
ar
X

iv
:1

31
2.

32
88

v1
 [

m
at

h.
O

C
]

 1
1

D
ec

 2
01

3

On Solving Manufacturing Cell Formation via Bicluster Editing

Rian G. S. Pinheiroa, Ivan C. Martinsa, Fábio Prottia, Luiz S. Ochia, Luidi G. Simonettia, Anand
Subramanianb,∗

aFluminense Federal University

Niterói, RJ - Brazil
bFederal University of Paráıba

João Pessoa, PB - Brazil

Abstract

This work investigates the Bicluster Graph Editing Problem (BGEP) and how it can be applied to solve the
Manufacturing Cell Formation Problem (MCFP). We develop an exact method for the BGEP that consists of
a Branch-and-Cut approach combined with a special separation algorithm based on dynamic programming.
We also describe a new preprocessing procedure for the BGEP derived from theoretical results on vertex
distances in the input graph. Computational experiments performed on randomly generated instances with
various levels of difficulty show that our separation algorithm accelerates the convergence speed, and our
preprocessing procedure is effective for low density instances. Other contribution of this work is to reveal
the similarities between the BGEP and the MCFP. We show that the BGEP and the MCFP have the
same solution space. This fact leads to the proposal of two new exact approaches for the MCFP based on
mathematical formulations for the BGEP. Both approaches use the grouping efficacy measure as the objective
function. Up to the authors’ knowledge, these are the first exact methods that employ such a measure to
optimally solve instances of the MCFP. The first approach consists of iteratively running several calls to a
parameterized version of the BGEP, and the second is a linearization of a new fractional-linear model for
the MCFP. Computational experiments performed on instances of the MCFP found in the literature show
that our exact methods for the MCFP are able to prove several previously unknown optima.

Keywords: Biclusterization, Manufacturing Cell Formation, Graph Partitioning

1. Introduction

The Bicluster Graph Editing Problem (BGEP) is described as follows: given a bipartite graph G =
(U, V,E), where U and V are non-empty stable sets of vertices and E is a set of edges linking vertices in U
to vertices in V , the goal is to transform G into a disjoint union of complete bipartite graphs (or bicliques)
by performing a minimum number of edge editing operations. Each edge editing operation consists of either
removing an existing edge in E or adding to E a new edge between a vertex in U to a vertex in V .

In a bipartite graph G, a bicluster is a subgraph of G isomorphic to a biclique. The existence of biclusters
indicates a high degree of similarity between the data (vertices). In particular, a perfectly clustered bipartite
graph is called a bicluster graph, i.e., a bipartite graph in which each of its connected components is a biclique.
Hence, we can alternatively define the goal of the BGEP, as stated by Amit [1], as follows: “find a minimum
number of edge editing operations in order to transform an input bipartite graph into a bicluster graph”.

Figure 1 shows an example where adding an edge between vertices 3, 6 and deleting the edge between
vertices 3, 8 transforms G into a bicluster graph. Note that this does not correspond to an optimal solution,

∗Corresponding author. Tel. +55 83 3216-7549; Fax +55 83 3216-7179.
Email addresses: rian.gabriel@ic.uff.com (Rian G. S. Pinheiro), imartins@ic.uff.br (Ivan C. Martins),

fabio@ic.uff.br (Fábio Protti), satoru@ic.uff.br (Luiz S. Ochi), luidi@ic.uff.br (Luidi G. Simonetti),
anand@ct.ufpb.br (Anand Subramanian)

Preprint submitted to European Journal of Operational Research June 7, 2018

http://arxiv.org/abs/1312.3288v1

PSfrag replacements

a
b

N(a)
N(b)

Nb

Na

N2
a

N2
b

N2(b)
N2(a)

U

V

P

1 2 3 4 5

6 7 8

9
C
C′

(a) Instance.

PSfrag replacements

a
b

N(a)
N(b)

Nb

Na

N2
a

N2
b

N2(b)
N2(a)

U

V

P

1 2 3 4 5

6 7 8

9
C
C′

(b) Solution.

Figure 1: BGEP Example.

since G can also be transformed into a bicluster graph by simply removing the edge between 3 and 7. We
remark that a single vertex is considered as a bicluster (e.g., vertex 5 in Figure 1).

A problem similar to the BGEP is the Cluster Graph Editing Problem (CGEP), first studied by Gupta
and Palit [2]. Its goal is to transform G into a disjoint union of complete graphs (cliques). The CGEP and
the BGEP are important examples of partition problems in graphs.

The concept of biclustering was introduced in the mid-70s by Hartigan [3], but its first use appeared in
a paper by Cheng and Church [4], within the context of Computational Biology. Since then, algorithms for
biclustering have been proposed and used in various applications, such as multicast network design [5] and
analysis of biological data [6, 7].

In Biology, concepts such as co-clustering, two-way clustering, among others, are often used in the
literature to refer to the same problem. Matrices are used instead of graphs to represent relationships
between genes and characteristics, and their rows and columns represent graph partitions; in this case, the
goal is to find significant submatrices having certain patterns. The BGEP can be used to solve any problem
whose goal is to obtain a biclusterization with exclusive rows and columns, i.e., each gene (characteristic)
must be associated with only one submatrix.

Amit [1] proved the NP-hardness of the BGEP via a polynomial reduction from the 3-Exact 3-Cover
Problem; in the same work, a binary integer programming formulation and an 11-approximation algorithm
based on the relaxation of a linear program are described. Protti et al. [8] proposed an algorithm for the
parameterized version of the BGEP that uses a strategy based on modular decomposition techniques. Guo
et al. [9] developed a randomized 4-approximation algorithm for the BGEP. More recently, Sousa Filho et al.
[10] proposed a GRASP-based heuristic for the BGEP.

Other important application of the BGEP, introduced in this work, is related to the Manufacturing Cell
Formation Problem (MCFP). We show that such problems have a high degree of similarity, and that good
solutions for the BGEP are close to good solutions for the MCFP. Cellular manufacturing is an application
of the Group Technology concept. The goal is to identify and cluster similar parts in order to optimize the
manufacturing process. Such a concept was originally proposed by Flanders [12] and formally described by
Mitrofanov [13] in 1966. In the early 70s, Burbidge [14] proposed one of the first techniques for creating a
system of cellular manufacturing. Since this work, several approaches have been proposed to the MCFP,
whose goal is to create the cells in order to optimize the manufacturing process, as described in Section 3.

