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Abstract

We consider a discrete population of users with homogeneous service de-
mand who need to decide when to arrive to a system in which the service
rate deteriorates linearly with the number of users in the system. The users
have heterogeneous desired departure times from the system, and their goal
is to minimize a weighted sum of the travel time and square deviation from
the desired departure times. Users join the system sequentially, according
to the order of their desired departure times. We model this scenario as a
non-cooperative game in which each user selects his actual arrival time. We
present explicit equilibria solutions for a two-user example, namely the Sub-
game Perfect and Cournot Nash equilibria and show that multiple equilibria
may exist. We further explain why a general solution for any number of users
is computationally challenging. The difficulty lies in the fact that the objective
functions are piecewise-convex, i.e., non-smooth and non-convex. As a result,
the minimization of the costs relies on checking all arrival and departure order
permutations, which is exponentially large with respect to the population size.
Instead we propose an iterated best-response algorithm which can be efficiently
studied numerically. Finally, we compare the equilibrium arrival profiles to a
socially optimal solution and discuss the implications.

1 Introduction

The strategic timing of arrivals to congested systems is relevant for various appli-
cations such as traffic, queueing and communication networks. We study a non-
cooperative game in which atomic users need to time their arrival to a deterministic

∗To appear in the European Journal of Operational Research
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processor sharing system with linear slowdown. This may be the case on a ring road
around a business district in which the density at any point on the road affects all of
the road, and therefore arriving users can cause a slowdown even for users who arrived
before them. Throughout the paper we refer to the model as a traffic network where
users travel along a route at varying speeds. Nevertheless, our aim here is to provide
a general analysis of the strategic arrival times to such a processor sharing system,
and the results are not limited to the specific traffic application. The linear slowdown
dynamic can be seen as a discrete variation of the Greenshield’s fluid model (see for
example [8]). This work complements [12] where the socially optimal arrival schedule
of users to the same system was analysed. In this paper the choice of arrival times is
made by the users themselves sequentially, according to the their desired departure
times. Note that while all users are served simultaneously, the model presented here
still maintains the First-In-First-Out property, and thus in the sequential game users
leave the system in the same order they arrived.

The study of departure time choice to a congested bottleneck goes back to Vickery
[14], where a fluid queue dynamic was assumed. The research of fluid bottleneck
models has evolved greatly since then, and we refer the reader to Arnott et al. [1]
and de Dios Ortúzar and Willumsen [2] and references therein. Otsubo and Rapoport
analysed a non-fluid (atomic user) game with discrete arrival instances in [10]. An
arrival time and route choice (dynamic user equilibrium) game for a route with linear
slowdown was analysed using a mean field approach by Mahmassani and Herman in
[8].

A queueing theory approach to the strategic timinig of arrivals to a congested
stochastic queue was developed by Glazer and Hassin in [3]. They introduced a
game in which a discrete population of users, of a Poisson distributed size, choose
arrival times to a single server exponential queue with the goal of minimizing waiting
times. This led to another branch of research that relies on the stochastic properties
of the queues, rather than fluid dynamics. Examples with a discrete deterministic
population, as we assume in this work, are the works of Juneja and Shimkin in
[6] (tardniess costs), Ravner [11] (order penalties), and Haviv and Ravner [4] (loss
system). All of the above assume random memoryless service times and a first come
first served regime. An arrival time game to a processor sharing queue was studied
by Raheja and Juneja in [5], using a fluid approximation. In the queueing context
our work is the first to analyse an arrival time game with a discrete population queue
with heterogeneous users and deterministic service times.

2 Traffic model

In this section we introduce the model and show that despite its seeming simplicity,
it in fact yields a complex arrival-departure dynamic. Suppose a set of atomic users
N := {1, . . . , N} need to travel on a single route of length 1. We define the travel

2



speed on a segment at time t as:

v(t) := β − α(q(t)− 1), (1)

where q(t) is the number of users on the segment at time t, β > 0 is the free flow speed
of a single user travelling alone, and α ≥ 0 is the slowdown parameter. We assume
that β − α(N − 1) > 0, in other words, this means that the travel speed is positive
even if all users travel at the same time. Note that for α ≥ β

2
, the only possible case is

N = 2. In Figure 1 the system dynamics are illustrated as a function of the number of
concurrent users. Observe that while travel speed decreases by definition, the overall
service rate is non-monotone and concave. In particular, it is initially increasing, has
a maximal throughput at level q = β+α

2α
and then decreases to almost zero when the

system is very busy.
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(a) Travel speed
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(b) Aggregate throughput

Figure 1: The individual travel speed and aggregate throughput as the number of users in
the system increases. Parameter values: β = 1 and α = 0.01

Every user i ∈ N has a desired departure time from the system, denoted by d∗i .
Without loss of generality we assume that the desired departure times are ordered:
d∗i ≤ d∗j , ∀i < j. The action of user i is choosing an arrival time ai ∈ R. Denote the
arrival and departure vectors of all users by a := (a1, . . . , aN ) and d := (d1, . . . , dN),
respectively. The cost incurred by user i is

ci(a) = (di − d∗i )
2 + γ (di − ai). (2)

This cost function is a combination of a quadratic penalty for any deviation from the
desired departure time, be it early or late, and a linear penalty for the total travel
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time. We focus on this cost function for the sake of a clear presentation, but all of
our analysis can be applied to any convex function (of the deviation and travel time
terms) in a straightforward manner. We further discuss on how this generalization
can be made in the concluding remarks in Section 7. The minimal cost of any user
is γ

β
, and can only be obtained by travelling alone at free flow speed and leaving at

exactly the desired time, d∗i for user i.
The effective departure times of users are determined by a and the travel dynamics

defined in (1):

1 =

∫ di

ai

v (t) dt, i ∈ N , (3)

where q(t) =
∑

i∈N 1{t∈[ai,di]}. Using (1) we get a set of N equations for d,

1 = (di − ai)(β + α)− α

∫ di

ai

∑

j∈N

1{t ∈ [aj , dj]}dt, i ∈ N .

