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Abstract

Pairwise comparison is a widely used approach to elicit comparative judgements from a decision maker (DM),

and there are a number of methods that can be used to then subsequently derive a consistent preference

vector from the DM's judgements. While the most widely used method is the eigenvector method, the

row geometric mean approach has gained popularity due to its mathematical properties and its ease of

implementation. In this paper, we discuss a spanning tree method and prove the mathematical equivalence

of its preference vector to that of the row geometric mean approach. This is an important �nding due to the

fact that it identi�es an approach for generating a preference vector which has the mathematical properties

of the row geometric mean preference vector, and yet, in its entirety, the spanning tree method has more to

o�er than the row geometric mean method, in that, it is inherently applicable to incomplete sets of pairwise

comparison judgements, and also facilitates the use of statistical and visual techniques to gain insights into

inconsistency in the DM's judgements.

Keywords: Decision analysis; Pairwise comparisons; Multiple criteria analysis; Graph theory; Spanning

trees.

1. Introduction

Pairwise comparison (PC) is a widely used approach to elicit comparative judgements from a decision

maker (DM). In the PC method, the DM is asked a series of questions to compare the available options in

pairs, and eventually, a prioritization method is applied to these judgements in order to estimate the DM's
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preferences in the form of a preference vector. The preference vector is a vector of weights representing the

relative strength of preferences for available options. However, since the judgements acquired from the DM

often contain inconsistency, the process of estimating a preference vector is not necessarily straightforward.

Inconsistency occurs when the direct comparative value of a pair of options does not match the indirect

comparative value derived from an intermediate third option. For example, if option A is declared twice

as preferred as option B and option B is declared three times as preferred as option C, then the indirect

comparative value suggests that option A be preferred six times more than option C and yet the DM may

directly declare option A to be say �ve times as preferred as option C, which is obviously inconsistent with

the other two comparative judgements. That is the direct comparative value of Option A and Option C (i.e.

5) does not match the indirect comparative value of Option A and Option C derived from an intermediate

third option B (i.e. 6). Of course, the number of comparisons increases with the number of options which, in

turn, increases the possibility of having at least some and possibly a high number of inconsistent comparisons.

Therefore, any prioritization method must be able to estimate the preference vector from an inconsistent

set of comparisons.

Historically, the principal right eigenvector (REV) prioritization method (Saaty, 1977) has been widely

used for estimating the preference vector for both consistent and (acceptably) inconsistent PC judgements

where, in the REV method, the PC judgements are used to construct a PC matrix, the principal eigenvector

of which is taken as the preference vector. The inconsistency is measured in terms of the Consistency Ratio

(CR) which is an Eigenvalue based measure with the PC matrix only considered acceptable if the CR value

remains below a certain limit (usually CR < 0.1). Johnson (1979) discovered that, for the same problem,

the use of left eigenvectors may produce a di�erent solution to that of the right eigenvector approach, yet

considered the use of left eigenvectors to be as equally justi�ed as the use of right eigenvectors. Therefore,

the REV method has been criticized due to this left-right eigenvector asymmetry, the use of arbitrary

thresholds for inconsistency acceptability, as well as a few other further issues (Bana e Costa and Vansnick,

2008; Barzilai, 1997; Barzilai et al., 1987). Due to these shortcomings, several other prioritization methods

for preference vector estimation have been proposed in the literature which also begin by constructing a PC

matrix from the PC judgements. For example, the logarithmic least squares (LLS) method, proposed in

(Crawford and Williams, 1985), assumes that the most preferred approach for prioritization is to �nd the

vector that minimizes the sum of the logarithmic residuals from a given set of judgements. Considering the

multiplicative properties of PC, Crawford andWilliams (1985) showed that the LLS method always generates

a unique solution, and in the case of a complete set of PC judgements, the LLS solution is identical to the
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solution calculated using the row geometric mean (RGM) of the constructed PC matrix. In addition to

these approaches, there exists a number of other optimization-based methods like direct least squares (DLS)

(Chu et al., 1979), logarithmic least absolute value (LLAV) (Cook and Kress, 1988), and fuzzy preference

programming (Mikhailov, 2000). Choo and Wedley (2004) analysed and numerically compared a variety of

these prioritization methods and concluded that there is no single best method that outperforms the others

in every situation.

Although REV is the most commonly used method, the RGM approach has gained popularity due

to its mathematical properties, and while shown to be equivalent to the LLS approach (Crawford and

Williams, 1985), RGM has additional bene�ts due to its ease of implementation (Crawford, 1987; Williams

and Crawford, 1980). IndeedWilliams and Crawford (1980) proposed using the RGMmethod rather than the

REV method due to its ease of computation, and also demonstrated its advantages arising from common

statistical and mathematical properties. Since the objective of the prioritization method is to obtain a

single preference vector from an inconsistent PC matrix, most methods therefore justi�ably focus on this

aspect, and therefore assess inconsistency only by measuring it for the purpose of accepting or rejecting the

provided PC judgements as suitable rather than analysing inconsistency. That is, while focusing on this

�single solution� aspect, an in-depth analysis of the inconsistency is neglected.

We contend that a prioritization method must have the capabilities to focus on both aspects of the

problem, i.e. production of a single �good quality� preference vector and also facilitation of an in-depth

inconsistency analysis. The latter aspect is illustrated in Subsection 4.1 by establishing an underlying

universe of potential preference vectors and then examining the degree of homogeneity within them. In this

way we can start to unravel any inconsistency in the decision maker's judgements by translating inconsistency

into a number of di�erent possible mindsets. This is important particularly of course when inconsistency is

high and so where the DM may need signi�cant help to resolve his/her inconsistency, but also sometimes

even when CR is low, as situations can arise where even though the CR value might otherwise be regarded as

acceptably low, it is clear that using this acceptability criterion may be quite inappropriate - see illustration

in sub-section 4.1.

Also, Harker (1987b) investigated incomplete sets of judgements where the DMs are allowed to respond

with �do not know� or �not sure� to some judgements. This is an important issue to investigate as the

probability of acquiring an incomplete set of PC judgements increases with an increase in the total number

of items for comparison (Fedrizzi and Giove, 2007, 2013; Schubert, 2014). Both the REV and the RGM

methods are inappropriate in such cases due to the fact that the PC matrix cannot be constructed without
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estimating/imputing the missing judgements (see sub-section 4.2 for details).

Indeed, several criteria have been suggested to compare prioritization methods in the literature. For

example, minimal deviation from the DM's judgements (Kou and Lin, 2014; Siraj et al., 2012b; Lin, 2007),

computational complexity, ability to handle incomplete sets of judgements (Srdjevic et al., 2014; Ergu et al.,

2011; Harker, 1987a), adhering to geometric properties (Barzilai, 1997; Aguaron and Moreno-Jimenez, 2003),

and ability to measure inconsistency (Brunelli and Fedrizzi, 2015; Tomashevskii, 2015; Brunelli et al., 2013).

While there is no consensus with regards to which of these �conventional� performance measures should be

used for comparative assessment, we contend that a prioritization method should meet as many of these

criteria as possible, and must also have the ability to facilitate the analysis of inconsistency.