Our contributions can be summarized as follows. In Section 2, we develop an exact method for the BGEP
consisting of a Branch-and-Cut approach combined with a special separation algorithm based on dynamic
programming, and we describe a new preprocessing procedure for the BGEP derived from theoretical results
on vertex distances in the input graph. In Section 3, we explore the similarity between the BGEP and the
MCFP. We show that the BGEP and the MCFP have the same solution space, and due to this fact we
propose two new exact approaches for the MCFP based on mathematical formulations for the BGEP. Both
approaches use the grouping efficacy measure as the objective function. Up to the authors’ knowledge, these
are the first exact methods that employ such a measure to optimally solve instances of the MCFP. The
first approach (Section 3.3) consists of iteratively running several calls to a parameterized version of the
BGEP, and the second (Section 3.4) is a linearization of a new fractional-linear model for the MCFP. In
Section 4, we apply our Branch-and-Cut method for the BGEP to randomly generated BGEP instances with
various levels of difficulty. Experimental results show that our separation algorithm is able to accelerate the

2

convergence speed, and our preprocessing procedure for the BGEP is effective for low density instances. In
addition, computational experiments are performed on instances of the MCFP found in the literature. Our
exact methods for the MCFP are able to prove several previously unknown optima. Section 5 contains our
conclusions.

2. Branch-and-Cut Approach for the BGEP

A mathematical model for the BGEP is described in Amit [1]. It relies on the simple fact that the graph
P4 (a path with four vertices, shown in Figure 2) is a forbidden induced subgraph for a bicluster graph.
More precisely, for a bipartite graph G, G is a bicluster graph if and only G does not contain P4 as an
induced subgraph.

i

k

l

j

Figure 2: Graph P4.

The formulation proposed in Amit [1] is as follows:

min
∑

+(ij)

(1 − yij) +
∑

−(ij)

yij (1)

s.t. yil + ykj + ykl ≤ 2 + yij ∀ i 6= k ∈ U and j 6= l ∈ V (2)

yij ∈ {0, 1} ∀ i ∈ U and j ∈ V (3)

where: (a) yij are binary variables such that yij = 1 if and only if the solution contains edge ij; (b)
+(ij) = {ij | ij ∈ E} is the set of edges; (c) −(ij) = {ij | ij /∈ E} the set of non-edges. The objective
function (1) counts how many edge editing operations are made. The first and second sums represent the
number of edge deletions and edge additions, respectively. Constraints (2) eliminate induced subgraphs
isomorphic to P4. Constraints (3) define the domain of the variables.

2.1. Separation Algorithm

Note that the number of constraints (2) in the above formulation is |U |2|V |2 and therefore it is not
advisable to consider all these constraints a priori. This becomes computationally expensive for exact
methods, especially when dealing with large instances. Alternatively, we start without such constraints and
we add them in a cutting plane fashion as they are violated according to the separation algorithm described
below:

Algorithm 1 works with a linear relaxation as input. Its main objective is to find the most violated
constraint (2) for each pair (i, j) of vertices, and then add it to the model. The idea is to use an auxiliary
complete bipartite graph G′(U, V,E) where each edge ij has a nonnegative weight wij ; the weights are
defined according the values y∗ij obtained by the linear relaxation, i.e., wij = y∗ij . Note that an edge may
have a zero weight.

After the construction of G′, a dynamic programming approach is used to find the constraints. It
calculates the values dsij , where dsij is the maximum cost between i and j considering paths with s − 1
internal vertices. This is explained below in detail.

In line 2, d1ij is initialized with the value of the linear relaxation y∗ij . In line 3, for each pair (i, k) of

vertices, the maximum cost d2ik
′ between them considering paths with a single internal vertex is calculated;

also, the internal vertex by which such a cost is achieved is saved in variable l′ik. Line 4 is similar to line 3,
but instead of calculating the maximum cost, it calculates the second maximum cost. Line 5 verifies, for all

3

Algorithm 1 Separation algorithm

1: procedure Separation(relaxation y∗)

2: ∀i ∈ U and j ∈ V d1ij = y∗ij

3: ∀i, k ∈ U d2ik
′ = max

l∈V
{d1il + d1kl} l′ik = argmax

l∈V

{d1il + d1kl}

4: ∀i, k ∈ U d2ik
′′ = max

l∈V \{l′
ik
}
{d1il + d1kl} l′′ik = argmax

l∈V \{l′
ik

}

{d1il + d1kl}

5: ∀i, k ∈ U (i 6= k) and j ∈ V d2ikj =

{

d2ik
′, if j 6= l′ik

d2ik
′′, if j = l′ik

lik =

{

l′ik, if j 6= l′ik
l′′ik, if j = l′ik

6: ∀i ∈ U and j ∈ V d3ij = max
k∈U\{i}

{d2ikj + d1kj} kij = argmax
k∈U\{i}

{d2ikj + d1kj}

7: ∀i ∈ U and j ∈ V if d3ij − d1ij > 2 then add cut yil + ykj + ykl ≤ 2 + yij
(for k = kij and l = likij

)

8: end procedure

i, k ∈ U (i 6= k) and j ∈ V , if j belongs to the maximum cost path, and chooses to use the maximum cost
path or the second maximum cost path. In this case, d2ikj represents the maximum cost between i and k
using a path that avoids j, and lik stores the corresponding internal vertex. Line 6 calculates the maximum
cost between i and j using two internal vertices, and stores it in d3ij ; it represents the “P4 of maximum
cost”; variable kij saves the internal vertex k. Finally, in line 7, for each pair (i, j), if the constant is violated
(d3ij − d1ij > 2) then the cut yil + ykj + ykl ≤ 2 + yij for k = kij and l = likij

is added to the model.

2.2. Preprocessing Procedure

In this section, we propose a preprocessing procedure to fix variables and/or generate new constraints to
the BGEP. The procedure is a direct application of Theorem 1, presented below. New generated constraints
will be added to the Branch-and-Cut algorithm.

Theorem 1. Let a, b be vertices of a bipartite graph G(V, U,E), and let d(a, b) be the distance between a
and b in G. If d(a, b) ≥ 4 then there is an optimal solution in which a, b belong to distinct biclusters.

Proof. The proof consists of showing that, when d(a, b) ≥ 4, the cost of keeping a and b in the same bicluster
is greater than or equal to the cost of keeping them in distinct biclusters. The following notation is useful for
the proof. Let X ⊆ V and Y ⊆ U . Let rem(X,Y) = |{xy ∈ E | x ∈ X and y ∈ Y }|; informally, rem(X,Y)
is the cost of removing all edges in E between X and Y . Also, let add(X,Y) = |X ||Y | − rem(X,Y),
i.e., add(X,Y) is the cost of adding all the missing edges between X and Y in order to create a bicluster
B with vertex set V (B) = X ∪ Y . If X = {x}, we simply write add(x, Y) and rem(x, Y) instead of
add({x}, Y) and rem({x}, Y), and similarly if Y = {y}. Denote by N(a) the neighborhood of a, and let
N2(a) = {v ∈ V ∪ U | d(a, v) = 2}.

