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ABSTRACT 

In this paper, a three-stage supply chain network, with multiple manufacturing plants, 

distribution centers and retailers, is considered. For this supply chain system we develop 

three different approaches, (i) an ideal plan for an infinite planning horizon and an updated 

plan if there are any changes in the data, (ii) a predictive mitigation planning approach for 

managing predictive demand changes, which can be predicted in advance by using an 

appropriate tool, and (iii) a reactive mitigation plan, on a real-time basis, for managing 

sudden production disruptions, which cannot be predicted in advance. In predictive 

mitigation planning, we develop a fuzzy inference system (FIS) tool to predict the changes in 

future demand over the base forecast and the supply chain plan is revised accordingly well in 

advance. In reactive mitigation planning, we formulate a quantitative model for revising 

production and distribution plans, over a finite future planning period, while minimizing the 

total supply chain cost. We also consider a series of sudden disruptions, where a new 

disruption may or may not affect the recovery plans of earlier disruptions and which 

consequently require plans to be revised after the occurrence of each disruption on a real-time 

basis. An efficient heuristic, capable of dealing with sudden production disruptions on a real-

time basis, is developed. We compare the heuristic results with those obtained from the 

LINGO optimization software for a good number of randomly generated test problems. Also, 

some numerical examples are presented to explain both the usefulness and advantages of the 

proposed approaches. 

Keywords: supply chain; mitigation; production disruption; quantitative model; heuristic. 

 

1. INTRODUCTION  

A supply chain is a network that receives inputs or raw materials from suppliers, produces 

final products at its manufacturing facilities and delivers those products to customers through 

a distribution network. Every manufacturing and service industry is part of a supply chain 

network which can have multiple manufacturing plants, multiple distribution centers (DCs) 

and multiple retailers. There are numerous industries, such as the pharmaceutical, textile and 

manufacturing, that supply, produce and distribute products using a supply chain network. 
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Depending on the number of entities in each tier of a network, it can be very complex, and in 

a real-life one, any information can be changed at any time. Therefore, an ideal plan should 

be updated to incorporate changes in order to generate a better plan. Although some changes 

in data may be known well in advance, others may not, but can instead be detected using 

appropriate prediction tools. Such predictions will help to generate a better supply chain plan 

than the one designed for ideal conditions. In real-world supply chain system, the plan should 

be revised if there are any changes in data and/or if any future changes that can be predicted 

in advance. In this paper, we aim to develop both updated and predictive mitigation plans in a 

three-stage supply chain system to incorporate any known changes in data and predicted 

changes in demand respectively. 

Supply chain entities can also face many sudden uncontrollable problems, which cannot be 

predicted in advance, such as a production disruption in a manufacturing plant, which can be 

defined as any form of interruption in the manufacturing system, including a material 

shortage, machine breakdown, or any other form of accidental or man-made disturbance 

(Paul et al., 2016a). Disruption management is an important research topic in supply chain, as 

is obvious in the following examples. A recent study conducted in 2015 by the Business 

Continuity Institute (Supply Chain Resilience Report, 2015) reports that, although the 

awareness of supply chain risks is increasing, many companies remain exposed to high levels 

of risk. It states that 74% of survey respondents from 426 organizations had experienced at 

least one disruption in their supply chain, with 6-20 disruptions per year for 50% of the 

companies, and the financial losses varied from 50 thousand to 500 million euros. More than 

23% of the companies reported that the loss due to a disruption is at least one million euros. 

Supply chain disruptions not only cause financial loss but can also damage a company's 

brand or reputation as a result of third-party failures. It has been reported that 27% companies 

have suffered damage to their reputations, 58% lost productivity and 38% lost revenue. 

According to Sodhi and Chopra (2004), a disruption at the Royal Phillips Electronics plant in 

New Mexico on March 17, 2000 was caused by lightning strikes which led to a massive surge 

in the surrounding electrical grid, and later, a resultant fire damaged millions of microchips. 

Nokia Corporation and Ericsson were two major customers of the Phillips plant. To obtain a 

backup supply, immediately after this fire disaster, Nokia took proactive measures by 

redesigning its products and switching its chip orders to other Phillips plants. In contrast, as 

Ericsson employed a single sourcing policy and a slow disruption recovery plan, its 

production was disrupted for months, which caused 400 million US dollar in lost sales. From 

http://www.thebci.org/
http://www.thebci.org/
http://logistics.about.com/od/supplychainintroduction/a/into_scm.htm
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the above two examples, it is clear that supply, production and distribution systems can be 

unbalanced due to a disruption, and consequently, organizations can face enormous financial 

losses as well as loss of customer goodwill. Though disruption mitigation is an important 

research topic in supply chain, in the literature a very few papers developed quantitative 

reactive mitigation approaches in production-inventory system but no study extended the 

concept for multi-stage supply chain system. Therefore, it is essential to extend the concept of 

disruption recovery to develop an appropriate reactive mitigation model for a supply chain 

system for minimizing the effect of a sudden disruption. To fulfil this gap in the literature, 

this paper also aims to develop a new quantitative reactive mitigation model for managing 

both single and a series of sudden production disruptions in a three-stage supply chain 

system. 

Production-inventory system is considered as a sub-set of a practical supply chain system. 