In this context, a graph-theoretic approach was recently formulated to calculate a preference vector by

taking the average of all possible preference vectors calculated through enumeration of all possible spanning

trees (EAST) (Siraj et al., 2012a). The proposed method was shown to have a number of desirable properties

including, for example, producing a solution with minimal deviation from the PC judgements and measuring

the level of inconsistency in these judgements. However, since the original method used the arithmetic mean

to calculate the average, it failed to satisfy the criterion of adhering to geometric properties. We have

therefore investigated the use of the geometric mean of all �spanning tree� preference vectors (GMAST).

In this paper, we report on the quality of the GMAST method's preference vector and its adherence to

the conventional performance criteria, and provide some initial insights into its capability to facilitate the

analysis of inconsistency. We therefore focus on the GMAST preference vector and prove its mathematical

equivalence to that of the RGM method. This is an important �nding due to the fact that it establishes

the quality of the GMAST preference vector by proving that it has the mathematical properties of the

RGM preference vector and yet, the GMAST method in its entirety has additional bene�ts. That is, unlike

RGM, the GMAST method is inherently applicable to incomplete PC matrices (see Subsection 4.2), and also

facilitates in-depth inconsistency analysis (see Subsection 4.1 and Section 6). Indeed, with respect to all of

the performance criteria, the GMAST method in its entirety outperforms all the other existing prioritization

methods.

2. Problem Formulation

Assume that we are interested in determining a preference vector w = (w1, w2, ..., wn) where
wi

wj
repres-

ents the DM's relative preference for element i compared to element j. Because we are only interested in

the ratio wi

wj
, w is not unique and there is a class of equivalent vectors satisfying our requirement where any
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member of the class only di�ers from another member by a multiplicative scalar.

Assuming that A = [aij ] is the DM's PC matrix (i.e. aij= the acquired DM's judgement for element i

compared to element j), then the objective of a prioritization method is to derive a w from A.

Since aii = 1 for all i = 1, 2, ..., n, we have

A =

























1 a12 a13 ... a1n

a21 1 a23 ... a2n

a31 a32 1 ... ...

... ... ... 1 ...

an1 an2 ... ... 1

























and w = f (A) for some formulation f , where f is essentially the prioritization method.

There are many ways of deriving aw. For example, we could choose the kth column ak = (a1k, a2k, ..., ank)
T

of A and use this as a preference vector wk. The problem is that there is no reason why any column of A

should be more appropriate than any other.

Fortunately, if A is consistent (i.e. aij = aikakj∀i, j, k) then every wk derived from a column ak is

equivalent (i.e. only di�ers from any other by a scalar) and so all wk are equivalent to a single preference

vector w and therefore any column can be chosen to derive w. However, if A is inconsistent (i.e. ∃ i, j for

which aij 6= aikakj for some k) then the wk represented by the columns ak of A are not all equivalent and

have to be amalgamated in some way to form a preference vector estimate ŵ.

For example, using the RGM approach, we obtain the following:

ŵ =(ŵi) where ŵi =





n
∏

j=1

aij





1

n

(1)

or using the GMAST approach, we obtain the following:

ŵ =(ŵi) where ŵi =

(

η
∏

τ=1

ŵi(τ)

)
1

η

(2)

where ŵi(τ) are the preference weights in the preference vector ŵτ =
(

ŵi(τ)

)

derived from spanning tree τ

and where η = nn−2.

In fact, there are many approaches that can be used to generate ŵ and comparing their properties is a

subject of much debate. As a result of this need for comparison and the fact that any ŵ can be represented
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in several equivalent forms, it is usual to normalize ŵ in some way. The two most popular forms being

ideal-mode and distributed-mode where if û = (ûi) represents the normalized version then,

in ideal-mode:

û =
ŵ

ŵ1
=

(

1,
ŵ2

ŵ1
,
ŵ3

ŵ1
, ...,

ŵn

ŵ1

)

(3)

i.e. û is ŵ normalized to have w1 as a reference,

and in distributed-mode:

û =
ŵ

∑

i ŵi
=

(

ŵ1
∑

i ŵi
,

ŵ2
∑

i ŵi
, ...,

ŵn
∑

i ŵi

)

i.e. û is ŵ normalized to have the sum of all weights equal to 1 (i.e.
∑

ûi = 1).

For example, in the case of RGM, since from (1) with i = 1, we have ŵ1 =
(

∏n
j=1 a1j

)
1

n

. Then, using

(3) for normalization, we have ideal-mode RGM is û =(ûi) where:

ûi =
ŵi

ŵ1
=

(

∏n
j=1 aij

)
1

n

(

∏n
j=1 a1j

)
1

n

=





n
∏

j=1

aij
a1j





1

n

which by reciprocity gives:

ûi =





n
∏

j=1

aijaj1





1

n

(4)

In order to prove the equivalence of the RGM preference vector and GMAST's preference vector, we

initially focus on the ideal modes equivalence before generalizing the equivalence to any mode. We see later

that this generalization is straight forward since for any ratio-based preference vector ûi/ûj = ŵi/ŵj and

so equivalence is una�ected by the mode of representation.

However, before proving the RGM and GMAST preference vectors equivalence, we discuss some funda-

mentals of the �spanning tree� approach.

2.1. Fundamentals of the �spanning tree� approach for pairwise comparisons

It is important to note that, because of reciprocity, the PC matrix A = [aij ] contains only n(n−1)
2

information bearing values aij (which without loss of generality can be taken as the n(n−1)
2 aij in the lower

triangle of A).
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And that these n(n−1)
2 aij can be represented as a complete graph with n nodes (one node per element

and one edge per aij).

And there are η = nn−2 spanning trees of this graph (Cayley's theorem) where each spanning tree τ

consists of a subset Eτ of (n− 1) of the graph's n(n−1)
2 edges where the spanning tree τ connects node i to

node j either

• directly by the edge [i → j] (if [i → j] ∈ Eτ ), or

• indirectly by a path of edges (say [i → k1 → k2 → . . . → ks → j]) where {[i → k1], [k1 → k2], ..., [ks → j]} ⊆

Eτ (if [i → j] /∈ Eτ ).

There are therefore (n− 1) direct edges [i → j], and therefore there must be n(n−1)
2 − (n− 1) = (n−1)(n−2)

2

indirect paths [i → k1 → k2 → . . . → ks → j].

Therefore mapping each [i → j] ∈ Eτ to the corresponding aij and letting Aτ = {aij : [i → j] ∈ Eτ}.

Then [i → j] ∈ Eτ ⇐⇒ aij ∈ Aτ and |Eτ | = |Aτ | = (n− 1)

That is Aτ de�nes a su�cient subset of (n − 1) of the n(n−1)
2 aij in the lower triangle of A, and so,

analogously to the spanning trees ability to connect any node i to any node j (directly or indirectly), Aτ

can be used to construct the lower triangle of an arti�cial PC matrix Âτ of n(n−1)
2 âij(τ) in which âij(τ) is

either

• set directly as aij (if [i → j] ∈ Eτ or equivalently, if aij ∈ Aτ ), or

• derived indirectly as a transitive product of some aij (say aik1
ak1k2

. . . aksj) where {aik1
, ak1k2

, . . . , aksj} ⊆

Aτ (if [i → j] /∈ Eτ or equivalently, if aij /∈ Aτ )

There are therefore (n− 1) direct âij(τ) in the lower triangle of Âτ , and therefore there must be (n−1)(n−2)
2

indirect âij(τ) in the lower triangle of Âτ (corresponding respectively to the (n − 1) direct edges and the

(n−1)(n−2)
2 indirect paths within the spanning tree τ).