For the case d(a, b) =∞, note that a and b lie in distinct connected components of G, and therefore will
belong to distinct biclusters in any optimal solution. Now assume that d(a, b) <∞ and there is an optimal
solution G∗ in which vertices a, b belong to a bicluster B with vertex set V (B) = X ∪ Y , where X ⊆ V
and Y ⊆ U . We analyze two cases: a, b ∈ X (Case 1) and a ∈ X, b ∈ Y (Case 2). Case 1 is divided in two
sub-cases: d(a, b) > 4 (Case 1a) and d(a, b) = 4 (Case 1b).

4

PSfrag replacements

a

b

N(a)

N(b)

Nb

Na

N2
a

N2
b

N2(b)

N2(a)

U V

P

1
2
3
4
5
6
7
8
9
C
C′

(a) Case 1a

PSfrag replacements

a

b

N(a)

N(b)

Nb

Na

N2
a

N2
b

N2(b)
N2(a)

U VP
1
2
3
4
5
6
7
8
9

C

C′

(b) Case 1b

PSfrag replacements

a b

N(a)N(b)

Nb
Na

N2
a N2

b

N2(b)N2(a)

U V

P

1
2
3
4
5
6
7
8
9
C
C′

(c) Case 2

Figure 3: Cases of Theorem 1

Let Na = N(a) ∩ V (B), Nb = N(b) ∩ V (B), N2
a = N2(a) ∩ V (B), and N2

b = N2(b) ∩ V (B).

Case 1a: In this case, note that N2(a)∩N2(b) = ∅. Figure 3a represents this situation, where P is a path
between N2(a) and N2(b). Let X ′ ⊆ X and Y ′ ⊆ Y defined as follows:

X ′ = {a, b} ∪N2
a ∪N2

b ∪ (V (P) ∩ U) and Y ′ = Na ∪Nb ∪ (V (P) ∩ V),

where V (P) is the subset of vertices in path P . Since X ′ and Y ′ are completely connected by edges in G∗,
the following cost c1 is associated with the structure represented in Figure 3a:

5

c1 = rem(a,N(a) \Na) + rem(Na, N
2(a) \N2

a) + rem(b,N(b) \Nb) + rem(Nb, N
2(b) \N2

b) +

add(N2

a , Na) + add(N2

b , Nb) + rem(N2

a , V \ Y ′) + rem(N2

b , V \ Y ′) +

add(a,Nb) + add(b,Na) + add(N2

a , Nb) + add(N2

b , Na) +

add(X ′, V (P) ∩ V) + add(V (P) ∩ U,Na ∪Nb).

Now consider the following subsets: X ′
1 = {a} ∪ N2

a , Y ′
1 = Na, X ′

2 = {b} ∪N2
b , Y ′

2 = Nb. Let G∗∗ be
another solution with distinct biclusters B1 and B2 such that X ′

1 ∪ Y ′
1 ⊆ V (B1) and X ′

2 ∪ Y ′
2 ⊆ V (B2). The

cost c2 associated with this new situation is given by:

c2 = rem(a,N(a) \Na) + rem(Na, N
2(a) \N2

a) + rem(b,N(b) \Nb) + rem(Nb, N
2(b) \N2

b) +

add(N2

a , Na) + add(N2

b , Nb) + rem(N2

a , V \ Y ′) + rem(N2

b , V \ Y ′).

Since c1 ≥ c2, the cost of keeping a and b in distinct biclusters is not greater than the cost of keeping
them in the same bicluster.

Case 1b: If d(a, b) = 4 then a and b belong to the same part, say U , and N2(a) ∩ N2(b) = C 6= ∅. Let
C′ = C ∩ V (B). Figure 3b depicts the subsets involved in Case 1b.

Let X ′ ⊆ X and Y ′ ⊆ Y defined as X ′ = {a, b} ∪ C′ and Y ′ = Na ∪ Nb. Again, since X ′ and Y ′ are
completely connected by edges in G∗, the cost c1 associated with the structure in Figure 3b is given by:

c1 = add(b,Na) + add(a,Nb) + rem(Na, N
2(a) \ C′) + rem(Nb, N

2(b) \ C′) + add(C′, Na) + add(C′, Nb) +

rem(a,N(a) \Na) + rem(b,N(b) \Nb) + rem(C′, V \ (Na ∪Nb)).

Assume without loss of generality that |Nb| ≤ |Na|. Consider now the subsets X ′
1 = {a} ∪ C′, Y ′

1 =
Na ∪ Nb, X ′

2 = {b}, Y ′
2 = ∅. If G∗∗ is another solution with distinct biclusters B1 and B2 such that

X ′
1 ∪ Y ′

1 ⊆ V (B1) and X ′
2 ∪ Y ′

2 ⊆ V (B2), the cost c2 associated with G∗∗ is:

c2 = add(a,Nb) + rem(Na, N
2(a) \ C′) + rem(Nb, N

2(b) \ C′) + add(C′, Na) + add(C′, Nb) +

rem(a,N(a) \Na) + rem(C′, V \ (Na ∪Nb)) + rem(b,N(b)).

The difference of the costs is given by:

c1 − c2 = add(b,Na) + rem(b,N(b) \Nb)− rem(b,N(b))

= |Na|+ |N(b)| − |Nb| − |N(b)| = |Na| − |Nb|.

Therefore c1 − c2 ≥ 0, i.e., keeping a and b in distinct biclusters is not more costly.

Case 2: In this case, a and b belong to different parts. Assume a ∈ U and b ∈ V , as shown in Figure 3c.
Let X ′ ⊆ X and Y ′ ⊆ Y defined as X ′ = {a}∪Nb∪N2

a and Y ′ = {b}∪Na∪N2
b . The cost c1 corresponding

to the biclique with vertex set X ′ ∪ Y ′ is:

c1 = add(a, b) + add(a,N2

b) + add(b,N2

a) + add(Na, Nb) + add(Na, N
2

a) + add(Nb, N
2

b) + add(N2

a , N
2

b) +

add(X ′, V (P) ∩ V) + add(V (P) ∩ U,Y ′) + rem(a,N(a) \Na) + rem(b,N(b) \Nb) +

rem(N2

a , V \Na) + rem(N2

b , U \Nb) + rem(Na, N
2(a) \N2

a) + rem(Nb, N
2(b) \N2

b).

6

Now let X ′
1 = {a} ∪N2

a , Y ′
1 = Na, X ′

2 = Nb, Y ′
2 = {b}. Also, let G∗∗ be another solution with distinct

biclusters B1 and B2 such that X ′
1 ∪Y ′

1 ⊆ V (B1) and X ′
2 ∪Y ′

2 ⊆ V (B2). The cost c2 associated with G∗∗ is:

c2 = rem(a,N(a) \Na) + rem(b,N(b) \Nb) + rem(Na, N
2(a) \N2

a) + rem(Nb, N
2(b) \N2

b) +

rem(N2

a , V \Na) + rem(N2

b , U \Nb) + add(Na, N
2

a) + add(Nb, N
2

b).

Again, the separation into two biclusters is not more costly.