For this reason, most researchers concentrated their study in production-inventory system and 

some others extended their work to supply chain environments. At first, the researchers 

focused on developing models under ideal conditions, for example, based on distribution 

systems with a single product, single warehouse and multiple retailers (Petrovic et al., 2008), 

a single manufacturer and single retailer, with the demand and manufacturing cost fuzzy 

variables (Zhou et al., 2008), a single period and two-stage supply chain coordination 

problem (Xu and Zhai, 2010) and a three-stage system consisting of supplier, manufacturer 

and retailer producing a combination of perfect and/or defective items (Sana, 2011; 2012). 

Recently, Pal et al. (2012) developed an inventory model for multiple items production with 

multiple suppliers, one manufacturer and multiple retailers with deterministic demand. A few 

more studies on supply chain models under ideal conditions, can be found in Purnomo et al. 

(2012), Reza Nasiri et al. (2014), Paul et al. (2014), and Heydari (2014),.  

The above studies, and many others, used perfect supply chain environments. In real-life 

supply chain systems, there may be some known changes in data, such as changes in cost and 

capacity. Although some changes in data may be known well in advance, others may not, but 

rather need to be predicted using an appropriate tool. Most of the papers considered 

traditional forecasting techniques to predict supply change events (Syntetos et al., 2016). But 

an appropriate prediction tool, which can be used to predict any future changes over the base 

forecast, can be helpful for developing an efficient quantitative predictive mitigation plan. In 

this paper, one of our objectives is to develop an appropriate prediction tool to predict the 
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changes in demand and to develop a quantitative predictive mitigation plan based on the 

prediction. 

Over the last decade, developing reactive mitigation plan for managing sudden disruption has 

become an important research topic in supply chain system. If a system is disrupted for a 

given period of time (known as a disruption period/duration), it is necessary to revise, after a 

disruption, the production schedule (known as a recovery plan) for some periods in the future 

(known as a recovery time window) until the system returns to its normal schedule 

(Hishamuddin et al., 2012). In modelling, the recovery time window can be either user 

specified or a variable that must be determined. In recent years, Fahimnia et al. (2015), 

Snyder et al. (2016), Paul et al. (2016a) provided an extensive review of supply chain risk 

and disruption management models. However, in this paper, we review mainly recent 

researches on sudden disruption recovery models in production-inventory and supply chain 

systems.  

Firstly, we discuss the disruption recovery models in production-inventory systems. Xia et al. 

(2004) proposed a general disruption management approach for a two-stage production and 

inventory control system that incorporates a penalty cost for deviations of the new plan from 

the original. They introduced the concept of a disruption recovery time window that was 

considered in most recent models. Eisenstein (2005) introduced a flexible dynamic produce-

up-to policy that is able to respond to a disruption by adjusting the amount of idle time during 

recovery and re-establishes the target idle time as a schedule is recovered. A production 

disruption recovery model, for a single disruption within a single-stage single-item 

production system, for obtaining a recovery plan within a user-defined time window was 

developed by Hishamuddin et al. (2012), which was basically an extension of the model of 

Xia et al. (2004). This study considered back orders and lost sales options as recovery 

strategies. This concept was further extended to develop a real-time disruption recovery 

model for managing both single and multiple disruptions in a single-stage production-

inventory system (Paul et al., 2015a), a two-stage imperfect production-inventory system 

(Paul et al., 2014a), and a three-stage mixed production environment (Paul et al., 2015b) . In 

the same direction of research, an approach for managing demand fluctuation on a real-time 

basis in a supplier-retailer coordinated system was developed by Paul et al. (2014b). In the 

same research area, some other recovery models for deterministic demand in a production-

inventory system can be found in Gallego (1994), Qi et al. (2004), Tang and Lee (2005), 

Yang et al. (2005), Paul et al. (2013) and Paul et al. (2014c). 
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In the supply chain context, the delivery disruptions have been studied by a few researchers. 

Giunipero and Eltantawy (2004) discussed a transportation disruption in general in their 

study, but did not specify strategies for facing it. Wilson (2007) investigated the effects of a 

transportation disruption on the performance of a supply chain by using a system dynamics 

simulation in a 5-echelon supply chain system. Unnikrishnan and Figliozzi (2011) formulated 

a mathematical model for a new type of freight network assignment problem in a dynamic 

environment in the presence of probable network disruptions or significant delays. Recently, 

Hishamuddin et al. (2013) developed a transportation disruption recovery model in a two-

stage, single supplier and single retailer, supply chain system. Recently, the recovery 

modelling concept was further extended  for managing a supply disruption in a two-stage 

supply chain consisting of a single supplier and single retailer (Hishamuddin et al., 2014) and 

for managing both single and multiple sudden supply disruptions in a three-stage supply 

chain with multiple suppliers and retailers (Paul et al., 2016b). Over the last few years, some 

other supply disruption management approaches have been studied by Li et al. (2004), 

Tolmin (2006), Craighead et al. (2007), Chopra et al. (2007), Wu et al. (2007), Ross et al. 

(2008), Mohebbi and Hao (2008), Qi et al. (2009), and Hult et al. (2010).  