And so setting âii(τ) = 1∀i = 1, 2, ..., n and using reciprocity to derive the upper triangle of Âτ , we can

construct a necessarily consistent (arti�cial) PC matrix Âτ with

Âτ =

























1 â12 â13 ... â1n

â21 1 â23 ... â2n

â31 â32 1 ... ...

... ... ... 1 ...

ân1 ân2 ... ... 1
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3. The equivalence of the RGM and GMAST preference vectors

Before �nalizing the RGM/GMAST equivalence proof, we establish a number of supporting propositions

for GMAST below.

Proposition 1. The GMAST preference vector ŵ can be represented in ideal mode as û = (ûi) where:

ûi =

(

η
∏

τ=1

âi1(τ)

)
1

η

and each âi1(τ) is either

• set directly as ai1 (if ai1 ∈ Aτ ), or

• derived indirectly as a transitive product of a subset of aij , say aik1
ak1k2

. . . aks1, where {aik1,ak1k2
, . . . , aks1} ⊆

Aτ (if ai1 /∈ Aτ ).

Comment. Notice that the product term in the Proposition 1 equation contains reference to the �rst column

of Âτ (i.e. âi1(τ)) only. This is because each Âτ is consistent and so any column of Âτ (including the �rst

column) represents the preference vector ûτ of Âτ . Since the �rst column is naturally in ideal mode, it

makes sense to choose this column. The direct/indirect categorisation of âi1(τ) is using the result already

established in Sub-section 2.1. See proof of Proposition 1 in Appendix B.

Proposition 2. Each âij(τ) is de�ned directly as aij in 2nn−3 of the nn−2 Âτ (and therefore indirectly in the

remaining (n− 2)nn−3 Âτ ).

Comment. The proof of Proposition 2 follows from the fact that each âij(τ) is set directly as aij if and only

if the corresponding aij is chosen to form the underlying su�cient subset Aτ and the fact that any given

aij is chosen to form the underlying su�cient subset Aτ in exactly 2nn−3 of the subsets Aτ . See proof of

Proposition 2 in Appendix B.

Corollary to Propositions 1 and 2

ûi = (ai1)
2

n









(n−2)nn−3

∏

τ=1

âi1(τ)









1

η
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Comment. The proof of the Corollary to Propositions 1 & 2 follows immediately from Proposition 2 by

setting j = 1 in Proposition 2 and by re-arranging the Proposition 1 formula so that the 2nn−3 direct âij(τ)

are (w.l.o.g) re-labelled as the �rst 2nn−3 terms. See proof of Corollary to Propositions 1 and 2 in Appendix

B.

Proposition 3. The overall product of single indirect âi1(τ) terms (i.e.
∏(n−2)nn−3

τ=1 âi1(τ)) can be rearranged

as a product of pairs of direct terms aikak1, that is

(n−2)nn−3

∏

τ=1

âi1(τ) =

n−2
∏

q=1

(

aikq
akq1

)sq
∀i = 1, 2, ..., n where

n
∑

q=1

sq = (n− 2)nn−3

Comment. The proof of Proposition 3 follows from the fact that each indirect âi1(τ) corresponds to a path

connecting node i to node 1 where that path is either initially of length 2 and so of the form aikak1 for some

k, or, if longer than length 2, can be paired with its reverse path where the product of the paired indirect

âi1(τ) terms reduces to a product of terms of the form aikak1 for some k. That is, the overall product of

single indirect âi1(τ) terms (
∏(n−2)nn−3

τ=1 âi1(τ)) can always be rearranged as a product of pairs of direct terms

aikak1. See proof of Proposition 3 in Appendix B.

Proposition 4. The number of spanning trees connecting node i to node 1 indirectly by a path of length 2 via

a given node k (i.e. i → k → 1) for some k ∈ {2, ..., n} where k 6= i, is the same ∀k ∈ {2, ..., n} where k 6= i.

Comment. The proof of Proposition 4 follows from symmetry in that the number of spanning trees connect-

ing a given pair of nodes via some intermediate node must be independent of the choice of the intermediate

node. See proof of Proposition 4 in Appendix B.

Corollary to Proposition 4. The number of indirect âi1(τ) in the product
∏(n−2)nn−3

τ=1 âi1(τ) of length 2 (i.e.

where âi1(τ) = aikak1 for some k ∈ {2, ..., n}, k 6= i) is the same ∀k ∈ {2, ..., n} where k 6= i.

Comment. The Corollary to Proposition 4 follows immediately from Proposition 4 in that each indirect

âi1(τ) of length 2 corresponds exactly to a path of length 2 in the underlying tree τ . See the proof of the

corollary in Appnedix B.

Proposition 5. The number of pairs of spanning trees connecting node i to node 1 via a path of length > 2

via k1, ks ∈ {2, ..., n}, k1, ks 6= i, k1 6= ks is the same ∀{k1, ks} ⊆ {2, ..., n}, k1, ks 6= i, k1 6= ks.
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Comment. The proof of Proposition 5 follows from symmetry in that the number of pairs of spanning trees

connecting a given pair of nodes via some intermediate path de�ned by its starting/ending nodes must be

independent of the choice of these starting/ending nodes. See proof of Proposition 5 in Appendix B.

Corollary to Proposition 5. The number of indirect âi1(τ) in the product
∏(n−2)nn−3

τ=1 âi1(τ) of length > 2

(i.e. where âi1(τ) = aik1
ak1k2

. . . aks1 for some k1, ..., ks ∈ {2, ..., n}, kq 6= i and kq 6= kp∀q 6= p where

q, p = 1, ..., s) is the same for all {k1, ks} ⊆ {2, ..., n}, k1, ks 6= i.

Comment. The Corollary to Proposition 5 follows immediately from Proposition 5 in that each indirect

âi1(τ) of length >2 corresponds exactly to a path of length > 2 in the underlying tree τ . See proof of the

corollary in Appendix B.

3.1. Proof of the Equivalence of the RGM and GMAST preference vectors

3.1.1. Ideal-mode RGM

The expression for ideal-mode RGM is û = (ûi) where ûi =
(

∏n
j=1 aijaj1

)
1

n

, as given in (4), which can

be expanded as:

ûi = (ai1a11 × ai2a21 × ...× aiiai1 × ...× ainan1)
1

n (5)

Gathering the 1st and ith product pairs together then since aii = a11 = 1, we can re-arrange as:

ûi =

(

(ai1)
2
×

n−2
∏

q=1

aikq
akq1

)
1

n

= (ai1)
2

n ×

(

n−2
∏

q=1

aikq
akq1

)
1

n

(6)

where kq ∈ {2, ..., n} and kq 6= i and kq 6= kp∀q 6= p.