For each case above, we have shown that there is another solution in which a and b belong to distinct
biclusters and whose cost is not greater. Then the theorem follows.

Based on the above theorem, after computing the distance between each pair of vertices, variables can
be fixed and cuts can be generated as follows: if vertices i and j are in different parts and d(i, j) > 3 then
variable yij is set to 0. Otherwise, i and j are in the same part, say U , and the cut yik + yjk ≤ 1 will be
generated for every k ∈ V .

2.3. Instances for the BGEP

To the best of our knowledge, no public sites contain instances for the BGEP. Thus, to evaluate the
algorithms proposed in this work, we create random bipartite instances using the G(m,n, p) model, also
known as binomial model, which is a particular case of the model proposed by Gilbert [11]. A bipartite
instance G(U, V,E) is created such that |U | = m, |V | = n, and each potential edge of E is created with
probability p, independently of the other edges.

3. Application to Manufacturing Cell Formation

The input of the MCFP is given as a binary product-machine matrix where each entry (i, j) has value
1 if product j is manufactured by machine i, and 0 otherwise. Any feasible solution of the MCFP consists
of a collection of product-machine cells, where every product (or machine) is allocated to exactly one cell.
Hence, in each cell C, machines allocated to it are exclusively dedicated to manufacture products in C. In an
ideal solution of the MCFP, in each cell there must be a high similarity between the products and machines
allocated to it. Figure 4 shows an example of the MCFP solved as a block diagonalization problem. Note
that a solution for the MCFP is obtained by a permutation of rows/columns of the input matrix together
with a cell assignment for products and machines. In Figure 4, products P1, P3, P7 and machinesM2,M3,M5

are gathered to form a cell, while the remaining products/machines form another cell.

M1 M2 M3 M4 M5

P1 0 1 1 0 1
P2 1 0 0 1 0
P3 0 1 1 0 0
P4 1 0 0 1 0
P5 1 0 0 0 1
P6 1 0 1 1 0
P7 0 0 1 0 1

⇒

M2 M3 M5 M1 M4

P1 1 1 1 0 0
P3 1 1 0 0 0
P7 0 1 1 0 0

P2 0 0 0 1 1
P4 0 0 0 1 1
P5 0 0 1 1 0
P6 0 1 0 1 1

Figure 4: MCFP example.

Among several measures of performance used as objective functions for the MCFP, the most used in
literature is the grouping efficacy µ, defined as:

µ =
N1 −Nout

1

N1 +N in
0

, (4)

7

where N1 is the total number of 1’s in the input matrix, and Nout
1 (N in

0) is the total number of 1’s outside
(respectively, inside) diagonal blocks in the solution matrix.

3.1. The size of the cells

Some works define a minimum value for the size of the cells. For instance, in [15, 16, 17], cells with
less than two products or machines are not allowed; such cells are called singletons. However, there is no
consensus with respect to the size of the cells. Others studies do not consider any size constraint, allowing
the existence of empty cells, such as the work by Pailla et al. [18]. An example of a solution with an empty
cell is shown in Figure 5.

This work deals with two versions of the MCFP found in the literature:

1. unrestricted version, allowing singletons and empty cells;
2. with restrictions (minimum size 2× 2 for each cell).

M1 M2 M3 M4 M5

P1 0 1 1 0 1
P2 1 0 0 0 0
P3 0 1 1 0 0
P4 1 0 0 0 0
P5 1 0 0 0 1
P6 0 0 1 1 0
P7 0 0 1 0 1
P7 0 0 0 0 1

⇒

M2 M3 M5 M1 M4

P1 1 1 1 0 0
P3 1 1 0 0 0
P7 0 1 1 0 0

P2 0 0 0 1 0
P4 0 0 0 1 0
P5 0 0 1 1 0

P6 0 1 0 0 1

P8 0 0 1 0 0

Figure 5: Example with a singleton and an empty cell.

3.2. Similarity between the BGEP and the MCFP

Given an input for the MCFP, we can define an input G for the BGEP by setting U as the set of
products, V as the set of machines, and E as the set of edges such that ij is an edge of G if and only if the
entry (i, j) of the input matrix for the MCFP has value 1. In addition, a solution for the BGEP with input
G can be transformed into a cell assignment for machines/products.

The two problems (the BGEP and the MCFP) are very similar, but a point to note is that biclusters
have no size limitation. Thus, we define a new BGEP variant, the Bicluster Graph Editing Problem with
Size Restriction (BGEPS), to make a more precise correspondence with the MCFP. Informally, the BGEPS
is defined by adding size restrictions to the BGEP: every bicluster in G must now have at least sc vertices
in U and sr vertices in V . In the translation from the BGEPS to the MCFP, sr is the minimum cell size
for rows and sc the minimum cell size for columns.

We propose the following formulation for the BGEPS:

min
∑

+(ij)

(1− yij) +
∑

−(ij)

yij (5)

st yil + ykj + ykl ≤ 2 + yij ∀i, k ∈ U and j, l ∈ V (6)
∑

j∈V

yij ≥ sr ∀i ∈ U (7)

∑

i∈U

yij ≥ sc ∀j ∈ V (8)

yij ∈ {0, 1} ∀i ∈ U and j ∈ V. (9)

Lemma 2 makes the correspondence between the BGEPS and the MCFP.

8

Lemma 2. There is a one-to-one correspondence from the feasible solution set of the BGEPS to the feasible
solution set of the MCFP. In addition, for every pair of corresponding feasible solutions, the sizes of biclusters
and cells are preserved.

Proof. Consider an instance of the BGEPS consisting of a bipartite graph G with parts U and V . It is easy
to see that it corresponds to an instance M of the MCFP: Figures 6a and 6c show an example of a bipartite
graph G and a corresponding product-machine matrix M . Let B and C be the feasible solution sets of the
BGEPS and the MCFP, respectively, associated with G and M .

Let f : B → C be the transformation of a solution G′ in B to a solution M ′ in C defined as follows. If
vertices i ∈ U and j ∈ V belong to the same bicluster in G′ then product i and machine j are gathered
inside the same cell in M ′, as shown in Figures 6b and 6d. Thus, each solution in B is uniquely mapped
into one solution in C.

Similarly, let g : C → B be the inverse transformation of f that maps each solution M ′ in C into a solution
G′ in B, as follows: if a product i and a machine j are in the same cell then the corresponding vertices i
and j belong to the same bicluster in G′.

Since f and g are injective functions, there is a one-to-one correspondence between B and C. Moreover,
if G′ and M ′ are corresponding feasible solutions, it is easy to see that a bicluster B in G′ corresponds to a
cell containing exactly |V (B) ∩ U | products, |V (B) ∩ V | machines, and |E(B)| entries; also, a cell with pm
entries in M ′ corresponds to a bicluster with exactly p+m vertices and pm edges.