These N equations can be treated as equations for the unknowns d, given a or vice-
versa. In [12] it was shown that the departure dynamics for an ordered vector a are
given by

D d− A a = 1,

where A ∈ RN and D ∈ RN are defined as follows:

Aij :=































β − α(i− hi), i = j

−α, i+ 1 ≤ j ≤ ki

0, o.w.

, and

Dij :=































β − α(ki − i), i = j

−α, hi ≤ j ≤ i− 1

0, o.w.

,

with ki := max
{

k ∈ N : ak ≤ di
}

and hi := min
{

h ∈ N : dh ≥ ai
}

. A direct
result of this is the recursive formula

di =
1 + (β − α(i− hi)) ai + α

(

∑i−1
j=hi

dj −
∑ki

j=i+1 aj

)

β − α(ki − i)
, i ∈ N . (4)

Using an iterative algorithm we can compute the unique d for any given a (or vice
versa) with at most 2N computations. At this point it is important to observe that
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the vector k := (k1, . . . , kN) defines the combined order permutation of all arrivals
and departures. For example, if N = 3, the profile (a1 < a2 < d1 < a3 < d2 < d3)
corresponds to k := (2, 3, 3). In this example there is an overlay between users 1 and
2 during the interval [a2, d1], and between users 2 and 3 during the interval [a3, d2].
Therefore, given k we know the exact number of users and their travel speed at any
point in time. Furthermore, as long as there is no change in the permutation, the
departure times are continuous with the arrival times with a known linear coefficient,
as shown in Figure 2. Note that (4) simply solves the traffic dynamics without any
consideration of the cost function (2) that users wish to minimize.

If we denote the set of all possible arrival-departure permutations by

K :=
{

k ∈ NN : kN = N, ki ≤ kj ∀i ≤ j
}

,

then |K| =
(2NN )
N+1

. This follows by observing that the elements ofK correspond uniquely
to lattice paths in the N × N grid from bottom-left to top-right with up and right
movements without crossing the diagonal. The number of such elements is the Catalan
number (see [12] for more details).

The relation between arrival and departure times, defined in (3), is in fact a set
of piecewise-linear equations. This is illustrated in Figure 2 by changing the arrival
time of a single user while keeping all others fixed.

t
-0.5 0 0.5

0

1
a1

d1

a2

d2
a3

d3
a4
d4

Figure 2: Arrival-departure dynamics: An illustration of the effect of changing the
arrival time of one user 1 (green user) while keeping the arrival times of the other three
users (2, 3, 4) (blue) constant. The horizontal axis is the arrival time of the green user.
The vertical axis shows the arrival and departure times of all other users: Arrival times of
blue users are the blue dashed horizontal lines at (0.05, 0.15, 0.45) and the arrival time of
the green user varies and is thus represented by the dashed diagonal line. Departure times
are the solid lines. The numerous vertical dotted lines illustrate “break-points”. In between
these lines, the effect of changing the green user’s arrival on all users is affine. The red
vertical line marks a point where a departure overtakes an arrival, the yellow vertical line
marks a point where an arrival overtakes an arrival and the black marks a point where an
arrival overtakes a departure. The parameter values of the example are: α = 1.5 and β = 5.
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The piecwise linear relation between arrival and departure times implies that the
cost of any single user is not convex with respect to his own arrival time, even though
the cost function, defined in (2), has a convex form. This piecewise-convex behaviour
is illustrated for the same numerical example in Figure 3. We can see that the cost of
any user is not convex, monotone, or differentiable with respect to a change in arrival
time of any user (including himself). Clearly, this complex cost structure leads to
difficulties both in finding a socially optimal arrival schedule and a Nash equilibrium
schedule.

a1

ci(a)

-0.5 0 0.5

0.2

0.4

0.6

0.8

c1(a)
c2(a)
c3(a)
c4(a)

Figure 3: An illustration of the effect on the cost of changing the arrival time of a single
user while keeping the arrival times of the other three users constant. The horizontal axis
is the arrival time of user 1. The vertical axis shows the cost of all users. The parameter
values of the example are: α = 1.5, β = 5, and d∗i = 0.5 for i = 1, . . . , 4.

In [12] it was shown that in the socially optimal arrival schedule the order of
the users is in accordance with their departure times. For small values of N (≤ 15)
the exact socially optimal arrival scheduled can be computed using an exhaustive
algorithm. For the general case, a heuristic search algorithm was suggested and shown
to be efficient for larger values of N (≤ 500). The key underlying property which
makes scheduling difficult using these travel dynamics is the fact that the departure
and cost functions behave differently given the combined order permutation of the
arrival and departure times. From a combinatorial perspective, the number of possible
permutations is exponential with the number of users. Unsurprisingly, this property
will make the game of arrivals, defined in the next section, computationally difficult
to solve as well.

3 Ordered arrival game

The game of arrivals is defined as follows: every user i = 1, . . . , N chooses an arrival
time ai ∈ [ai−1,∞), where a0 := −∞. Let a−i denote the arrival times vector of all
users excluding i. The set of best response actions of user i ∈ N to the arrival times
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of all other users is
BRi(a−i) := argmin

a∈[ai−1,∞)

{ci(a, a−i)}.

Note that BR is a set that may contain multiple minimizers, as the cost function is
not convex.