3.1.2. Ideal-mode GMAST

By Proposition 1, ideal-mode GMAST is û = (ûi) where ûi =
(
∏η

τ=1 âi1(τ)
)

1

η and each âi1(τ) is either

• set directly as ai1 (if ai1 ∈ Aτ ), or

• derived indirectly as a transitive product of a subset of aij , say aik1
ak1k2

. . . aks1, where {aik1,ak1k2
, . . . , aks1} ⊆

Aτ (if ai1 /∈ Aτ ).
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But by the Corollaries to Propositions 1 and 2:

ûi = (ai1)
2

n ×





(n−2)nn−3

∏

τ=1

âi1(τ)





1

η

(7)

And by Proposition 3, we have:





(n−2)nn−3

∏

τ=1

âi1(τ)





1

η

=

[

n−2
∏

q=1

(

aikq
akq1

)sq

]
1

η

where

n−2
∑

q=1

sq = (n− 2)nn−3 (8)

But by the Corollaries to Propositions 4 and 5, sq = s ∀q = 1, 2, ... (n− 2) and so

n−2
∑

q=1

sq = (n− 2) s

∴ (n− 2) s = (n− 2)nn−3

∴ s = nn−3 (9)

Therefore setting η = nn−2 and sq = s = nn−3 in (8), we obtain the following





(n−2)nn−3

∏

τ=1

âi1(τ)





1

η

=

[

n−2
∏

q=1

(

aikq
akq1

)nn−3

]
1

nn−2

=





(

n−2
∏

q=1

aikq
akq1

)nn−3



1

nn−2

(10)

Therefore taking (7) and (10) together gives:

ûi = (ai1)
2

n ×





(

n−2
∏

q=1

aikq
akq1

)nn−3



1

nn−2

= (ai1)
2

n ×

(

n−2
∏

q=1

aikq
akq1

)
1

n

Therefore this gives:

ûi = (ai1)
2

n ×

(

n−2
∏

q=1

aikq
akq1

)
1

n
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This proves that the ideal-mode solution for RGM (uRGM) is equivalent to the ideal-mode solution for

GMAST (uGMAST) .

3.1.3. Comparing the RGM and GMAST preference vectors

Comparing the result of 3.1.1 with that of 3.1.2 proves that the ideal-mode solution for RGM (ûRGM)

is equivalent to the ideal-mode solution for GMAST (ûGMAST).

It therefore follows that any ratio-based preference vectors for RGM and GMAST are equivalent. That is,

since ûRGM = û
GMAST, then ûRGM

i = ûGMAST
i ∀i = 1...n, and therefore (ûi/ûj)

RGM
= (ûi/ûj)

GMAST
∀i =

1...n. And since ûi/ûj = ŵi/ŵj for any ratio-based preference vector (and therefore for both RGM and

GMAST), then (ŵi/ŵj)
RGM

= (ŵi/ŵj)
GMAST

∀i = 1...n.

This proves that any ratio-based preference vectors obtained from RGM and GMAST are equivalent for

a PC matrix having a complete set of judgements.

4. Illustrative examples for GMAST

4.1. Inconsistency analysis

While the focus of this paper has been on the mathematical equivalence of the preference vectors for

GMAST and RGM, we have also mentioned some of the additional bene�ts of using the GMAST approach,

in particular, the ability to facilitate inconsistency analysis and the inherent ability to handle incomplete

PC matrices. We discuss the former here in this section and the latter in Section 4.2 below.

There are a number of ways in which GMAST can facilitate inconsistency analysis and we illustrate

these with the help of the 4× 4 PC matrix example taken from (Hartvigsen, 2005) i.e.

Aex =



















1 3 2 6

1/3 1 6/5 2

1/2 5/6 1 3

1/6 1/2 1/3 1



















The CR value for this matrix is 0.016 which falls well below the widely-accepted threshold of 0.1, and

so, the PC matrix is deemed eligible for using the REV method to calculate the preference vector. However,

as discussed by Hartvigsen (2005), in this example, the preference vector obtained from the REV method

gives w1 > w3 > w2 > w4 which is not the correct order of preference (since with a little thought it can

easily be seen that the correct order should be w1 > w2 > w3 > w4). In fact, all the existing methods were
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 ෝ࢛ ෝ࢛ ෝ࢛ ෝ࢛

1.000 0.599 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.599 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.599 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.278 0.167 

1.000 0.333 0.278 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.278 0.093 

1.000 0.333 0.500 0.167 

1.000 0.333 0.278 0.167 

1.000 0.333 0.500 0.167 

1.000 0.599 0.500 0.300 

C
lu

s
te

r
 2

 
C

lu
s
te

r
 3

 

C
lu

s
te

r
 1

 

Table 1: The �spanning trees� solutions for Aex (in ideal-mode)

shown to have produced incorrect preference orders (also by (Hartvigsen, 2005)). In this scenario, the value

of CR=0.016 is therefore at best misleading in terms of its assessment of acceptable inconsistency. However,

with the help of the spanning trees approach, we can generate the set of 16 possible (ideal-mode) preference

vectors directly from the DM's comparison judgements, and analyse these for inconsistency.

For example, we can choose to cluster them together according to their similarity/dissimilarity, as shown

in Table 1, where three clusters of preference vectors are clearly evident. The largest cluster (Cluster 1)

shows that on the one hand, the DM prefers Element 3 over Element 2 whereas another cluster (i.e. Cluster

2) shows that the DM seems to prefer Element 2 over Element 3. In other words, the DM is in at least two

minds, and the critical issue is with regards to his order of preference for Elements 2 and 3. The spanning

trees approach has uncovered this �two mindedness� while the other methods failed to highlight this issue

and not only this but the spanning trees approach has identi�ed where the �two mindedness� arises from.

Of course, there exist other ways to present this information on inconsistency to the DM, such as, using a

dimensionality reduction technique like principal component analysis for better visualization. For example,

Figure 1 shows the 16 preference vectors derived from Aex using the �rst two principal components (on a

logarithmic scale). Note that in this example, each cluster happens to contain a set of identical preference

vectors, and therefore, the size of each bubble is proportional to the number of preference vectors contained

within the cluster. Using this representation, it is easy to see that the single preference vector obtained from

other methods (e.g. REV and RGM) usually represents a compromise and is not necessarily representative

of any of the clusters, and therefore is not necessarily representative of any of the DM's actual mindsets.

13



REV 
RGM 

Cluster 2 

Cluster 3 

Cluster 1 

Figure 1: Visualising the �spanning trees� solutions for Aex on the �rst two principal components axes

We consider this inconsistency analysis to be an area of future research that has the potential to provide

the DM with an aid to revise their judgements, or to select a more appropriate solution interactively, as well

as to propose a new way of measuring inconsistency.

4.2. Incomplete matrices

As asserted earlier, we contend that GMAST is inherently applicable to incomplete PC matrices while

the RGM method is not and instead requires estimation/imputation of the missing elements in the PC

matrix as a preliminary step.

The reasoning behind this assertion is not immediately obvious since it is clearly theoretically possible

to calculate the row geometric mean of the non-missing elements of any given row of a matrix and so, at

�rst glance, it might seem that there is no reason why we should not adopt this `non-missing' approach.

However with the help of the example below we show that this `non-missing' approach is a fundamentally

�awed procedure in that it can lead to bizarre results.