An optimal solution G∗ of the BGEP does not necessarily correspond to an optimal solution of the
MCFP, because the objective functions are different; however, G∗ corresponds to a feasible solution of the
MCFP. For example, Figure 6b shows an optimal solution of the BGEP, but in Figure 6d the corresponding
solution of the MCFP is not optimal. This happens because an edge deletion, informally, corresponds to a
‘1’ outside cells, and an edge addition corresponds to a ‘0’ inside a cell. That is, for the BGEP, additions
and deletions have the same weight, but for the MCFP, a ‘0 inside’ is preferable than a ‘1 outside’ (using
the objective funtion (4)). In Figure 6a, for instance, adding an edge between vertices 5 and 8 is better than
deleting the edge between 4 and 9, in terms of the corresponding solutions of the MCFP.

PSfrag replacements

a
b

N(a)
N(b)

Nb

Na

N2
a

N2
b

N2(b)
N2(a)

U
V
P

1 2 3 4 5

6 7 8 9C
C′

(a) BGEPS instance.

PSfrag replacements

a
b

N(a)
N(b)

Nb

Na

N2
a

N2
b

N2(b)
N2(a)

U
V
P

1 2 3 4 5

6 7 8 9C
C′

(b) BGEPS solution.

6 7 8 9

1 1 1 0 0

2 1 1 0 0

3 0 1 0 0

4 0 0 1 1

5 0 0 0 1

(c) MCFP instance.

6 7 8 9

1 1 1 0 0

2 1 1 0 0

3 0 1 0 0

4 0 0 1 1

5 0 0 0 1

(d) MCFP solution.

Figure 6: BGEPS ↔ MCFP example.

9

3.3. A First Exact Algorithm for the MCFP

In this section, we propose an exact iterative method for the MCFP. In Lemma 3 we describe upper/lower
bounds for the MCFP. Next, we define a parameterized version of the BGEPS to be used in the exact
algorithm.

Lemma 3. Let b∗ = a∗ + d∗ be the optimal solution value of the BGEP for an instance G, where a∗ and
d∗ are the number of edge additions and deletions, respectively, and let M be the instance of the MCFP
corresponding to G. Then m/(m+ a∗ + d∗) is an upper bound and (m− d∗)/(m+ a∗) is a lower bound for
the optimal solution value of the MCFP with input M , where m = |E(G)|.
Proof. Let µ(a, d) = (m − d)/(m + a) be the objective function of the MCFP, where d and a denote,
respectively, the number of ones outside cells and zeros inside cells in M . Consider also that a+ d = k, for
a positive constant k.

Taking µ(a, d) as a function f(a) of a, we obtain that

µ(a, d) =
m− d

m+ a
=

m− (k − a)

m+ a
= f(a).

Calculating the derivative,

df

da
=

(m+ a)− 1(m− k + a)

m2 + 2ma+ a2
=

k

m2 + 2ma+ a2
> 0.

Since df

da
> 0 for every a, f(a) is an increasing function. Since k ≥ a, we have f(k) ≥ f(a), and thus

m

m+ d+ a
≥ m− d

m+ a
.

In other words, in the best case, the k edge editing operations would correspond to a = k edge additions
and d = 0 edge deletions, since as a increases, f(a) increases as well.

Now consider that µ′(a, d) = a+d is a feasible solution value of the BGEP. It follows that a∗+d∗ ≤ a+d
and

m

m+ d∗ + a∗
≥ m

m+ d+ a
>

m− d

m+ a
.

Therefore, m/(m+ a∗ + d∗) is an upper bound for the optimal solution value of the MCFP.
Showing that (m− d∗)/(m+ a∗) is a lower bound is trivial since b∗ = a∗ + d∗ is a feasible solution value

of the MCFP, as shown in Lemma 2.

We now define a parameterized version of the BGEPS, the Bicluster Graph Editing Problem with Size
Restriction(λ) (BGEPS(λ)), which consists of finding a solution of the BGEPS with exactly λ edge editing
operations, such that the number of edge deletions is minimized. A formulation for the BGEPS(λ) is
described below:

min
∑

+(ij)

(1− yij) (10)

st yil + ykj + ykl ≤ 2 + yij ∀i, k ∈ U and j, l ∈ V (11)
∑

j∈V

yij ≥ sr ∀i ∈ U (12)

∑

i∈U

yij ≥ sc ∀j ∈ V (13)

10

∑

+(ij)

(1− yij) +
∑

−(ij)

yij = λ (14)

∑

+(ij)

(1− yij) ≤ Uopt − 1 (15)

xij ∈ {0, 1} ∀i ∈ U and j ∈ V. (16)

We now describe the exact iterative method for the MCFP (Algorithm 2 below). The idea is to make
several calls to the BGEPS(λ). At each iteration, we seek for a solution with fewer deletions. Constraint (15)
tells the model that the optimal value is less than Uopt, which is obtained using previous feasible solutions.

Algorithm 2 Exact iterative method for the MCFP

1: procedure ECM(instance M)
2: let G be the instance of the BGEPS corresponding to M
3: (a∗, d∗)← BGEPS[G] ⊲ Solve the BGEPS for input G, obtaining a∗ additions and d∗ deletions
4: UB ← m

m+a∗+d∗

5: LB ← m−d∗

m+a∗

6: Uopt ← d∗ ⊲ A bound for the number of deletions already found
7: cont← 0
8: while UB > LB do

9: (a, d)← BGEPS(a∗ + d∗ + cont)[G] ⊲ Solve the BGEPS(λ) with λ = a∗ + d∗ + cont for G
10: if Uopt > d then

11: Uopt ← d
12: end if

13: if m−d
m+a

> LB then

14: LB ← m−d
m+a

15: (a∗, d∗)← (a, d)
16: end if

17: UB ← m
m+a+d

18: cont← cont+ 1
19: end while

20: return (a∗, d∗)
21: end procedure

The correctness of Algorithm 2 is shown in the next result.

Theorem 4. Algorithm ECM (Algorithm 2) returns an optimal solution value for the MCFP.

Proof. Algorithm 2 seeks the optimal solution value iteratively through several calls to the the BGEPS(λ),
starting with the number of edge editing operations of the BGEPS. At each iteration new bounds are
calculated (variables LB and UB). Iterations are performed until the upper bound is equal to the lower
bound, meaning that from that point there is no better solution.

By Lemma 3, lines 4, 5, and 14 indeed calculate the lower and the upper bounds. It remains to show
that line 17 actually calculates an upper bound.

The value of an optimal solution G∗ of the BGEPS is not necessarily optimal for the MCFP. In this
case, the optimal solution value µ∗ of the MCFP corresponds to a solution of the BGEPS with more editing
operations than G∗. To find µ∗, we use the BGEPS(λ). The objective function of the BGEPS(λ) leads to a
solution with the maximum number of edge additions among all solutions with exactly λ editing operations.