There are several gaps in the literature. It is clear that most researchers focused on supply 

chain coordination and optimization problems under ideal conditions, although a number of 

studies developed recovery and reactive mitigation models after the occurrence of a sudden 

disruption. However, no study has been found that predicts the possible changes in future 

demand that is used as input to the mitigation planning model in supply chain environment. 

Moreover, most past studies focused mainly on a single disruption in production and a very 

few focused on a series of disruptions on a real-time basis, but they are again for a single 

supplier and single retailer, which limits their applicability in real-life situations (Paul et al., 

2016a). Interestingly, no study has been found which developed a quantitative recovery for 

managing sudden production disruption in a supply chain with multiple entities in each stage 

of the system. 

In this paper, firstly, we have formulated a model to generate an ideal supply chain plan. If 

any variation in data in any period is observed, this plan will be updated for a finite period on 

a rolling horizon basis with the new data. In real-life situations, some changes may not be 

known in advance, but can be predicted using an appropriate prediction tool. Therefore, in 

this paper, a predictive mitigation planning approach is developed, with the predicted data 

used to generate a revised plan in advance on a rolling planning horizon basis. A fuzzy 
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inference system (FIS) based tool is used to predict future changes in demand, and then such 

predicted demand data are used to develop a revised plan in advance, which is said to be a 

predictive mitigation plan. Finally, we have developed a disruption recovery (reactive 

mitigation) model for a supply chain network consisting of multiple manufacturing plants, 

DCs and retailers. We consider disruptions due to technical and internal problems, which take 

place more frequently (repetitive type) and are for short durations. In real-life, a system can 

face a series of production disruptions (known as multiple disruptions), one after another, at 

any plant. If a new disruption occurs at any plan during the revised planning window of a 

previous production disruption, known as a dependent disruption, the production and 

distribution plan must be revised again while considering the effects of both disruptions. 

Therefore, this can be a continuous process that must be dealt with on a real-time basis. A 

real-time disruption management scenario in a three-stage supply chain network, where the 

disruptions are not known a priori, is considered in this study. This means that the current 

plan is revised immediately after a disruption occurs, as this disruption is impossible to 

predict. For experimentation, as we assume that any disruption event is random, we generate 

disruption scenarios using a uniformly random distribution (Paul et al., 2015b) to determine 

characteristics such as the disruptions’ start times and durations. However, it is possible to 

generate disruption scenarios by using other probability distributions. To achieve this 

objective, we develop a new mathematical and heuristic approach for obtaining a recovery 

plan after the occurrence of a single disruption or a series of disruptions on a real-time basis. 

The results for both the predictive and reactive mitigation approaches are discussed and some 

numerical examples are presented to demonstrate their usefulness. 

The main contributions of this paper can be summarized as follows. 

i. Developing an updated supply chain plan for a finite period on a rolling horizon 

basis to incorporate any changes in data. 

ii. Developing a predictive mitigation planning approach for obtaining a better supply 

chain plan. A fuzzy inference system based tool is designed to predict any changes 

in base forecasted demand, based on information about fluctuation, unexpected 

incident and natural incident, and the supply chain plan is accordingly revised well 

in advance. 

iii. Developing a mathematical model for managing sudden production disruptions 

which cannot be predicted in advance. The supply chain plan is revised, after the 
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occurrence of a disruption, for a finite period into the future, on a real-time basis, to 

minimize loss due to the disruption. 

iv. Developing a new heuristic for generating recovery plan for the sudden production 

disruption problem in iii. The heuristic results are compared with those from another 

established solution technique for a good number of randomly generated test 

problems.  

v. Extending the heuristic to deal with multiple disruptions, one after another as a 

series, on a real-time basis. This heuristic is capable of determining a recovery plan, 

after the occurrence of each disruption, for as long as disruptions take place in the 

system. 

The paper is organized as follows. In Section 2, we describe the problem, along with the 

notations and assumptions used in this study. In Sections 3 and 4 respectively, we present the 

model formulation and solution approach. In Section 5, we discuss the experimentation and 

analysis of results. Applicability of the model and value in practice are presented in Section 

6. Finally, we provide a summary of, and future guidelines for, our research in Section 7. 

2. PROBLEM DESCRIPTION 

Firstly, this paper develops a supply chain model under ideal conditions for an infinite 

planning horizon. Basically, this ideal plan is used to determine the cycle length, which we 

consider the length of a period required for planning and analysis. A three-tier supply chain 

network with multiple entities in each tier (such as manufacturing plants, DCs and retailers) 

is considered, as presented in Figure 1. In the ideal system, products are produced in the 

manufacturing plants and then are moved to DCs, and finally, distributed to retailers from the 

DCs according to retailers’ demands. The total supply chain cost is minimized to obtain the 

ideal production and distribution plan. The ideal system is formulated mathematically as a 

constrained programming problem, where the objective is to minimize the total supply chain 

cost, subject to capacity, distribution and demand constraints. The decision variables are the 

production quantity in each plant  , and the quantities transported from plant   to DC  , and 

from DC   to retailer  .  
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 Figure 1: Ideal supply chain network for infinite planning horizon 

In a real-life situation, a supply chain’s input data may vary at any time due to, for example, 

changes in demand, cost, production capacity and amount of raw materials. If there is any 

variation in any period, the ideal plan must be updated with the new known information. In 

fact, the model is run on a rolling horizon basis to incorporate changes in the data and is 

known as an updated plan. 