For example, considering the following incomplete PC matrix:

A
′

ex =



















1 3 2 6

1/3 1 − 2

1/2 − 1 3

1/6 1/2 1/3 1



















which we have carefully constructed from Hartvigsen (2005) (as discussed in the previous sub-section) in

such a way that the matrix remains (perfectly) consistent although it has a missing judgement a23.
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 ෝ࢛ ෝ࢛ ෝ࢛ ෝ࢛

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

1.000 0.333 0.500 0.167 

C
lu

s
te

r
 1

 

Table 2: The �spanning trees� solutions for Aex (in ideal-mode)

Obviously, as with any case of a consistent set of preferences, there exists an ideal preference vector and

any prioritization method must be able to produce this ideal preference vector. However, we show below

that while GMAST does �nd this ideal vector, the RGM approach does not. In other words, the RGM

approach is de�cient in its ability to guarantee always �nding the ideal preference vector for a consistent

but incomplete set of preferences.That is, we can see that the judgement a23 (and therefore a32) is missing

in the matrix, but yet the ideal prioritization clearly exists due to the fact that all the non-missing elements

in the matrix are consistent with each other.

The number of spanning trees is obviously reduced as each and every one of the trees that span the

missing elements are now absent. This can be visualised in Table 2 which shows a subset of solutions

generated by the available spanning trees, and which is essentially a subset of Table 1. The remaining trees

are still consistent with each other and generate the same preference vector. Therefore, the 'non-missing'

GMAST will still produce the ideal preference vector.

The spanning tree analysis has interestingly made it obvious that all the �spanning-tree� solutions are

identical for this incomplete matrix, and are equal to (1, 0.333, 0.5, 0.167) in ideal-mode.

However, applying 'non-missing' RGM to A
′

ex, that is taking the geometric mean of the non-missing

elements in each row, gives:
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RGM(A
′

ex) =



















(1× 3× 2× 6)
1/4

(1/3 × 1× 2)
1/3

(1/3 × 1× 3)
1/3

(1/6 × 1/2 × 1/3 × 1)
1/4



















=



















2.4495

0.8736

1.1447

0.4082



















which can be represented in ideal-mode as w =

[

1 0.357 0.467 0.167

]

. This is clearly not identical to

the ideal preference vector and so does not adhere to the DM's judgements.

Having said this, if we impute the missing judgement as a23 = a21a13 = 2/3 (or a23 = a24a43 = 2/3) , the

(complete) RGM approach will provide the following results:

RGM(A
′

ex) =



















(1× 3× 2× 6)
1/4

(1/3 × 1× 2/3 × 2)
1/3

(1/3 × 2/3 × 1× 3)
1/3

(1/6 × 1/2 × 1/3 × 1)
1/4



















=



















2.4495

0.8165

1.2247

0.4082



















which gives us the ideal-mode preference vector w =

[

1 0.333 0.5 0.167

]

but which does strictly

adhere to the DM's provided judgements. That is, the example shows that applying the RGM operation

directly to incomplete PC matrices without estimating the missing judgements is fundamentally �awed.

So far, we have discussed the situation in which the PC matrix is incomplete yet consistent, which we

consider su�cient enough to highlight the shortcomings of the RGM method in so far as its ability to handle

incomplete PC matrices. However, note that in the presence of an incomplete yet inconsistent PC matrix,

the situation becomes more complex due to the fact that no ideal preference vector exists and so it is no

longer merely a matter of checking to see whether or not this ideal vector has indeed been found by the

prioritization method. Instead, we use several di�erent criteria to relatively assess the strength of these

methods. We discuss these criteria in the next section below.

5. Comparative analysis of prioritization methods

As mentioned earlier, the well-known performance criteria for comparing prioritization methods are:

minimal deviation from the DM's judgements, computational complexity, ability to handle incomplete sets

of judgements, adherence to geometric properties, and ability to measure inconsistency. As also mentioned

earlier, we contend that a method must also be able to facilitate inconsistency analysis rather than just
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measure it.

Focusing on the minimal deviation from the DM's judgements, there exist two types of deviations i.e.

cardinal and ordinal, and both have been well investigated (Siraj et al., 2015; Golany and Kress, 1993). The

optimization methods naturally outperform other methods with respect to their own (cardinal) objective

error functions, however, as reported in (Siraj et al., 2012b), the DLS method does not perform well in

the ordinal deviation criterion. Interestingly, the REV and RGM methods perform satisfactorily well in

both the cardinal and ordinal deviations criteria. Since the GMAST preference vector is mathematically

equivalent to the RGM preference vector, it also performs satisfactorily with respect to the cardinal and

ordinal deviations.

In terms of the computational complexity, the RGM method is arguably the most straightforward process

i.e. taking the geometric mean of all the values in each row of the PC matrix. By contrast, the optimization

methods are relatively more complex as they depend upon the optimization method used (e.g. simplex

method, simulated annealing, genetic algorithm etc.) and their selection of parameters (e.g. number of

iterations, acceptable threshold of error, etc.). The REV method depends upon the eigenvector calculation

process which is relatively simpler than the optimization methods but not as straightforward as the RGM

method. The complexity of the GMAST method varies with the value of n, where if all the spanning trees

are to be enumerated then the number of operations are acceptable for n < 9, i.e. within Miller's de�nition of

7± 2 as the limit on a DM's capacity for comparing elements (Miller, 1956). And with partial enumeration,

the number of operations are acceptable for n > 9.

Considering the ability of handling incomplete sets of judgements, the REV and RGM methods have no

inherent capability to deal with this issue and so they need to have the missing judgements estimated with

in a preliminary step (Ergu et al., 2011; Harker, 1987b). However, as with the optimization methods (e.g.

LLS, DLS, and LLAV), the GMAST method is able to obtain a preference vector without estimating the

missing judgements. This is an important bene�t due to the fact that PC matrices are often incomplete -

indeed, the probability of acquiring an incomplete set of comparison judgements from a DM increases with

n (Harker, 1987a).

Considering the adherence to the geometric properties, as described by Barzilai (1997), the RGM method

is the only existing method that strictly adheres to the geometric properties including the independence

of scale inversion and the independence of order of operations. Since the GMAST preference vector is

mathematically equivalent to the RGM preference vector, the GMAST method satis�es these geometric

properties also.
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With regards to measuring inconsistency, the widely used method of REV proposes the Consistency

Ratio (CR) and uses it along with a threshold to accept or reject the DM's provided comparison judgements

as suitable or not for preference vector development. Similarly, the Geometric Consistency Index (GCI) has

been introduced for the RGM method with the same purpose of accepting/rejecting the DM's judgements.

However, this is only part of the problem as although the existing methods provide a measure of inconsist-

ency, they do not attempt to facilitate inconsistency analysis. GMAST, on the other hand, does have this

ability since the �spanning trees� preference vectors can be analysed statistically to detect the impact of

inconsistency on the variability in the �nal solution - for example, �nding the clusters of similar preference

vectors and performing inter-cluster and intra-cluster analysis.