In line 9, a call to the BGEPS(λ) is made, using λ = a∗ + d∗ + cont editing operations, and new values
a and d are calculated. Then line 17 actually defines a new upper bound, because if there were a solution
value between the new bound and the previous bound, the algorithm would have already found such a value

11

in a previous iteration. Since the upper bound decreases along the iterations, we conclude that Algorithm
2 works correctly.

3.4. New linear-fractional model for the MCFP

According to Lemma 2, the BGEPS and the MCFP have the same feasible solution space. Thus, the
constraints of the BGEPS formulation can be used in a new formulation for the MCFP. The adaptation
of the objective function is made according to the grouping efficacy described in Section 3. By setting
Nout

1 =
∑

+(ij) (1− yij) and N in
0 =

∑

−(ij) yij , we propose a new formulation for the MCFP based on
linear-fractional programming:

max
m−∑

+(ij) (1 − yij)

m+
∑

−(ij) yij

st yil + ykj + ykl ≤ 2 + yij ∀i, k ∈ U and j, l ∈ V
∑

j∈V

yij ≥ sr ∀i ∈ U

∑

i∈U

yij ≥ sc ∀j ∈ V

yij ∈ {0, 1} ∀i ∈ U and j ∈ V.

3.5. Linear Formulation for the MCFP

In this section we propose a linearization for the linear-fractional model described above. The process
consists of adding binary variables xda that assume value 1 if and only if the solution contains d deletions
and a additions. Each variable xda is associated with a cost cda = m−d

m+a
in the objective function. Let lc and

lb be lower bounds for the MCFP and BGEP, respectively. Define a set F = {(d, a)|cda ≥ lc and d+a ≥ lb}.
In this case, lc can be obtained heuristicaly, whereas lb can be, for example, the value of the linear relaxation
of the BGEP.

The linear formulation proposed is as follows:

max
∑∑

∀ (d,a)∈F

(cda xda) (17)

st yik + ylj + ylk ≤ 2 + yij ∀ i, l ∈ U and k, j ∈ V (18)
∑∑

∀ (d,a)∈F

xda = 1 (19)

∑∑

∀ (d,a)∈F

(d xda) =
∑

−(ij)

yij (20)

∑∑

∀ (d,a)∈F

(a xda) =
∑

+(ij)

(1− yij) (21)

xda ∈ {0, 1} ∀ (d, a) ∈ F (22)

yij ∈ {0, 1} ∀ i ∈ U and j ∈ V (23)

The objective function (17) computes the maximum cost cda = m−d
m+a

. Constraints (18) eliminate induced
subgraphs isomorphic to P4. Constraint (19) imposes that exactly one xda variable should assume value 1.
Constraints (20) and (21) state that the number of deletions and additions must be d and a, respectively.
Constraints (22) and (23) define the domain of the variables.

12

3.6. MCFP Instances

The MCFP has been explored in the literature for many years, and several works have proposed instances
for this problem. In this paper, we used 35 instances available in Gonçalves and Resende [17], which have
been used in many other papers. In Table 1, we present the instances with its dimensions. To the best of
our knowledge, this work is the first one that finds the optimal solutions of all such instances.

Instance Dimension Instance Dimension

King1982 05× 07 Kumar1986 20× 23
Waghodekar1984 05× 07 Carrie1973b 20× 35
Seifoddini1989 05× 18 Boe1991 20× 35
Kusiak1992 06× 08 Chandrasekharan1989 1 24× 40
Kusiak1987 07× 11 Chandrasekharan1989 2 24× 40
Boctor1991 07× 11 Chandrasekharan1989 3-4 24× 40
Seifoddini1986 08× 12 Chandrasekharan1989 5 24× 40
Chandrasekaran1986a 08× 20 Chandrasekharan1989 6 24× 40
Chandrasekaran1986b 08× 20 Chandrasekharan1989 7 24× 40
Mosier1985a 10× 10 McCormick1972b 27× 27
Chan1982 10× 15 Carrie1973c 28× 46
Askin1987 14× 24 Kumar1987 30× 51
Stanfel1985 14× 24 Stanfel1985 1 30× 50
McCormick1972a 16× 24 Stanfel1985 2 30× 50
Srinivasan1990 16× 30 King1982 30× 90
King1980 16× 43 McCormick1972c 37× 53
Carrie1973a 18× 24 Chandrasekharan1987 40× 100
Mosier1985b 20× 20

Table 1: Instances of the MCFP.

4. Computational Experiments

In this section we evaluate and compare the algorithms proposed in this work. We use the mixed
linear optimization software CPLEX [19], which is responsible for managing the Branch-and-Cut method,
including:

• choice of variables for the branch;

• execution of the separation algorithm;

• addition of cuts generated by the preprocessing procedure.

All the algorithms have been run on an Intel Core i7-2600 3.40 GHz machine with 32 GB of RAM and
Arch Linux 3.3.4 operating system. The separation algorithm in Section 2.1, the preprocessing procedure in
Section 2.2, and the exact iterative method for the MCFP in Section 3.3 have been implemented in C++.
All the instances and solutions are available at http://www.ic.uff.br/~fabio/instances.pdf.

4.1. Experimental Results for the BGEP

The proposed Branch-and-Cut algorithm for the BGEP was applied to 30 randomly generated instances,
as explained in Section 2.3, with p ∈ {0.2, 0.4, 0.6, 0.8}, m ∈ [10, 21], and n ∈ [11, 22].

We first compare the default separation algorithm incorporated in CPLEX with the separation algorithm
described in Section 2.1. To evaluate these two running scenarios, we use the geometric mean. The geometric
mean of a data set {t1, t2, . . . , tn} is defined as:

G = n
√
t1t2 · · · tn. (24)

Each scenario is applied to all the 30 random instances. Table 2 shows the results. From left to right,
the columns of the table show: separation algorithm, total running time over all the 30 instances, geometric

13

http://www.ic.uff.br/~fabio/instances.pdf

Separation algorithm Total time (s) Geometric mean Number of best results

Dynamic Programming 77235.28 15.92 16
CPLEX Default 131068.72 16.33 14

Table 2: Comparison of separation algorithms for 30 random instances.

mean of the 30 computational times, and number of times each scenario achieves the best running time.
Note that the separation algorithm presented in Section 2.1 clearly influences the convergence speed.

We now analyze the impact of the preprocessing procedure described in Section 2.2. Results are presented
in Table 3. Each row in the table shows results for instances generated with the same value of p. We remark
that, in the G(m,n, p) model, the probability p is the expected edge density of a random bipartite instance
(i.e., the expected number of edges is mnp). From left to right, the columns show: instance density, average
percentage of fixed variables, and average percentage of generated cuts. (The maximum number of cuts is
mn(n− 1)/2 + nm(m− 1)/2, which is achieved by an edgeless bipartite graph.)

Instance density Average percentage of fixed variables Average percentage of generated cuts

0.2 19% 51%
0.4 1% 11%
0.6 0% 0%
0.8 0% 0%

Table 3: Impact of the preprocessing procedure.