Some changes in the data may be known well in advance, as discussed above. However, 

others may not be, but can be predicted using appropriate prediction tools. Such predictions 

will help to generate a better plan than the one developed under ideal conditions. In this paper, 

the predicted data are used with the rolling horizon planning model to generate the revised 

plan, which is known as a predictive mitigation plan, and its methodology is illustrated in 

Figure 2. We use historical data to calculate the base forecast which we update by predicting 

some future event, such as a demand fluctuation, unexpected incident and natural incident, 

with examples presented in Table 1. We use qualitative information of the presence (Yes or 
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No) of future events, and based on such information, we develop a rule and logic-based fuzzy 

inference system (FIS) to quantify the value of a qualitatively predicted event, with its 

working principle and different components illustrated in Figure 3 (Paul, 2015). A brief 

description of these components is as follows. 

i. FIS Editor  

In this editor, input and output variables are designed. The number of input and 

output variables can be edited.  

ii. Membership Function Editor 

In this editor, membership functions are designed for input and output linguistic 

variables. There are few types of membership functions such as Triangular, 

Gaussian, and Trapezoidal etc. The types and number of membership functions 

can be edited. 

iii. Rule Editor 

In this editor, pertinent rules are designed to relate the input linguistic variables to 

output. The numbers of rules are depended on the specific problem and number of 

input and outputs. These rules can be edited in this editor. 

iv. Rule Viewer 

In this viewer, decision maker can give input the value of multiple input variables 

and obtain the value of output of corresponding input. 

v. Surface Viewer 

In this viewer, the graphical relationship between input and output variables can 

be perceived. Based on the developed membership functions and pertinent rules, 

these relationships are obtained. 

As we have to predict a change of demand based on three different input events, a FIS can be 

a useful tool, because FIS is an efficient tool for multi-criteria decision making (Paul, 2015). 

So, in this paper, the changes over the base forecast of demand are predicted by using a FIS 

tool, based on the qualitative information of future events, such as a demand fluctuation (Paul 

et al., 2014b), an unexpected incident (Sodhi and Chopra, 2004), or a natural incident 

(Cavallo et al., 2014). If there is no future event, we use the base forecast for a prediction on 

which we base our revision of the supply chain plan on a rolling horizon. A detailed 

description and step-by-step methodology of FIS with an application can be found in Ahmed 

et al. (2013), and Hasan et al. (2014).  

We use the following steps to predict the changes in demand. 



10 

 

Step 1: Determine input for the changes in demand and deploy in FIS editor. 

Step 2: Develop the linguistic variables and membership functions for input and output. 

Step 3: Develop the membership functions for linguistic variables by using membership 

function editor. 

Step 4: Develop pertinent rules to relate input and output by using rule editor. 

Step 5: Determine the changes in demand by providing information of input values in rule 

viewer. 

The main advantages of using FIS tool, over the traditional prediction tools, are as follows. 

i. It has intelligent capability to predict the output based on available input 

information (Paul, 2015). 

ii. It is capable to handle multiple-criteria (Paul, 2015; Paul and Azeem, 2010). 

iii. The rules are easy to write, and as many rules as necessary can be supplied to 

describe the system adequately (Ahmed et al., 2013). 

 

 

Historical data Base forecast

Additional information

Future event:

-Demand fluctuation (1)

-Unexpected incident (2)

-Natural incident (3)

Prediction
FIS

Update

 

Figure 2: Process of prediction for predictive mitigation 

Table 1: Examples of future events (Y -yes and N -no) 

Event 
Predicted period 

1 2 ….. F 

Demand fluctuation N N ….. Y 

Unexpected incident N Y ….. N 

Natural incident Y N ….. N 
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Figure 3: Rule and logic-based FIS (Paul, 2015) 

Finally, this paper develops a recovery plan for managing sudden production disruptions, 

which is actually a reactive mitigation plan. In real-life situations, any supply chain can face 

a sudden disruption at any time. After such an occurrence, the production and distribution 

plan must be revised for a finite period in the future, so that losses can be minimized and the 

system returns to its ideal plan as quickly as possible.  

A production disruption is a familiar event in any manufacturing environment. If there is a 

sudden disruption at any plant, as that plant will be inoperable for a certain period of time, 

there will be a loss of production quantity. Afterwards, the main objective is to minimize that 

loss by revising the production and distribution plan for a finite period in the future, with the 

revision mechanism presented in Figure 4. After the occurrence of a sudden disruption with a 

duration of    , the supply chain plan is revised for a future finite planning period (e.g., for 

the next   periods), which is known as a recovery window.  

Disruption Period 1 Period 2 Period 3 Period 4 ….. Period M

Tdn

Recovery window (finite planning period)
 

Figure 4: Mechanism of recovery plan for managing sudden disruption 

The considered system may face multiple disruptions, one after the other in a series, within 

its recovery window. In the case of a sudden series of disruptions, the new disruptions may or 
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may not affect the recovery plans of the previous disruptions. If a disruption occurs when the 

ideal plan is running, or after the recovery window of another disruption, then that disruption 

can be considered as an independent disruption and the recovery plan can be made similar to 

a single sudden disruption.  