The comparative analysis of the prioritization methods can be summarized in Table 3 by evaluating each

of them across the six performance criteria which should be considered when choosing a method. The use of

label '!' implies that the method is highly suitable, '!' that the method is acceptable, while '%' implies

that the method performs poorly on the given criterion. For example, considering the �rst row �Minimal

deviation from DM judgements�, we can comfortably state that all methods perform well due to the fact

that each method has its own criterion for minimal deviation. However, this �equivalence of performance�

is not necessarily the case when comparing the methods across the other criteria. For example, considering

the second row �Minimal number of ordinal violations�, although most methods have performed equally well,

DLS does not. Furthermore, even when a method performs well in one criterion, it tends to perform less

well on another. For example, considering the third row �Acceptable computation time�, we see that REV

and RGM perform well but yet cannot be used for incomplete sets of judgements without some preliminary

process (as shown in the fourth row).

Continuing in this way, and considering the �fth row �Adhering to the geometric properties�, we see that

LLS and RGM are two of the three methods which satisfy these geometric properties, yet neither of the

methods has the ability to facilitate inconsistency analysis. That is, we see that each method performs well

on some criteria but tends to fall short of adequacy on other criteria, apart from GMAST which performs

well on all criteria.

It can therefore be concluded that although no method consistently outperforms all of the other methods,

the GMAST method is the only method which is better (or equally good) than all the rest across all the six

criteria.
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REV LLS RGM DLS LLAV GMAST

Minimal deviation from DM judgements ! ! ! ! ! !

Minimal number of ordinal violations ! ! ! % ! !

Acceptable computation time ! ! ! ! ! !

Handling incomplete set of judgements % ! % ! ! !

Adherence to the geometric properties % ! ! % ! !

Ability to measure inconsistency ! ! ! % % !

Ability to facilitate inconsistency analysis % % % % % !

Table 3: Comparison of a number of prioritization methods

6. Applications of Spanning Tree Analysis

6.1. Example

In addition to the illustrative example provided in section 4.1, we develop the inconsistency analysis ideas

further here using the famous school selection example, �rst discussed by Saaty and Rogers (1976), where

six criteria of �Learning�, �Friends�, �School life�, �Vocational training�, �College preparation�, and �Music

classes� were shortlisted for assessing the available schools. These criteria were compared in a pairwise

fashion as given below:

Acriteria =

































1 4 3 1 3 4

1/4 1 7 3 1/5 1

1/3 1/7 1 1/5 1/5 1/6

1 1/3 5 1 1 1/3

1/3 5 5 1 1 3

1/4 1 6 3 1/3 1

































The arrangement of columns is in the same order as the criteria were introduced above. The level

of inconsistency in this PC matrix was calculated using CR which turned out to be quite high (i.e. 0.24).

However, the matrix was still considered for further analysis, and the following preference vector was obtained

using the REV method (values are rounded up to two decimal places):

wEV =

[

0.32 0.14 0.03 0.13 0.24 0.14

]

The complete problem involved the selection of one out of three schools by assessing them against each

of the six criteria and coming up with an overall ranking based on their performances in these six criteria

(see Saaty and Rogers (1976) for complete details). Eventually, the authors mention that �The son went

to school A because it had almost the same evaluation as school B�. The PC matrix Acriteria can be used
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to generate 1296 (i.e. nn−2 = 64) trees and their respective preference vectors. Due to a large number of

preference vectors, we refrain from listing them all here due to the limitations of space, however, we can

visualise these vectors using the dimensionality reduction technique (as discussed before in Section 4) by

plotting each vector as a point positioned according to its projections on the �rst few principal components.

In this way, we can capture as much variance as possible in the top three components (�rst and second

components are shown in Figure 2a while the �rst and third components are shown in Figure 2b). However,

when the location of these points overlap, we represent this multiplicity by increasing the size of the point,

as shown in these �gures in the form of bubble charts. The size of each bubble represents the number of

preference vectors lying at that location.

6.2. Analysis

Figure 2 is indeed an interesting visual representation revealing all of the preference vectors that can

be obtained directly from the DM's comparative judgements. In other words, each and every one of these

preference vectors is a direct re�ection of what the DM has told us i.e. with no aggregation or adjustments

(unlike the REV or RGM preference vectors). However, as stated earlier, there is nothing to stop the DM

(or analyst) from choosing to aggregate all of these preference vectors e.g. by taking their geometric mean,

which according to the proof in Section 3, turns out of course to be identical to the RGM (notice the RGM

solution lying in the middle of all the �spanning tree� preference vectors in the two graphs).

Note that the �gure also shows that the REV and RGM preference vectors lie close to each other,

however, this leads us to a di�erent discussion which is out of the scope of this article (see (Siraj et al.,

2012b) for details).

Just replicating what we might otherwise have produced from RGM is not of course the point. Rather

we want to exploit the additional information that GMAST has provided over and above the generation of

the single GMAST/RGM preference vector and we discuss a number of ideas below.

6.2.1. Closest representative solution

Notice in Figure 2 that REV and GMAST/RGM have all produced preference vectors that lie somewhere

in the middle of the set of generated �spanning tree� preference vectors, and so in this sense, all are an average

representation of the actual preferences provided by the DM in terms of comparative judgements. All of

these preference vectors are arti�cial to a degree - and so in this sense are not speci�c representations of any

of the actual preferences provided by the DM. However, with the help of the spanning tree analysis, we could

choose to identify the �spanning tree� solution that lies closest to the GMAST/RGM preference vector (e.g.
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Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

REV 

RGM 

(a) Using �rst and second principal components

Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

REV RGM 

(b) Using �rst and third principal components

Figure 2: Visualising the �spanning trees� preference vectors for the school example
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using Euclidean distance). The idea being to choose a preference vector that is representative in both of the

senses described above - that is which is both an average representation and a speci�c representation of the

DM's preferences and so because of the latter can be thought of as a realization of the average representation.

This proposition needs more investigation for its empirical validity and is considered an area of future work.

6.2.2. Subset of trees

Alternatively, the DM (or analyst) may like to use the �spanning-trees� preference vectors to gain more

insights into the comparison judgements and preference vectors, for example, by clustering the �spanning

tree� preference vectors with respect to a distance measure. With the result that these clusters could be

o�ered to the DM as a visual aid so that the DM could choose to accept or reject some of these clusters by

inspection, and possibly, choose the geometric mean of the �ltered �spanning trees� preference vectors.

In Figure 2, we have shown the possibility of creating four clusters using the K-Means algorithm with

Euclidean distance, n.b. the use of K-Means is only for demonstration purposes; the number of clusters and

the choice of clustering algorithm are both subject to further investigation. For example, one may question

the use of K-Means as we have no a priori information about the number of clusters present in the �spanning

trees� data; and therefore, may seek for some other algorithm like DBSCAN (i.e. density-based scanning)

where the number of clusters are not required as an input.

6.2.3. Judgements revision

Another interesting use of the spanning trees analysis is to provide an interactive aid to the DM in

revising his/her comparative judgements. Since each judgement in the PC matrix contributes to a certain

number of trees, we can highlight the trees for a single judgement (interactively chosen by the DM). In this

way, the DM can locate the preference vectors a�ected by one of his/her judgements, and therefore, have

the possibility of revising the judgements if required.

We have discussed these applications to show the bene�ts of using the spanning trees analysis for facilit-

ation of inconsistency analysis, however, these applications need to be further developed as areas of future

research.

7. Conclusions

We have discussed the �spanning tree� method (i.e. GMAST) and have proved the mathematical equi-

valence of its preference vector to that of the RGM approach while highlighting the additional bene�ts of the

GMAST method in its entirety. That is, we have identi�ed an approach for generating a preference vector
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which has the mathematical properties of RGM, and yet, is inherently applicable to incomplete pairwise

comparison matrices and also facilitates the use of statistical techniques to gain insights into inconsistency.