We consider two possible game formulations. The first is a simultaneous game
(Cournot) in which all users decide at the same time, without inspecting the arrival
time of previous users. In this case we impose the order of arrivals on the game in
the following manner: if user i selects time ai < aj for some i > j then his effective
arrival time will be ai = aj. We limit our analysis to pure strategies throughout this
work, although mixed strategy equilibria are possible and are likely to exist as well.

Definition 3.1 A pure strategy Cournot Nash equilibrium (CNE) is a vector of or-
dered arrivals, a ∈ RN , such that ai ∈ BR(a−i), ∀i ∈ N .

An alternative, and perhaps more natural, formulation for this model is a se-
quential game (Stackelberg), in which users make their decisions after observing the
arrival times of the previous users. In this setting the action space of user i ∈ N is
a function, bi(a0, . . . , ai−1) : R

i−1 :→ R, specifying his arrival time given the arrival
time of all preceding users. The definition of the best response action is therefore
not sufficient to define the equilibrium. We provide a definition using a constructive
backward induction method.

Definition 3.2 A pure strategy Subgame Perfect Nash equilibrium (SPNE) is a col-
lection of functions, {bi : Ri−1 :→ R}, that satisfies the backward induction:

• The initial condition is the function bN : RN−1 → R, defined by choosing an
arbitrary element bN ∈ BR(a1, . . . , aN−1) for any a−N .

• For i < N ,

bi(a0, . . . , ai−1) ∈ argmin
a∈[ai−1,∞)

{ci(a1, . . . , ai−1, a, Bi(a))},

where

Bi(a) = (bi+1(a1, . . . , ai−1, a), . . . , bN (a1, . . . , a, . . . , bN−1(a1, . . . , a, . . .))) ,

is the collection of best response functions of users j > i. If the minimizer at
any step is not unique then a minimizing element can be arbitrarily selected.

Unfortunately, this method is only tractable for small values of N , as we will
show in the next sections. The CNE is a more coarse equilibrium solution, as it is not
subgame perfect. Nevertheless, it is a Nash equilibrium in both games that represents
a stable schedule of arrivals in a sense that no single user has incentive to deviate.
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Take care however, and note that a CNE is not necessarily an equilibrium path of
any SPNE. This is due to the fact that a CNE may include non-credible threats;
the strategy instructs a user to play an action that is sub-optimal for some actions
of the preceding users, but because all play a fixed action these situations are not
realised. In the next section we shall show this can happen for a non-degenerate range
of parameters in a two-user example.

Computing a CNE is a more modest goal, but still computationally challenging
for games with a large number of users. This will lead us to suggest a heuristic
method to find such equilibrium paths in Section 5.1. Numerical analysis using the
above method will be presented in Section 6, along with a comparison to the socially
optimal solution of [12]. Before proceeding to the general analysis for any number of
users we will commence by explicitly solving the two-user game, which provides some
important insight about the model dynamics and difficulties.

4 Two-user game

Suppose that there are only two users arriving to the system. We assume that they
both have the same desired departure time and select it to be zero without loss of
generality, d∗1 = d∗2 = 0. We arbitrarily set user 1 to be the leader. We first analyse
the SPNE of the sequential game, with the results summarized in Proposition 4.1.
The proof explicitly constructs all possible equilibria using a backward induction
argument. This will be followed by the computing the CNE of the simultaneous
game, which is fully characterised in Proposition 4.2.

From equation (4) we have that for a1 ≤ a2 the departure times are given by:

d1(a1, a2) =















a1 +
1
β

, a1 ≤ a2 −
1
β
,

1+βa1−αa2
β−α

, a2 −
1
β
≤ a1 ≤ a2,

and

d2(a1, a2) =















a2 +
1
β

, a1 ≤ a2 −
1
β
,

1+βa2+α(d1(a1,a2)−a2)
β

, a2 −
1
β
≤ a1 ≤ a2.

Recall that the free flow speed is β and the travel time when a user is alone in
the system is 1

β
. Hence, the condition a2 > a1 +

1
β
can be interpreted as: the second

arrival takes place after the first departure.
A unique feature of the two-user model is that both users spend the same amount

of time in the system. This is because during the time that both users are in the
system they travel at the same speed, β − α, hence they travel the same distance
during this time. For the remaining distance, which is identical for both, they travel
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at the free flow speed and again require the same time to complete the journey.
Therefore,

d2 − a2 = d1 − a1 =















1
β

, a1 ≤ a2 −
1
β
,

1−α(a2−a1)
β−α

, a2 −
1
β
≤ a1 ≤ a2.

The cost of user 2 given that user 1 is arriving at a1 is then given by (2):

c2(a1, a2) =















(

1+βa2
β

)2

+ γ

β
, a2 ≥ a1 +

1
β
,

(

1+βa2+α(d1(a1,a2)−a2)
β

)2

+ γ 1−α(a2−a1)
β−α

, a1 ≤ a2 ≤ a1 +
1
β
.

If a1 ≤ − 2
β
then user 2 can obtain a minimal cost of γ

β
by arriving at exactly − 1

β
.

For this best response to be unique we need to assume γ > 0. Otherwise, if γ = 0
and − 1

β−α
≤ a1 < − 2

β
then user 2 can obtain a cost of zero by arriving at either − 1

β

or at −1+αa1
β−2α

which both yield d2 = 0. For instance, a1 = a2 = − 1
β−α

guarantees that
both travel at the slowest speed and depart together at zero.