If a new sudden disruption occurs during the recovery window of another disruption, a 

revised recovery plan, incorporating the effect of both disruptions, must be derived, and this 

makes the algorithm complex. That disruption can be considered as a dependent disruption. It 

is a continuous process that must be dealt with on a real-time basis. This can be done by 

updating some of the parameters in the same mathematical model, for example, the newly 

disrupted plant, the start time of the disruption, the disruption duration, the quantity produced 

before starting the revised plan and the demand to be filled, to represent the changed scenario 

in order to re-optimize the plan for the current disruption. After every disruption, the plan is 

revised for a finite period in the future, for as long as disruptions occur in the system. 

Our proposed heuristics for reactive mitigation are capable of dealing with following:   

(i) single occurrence of sudden disruption,  

(ii) a series of sudden independent disruptions, and  

(iii) a series of a mix of independent and dependent disruptions. 

In this study, the three different policies for managing a sudden disruption are considered. We 

assume that both manufacturer and customer agree with these policies. The policies are as 

follows: 

i. Back orders: if a production quantity is lost, the portion of demand that cannot be 

filled at the scheduled time, but that will be delivered at a later date when 

available, is known as the back orders quantity (Paul et al., 2014a). This policy 

uses the spare capacity of manufacturing plants to produce the unfulfilled demand. 

ii. Lost sales: if the system is not capable of filling demand after a disruption and 

customers will not wait for stock to be replenished, demand is lost (Paul et al., 

2014a). 

iii. Outsourcing: if the production system is not capable of filling the demand on 

time, as an alternative to lost sales a manufacturer may want to purchase some 

items from another company at a higher cost and then deliver those items to the 

customers (Chen and Xiao, 2015). 
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In this paper, for reactive mitigation planning, we consider different policies such as back 

orders, lost sales and/or outsourcing, with an objective of minimizing the total cost. We 

consider lost sales and outsourcing policy are substitute of each other because these options 

are applicable when the system is not capable of recovering with its spare capacity and the 

back orders option. In such case, the management will have two options, either lost sales or 

outsourcing. Sometimes, outsourcing is not a good option because it may involve additional 

cost resulting in a higher cost than the lost sales. So outsourcing option will be utilized, 

instead of lost sales, in the recovery plan only when the outsourcing cost is less than the lost 

sales cost.  

 

2.1 Notations used in study 

The following notations are used in this study to formulate the mathematical model. 

  Plant index 

  DC index 

  Retailer index 

  Number of plants 

  Number of DCs 

  Number of retailers 

   Production quantity of plant   under ideal conditions 

    Maximum production capacity of plant   under ideal conditions 

    Maximum handling capacity of DC    

    Transportation quantity from plant   to DC   under ideal conditions 

    Transportation quantity from DC   to retailer   under ideal conditions 

   Demand of retailer   

   Production cost per unit at plant   ($ per unit) 

    Holding cost per unit per period at plant   ($ per unit per period) 

    Handling cost per unit at DC   ($ per unit) 

    Holding cost per unit per period at retailer   ($ per unit per period) 

     Transportation cost per unit from plant   to DC   ($ per unit) 

     Transportation cost per unit from DC   to retailer   ($ per unit) 

    Operating cost of DC   ($ per period) 

    Spare capacity of plant   

   Start time of disruption at the n
th

 plant as fraction of period  
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    Disruption duration for the n
th

 plant as fraction of period 

   
  Production quantity after disruption at plant   in period m 

    
  Transportation quantity from plant   to DC   after disruption in period   

    
  Transportation quantity from DC   to retailer   after disruption in period   

   
  Quantity received by retailer   after disruption in period   

  Lost sales cost per unit ($ per unit) 

  Back orders cost per unit per period ($ per unit per period) 

  Outsourcing cost per unit ($ per unit) 

  Number of periods in recovery window 

 

2.2 Assumptions of study 

In this study, we make the following assumptions. 

i. A single type of item is produced in the system.  

ii. There is no inventory buffer and safety stock in the system. 

iii. In predictive mitigation, only changes in demand are predicted.  

iv. Disruptions at different manufacturing plants are considered to be independent. 

v. The reactive mitigation plan considers back orders, lost sales and/or outsourcing 

policies to recover from a sudden disruption. Both manufacturer and customers 

agree with these policies. 

vi. The number of periods in a recovery window is decided by the management of the 

manufacturing organization. 

To develop and analyze mitigation plans in a supply chain, we consider that a single item is 

produced in the system, as has many other researchers in the literature. We also assume that 

there is no inventory buffer and safety stock as we consider that the cost for these is too 

expensive. In predictive mitigation planning, we predict the changes in base forecasted 

demand only by using the FIS tool. In reactive mitigation planning, we consider that sudden 

disruptions can happen at differing manufacturing plants, but they are independent, as they 

are located in different geographical area. To make the disruption recovery meaningful in 

practice, the reactive mitigation plan will be generated after each disruption is experienced by 

the system. In other words, the reactive mitigation plan is generated on a real-time basis. We 

consider back orders (Paul et al., 2014a), lost sales (Paul et al., 2014a), and outsourcing 

(Chen and Xiao, 2015) policies to recover from a sudden disruption, which is also widely 

used in both literature and practice. Finally, we assume that the number of periods in a 
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recovery window is decided by the management of each manufacturing organization, and that 

both other manufacturers and customers agree with this. 

