance between mem­
ory requirement and epu time is obtained when one considers the combina­
tion (MIMA IK')- Regarding the superset approach, the best results are
provided by (III) MIMA DC), although these results are only slightly bet­
ter that those obtained when the combination (MIMA DC) is used. The
comparison of both methodologies shows that the superset approach is the
fastest one and enumeration achieves the best MasList size as a rule.

For p = 3 , using supersets one achieves the best computing time, whilst
enumeration provides the best Maxlist result. For the superset approach, the
best combination turns out to be (III) MIMA DC) even though similar re­
sults are provided by (MIMA DC) and, to a lesser extent, by (HD+MP,IA)
and (MP,IA) (the use of the DC upper bound seems to lead to better re­
sults), In the ease of the enumeration approach, the choice of the upper
bound affects both the MaxI.Ft size and the epu time. Using IA+DC bound
causes an important reduction of the MaxList size compared to using only
IA bound, especially in the group NT3, and a moderate rise of epu time. On
the other hand, the use of III) Ml’ as lower bound reduces on average the
MaxList size by half and increases threefold the epu time. In terms of mem­
ory requirement, the best bounds choice is (III) MIMA DC), and when epu
time is the relevant measurement, the best choice is (MP,IA), which is the
least efficient combination in terms of memory use.

The ease p = 4 is considered now. The enumeration approach solves
19 networks when IA+DC is used as lower bound and 20 networks with IA
bound. Supersets solves 20 networks regardless of the bounds used. The
RAT 195G network is not solved in any ease and its gap ranges from 9,93%
when IA+DC is used as upper bound, to 15,94% with IA bound. In terms of
time, the best results are provided by the superset approach, with III) MP
the best choice as lower bound, while the choice of upper bound does not
make big difference; as in the ease p = 3, the best epu times are given
by the combination (HD+MP,IA+DC), which has a similar performance to
(MP,IA+DC) and (HD+MP,IA), On the other hand, the enumerative ap­
proach is the most efficient when MaxList size is the target measurement,
being (HD,IA) and (HD+MP,IA) the best combinations in that ease. For
the superset approach, the use of IA as upper bound minimizes MaxI.Ft size.

Finally, we analyze results for p = 5, Using enumeration we are able to
solve the problem on 8 networks in NT1 using (HD+MP,IA+DC), (MP,IA+DC)
and (MP,IA), Only when the combination (HD+MP,IA) was used, the solu­

tion of all the problems in NT1 could be obtained; none of the problems in
NT2 and NT3 were solved and the gap ranged from 2,37% to 59,72%, The
number of problems solved with the superset approach is seven in all eases,
with a gap ranging from 4,13% to 48,90%, In terms of computing time, the
combination (MP,IA) gives the best computational times in the enumerative
approach, although these ones are clearly outperformed by the superset ap­
proach, where the best results are obtained when the HI) Ml’ lower bound is
considered, regardless of the upper bound used. As for the MaxList size, both
approaches provide similar results, slightly better when supersets are used. If
one seeks a proper balance between memory requirements and epu time, the
best choice for the superset approach is (HD+MP,IA) or (HI) MP.1A DC),
and (MP,IA) for the enumerative approach.

In summary, it can be said that, to a certain extent, both approaches are
comparable for p = 2, 3 while for p = 4, 5 the superset approach outperforms
the enumeration approach. When faced with the choice of the best upper
bound, using IA+DC bound as upper bound is the best choice for both
approaches and all values of p; if we focus on epu time exclusively, IA is the
best upper bound for the enumerative approach. In terms of lower bound,
we found that using MP is, in general, the best choice, even though HI) MP
provides slightly better results than MP for the superset approach.