If a1 > − 2
β
, the minimal cost satisfying a2 ≥ a1 +

1
β
is obtained by a2 = a1 +

1
β
,

i.e., arriving immediately upon user 1’s departure, for arriving later will increase the
tardiness cost and not change the travel time. For the second region, a1 ≤ a2 ≤ a1+

1
β
,

the optimal arrival of user 2 is given by solving the corresponding one dimensional
constrained quadratic program. After plugging in d1(a1, a2) and applying simple
algebra we have that the quadratic program that needs to be solved is

min
a1≤x≤a1+

1
β

{

x2U + xV +W
}

,

where

U =

(

β − 2α

β − α

)2

,

V =
2(β − 2α)(1 + αa1)− γα(β − α)

(β − α)2
,

andW is a constant with no impact on the optimization. We denote the unconstrained
minimum of the quadratic program by X = − V

2U
. The best response of user 2 to a1

can then be explicitly stated as

b2(a1) =















− 1
β

, a1 ≤ − 2
β
,

x∗(a1) , a1 > − 2
β
,

(5)
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where

x∗(a) :=































a , a ≥ X,

X , X − 1
β
< a < X,

a + 1
β

, a ≤ X − 1
β
.

Note that if α = β

2
then U = 0 (the cost function is linear) and we define x∗(a) := a+ 1

β
.

Furthermore, as explained above, if γ = 0 then the best response is not unique for

a1 ∈
[

− 1
β−α

,− 2
β

]

. Specifically, arriving at −1+αa1
β−2α

yields a cost of zero, and so does

arriving at − 1
β
as prescribed by (5).

The optimal choice of user 1 if user 2 is playing b : R → R is the collection of
arrival times,

b1(a0) = argmin
a≥a0

{c1(a, b2(a))},

where c1 is the cost function (2) and a0 = −∞ as in Definition 3.2. We are now ready
to fully characterise the SPNE.

Proposition 4.1 For N = 2 and d∗ = (0, 0) the SPNE are characterised as follows.

1. In any case, the strategy of user 2 is to arrive according to b2(a1) for any arrival
time of user 1, a1.

2. If γ = 0 then

(a) if α < β

2
the unique SPNE is a1 = − 1

β−α
.

(b) if α ≥ β

2
then there are two SPNE: a1 = − 1

β−α
and a1 = − 1

β
. The

resulting equilibrium paths (realisations) are
(

− 1
β−α

,− 1
β−α

)

and
(

− 1
β
, 0
)

,

with respective equilibrium costs (0, 0) and
(

0, 1
β2

)

.

3. If γ > 0 then there is a unique SPNE such that

(a) if α < β

2
then a1 = argmina>−∞{c1(a, b2(a))} ∈ (− 2

β
,− 1

β
].

(b) if α ≥ β

2
then a1 = − 1

β
. The resulting equilibrium path is

(

− 1
β
, 0
)

with

costs
(

γ

β
, 1
β2 +

γ

β

)

.

Proof We have already established that b2(a1) is the best response strategy of user 2,
hence this is the strategy played in any equilibrium. Computing the optimal response
of user 1 to this strategy requires solving two quadratic programs: the first is a trivial
one for a1 ≤ − 2

β
, and the second one gives x∗.

10



If α ≥ β

2
then user 1 can make sure user 2 arrives at 0, resulting in the minimal cost

of γ

β
for user 1. This is achieved by arriving at a1 = − 1

β
, which satisfies a1 ≤ X − 1

β
.

If γ = 0 then arriving at − 1
β−α

also achieves the minimal cost for user 1, which is zero

in this case. Therefore, if γ = 0 both a1 = − 1
β
and a1 = − 1

β−α
are SPNE (together

with b2(a)).
If α < β

2
then there is a unique minimizer, − 2

β
< a ≤ − 1

β
, to c1(a, b2(a)). This is

seen by considering the unconstrained quadratic program solution for user 2,

X = −
2(β − 2α)(1 + αa)− γα(β − α)

2(β − 2α)2
.

If γ = 0 then X < 0 for a = − 1
β
, implying that b2

(

− 1
β

)

< 0. Thus, we have that

a1 = − 1
β−α

is the unique SPNE in this case. If γ > 0 then X is a monotone decreasing

function of a, hence b2(a) is monotone decreasing as well and c1(a, b2(a)) has a unique
minimizer.

In Figure 4 we illustrate the realised arrival times of the two users according to
an SPNE for varying values of the travel time penalty, γ, and the linear slowdown
coefficient, α.

γ

ai

0 2 4 6 8
-2

-1

0

α = 0.1

γ

ai

0 2 4 6 8
-2

-1

0

α = 0.2

γ

ai

0 2 4 6 8
-2

-1

0

α = 0.4

γ

ai

0 2 4 6 8
-2

-1

0

α = 0.6

User 1
User 2

Figure 4: SPNE arrival times density for γ ∈ [0, 8] with β = 1, d∗ = (0, 0), and different
values of α.
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In order to find the Cournot Nash Equilibrium points, the best response of user
1 for any arrival time of user 2 needs to be computed. Note that b2(a1) as defined
above remains the best response for user 2 given any action a1 of user 1. As before,
by considering the model dynamics we get that the best response is given by solving
the respective quadratic program for each region of the cost function (2),

c1(a1, a2) =















(

1+βa1
β

)2

+ γ

β
, a1 ≤ a2 −

1
β
,

(

1+βa1−αa2
β−α

)2

+ γ 1−α(a2−a1)
β−α

, a2 −
1
β
≤ a1 ≤ a2.

The unconstrained minimum of the quadratic cost in the second region is then

Y = −
2β(1− αa2) + γα(β − α)

2β2
.

This yields the best response function for user 1,

b1(a2) =















− 1
β

, a2 ≥ 0,

y∗(a2) , a2 < 0,

(6)

where

y∗(a) :=































a , a ≤ Y,

Y , Y < a < Y + 1
β
,

a− 1
β

, a ≥ Y + 1
β
.