 

3. MODEL FORMULATION 

In this section, we formulate the mathematical model for both an ideal and a disrupted supply 

chain system. The ideal plan is updated if there are any changes in the data and is also revised 

according to any prediction of future changes for a finite planning period. In the case of 

managing a disruption, the model is re-formulated to incorporate the effect of a disruption 

and the production and distribution plan is revised for a finite planning period. After the 

recovery window, the production and distribution plan reverts to its ideal plan. 

 

3.1 Formulation of ideal plan 

In this section, different costs are calculated to formulate the mathematical model for the 

ideal system. The production cost is determined as the per unit production cost multiplied by 

the production quantity, the average holding cost as the unit holding cost multiplied by the 

total inventory, the transportation cost as the unit transportation cost multiplied by the 

transportation quantity, the total operating cost as the sum of the operating cost of each DC, 

and the handling cost of distribution is the unit handling cost multiplied by the total handling 

quantity. Finally, the different costs are summed to obtain the objective function to be 

minimized subject to capacity, distribution and demand constraints, where   ,      and     are 

decision variables. The final mathematical model is considered as a constrained programming 

problem. 

Costs at plant 

Production cost  ∑     
 
           (1) 

Average holding cost  ∑
 

 
     

 
          (2) 

Transportation cost  ∑ ∑        
 
   

 
         (3) 

Costs at DCs 

Operating cost  ∑    
 
           (4) 

Handling cost  ∑ ∑    
 
   

 
             (5) 

Transportation cost  ∑ ∑        
 
   

 
         (6) 
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Costs at retailer 

Average holding cost  ∑
 

 
     

 
         (7) 

Objective function 

The total supply chain cost (  ), which is the objective function, is derived using equations 

(1) to (7) and equals to the total plant cost + total DC cost + total retailer cost, 

   ∑    

 

   

 ∑
 

 
     

 

   

 ∑∑       
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           (8) 

Here,   ,     and     are decision variables, subject to the following constraints. 

       ; ∀           (9)  

    ∑    
 
   ; ∀          (10)  

∑    
 
    ∑    

 
    ; ∀         (11)  

∑    
 
        ; ∀          (12)  

∑    
 
      ; ∀          (13)  

∑   
 
    ∑   

 
            (14)  

  ,     and     ≥ 0 and integer; ∀           (15)  

The production quantity of each plant is less than or equal to the maximum capacity of that 

plant (equation (9)), the constraints for distribution from the plant to DCs and DCs to retailers 

are equations (10) and (11) respectively, the capacity constraints of the DCs equation (12),the 

demand of the retailers equation (13) and total production is equal to total demand (equation 

(14)), while constraint in equation (15) is a non-negativity and integer condition of the 

decision variables.  

3.2 Formulation for update and predictive mitigation plan 

The formulations for the updated and predictive mitigation planning approaches are presented 

in Appendix A. 

3.3 Formulation for reactive mitigation plan 

In this section, a mathematical model for revising the production and distribution plan for a 

finite planning period after the occurrence of a production disruption, with the objective of 

minimizing the total supply chain cost, is developed. As the recovery strategy involves back 

http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
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orders, outsourcing and lost sales options, there are additional cost equations for them. The 

back orders cost is determined as the unit back orders cost multiplied by the number of back 

orders units and the time delay (Paul et al., 2015b), the lost sales cost is the unit lost sales cost 

multiplied by the number of lost sales units (Paul et al., 2015b) and the outsourcing cost is the 

quantity outsourced by the unit purchase cost. 

If there is a disruption at the n
th

 plant for a duration of     with a start time of   , the 

production quantity loss after a single disruption can be determined using equations (16) and 

(17). 

If        
   

   
 

               {∑   

 

   

 ∑    (        )

 

   

} 

(16) 

 

If        
   

   
 

       (
   

   
   )     {∑   

 

   

 ∑    (        )

 

   

} 

           (17) 

As this quantity needs to be filled during the recovery window, we consider back orders, lost 

sales and outsourcing options so that the total supply chain cost during this time can be 

minimized.  

Costs at plant 

Production cost  ∑ ∑   
 
      

  
          (18) 

Average holding cost  ∑ ∑
 

 
   

 
      

  
         (19) 

Transportation cost  ∑ ∑ ∑         
  

   
 
   

 
        (20) 

Costs at DCs 

Operating cost    ∑    
 
          (21) 

Handling cost  ∑ ∑ ∑    
 
   

 
       

  
         (23) 

Transportation cost  ∑ ∑ ∑         
  

   
 
   

 
        (24) 

Costs at retailer 

Average holding cost  ∑ ∑
 

 
      

  
   

 
        (25) 
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Back orders cost =  ∑                               
 
    

   [∑  (∑    
  

    ∑   
 
   ) 

   ]      (26) 

Outsourcing cost  

   ( ∑   
 
       ∑ ∑    

  
   

 
   )      (27) 

Lost sales cost  

   ( ∑   
 
       ∑ ∑    

  
   

 
   )      (28) 

If    , then the lost sales cost = 0, otherwise the outsourcing cost =0. 