For the sake of completeness, the influence of the number of existing fa­
cilities has been studied using the superset approach with IA+DC as upper
bound and MP as lower bound. As in the previous computational experi­
ments, the number r of existing facilities was set to a certain percentage (5,
10, 20, 40, 60, 80, and 90) of the number of edges of the network in each run
of the algorithm; the demands and the location of the existing facilities were
chosen as was described above for the general experimentation. For each
group of networks and each number p of new facilities, the averages of the
two indicators previously considered (maximum size of the braneh-and-bound
tree and CPU time) were calculated; the results are graphically depicted in
Figures 4 and 5, For p = 4 and r = 80% the results are omitted because only
one problem could be solved in that ease. For p = 5, only results for smallest
networks (group NT1) are shown in Figures 4 and 5 since the size limit of
the braneh-and-bound tree was exceeded in the remaining problems; due to
the same reason, the result corresponding to r = 90% is not displayed for the
same value of p. The number of existing facilities r has influence over both
the Max List size and the epu time, especially when the size of the networks

Table 1: Properties of the networks taken from Averbakh et al. (2014); Beasley (1990);
Corberan and Sanchis (2007); Reinelt (1991)

G roup Network nodes edges
a r t l 20 38
art2 20 43
art3 20 51
art4 30 56

NT1 art4 30 71
art5 30 84
art7 40 74
art8 40 95
art9 40 115
p m ed l 100 196
pm ed2 100 191

NT2 pm ed3 100 196
pm ed4 100 194
pm ed5 100 194
KROB150G 150 296
KROA150G 150 297
PR152G 152 296

NT3 RAT195G 195 336
KROB200G 200 386
KROA200G 200 392
TS225G 225 306

grows; the larger r is, the larger the MaxList size and the cpu time are, A
deeper analysis reveals that the relative increment originated by changes in
r is more pronounced in group NT2, followed by group NT3 as a rule. For
instance, the MaxList size for p = 4, group NT2 and r = 90% is 7,6 times the
corresponding value for r = 5%, Generally speaking, this effect is smoother
in terms of epu time; in the previous example, the epu time for r = 90% is
3,3 times the corresponding value for r = 5%,

6. Conclusions

In this paper we have addressed the pfaeilitv Huff location problem on
networks. We propose two braneh-and-bound based approaches and show
results for p < 5, Computational results show that both division approaches
are able to solve problems of rather realistic size up to p = 4 facilities while for
p = 5 only small problems are solved. For small values of p, both approaches
are comparable, and when the number of facilities increases, the superset
approach outperforms the enumeration approach. We eonelude with four
promising extensions.

As shown in Section 5, for high values of p and for both approaches, some
problems remain unsolved because the MaxList size limit is reached. It could
be interesting to design a heuristic approach able to reduce the number of
elements of the partition, and exploit the benefits of the braneh-and-bound
tree evolution.

As second extension, we have considered throughout the paper that the
attractiveness of the new facilities is fixed in advance. Considering it as
another decision variable, as, among others, in Fernández et al, (2007); Plas-
tria and Carrizosa (2004); Tóth et al, (2009) calls for designing new upper
bounds. While both IA and DC bounds can be adapted to this more general
context, the empirical performance of such new bounds is unknown.

Third, the branch and bound strategies used in this paper can also be
applied to different pfaeilitv location problems on networks, such as the
pmedian problem with continuous demand on a network (Blanquero and
Carrizosa, 2013),

Finally, parallelization techniques deserve further study. Parallelizing the
approach can solve the problem of reaching the MaxList size limit and may
reduce the computational cost linearly, which will definitely lead to solving
the problem for higher values of p.

References

Averbakh, L, Berman, O,, Krass, D,, Kalesies, J,, Nickel, S,, 2014, Coopera­
tive covering problems on networks. Networks 63 (4), 334-349,

Beasley, J,, 1990, OR-librarv: Distributing test problems by electronic mail.
Journal of the Operational Research Society 41, 1069-1072,

Table 2: Average maximum branch-and-bound tree size and running times for the enumeration approach
E num era tion

U pper bound IA IA + D C
Lower bound M P H D + M P M P H D + M P

V N etw orks group M axList T im e M axList T im e M axList T im e M axList T im e
NT1 1614 0.02 1114 0.02 1137 0.02 780 0.03