A CNE in this example is any pair of arrival times a1 ≤ a2 such that a2 ∈ b2(a1)
and a1 ∈ b1(a2). Note that the equilibrium path of an SPNE is not necessarily a CNE,
as user 1 now minimizes his cost with respect to a single action of user 2 which does
not change with his own action. Using similar arguments to those used in the proof
of Proposition 4.1 we can obtain the following characterisation of the CNE points.

Proposition 4.2 For N = 2 and d∗ = (0, 0) the CNE are characterised as follows.

1. If γ = 0 then,

(a) if α < β

2
the unique CNE is

(

− 1
β−α

,− 1
β−α

)

,

(b) if α ≥ β

2
then there are two CNE:

(

− 1
β−α

,− 1
β−α

)

and
(

− 1
β
, 0
)

.

2. If γ > 0 then,

12



(a) if α < β

2
then,

i. if γ ≤ β−2α
α(β−α)

then there is a unique CNE:

a1 = −
1

β − α
−

γα (β2 − 4αβ)

2β2(β − 2α)
, a2 = −

1

β − α
+

γα (β + 2α)

2β(β − 2α)
,

ii. if γ > β−2α
α(β−α)

then any point (a1, a2) satisfying

a1 = a2 −
1

β
, a2 ∈

[

−min

{

γα

2β
,
1

β

}

,−max

{

1

β
−

γα

2(β − 2α)
, 0

}]

is a CNE,

(b) if α ≥ β

2
then any point (a1, a2) satisfying

a1 = a2 −
1

β
, a2 ∈

[

−min

{

γα

2β
,
1

β

}

, 0

]

,

is a CNE.

Proof Clearly, in equilibrium a1 ≤ − 1
β
and − 1

β−α
≤ a2 ≤ 0, otherwise trivial re-

ductions can be made to at least one of the cost functions. Plugging Y in the best
response function (6) for the relevant range yields

b1(a2) =















α
β
a2 −

1
β
− γα(β−α)

2β2 , − 1
β−α

≤ a2 ≤ −γα

2β
,

a2 −
1
β

, − γα

2β
< a2 ≤ 0.

The best response function (5) of user 2 depends on the values of γ, α and β in a
slightly more elaborate manner. Specifically, if α ≥ β

2
then

b2(a1) =































































− 1
β

, a1 < − 1
β−α

, γ = 0,

− 1
β
or − 1+αa1

β−2α
, − 1

β−α
≤ a1 < − 2

β
, γ = 0,

a1 +
1
β

, − 2
β
≤ a1 < − 1

β
, γ = 0,

− 1
β

, a1 ≤ − 2
β
, γ > 0,

a1 +
1
β

, a1 > − 2
β
, γ > 0,

13



and if α < β

2
then

b2(a1) =















































− 1
β

, a1 ≤ − 2
β
,

a1 +
1
β

, − 2
β
< a1 ≤ − 2

β
+ γα

2(β−2α)

− α
β−2α

a1 −
1

β−2α
+ γα(β−α)

2(β−2α)2
, − 2

β
+ γα

2(β−2α)
< a1 ≤ − 1

β−α
+ γα

2(β−2α)
,

a1 , − 1
β−α

+ γα

2(β−2α)
< a1 ≤ − 1

β
.

Note that some the regions in the latter function may be empty, depending on the
value of γ.

1. If γ = 0 then a1 = a2 = − 1
β−α

is clearly an equilibrium because both users incur
the minimal cost of zero. Furthermore, in this case,

b1(a2) =
α

β
a2 −

1

β
, −

1

β − α
≤ a2 ≤ 0,

which further implies that − 1
β−α

≤ b1(a2) ≤ − 1
β
.

(a) If α < β

2
then β − 2α > 0 and − 2

β
> − 1

β−α
, and thus b2(b1(a2)) = b1(a2)

for − 1
β−α

≤ b1(a2) ≤ − 1
β
. The only solution to

a2 = b2(b1(a2)) = b1(a2) =
α

β
a2 −

1

β
,

is then given by a2 = − 1
β−α

.

(b) If α ≥ β

2
then there are two solutions to a2 = b2(b1(a2)): the first is in the

second region of b2(a1),

a2 = −
1 + α

(

α
β
a2 −

1
β

)

β − 2α
,

yielding a1 = a2 = − 1
β−α

, and the second is a2 = a1 +
1
β
= 0 in the third

region of b2(a1).

2. If γ > 0 then a1 = a2 cannot be an equilibrium. This is because b1(a2) = a2 only
in case a2 = − 1

β−α
, which is never a best response for user 2 if γ > 0. Therefore,

there are two possible types of equilibrium: a2 = a1 +
1
β
(and a1 = a2 −

1
β
), or

the simultaneous solution to the equations a1 = Y and a2 = X .

(a) If α < β

2
then,

14



i. If γ ≤ β−2α
α(β−α)

then a2 = a1 +
1
β
is a best response to a1 = a2 −

1
β
if

−
2

β
< a1 ≤ −

2

β
+

γα

2(β − 2α)
⇔ −

1

β
< a2 ≤ −

1

β
+

γα

2(β − 2α)
,

but then a2 ≤ −γα

2β
(from γ ≤ β−2α

α(β−α)
), which implies that a1 = a2 −

1
β

is not a best response. Hence the unique CNE is given by the interior
point (Y,X) as stated in the proposition.

ii. If γ > β−2α
α(β−α)

then there is no CNE in the interior. All pairs satisfying
the condition in the proposition statement are such that best response
of user 2 to a1 = a2−

1
β
is a2 = a1+

1
β
, and vice versa. The interval for

a2 is obtained by considering the best response regions of b1(a2) and
b2(a1).

(b) If α ≥ β

2
then b2(a1) never has an interior solution, i.e. given by X .

Therefore all equilibrium are of the form a2 = a1+
1
β
, and are given by the

range specified in the proposition statement.