The total supply chain cost (  ), which is the objective function, is derived using equations 

(18) to (28) and equals the total plant cost + total DC cost + total retailer cost + back orders 

cost + outsourcing cost + lost sales cost, where    
 ,     

 ,     
  and    

  are decision 

variables.  

   
     ; ∀            (29)  

   
  ∑     

  
   ; ∀           (30)  

∑     
  

    ∑     
  

    ; ∀          (31)  

∑     
  

          ; ∀           (32)  

∑     
  

       
 ; ∀           (33)  

 ∑   
 
       ∑ ∑    

  
   

 
          (34) 

   
 ,     

 ,     
  and    

  ≥ 0 and integer; ∀            (35)  

The production quantity of each plant in the revised plan is less than or equal to its maximum 

capacity in the revised plan (equation (29)), the constraints for distribution from the plant to 

DCs and from DCs to retailers are equations (30) and (31) respectively, the capacity 

constraint of the DCs is equation (32), the constraint for the quantity received by each retailer 

is equation (33), the total lost sales quantity, which should be non-negative, is equation (34) 

and the non-negativity and integer condition of the decision variables is presented in equation 

(35).  

 

Proposition 1: for a given   ,    ,     and   , and the n
th

 disrupted plant, if      , the 

recovery plan will use only the back orders option if     ∑    
 
    and the recovery plan 

will use both the lost sales/outsourcing and back orders options if     ∑    
 
   . 

 

Proof: let a production disruption occur at the n
th 

plant starting at period    with a disruption 

duration of    . 

http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
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For a disruption, if the spare capacity is greater than or equal to the demand to be filled 

during the recovery window, as the production system is capable of producing and meeting 

that demand, the revised plan will utilize only the back orders option as a condition of the 

existence of only back orders: 

 ∑  

 

   

    ∑ ∑   
 

 

   

 

   

 

    ∑ ∑    
  

   
 
     ∑   

 
    

     ∑    
 
     ∑   

 
    (using the equation (29)) 

     (∑    
 
    ∑   

 
   ) 

     ∑    
 
           (36) 

Therefore, it can be said, that if     ∑    
 
   , the system will utilize only the back orders 

option in the recovery plan. 

From the opposite consequence of equation (36), it also can be said that the recovery plan 

will use both the back orders and lost sales/outsourcing options if     ∑    
 
   . 

 

4. SOLUTION APPROACHES 

In this section, solution approaches for both ideal and disrupted systems are developed. A 

standard solution technique for solving the ideal supply chain system is proposed and applied 

to obtain updated and predictive mitigation plans for changes in the data and future 

predictions respectively. An efficient heuristic for managing a single disruption in the system 

is developed and then extended to be implemented for managing multiple disruptions on a 

real-time basis. 

4.1 Solution approach for generating supply chain plan 

The ideal production and distribution plan is obtained using the branch and bound algorithm 

of the LINGO optimization software to solve the model for the system, which is a constrained 

programming problem, and is also applied to obtain updated and predictive mitigation plans. 

4.2 Heuristic for managing single disruption   

A heuristic is designed to obtain the revised plan after an occurrence of a single disruption at 

any plant. Firstly, both the ideal and disrupted systems are solved using the LINGO 

optimization software and then the heuristic efficiently solves the disruption management 

model through the following steps. 
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Step 1: Input all the information about production and distribution under ideal conditions. 

Step 2: Obtain an ideal production and distribution plan by solving the mathematical model 

for ideal situations and also determine the spare capacity in each plant. 

Step 3: Input a production disruption scenario involving a disrupted plant, disruption start 

time (  ) and disruption duration (   ). 

Step 4: Determine the production plan. 

4.1. If      : 

4.1.1 If     ∑    
 
   , use the spare capacity to revise the plan until the 

unfilled demand is met; 

4.1.2 If     ∑    
 
   , use both the spare capacity and lost 

sales/outsourcing options; 

 4.1.2.1 If    , use the outsourcing option and 

4.1.2.2 If    , use the lost sales option. 

 4.2. If      : 

  4.2.1 If    , use the outsourcing option to revise the plan or 

  4.2.2 If    , use the lost sales option to revise the plan. 

Step 5: Determine the distribution plan. 

5.1. If     ∑    
 
   , determine the distribution plan by varying only the 

transportation quantity while using the same path as the ideal plan.  

5.2. If     ∑    
 
   , determine the distribution plan by varying only the 

transportation quantity while using the same path as that obtained from LINGO 

for     ∑    
 
   . 

Step 6: Record the results and determine the different costs. 

Step 7: Stop. 

4.3 Proposed heuristic for multiple disruptions 

In this section, the heuristic that was first developed to manage a single disruption is extended 

to manage multiple production disruptions on a real-time basis. When a disruption occurs, a 

revised plan can be generated by solving the mathematical model using the proposed 

heuristic for a single disruption. Then, if another disruption occurs, the plan should be revised 

again to consider the effects of both disruptions. This can be done by simply updating some 

of the parameters in the same mathematical model to represent the changed scenario; for 

example, the newly disrupted plant, start time of the disruption, disruption duration, quantity 

produced before starting the revised plan and demand to be filled in the revised plan. The 
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objective function and constraints are also updated for the changed situation. Therefore, the 

heuristic for a single disruption can still be used but must be slightly modified for the 

changed situation to be capable of dealing with a series of disruptions on a real-time basis. In 

the proposed approach, the heuristic must be run every time a disruption occurs to re-

optimize the revised plan whenever there are disruptions in the system. 