As the instances get denser, the effectiveness of the preprocessing procedure decreases. This is due to the
fact that, in a sparse instance, the probability that two vertices are at a distance at least 4 (see Theorem 1)
is greater than in a dense instance.

4.2. Experimental results for the MCFP

Table 4 shows the results of the application of the exact iterative method for the MCFP presented in
Section 3.3 (with singleton constraints) on the instances shown in Table 1. From left to right, the columns
show: instance name; best solution value found in the literature [17, 20, 21]; optimum value found by our
iterative method (using the grouping efficacy as the objective function); the sum Nout

1 +N in
0 ; and the number

of edge editing operations obtained by the application of our Branch-and-Cut method presented in Section 2
on the corresponding BGEPS instance (as explained in Lemma 2). We remark that instances marked with
* have been erroneously encoded in some works.

Our method finds the optimum for 27 of 35 instances. These optima were previously unknown. For
instances King1980 and Kumar1987, it finds solutions better than the existing solutions in the literature.
A point to note is that the values in third and fourth columns are very close; the difference is only 1.81 on
average. In particular, for 17 of the 27 optima in the fourth column, these values coincide. This shows that
optimal solutions for the BGEPS correspond to quite good solutions for the MCFP.

Table 5 is similar to Table 4 and shows the results for the exact iterative method for the MCFP without
singleton constraints. Values in the second column are taken from [18, 22, 23]. As in the previous table,
instances marked with * have been erroneously encoded in some works.

Again, our method finds the optimum for 27 of 35 instances. For three instances (King1980, Kumar1987,
and Stanfel1985 1), it finds solutions better than the existing ones in the literature. The difference between
values in the third and fourth columns is only 1.13 on average (the difference is zero in 16 cases).

In Table 6 we compare the running times obtained by applying the two exact approaches for the MCFP
proposed in this work (disregarding singleton constraints) on the instances of Table 1. The linear model
described in Section 3.5 achieves running times faster than those by the exact iterative method in Section 3.3,
with few exceptions. (The addition of singleton constraints produces similar results.)

14

Instance Literature Optimum Nout
1

+ Nin
0

BGEPS Optimum

King1982 73.68 73.68 5 5

Waghodekar1984 62.50 62.50 9 9

Seiffodini1989 79.59 79.59 10 10

Kusiak1992 76.92 76.92 5 5

Kusiak1987 53.13 53.12 15 15

Boctor1991 70.37 70.37 7 7

Seiffodini1986 68.30 68.29 13 13

Chandrasekaran1986a 85.25 85.24 9 9

Chandrasekaran1986b 58.72 58.71 45 43
Mosier1985a 70.59 70.58 10 10

Chan1982 92.00 92.00 4 4

Askin1987 69.86 69.86 22 21
Stanfel1985 69.33 69.33 23 22
McCornick1972a 51.96 51.96 49 46
Srinivasan1990 67.83 67.83 46 46

King1980 55.90 56.52 70 68
Carrie1973a 54.46 54.46 51 47
Mosier1985b 42.96
Kumar1986 49.65 49.64 71 64
Carrie1973b 76.54 76.54 37 37

Boe1991 58.15 58.15 77 73
Chandrasekharan1989 1 100.00 100.00 0 0

Chandrasekharan1989 2 85.11 85.10 21 21

Chandrasekharan1989 3-4 73.51 73.50 39 39

Chandrasekharan1989 5 51.97 51.97 73 70
Chandrasekharan1989 6 47.37
Chandrasekharan1989 7 44.87
McCormick1972b 54.27
Carrie1973c 46.06
Kumar1987∗ 58.58 58.94 62 60
Stanfel1985 1∗ 59.66 59.65 71 71

Stanfel1985 2 50.51
King1982 42.64
McCormick1972c 59.85
Chandrasekharan1987 84.03 84.03 73 73

Table 4: Results of the exact iterative method for the MCFP with singleton constraints 2× 2.

15

Instance Literature Optimum Nout
1

+ Nin
0

BGEPS Optimum

King1982∗ 75 75 4 4

Waghodekar1984 69.57 69.56 7 7

Seiffodini1989 80.85 80.85 9 9

Kusiak1992 79.17 79.16 5 5

Kusiak1987 60.87 60.86 9 9

Boctor1991 70.83 70.83 7 7

Seiffodini1986 69.44 69.44 11 11

Chandrasekaran1986a 85.25 85.24 9 9

Chandrasekaran1986b 58.72 58.71 45 43
Mosier1985a 75 75 7 7

Chan1982 92 92 4 4

Askin1987 74.24 74.24 17 17

Stanfel1985 72.86 72.85 19 18
McCornick1972a 53.33 53.33 42 42

Srinivasan1990 69.92 69.92 40 39
King1980 57.96 58.04 60 59
Carrie1973a 57.73 57.73 41 40
Mosier1985b 43.97
Kumar1986 50.81 50.80 61 60
Carrie1973b 79.38 79.37 33 32
Boe1991 58.79 58.79 75 70
Chandrasekharan1989 1 100 100 0 0

Chandrasekharan1989 2 85.11 85.10 21 21

Chandrasekharan1989 3-4 73.51 73.50 40 39
Chandrasekharan1989 5 53.29 53.28 71 64
Chandrasekharan1989 6 48.95
Chandrasekharan1989 7 46.58
McCormick1972b 54.82
Carrie1973c 47.68
Kumar1987∗ 62.86 63.04 51 51

Stanfel1985 1∗ 59.66 59.77 70 67
Stanfel1985 2 50.83
King1982 47.93
McCormick1972c 61.16
Chandrasekharan1987 84.03 84.03 73 73

Table 5: Results of the exact iterative method for the MCFP without singleton constraints.

16

Instance Linear Model Iterative Model

King1982 0.01 0.16
Waghodekar1984 0.01 0.07
Seifoddini1989 0.03 0.09
Kusiak1992 0.01 0.02
Boctor1991 0.01 0.14
Kusiak1987 0.06 0.29

Seifoddini1986 0.03 0.18
Chandrasekharan1986a 0.04 2.06
Chandrasekharan1986b 4.94 81.46

Mosier1985a 0.01 0.03
Chan1982 0.02 0.01
Askin1987 0.09 0.49
Stanfel1985 0.11 0.49

McCormick1972 144.91 600.98
Srinivasan1990 0.54 7.24

King1980 125.62 1156.23
Carrie1973 42.32 87.13
Mosier1985b – –
Kumar1986 1771.99 23928.70
Boe1991 305.48 2145.24

Carrie1973 14.55 1.78
Chandrasekharan1989 1 0.15 0.02
Chandrasekharan1989 2 0.44 10.08
Chandrasekharan1989 3-4 0.78 17.46
Chandrasekharan1989 5 48743.90 371233.00
Chandrasekharan1989 6 – –
Chandrasekharan1989 7 – –

McCormick1972 – –
Carrie1973 – –
Kumar1987 41.53 183.71
Stanfel1985 1 2622.06 13807.50
Stanfel1985 2 – –
King1982 – –

McCormick1972 – –
Chandrasekharan1987 18.22 325.53

Table 6: Comparison between running times (in seconds) of the exact methods for the MCFP.