Remark 4.3 The multiple equilibria, in fact a continuum of equilibria, arises in
cases where interaction is too costly, except for the case γ = 0 which yields a different
type of non-unique solution. Specifically, the equilibrium is not unique when there is
a steep slowdown in travel speed: α ≥ β

2
, or when the travel time penalty γ is very

high. In all such equilibria the users travel alone at free flow speed.

We computed the CNE arrival ranges for different parameter values, along with
the realised arrival time corresponding to the SPNE. In Figure 5a we set α < β

2
, and

in this case the CNE are unique and close to the SPE actions for small γ, whereas for
larger values of γ there is an expanding range of possible CNE such that both users
travel alone. In Figure 5b we illustrate an example with α > β

2
. In this case the CNE

is never unique and can be quite far from the SPNE actions for larger values of γ.

15



γ

ai

0 2 4 6 8
-2

-1

0

(a) α = 0.2

γ

ai

0 2 4 6 8

-2

-1

0

User 1 (SPNE)

User 2 (SPNE)

User 1 (CNE)

User 2 (CNE)

(b) α = 0.6

Figure 5: SPNE and CNE arrival times for γ ∈ [0, 8] with β = 1, and d
∗ = (0, 0). The solid

lines are the SPNE actions, and the dotted lines and regions represent the range of possible
CNE.

In Figure 6 the user arrival times in equilibrium are compared with those specified
by the socially optimal profile,

(ao1, a
o
2) = argmin

(a1,a2)

{c1(a1, a2) + c2(a1, a2)},

which can be obtained as before by solving two two-dimensional quadratic programs
and taking the minimum of both solutions. As expected, the SPNE arrival times are
not optimal except for the extreme case of γ = 0. Furthermore, if γ is large enough
then in all cases users travel on disjoint time intervals. Specifically, according to the
SPNE user 1 arrives at −1 and leaves at the desired time of 0, incurring just the travel
time cost of γ, while user 2 arrives at 0 and leaves at 1, thus incurring a tardiness cost
of 1, and a total cost of γ+1. In the socially optimal profile, still for large values of γ,
both users incur the same cost of γ+0.25 by arriving at −1.5 and −0.5, respectively.
Note that it can easily be verified that in the two-user game both users incur the
same cost under the socially optimal profile, for any value of γ. The sequential form
of the game gives user 1 the advantage of first action which allows him to travel alone
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and arrive at his desired time, when γ is large enough. The socially optimal profile
“forces” user 1 to share the cost and arrive earlier than he would selfishly choose.
The CNE displays very similar behaviour to the SPNE when γ is small but as it gets
bigger there are multiple equilibria that include both the socially optimal and SPNE
solutions.

γ

ai

0 2 4 6 8
-2

-1.5

-1

-0.5

0

User 2 (SPNE)

User 2 (CNE)

User 2 (OPT)

User 1 (SPNE)

User 1 (CNE)

User 1 (OPT)

Figure 6: SPNE, CNE and socially optimal arrival times for γ ∈ [0, 8] with β = 1, α = 0.2,
and d

∗ = (0, 0). The solid lines are the SPNE outcomes, the dashed lines are the optimal
solutions, and the dotted lines and regions represent the range of possible CNE.

5 The general arrival game

When computing the backward induction or the CNE for the two-user example we had
to solve two quadratic programs, one for every order of the pair (a2, d1). We showed
that already in this simple example the equilibrium was not necessarily unique, in
both game formulations, and behaved differently for different parameter values. In
order to compute all CNE for any number of users, N ≥ 2, we must solve a quadratic
program for every possible permutation of the departures and arrivals. The backward
induction of the SPNE is even more demanding, as at every step i = 1, . . . , N , we
must take into account the solution of steps i+1, . . . , N , which will yield general (not
necessarily quadratic) programs with respect to ai. In Section 2 we explained that
the permutations can be represented by the vectors k ∈ K, and made reference to
the fact that |K| grows exponentially (specifically, as the Catalan numbers). Thus,
even finding a single equilibrium point, let alone characterising all equilibria, is not
an easy task. This leads us to suggest a heuristic method to find CNE points.

5.1 Ordered best response algorithm

Best response dynamics are often useful for several reasons. Most notably, because
points of convergence are Nash equilibrium points. Another advantage is that they
are constructive and can provide a feasible evolution of the behaviour of users leading
to an equilibrium solution. In many types of games best response dynamics are known
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to converge to a unique Nash equilibrium for any initial point. This is the case for
example in potential games [9], and sub-modular games [13]. Unfortunately, our game
is not an instance of any of these games. We already know that the equilibrium is
not necessarily unique. Furthermore, the non-convex and non-smooth form of the
cost function suggests there is not much hope for a constructive iterative procedure
that is guaranteed to find an equilibrium point in polynomial time. Nevertheless, if
we optimistically apply the best response procedure and it does indeed converge for
a given initial point then the output is a CNE.

We formally define the best-response algorithm starting at any ordered arrival
profile a0, denoted by BR(a0), as follows.

Best response algorithm - BR(a0)

(1) Initiate â := a0.

(2) For i = 1, . . . , N , let Bi = BR(a1, . . . , ai−1, âi+1, . . . , âN) and compute

ai =















âi , âi ∈ Bi,

argminBi , âi /∈ Bi.

(7)

(3) If âi = ai, ∀i = 1, . . . , N then stop, otherwise set âi = ai and go back to step
(2).