2 N T2 2752 0.15 1673 0.30 961 0.19 582 0.36
N T3 5555 0.68 3568 1.47 1048 0.93 499 1.80
NT1 62.082 1.17 32828 1.61 64165 1.28 43584 2.10

3 N T2 213728 18.05 123503 42.56 149756 21.23 96958 52.34
N T3 497173 98.99 262876 352.65 128531 151.25 56581 445.11
NT1 1918016 47.20 829900 89.65 2308857 83.00 1563900 140.88

4 N T2 11948825 1244.77 6200215 4609.43 15424382 2282.46 10722153 5638.55
N T3 26613106 8831.86 14621750 10789.24 19904191 17733.14 16746091 17872.20
NT1 27146230 1319.57 18025866 3146.07 37477920 2871.15 26435772 4084.51

5 N T2 - - - - - - - -

N T3 - - - - - - - -

Supersets
U pper bound IA IA + D C
Lower b ound M P H D + M P M P H D + M P

V N etw orks group M axList T im e M axList T im e M axList T im e M axList T im e
NT1 1883 0.03 1703 0.02 1771 0.03 1590 0.03

2 N T2 4407 0.18 3990 0.17 4130 0.18 3635 0.17
N T3 7819 0.55 7680 0.50 5203 0.47 5214 0.46
NT1 74025 1.12 65659 1.10 73998 1.10 65647 1.09

3 N T2 349935 16.01 311701 15.65 347219 16.06 308682 15.56
N T3 757185 57.81 744442 55.73 564898 50.72 555053 50.50
NT1 2314628 41.00 1946402 39.54 2314629 41.41 1946402 41.52

4 N T2 15474835 759.09 13194372 741.53 15470797 751.61 13164446 740.38
N T3 29354658 3893.07 29292169 2751.57 28697363 2706.62 28634874 2659.87
NT1 29737308 581.31 23080325 535.79 29737310 563.21 23080326 538.78

5 N T2 - - - - - - - -

N T3 - - - - - - - -

M
ax

im
um

 L
is

t S
iz

e
(x

 1
00

00
)

1.2

0.8

A A.
0.4 • • ' A

■ • -a

300

200

100

0 • •

7500

Networks group

. A

. . . A ’ • -------

.A-"" _ ̂ * II

. A '

•

__________■ ---------------
■ — ■ — ----- ■ --------------------- H ------

■ ■ NT1

■ NT2

■ A - NT3

4000

3500

3000

2500

2000

10 20 30 40 50 60 70 80
Existing facilities (% of the number of edges)

90

Figure 4: Maximum size of the B&B tree size when varying the number of existing facilities

C
PU

 ti
m

e
(s

ec
on

ds
)

1.0

0.5

0.0

200

150

100

50

0

7500

5000

2500

0

500

450

400

350
10 20 30 40 50 60 70 80 90

Existing facilities (% of the number of edges)

Figure 5: CPU time when varying the number of existing facilities

a a ■■■••A“'

■—■— — ■--------------- ■

a -*-
r * -

Networks group
■ ■ NT1

■ NT2

■ A - NT3

~o
II

Berman, O,, Drezner, Z,, Krass, D,, 2011, Big segment small segment global
optimization algorithm on networks. Networks 58 (1), 1-11,

Bertsekas, D,, 1998, Network Optimization: Continuous and Discrete Mod­
els, Athenas Scientific, Belmont, Mass,

Blanquero, R,, Carrizosa, E,, 2009, Continuous location problems and big
triangle small triangle: Constructing better bounds. Journal of Global
Optimization 45 (3), 389-402,

Blanquero, R,, Carrizosa, E,, 2013, Solving the median problem with contin­
uous demand on a network. Computational Optimization and Applications
56 (3), 723-734.

Blanquero, R,, Carrizosa, E,, Nogales-Gómez, A,, Plastria, F,, 2014, Single­
facility Huff location problems on networks. Annals of Operations Research
222 (1), 175-195.