17

5. Conclusions

This work has investigated the close relationships between the BGEP and the MCFP. This opens new
possibilities of research, in the sense that each every contribution to one of the problems may be applied to
the other.

We have proposed a new Branch-and-Cut method for the BGEP based on a dynamic programming
separation algorithm. Our method has been applied to 30 randomly generated instances with edge densities
ranging from 0.2 to 0.8 and sizes from 110 to 462 vertices. Experimental results show that the proposed
method outperforms the CPLEX standard separation algorithm.

We have also described a new preprocessing procedure for the BGEP based on theoretical developments
related to vertex distances in the input graph (Theorem 1). The procedure is effective to fix variables and
generate cuts for low density random instances.

The similarity between the BGEP and MCFP has been explored. We have shown that these problems
have the same feasible solution space. This fact allows the use of mathematical formulations for the BGEP
to solve the MCFP. It is worth remarking that the combinatorial structure of the BGEP can be directly
applied to the solution of the MCFP. An example is the use of constraints (11) and (18) in two formulations
for the MCFP described in this work; such constraints are used to eliminate induced subgraphs isomorphic
to P4, which are forbidden for bicluster graphs.

We have shown that good solutions of the BGEP correspond to good solutions of the MCFP, i.e.,
decreasing the number of editing operations corresponds to obtaining a matrix permutation with fewer 1’s
outside and 0’s inside diagonal blocks.

Our contributions to the MCFP include:

• a new exact iterative method based on several calls to a parameterized version of the MCFP;

• a new linear-fractional formulation and its linearization;

• a experimental study of the impact of using a linear objective function for the MCFP;

• a separated analysis of problems with or without singleton constraints;

• exact resolution of most instances of the MCFP found in literature, some crated almost 40 years ago.

Ongoing work includes the study of other variants of the MCFP and their correspondence with adapted
versions of the BGEP.

References

[1] N. Amit, The Bicluster Graph Editing Problem, Master’s thesis, Tel Aviv University, 2004.
[2] A. Gupta, A. Palit, Clique generation using boolean equations, Proceedings of The IEEE 67 (1979) 178–180.
[3] J. A. Hartigan, Clustering Algorithms, John Wiley & Sons, 1975.
[4] Y. Cheng, G. M. Church, Biclustering of expression data, in: Proceedings of the Eighth International Conference on

Intelligent Systems for Molecular Biology, AAAI Press, 2000, pp. 93–103.
[5] N. Faure, P. Chretienne, E. Gourdin, F. Sourd, Biclique completion problems for multicast network design, Discrete

Optimization 4 (2007) 360–377.
[6] A. Abdullah, A. Hussain, A new biclustering technique based on crossing minimization, Neurocomputing 69 (2006)

1882–1896.
[7] G. Bisson, F. Hussain, Chi-sim: A new similarity measure for the co-clustering task, in: Proceedings of the 2008 Seventh

International Conference on Machine Learning and Applications, ICMLA ’08, IEEE Computer Society, 2008, pp. 211–217.
[8] F. Protti, M. Dantas da Silva, J. L. Szwarcfiter, Applying modular decomposition to parameterized bicluster editing, in:

Parameterized and Exact Computation, volume 4169 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
2006, pp. 1–12.

[9] J. Guo, F. Hffner, C. Komusiewicz, Y. Zhang, Improved algorithms for bicluster editing, in: 5th International Conference
on Theory and Applications of Models of Computation, volume 4978, Springer Berlin / Heidelberg, 2008, pp. 445–456.

[10] G. F. Sousa Filho, L. dos Anjos F. Cabral, L. S. Ochi, F. Protti, Hybrid metaheuristic for bicluster editing problem,
Electronic Notes in Discrete Mathematics 39 (2012) 35 – 42.

[11] E. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959) 1141–1144.

18

[12] R. E. Flanders, Design, manufature and production control of a standard machine, Transactions of the American Society
of Mechanical Enginneers 46 (1924) 691–738.

[13] S. P. Mitrofanov, The Scientific Principles of Group Technology, National Lending Library for Science and Technology,
1966.

[14] J. L. Burbidge, Production flow analysis, Production Engineer 50 (1971) 139–152.
[15] M. P. Chandrasekharan, R. Rajagopalan, Zodiac - an algorithm for concurrent formation of part-families and machine-cells,

International Journal of Production Research 25 (1987) 835–850.
[16] G. Srinivasan, T. T. Narendran, Grafics - a nonhierarchical clustering-algorithm for group technology, International

Journal of Production Research 29 (1991) 463–478.
[17] J. Gonçalves, M. Resende, An evolutionary algorithm for manufacturing cell formation, Computers & Industrial Engi-

neering 47 (2004) 247–273.
[18] A. Pailla, A. R. Trindade, V. Parada, L. S. Ochi, A numerical comparison between simulated annealing and evolutionary

approaches to the cell formation problem, Expert Syst. Appl. 37 (2010) 5476–5483.
[19] IBM, IBM ILOG CPLEX V12.1 User’s Manual for CPLEX, IBM, 2009.
[20] T. H. Wu, C. C. Chang, S. H. Chung, A simulated annealing algorithm for manufacturing cell formation problems, Expert

Systems with Applications 34 (2008) 1609–1617.
[21] T. H. Wu, S. H. Chung, C. C. Chang, A water flow-like algorithm for manufacturing cell formation problems, European

Journal of Operational Research 205 (2010) 346–360.
[22] T. H. Wu, C. C. Chang, Y. J. Y., A hybrid heuristic algorithm adopting both boltzmann function and mutation operator

for manufacturing cell formation problems, International Journal of Production Economics 120 (2009) 669–688.
[23] B. Elbenani, J. A. Ferland, J. Bellemare, Genetic algorithm and large neighbourhood search to solve the cell formation

problem, Expert Systems with Applications 39 (2012) 2408–2414.

19

	1 Introduction
	2 Branch-and-Cut Approach for the BGEP
	2.1 Separation Algorithm
	2.2 Preprocessing Procedure
	2.3 Instances for the BGEP

	3 Application to Manufacturing Cell Formation
	3.1 The size of the cells
	3.2 Similarity between the BGEP and the MCFP
	3.3 A First Exact Algorithm for the MCFP
	3.4 New linear-fractional model for the MCFP
	3.5 Linear Formulation for the MCFP
	3.6 MCFP Instances

	4 Computational Experiments
	4.1 Experimental Results for the BGEP
	4.2 Experimental results for the MCFP

	5 Conclusions