Remark 5.1 The rule of updating the arrival time of a single user when the mini-
mizer is not unique is defined in a way that guarantees changes will only occur when
there is a strictly positive decrease in cost for the user. Specifically if âi is in the best
response group then we make no change, and otherwise we choose the smallest ele-
ment, argminBi. This avoids the algorithm getting stuck in loops caused by multiple
minimizers. Examples of such loops can easily be constructed. Note that this does not
rule out other kinds of loops. We have not been able to construct other types of loops,
nor have we been able to prove they don’t exist.

Remark 5.2 The algorithm may step outside of the action space because the opti-
mization for user i is on the interval [ai−1,∞), regardless of the arrival times of user
j = i + 1, . . . , N . However, after a full iteration on all users the arrival profile will
always be ordered. Furthermore, we argue that this is more natural than limiting the
search to the interval [ai−1, ai+1], as the game is sequential and in the actual course
of play the users have to react to the users preceding them. Note also that if we re-
strict the order during the iteration then a point of convergence is not necessarily an
equilibrium.
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In [12] a method for optimizing the sum of total costs with respect to a single
coordinate, while keeping all others fixed, was presented. We will now detail how step
(2) of the BR algorithm can be carried out using a modification of the aforementioned
method. Let a be an ordered arrival time vector, and suppose we now want to
minimize the cost function ci(ai, a−i) by changing only ai, i.e., find the set

argmin
a≥ai−1

{(di(a, a−i)− d∗i )
2 + γ (di(a, a−i)− ai)}.

Recall that the model dynamics yield a piecewise-quadratic behaviour of the cost
function with respect to any single coordinate, as was illustrated by the solid line in
Figure 3. Therefore, the minimizer can be found by computing the minimal value
of a single variable quadratic function on every continuous segment. Every segment
corresponds to an order of all arrival and departure times (indexed by k ∈ K) and
the coefficients of the piecewise-linear term di(a, a−i) are given by (4). The number
of possible segments is given by the number of possible order changes. In Lemma 7 of
[12] an upper bound of O(N3) was given for the number of possible segments. This
upper bound was obtained using worst-case analysis, and the number of computations
was typically much less in practice.

We have shown in Proposition 4.2 that there may exist multiple equilibria. More-
over, the algorithm may not converge at all if there exist loops in the best-response
dynamics. To address these problems we suggest running the algorithm on a set of
initial profiles, denoted by A0, which may be generated randomly or according to
some specified structure. In addition, we define a maximum iteration parameter that
aborts the algorithm if it does not converge within the predefined number of itera-
tions. We denote the repeated algorithm by RBR(A0). This will also allow us to
numerically analyse the price of anarchy which is defined as the ratio between the
cost corresponding to the worst CNE and that of the socially optimal arrival profile.
Formally,

PoA :=
maxae∈Ae

∑

i∈N ci(a
e)

∑

i∈N ci(ao)
,

where Ae is the set of CNE and ao is the socially optimal arrival profile. In the
numerical analysis we substitute Ae with the output of RBR(A0).

6 Numerical analysis

Throughout this section we will compute equilibrium results using the BR and RBR
algorithms and compare them with the socially optimal solution obtained using the
algorithms presented in [12]. When possible (N ≤ 15), the optimal solution is exact
and otherwise it is a result of a polynomial-time search method that is guaranteed to
converge to a local minimum. We use superscript notations of “o” and “e” to denote
socially optimal and CNE, respectively.
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In table 1 we summarize the convergence statistics of 100 instances of the RBR
with randomized initial profiles, for different user population sizes.

N Convergence % Mean # of Iterations Min # of Iterations Max # of Iterations # of distinct CNE

20 100% 6.64 5 8 2

50 100% 7.11 6 8 2

80 100% 7.44 7 9 5

Table 1: Summary of 100 RBR instances for three examples with different population sizes,
and parameters β = 1, α = 0.7 β

N
, γ = 1

N
, and d

∗ equals the N quantiles of a normal
distribution with mean 0 and variance 1. The random initial points where selected as follows:
50 vectors were sampled from as the order statistic of an iid uniform distribution on (−1, 1),
and 50 vectors were sampled from a normal distribution with mean d

∗ − 1
β

and variance
between 0 and 2.

All instances converged to equilibrium points within a small number of iterations.
Multiple equilibria were found in all three examples, although the different CNE do
not seem significantly different from each other. For example in the example ofN = 50
the maximum absolute distance between any two equilibrium arrival schedules was

max
â,ā∈Ae

N
∑

i=1

|âi − āi| = 1.16,

and the maximum distance between the arrival times of the same user in different
equilibria was

max
â,ā∈Ae

max
i=1,...,N

|âi − āi| = 0.09.

To put these numbers in perspective, the free flow travel time in this example was
1, the slowest travel time in a full system was ∼ 4.3, and the time from the first
arrival to the last departure in equilibrium was ∼ 5. Therefore, a deviation of at
most 0.1 between arrival times in all schedules suggests that all CNE schedules were
effectively the same, and the small differences were perhaps due to the very non-
smooth behaviour of the cost function. Recall that in Proposition 4.2 it was shown
that for N = 2 infinite equilibria may exist on a continuous interval, hence it is not
surprising if this occurs in the general game as well for some small interval.

Despite the positive convergence results demonstrated in the above examples, it
should be noted that the scaling of the parameters is important. We ran the N = 50
example twice more, with a single parameter change each time, first we set α = 0.9 β

N
,

and then we set d∗ as the N quantiles of a normal distribution with mean 0 and
variance 0.1 (α was as in the original example). In both cases the algorithm did not
converge on any of the 100 attempts after 100 iterations. In both of these examples
the negative effects users incur on one another are very high. The lack of convergence
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may indicate that the algorithm suffers from numerical precision difficulties when
users want to arrive at virtually the same time, with respect to the congested travel
speeds. If interaction costs are very high (not scaled) it is likely that there will be
almost no overlap between users in equilibrium, and in this case other approximation
methods, perhaps of a combinatorial nature, may be more suitable than the Best-
Response algorithm presented here.