Blanquero, R,, Carrizosa, E,, Tóth, B,, 2015, Maximal covering location
problems on networks with regional demand. Omega,
URL h t tp : //d x ,doi . o rg /10 . 1016/j . omega. 2015.11.004

Corberán, A,, Sanehis, J,, 2007, A branch & cut algorithm for the windy
general routing problem and special eases. Networks 49 (4), 245-257,

Drezner, T,, 1998, Location of multiple retail facilities with limited budget
constraints in continuous space. Journal of Retailing and Consumer Ser­
vices 5 (3), 173-184.

Drezner, T,, Drezner, Z,, 2004, Finding the optimal solution to the Huff
competitive location model. Computational Management Science 1 (2),
193-208.

Drezner, T,, Drezner, Z,, Salhi, S,, 2002, Solving the multiple competi­
tive facilities location problem, European Journal of Operational Research
142 (1), 138-151.

Eiselt, H,, Laporte, G,, Thisse, J.-F,, 1993, Competitive location models: A
framework and bibliography. Transportation Science 27 (1), 44-54,

Fernandez, J,, Pelegrín, B,, Plastria, F,, Tóth, B,, 2007, Solving a Huff-like
competitive location and design model for profit maximization in the plane,
European Journal of Operational Research 179 (3), 1274-87,

Ghosh, A,, MeLaffertv, S,, Craig, C,, 1995, Multifaeilitv retail networks.
In: Drezner, Z, (Ed,), Facility Location, A Survey of Applications and
Methods, Springer, New York, pp, 301-330,

Horst, R,, Pardalos, P, (Eds,), 1995, DC Optimization: Theory, Methods and
Algorithms, Handbook of Global Optimization, Kluwer Academic Publish­
ers, Dordrecht, Holland,

Hotelling, H,, 1929, Stability in competition. Economic Journal 39 (153),
41-57.

Huff, D,, 1964, Defining and estimating a trading area. Journal of Marketing
28 (3), 34-38.

Huff, D,, 1966, A programmed solution for approximating an optimum retail
location. Land Economies 42 (3), 293-303,

Labbé, M,, Peeters, D,, Thisse, J,, 1995, Location on Networks, In: et ah,
M, B, (Ed,), Handbooks in operations research and management science,
Vol. 8. Elsevier, Amsterdam, pp. 551-624.

Okabe, A,, Kitamura, XL. 1997, A computational method for market area
analysis on a network. Location Science 5 (3), 198-198,

Okabe, A,, Okunuki, K.-L, 2001, A computational method for estimating the
demand of retail stores on a street network and its implementation in GIS,
Transactions in GIS 5 (3), 209-220,

Okunuki, K.-L, Okabe, A,, 2002, Solving the Huff-based competitive loca­
tion model on a network with link-based demand. Annals of Operations
Research 111 (1-4), 239-252.

Plastria, F,, 2001, Static competitive facility location: An overview of opti­
misation approaches, European Journal of Operational Research 129 (3),
461-470.

Plastria, F,, Carrizosa, E,, 2004, Optimal location and design of a competitive
facility. Mathematical programming 100 (2), 247-265,

Redondo, J, L,, Fernández, J,, García, L, Ortigosa, P, M,, 2009a, Paral­
lel algorithms for continuous multifaeility competitive location problems.
Journal of Global Optimization 50 (4), 557-573,

Redondo, J, L,, Fernández, J,, García, L, Ortigosa, P, M,, 2009b, Solving the
multiple competitive facilities location and design problem on the plane.
Evolutionary Computation 17 (1), 21-53,

Reinelt, G,, 1991, TSPLIB - A traveling salesman problem library, ORSA
Journal on Computing 3 (4), 376-384,

Roksandié, S,, Carrizosa, E,, Urosevié, D,, Mladenovié, N,, 2012, Solving
multifaeility Huff location models on networks using variable neighbor­
hood search and multi-start local search metaheuristies. Electronic Notes
in Discrete Mathematics 39 (1), 121 - 128,

Tóth, B,, Fernández, J,, Pelegrín, B,, Plastria, F,, 2009, Sequential versus
simultaneous approach in the location and design of two new facilities
using planar huff-like models. Computers & Operations Research 36 (5),
1393-1405.