That is, in its entirety, the GMAST method has more to o�er than other prioritization methods.

This opens up several interesting avenues for further research into the use of statistical approaches

for pairwise comparisons. For example, this creates an opportunity to examine the similarity/dissimilarity

within the set of �spanning tree� preference vectors (possibly clustering them together based on some distance

measure), or using a democratic approach to select the most preferred solution, or to present clusters of

preference vectors as a visual aid to the DM for interactive inconsistency resolution. Moreover, we have

discussed the criteria matrix from the school example, however, the same analysis can also be carried out for

all the PC matrices in a given multicriteria decision problem. For example, we can generate the �spanning-

tree� preference vectors from the PC matrices comparing schools under each of the criteria. In this case, we

have 1296 preference vectors as criteria preference vectors, and for each of these vectors, we can calculate

scores for each school using the PC matrices comparing schools. Generalizing this to m options/alternatives

and n criteria, we can calculate the number of all possible preference vectors (i.e. overall preference vectors

for a given problem) for the m alternatives as below:

Number of �spanning-trees� preference vectors for criteria PC matrix = nn−2

Number of PC matrices under the criteria = n

Number of �spanning-trees� preference vectors for options PC matrix = mm−2

Number of �spanning-trees� preference vectors for single vector from criteria PC matrix =
(

mm−2
)n

Total number of possible preference vectors = nn−2mn(m−2)

In the school example, this expression means that the total number of possible preference vectors is

944784. Considering this expression, one may argue that the number of preference vectors grows exponen-

tially and the problem may become intractable very quickly. Nonetheless, we propose to use stochastic

analysis in such cases when generating the complete set of preference vectors is impractical. We consider

this an interesting new area in preference elicitation which enables the DMs to visualize a huge number of

possible preference vectors, all of which directly emerge from the DM's given set of comparative judgements.
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Appendix A - Table of Notation

Symbol Description

n number of elements evaluated using pairwise comparison judgements

aij ratio judgement comparing ith element to jth element

A symmetrically reciprocal matrix constructed from the given set of aij

w preference vector (or preference weight vector)

wi preference score (or preference weight) of ith element

η total number of spanning trees possible for a given A (where η = nn−2)

τ a spanning tree

Eτ set of edges [i → j] in a spanning tree τ (a subset of edges from a fully-connected graph)

eij(τ) a boolean variable which is 1 when the edge [i → j] ∈ Eτ , otherwise 0

Aτ A su�cient subset of (n− 1) of the n(n−1)
2 elements in the lowers triangle of A

Âτ a consistent PC matrix constructed from the subset Aτ

âij(τ) an entry in the consistent matrix Âτ

ŵ estimated preference vector (or estimated preference weight vector)

û estimated normalized preference vector in an ideal-mode

ûi estimated normalized score (or weight) for ith element of û

ŵτ estimated ŵ from the spanning tree τ

ûτ estimated û from the spanning tree τ

ûi(τ) ith elements of ûτ

Appendix B

Proof of Proposition 1

Since Âτ is a PC matrix it can be used to derive a ŵτ , and since Âτ is consistent by construction, ŵτ

can be derived from any column of Âτ , and choosing column 1 means that ŵτ is in ideal-mode ûτ since

column 1 is
[

1, â21(τ), ..., ân1(τ)
]T

i.e. ûτ =
(

ûi(τ)

)

where ûi(τ) = âi1(τ), and so û = (ûi) where

ûi =

(

η
∏

τ=1

ûi(τ)

)
1

η

=

(

η
∏

τ=1

âi1(τ)

)
1

η
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And from Sub-section 2.1 with j = 1 each âi1(τ) is either

• set directly as ai1 (if ai1 ∈ Aτ ), or

• derived indirectly as a transitive product of a subset of aij , say aik1
ak1k2

. . . aks1, where {aik1,ak1k2
, . . . , aks1} ⊆

Aτ (if ai1 /∈ Aτ ).

Proof of Proposition 2

By the fundamentals of the �spanning tree� approach (see Sub-section 2.1), each âij(τ) in Âτ is set directly

as aij if aij ∈ Aτ . But also aij ∈ Aτ ⇐⇒ [i → j] ∈ Eτ i.e. the number of Âτ where âi1(τ) is set directly as

aij is the number of spanning trees which contain the edge [i → j].

Let

eij(τ) =















1 if [i → j] ∈ Eτ

0 otherwise

(11)

then summing eij(τ) over all spanning trees,
∑η

τ=1 eij(τ) must be the number of spanning trees which

contains the edge [i → j], and so summing
∑η

τ=1 eij(τ) over all edges means that
∑

i>j

∑η
τ=1 eij(τ) is the

total number of occurrences of all edges [i → j] over all spanning trees (counting multiple occurrences of the

same [i → j] separately).

But reversing the order of summation gives

∑

i>j

η
∑

τ=1

eij(τ) =

η
∑

τ=1

∑

i>j

eij(τ)

=

η
∑

τ=1

(n− 1) since
∑

i>j eij(τ)is the number of edges in tree τ which by de�nition is (n− 1)

= η (n− 1)

= (n− 1)nn−2 (12)

Also since by symmetry
∑η

τ eij(τ) = C for some constant C for each and every edge [i → j] (since each

edge occurs in the same number of trees).

Then

∑

i>j

η
∑

τ=1

eij(τ) =
∑

i>j

C

=
n (n− 1)

2
C (since there are n(n−1)

2 unique edges in total) (13)
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Equating (12) and (13), we have

n(n− 1)

2
C = (n− 1)nn−2

C =
2(n− 1)nn−2

n(n− 1)

C = 2nn−3

Therefore, there are 2nn−3 trees in which [i → j] ∈ Eτ and so there are 2nn−3 Aτ where aij ∈ Aτ and

so there are 2nn−3 Âτ where âij(τ) is set directly as aij . And since there are nn−2 trees in total, there are

nn−2 Aτ in total and so nn−2 Âτ in total and so there are nn−2 − 2nn−3 = (n− 2)nn−3 Âτ where âi1(τ) is

derived indirectly.

Proof of Corollary to Propositions 1 and 2. By Proposition 2 with j = 1, then w.l.o.g. gathering all

2nn−3 direct âi1(τ) together and labelling the (n − 2)nn−3 trees in which âi1(τ) is derived indirectly as

τ = 1, 2, ..., (n− 2)nn−3. Then

ûi =



(ai1)
2nn−3





(n−2)nn−3

∏

τ=1

âi1(τ)









1

η

=
[

(ai1)
2nn−3

]
1

nn−2









(n−2)nn−3

∏

τ=1

âi1(τ)









1

η

= (ai1)
2

n









(n−2)nn−3

∏

τ=1

âi1(τ)









1

η

Proof of Proposition 3

By de�nition each indirect âi1(τ) is derived from a product of a subset of aij ⊆ Aτ .

So either

a) âi1(τ) is of �length 2� i.e.