Figure 7 shows the CNE and socially optimal departure times compared with the
desired departure times for a specific set of parameters. In equilibrium users depart
from the system closer to their desired departure time than under the socially optimal
policy. This entails higher congestion costs and overall travel times. Specifically, in
this example the average cost for deviation from the desired time is 3.6 times higher
under the socially optimal policy, but the average travel time costs are 3.8 times lower
than in equilibrium. The individual user travel times can be seen in Figure 8. The
price of anarchy in this example is 1.07.

User

Departure time

1 5 10 15 20
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-0.5

0

0.5

1

•
• • • • • • • • • • • • • • • •

• • •

•
• • • • • • • • • • • •

•
•

• • • •
•

•
• • • • • • • • • • • • • • • • • •

•

d∗i
doi
dei

Figure 7: Desired, CNE, and socially optimal departure times for N = 20, β = 1, α = 0.035,
γ = 0.35, and d

∗ equals the 20 quantiles of a normal distribution with mean 0 and variance
0.16.
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•
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•

dei − aei
doi − aoi

Figure 8: Individual user travel times of CNE and socially optimal profiles, for N = 20,
β = 1, α = 0.035, γ = 0.35, and d

∗ equals the 20 quantiles of a normal distribution with
mean 0 and variance 0.16.
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In Figure 9 we illustrate the individual user costs under both schemes. In equi-
librium the cost is uni-modal with the users wishing to arrive in the middle of the
interval incurring the most cost. The cost under the socially optimal policy appears
bi-modal, with the cost more spread out. In Figure 10 we illustrate the smoothed
queue size dynamics for both profiles. In equilibrium the system fills up faster, reaches
a higher level, and is cleared earlier. This is because arrival times are less spread out
in equilibrium. Hence, although users travel faster under the socially optimal policy,
the last users will leave later simply because they arrived later than had they been
free to choose their arrival time.

User

Cost

1 5 10 15 20

0.45

0.5

0.55

•
•

• • • • • • • • • • • • • •
•

•

•

•

•
•

• • • • • • • • • • • • • • • •
•

•cei
coi

Figure 9: Individual user costs of CNE and socially optimal profiles, for N = 20, β = 1,
α = 0.035, γ = 0.35, and d

∗ equals the 20 quantiles of a normal distribution with mean 0
and variance 0.16.

t

q(t)

-2 -1 0 1
0

5

10

15
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Figure 10: Smoothed queue size dynamics of the CNE and socially optimal profiles, for
N = 20, β = 1, α = 0.035, γ = 0.35, and d

∗ equals the 20 quantiles of a normal distribution
with mean 0 and variance 0.16.

It should be highlighted that the patterns exhibited in Figures 7-10 are robust with
respect to the game parameters. In particular, the difference between equilibrium and
optimal arrival profiles were in the same direction for all instances tested, with varying
effect sizes, and in this sense the examples presented here are a good representation
of the general case.
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7 Concluding remarks

In this paper we have presented and analysed a novel ordered arrival time game to
a congested processor sharing system, with a heterogeneous discrete user population.
For a two-user example we provided explicit equilibrium analysis for two solution
concepts, the Subgame Perferct Nash Equilibrium and the Cournot Nash Equilib-
rium. This example highlighted the required steps for computing equilibrium points,
and the resulting difficulties. It was shown that the ordered form of the game played
an important role in both solutions. The two solutions display similar outcomes for
certain game parameters, namely when interaction is not very costly. It was shown
that there may exist multiple CNE, and that for some parameter values both the
SPNE path and the socially optimal solution are CNE. For the general population
model we presented a heuristic algorithm to compute CNE and analysed it numeri-
cally. It was shown that this algorithm is very efficient if the parameters are scaled
in a manner that does not allow the interaction costs to be too high. This allowed us
to compare the equilibrium arrival process and the resulting congestion process with
the corresponding socially optimal solution. The numerical analysis suggests that in
equilibrium the travel times and queues are longer, but the users arrive closer to their
desired times. This conclusion was supported by testing many population sizes and
parameter values.

There are several straightforward generalizations of the user cost functions that
can be made. One can consider the general form:

ci(a) = fi
(

(di − d∗i )
+
)

+ hi

(

(di − d∗i )
+
)

+ gi(di − ai),

where fi, gi, and hi are continuous convex functions for every i ∈ N . This allows for
non-quadratic deviation penalties and a different penalty for being late or early. There
is no substantial difference in the general model and all of our analysis still holds, with
slight technical modifications. In particular, one needs to solve constrained convex
programs instead of quadratic, and the differentiation in penalties for being late or
early will lead to a larger number of piecewise-convex segments. The choice of the
specific cost function in this work was made for the sake of brevity. A network arrival
time game, in which users can choose arrival times and travel routes, may also be
analysed using our model. The travel dynamics will be more complex when users
travel on several subsequent segments with a linear slowdown, but can still be solved
recursively using the framework we have provided.

A non-straightforward generalization is allowing the users to have heterogeneous
service demand, which translates to different travel distances in the traffic context. If
this is the case then there is no longer a reason to order the arrivals according to their
desired departure times, which adds a new layer of complexity to the analysis. It
seems that there is not much hope for tractable solutions in this case and a different
approach, perhaps combining a heuristic on order permutations, is called for.

An additional open research question arising from this work is whether a fluid
approximation, in the sense of [7], of the game can be solved. In the fluid version the
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piecewise-linear dynamics will take the form of a set of retarded non-linear differential
equations. It is unclear to the authors at this point if the corresponding fluid game can
be solved directly or perhaps only by using a mean-field approach with less restrictive
dynamics.
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