âi1(τ) = aikak1 (14)

for some k ∈ {2, ..., n} and k 6= i and the proof is complete. (Note k 6= i, 1 since if k = i or 1, then âi1(τ) = ai1

and so âi1(τ) is direct but by de�nition âi1(τ) is indirect).

OR
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b) âi1(τ) is of �length > 2� i.e.

âi1(τ) = aik1
ak1k2

ak2k3
...aks−1ks

aks1 (15)

for some k1...ks ∈ {2, ..., n}, kq 6= i∀q, s ≥ 2 and kq 6= kp∀p 6= q.

But aik1
ak1k2

ak2k3
...aks−1ks

aks1 corresponds to the path i → k1 → k2 → ... → ks−1 → ks → 1 within a

spanning tree τ connecting i to 1. And by reversing this path in τ (i.e. forming i → ks → ks−1 → ... →

k2 → k1 → 1) but keeping all other paths in τ unchanged, we can create another spanning tree τ ′ where

âi1(τ ′) is also of �length>2� and is of the form aiks
aksks−1

...ak3k2
ak2k1

ak11 so that pairing τ with τ ′ means

that:

âi1(τ) × âi1(τ ′) =
(

aik1
ak1k2

ak2k3
...aks−1ks

aks1

) (

aiks
aksks−1

...ak3k2
ak2k1

ak11

)

And rearranging this expression by pairing like terms together gives:

âi1(τ) × âi1(τ ′) = (aik1
aks1)

[

(ak1k2
ak2k1

) (ak2k3
ak3k2

) ...
(

aks−1ks
aksks−1

)]

(aiks
ak11)

which by reciprocity:

= (aik1
aks1)

[(

ak1k2

1

ak1k2

)(

ak2k3

1

ak2k3

)

...

(

aks−1ks

1

aks−1ks

)]

(aiks
ak11) (16)

= aik1
aks1 × 1× ...× 1× aiks

ak1th1

= (aik1
ak11)× (aiks

aks1) (17)

Therefore, each âi1(τ) estimated through a path of length greater than 2 can be paired with another

âi1(τ ′) estimated through another path of length greater than 2, and more interestingly, the product pair of

the form âi1(τ)× âi1(τ ′) can be reduced to a product pair of the form (aik1
ak11)× (aiks

aks1). That is, taking

(14) and (17) together, the product of the terms of the form âi1(τ) can be reduced to a product of the terms

of the form aikak1 with the number of terms in the product
∏(n−2)nn−3

τ=1 âi1(τ) preserved, so that

(n−2)nn−3

∏

τ=1

âi1(τ) =

n−2
∏

q=1

(

aikq
akq1

)sq

where sq is the total number of occurrences of aikq
akq1 in all the trees in which âi1(τ) is derived indirectly

and where
∑n−2

q=1 sq = (n− 2)nn−3.
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Proof of Proposition 4

Let

τ = a spanning tree connecting node i to node 1 indirectly by a path of length 2,

Tk = {τ | τ connects node ito node 1via a path i → k → 1 for some k ∈ {2, ..., n} where k 6= i}

nk = number of τ in Tk

Then if k1 and k′1∈ {2, ..., n} and k1 6= k′1 and k1, k
′

1 6= i and if τ ∈ Tk1
, then τ connects node i to node

1 indirectly via a path i → k1 → 1 and as τ is a spanning tree, k′1 must be connected within τ .

But by reversing the roles of k1 and k′1 in τ (keeping all else unchanged) we can create a spanning tree

τ ′ in which node i is connected to node 1 indirectly via a path i → k′1 → 1, and so τ ′ ∈ Tk′

1
.

That is, if k1, k
′

1 ∈ {2, ..., n} and k1 6= k′1 and k1, k
′

1 6= i , then for each τ ∈ Tk1
∃ a τ ′ ∈ Tk′

1
, and so

nk1
6 nk′

1
.

But using the same argument in reverse, nk′

1
6 nk1

and so nk1
= nk′

1
∀ k1, k

′

1 ∈ {2, ..., n} , k1 6=

k′1, k1, k
′

1 6= i i.e.

nk =a constant ∀k ∈ {2, ..., n} where k 6= i.

Proof of Corollary to Proposition 4. Each indirect âi1(τ) in the product
∏(n−2)nn−3

τ=1 âi1(τ) of length 2 is of

the form âi1(τ) = aikak1 for some k ∈ {2, ..., n}, k 6= i, and corresponds to a path of length 2 (i.e. i → k → 1)

within the spanning tree τ . And so the corollary follows immediately from Proposition 4.

Proof of Proposition 5

Let τ × τ̃ denote a pair of spanning trees connecting node i to node 1 by a path of length > 2 where the

pair of trees are identical apart from the path connecting node i to node 1 in one tree being the reverse of

the path connecting node i to node 1 in the other tree.

Let Tk1ks
= {τ × τ̃ where node i is connected to node 1 by the path i → k1 → k2 → ... → ks → 1

in one tree (say τ) but by the path i → ks → ks−1 → ... → k1 → 1 in the other tree (say τ̃), for some

{k1, ks} ⊆ {2, ..., n}, k1, ks 6= i, k1 6= ks.}

nk1ks
= number of pairs τ × τ̃ in Tk1ks

.

Then if {k1, ks} ⊆ {2, ..., n}, k1, ks 6= i, k1 6= ks and if {k′1, k
′

s} ⊆ {2, ..., n}, k′1, k
′

s 6= i, k′1 6= k′s and

{k1, ks} 6= {k′1, k
′

s}.

Then if τ × τ̃ ∈ Tk1ks
, then by reversing the roles of k1 & ks and k′1 & k′s respectively in τ × τ̃ , we can

create another spanning tree pair τ ′ × τ̃ ′ ∈ Tk′

1
k′

s
.
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That is, if {k1, ks} ⊆ {2, ..., n}k1, ks 6= i k1 6= ks and if {k′1, k
′

s} ⊆ {2, ..., n}k′1, k
′

s 6= i k′1 6= k′s and

{k1, ks} 6= {k′1, k
′

s} and if τ × τ̃ ∈ Tk1ks
∃τ ′ × τ̃ ′ ∈ Tk′

1
k′

s
so that nk1ks

6 nk′

1
k′

s
.

But using the same argument in reverse, we have nk′

1
k′

s
6 nk1ks

, and so

nk1ks
= nk′

1
k′

s

∀ {k1, ks} ⊆ {2, ..., n}, k1, ks 6= i, k1 6= ks

{k′1, k
′

s} ⊆ {2, ..., n}, k′1, k
′

s 6= i, k′1 6= k′s

{k1, ks} 6= {k′1, k
′

s}

i.e. nk1ks
= a constant ∀{k1, ks} ⊆ {2, ..., n}k1, ks 6= i k1 6= ks.

Proof of Corollary to Propotion 5. Each indirect âi1(τ) in the product
∏(n−2)nn−3

τ=1 âi1(τ) of length > 2 can

be paired with a partner âi1(τ̃) so that âi1(τ)× âi1(τ̃) reduces to a product of the form (aik1
ak11)× (aiks

aks1)

for some {k1, ks} ⊆ {2, ..., n}k1, ks 6= i k1 6= ks, which corresponds to a pair of paths of length > 2 in a pair

of spanning trees τ ′ × τ̃ ′, and so the corollary follows immediately from Proposition 5.
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