For a series of disruptions, the production quantity loss after the s
th

 disruption can be 

determined using equations (37) and (38). 

If        
   

   
 

  
    

    (∑ ∑   
 

 

   

 

   

   ∑  

 

   

)         

    {∑   

 

   

 ∑    (        )

 

   

} 

           (37) 

If         
   

   
 

  
    

    (∑ ∑   
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)      (
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    {∑   

 

   

 ∑    (        )

 

   

} 

           (38) 

Here,   is the new disrupted period since the previous disruption. 

The main steps in the proposed heuristic for a series of disruptions on a real-time basis can be 

presented as follows. 

Step 1: Input all the information about production and distribution under ideal conditions. 

Step 2: Determine the optimal plan under ideal conditions. 

Step 3: Input the disruption scenario (disrupted plant, disrupted period since the previous 

disruption, disruption start time (  ) and disruption duration (   )). 

Step 4: Update the loss of production quantity using equations (37) and (38). 

Step 5: Revise the production plan for the corresponding disruption using the proposed 

heuristic developed in Section 4.2. 

Step 6: Record and update the optimal production and distribution plan from Step 5 after the 

disruption occurs.  
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Step 7: If there is any other disruption, go to Step 3. 

Step 8: Stop. 

The heuristic for managing both a single disruption and multiple disruptions is coded in 

MATLAB R2015b and was executed on an Intel core i7 processor with a 3.40 GHz CPU and 

a 8.00 GB RAM. 

 

5. EXPERIMENTATION AND ANALYSIS OF RESULTS  

In this section, we discuss the experiments and results for both the ideal and disrupted 

systems, and the updated and predictive mitigation plans for a good number of randomly 

generated test problems. For the disrupted system, the results for both a single disruption and 

multiple disruptions are analysed. The test problems are solved using both the heuristic, and 

the branch and bound algorithm of the LINGO optimization software. To judge the quality of 

the heuristic solutions, we also compare the results obtained from the two different 

techniques.  

 

5.1 Experimentation for ideal system 

The following data were considered for an ideal supply chain network. 

   2;    3;    6;      [2000, 2700];     [450, 500, 650, 725, 800, 1000]; 

     [2500, 2000, 1500];     [19, 22];      [1.2, 1];      [1.5, 1.2, 0.8]; 

    [1.5, 1.2, 0.8, 1.75, 1, 0.9];      [10000, 15000, 8000] 

     [
         
         

];       [
         
         
         

         
         
         

] 

The ideal system was solved using the branch and bound algorithm of the LINGO 

optimization software, the generated optimal plan for minimizing the total supply chain cost 

is presented in Appendix B.  

 

5.2 Experimentation for updated and predictive mitigation plans 

In this section, we discuss the results for both the updated and predictive mitigation plans 

using random data. 

 

5.2.1 Updated plan 

The results for the updated plan are summarized in Appendix C. 
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5.2.2 Predictive mitigation plan 

In this section, we analyse the results for the predictive mitigation approach. We predicted the 

changes in demand over the base forecast by applying the rule and logic-based FIS that was 

developed using the fuzzy toolbox of MATLAB R2015b. Then, we revised the plan by 

solving the mathematical model for the predicted changes in demand data. For this analysis, 

we predicted the change of demand in the next third period and revised the plan accordingly 

in a finite planning horizon of three periods by using LINGO. Table 2 presents the range of 

data that was considered for different predicted events. The pertinent rules developed in FIS 

tool to relate input and predicted values are presented in Appendix D. Based on the predicted 

value from the FIS, the equation (39) was used for obtaining the predicted demand value. 

predicted demand value = base demand forecast ± value from FIS   (39) 

 

Table 2: Range of data for predictions 

Event NH NM NL PL PM PH 

Demand 

fluctuation 
[-1 -0.8 -0.6] [-0.7 -0.5 -0.3] [-0.4 -0.2 0] [0 0.2 0.4] [0.3 0.5 0.7] [0.6 0.8 1] 

Unexpected 

incident 
--- --- --- [0 0.2 0.4] [0.3 0.5 0.7] [0.6 0.8 1] 

Natural 

incident 
[-1 -0.8 -0.6] [-0.7 -0.5 -0.3] [-0.4 -0.2 0] [0 0.2 0.4] [0.3 0.5 0.7] [0.6 0.8 1] 

NH: negative high, NM: negative medium, NL: negative low 

PL: positive low, PM: positive medium, PH: positive high 

 

For understanding the process of generating a predictive mitigation plan, one numerical 

example is presented here. We have predicted the changes in forcasted demand to [439, 593, 

661, 734, 891, 949] in the third period of the future by using the developed FIS tool based on 

information of demand flucation, unexpected incident and natural incident. In the ideal plan, 

the base forecasted demand was [450, 500, 650, 725, 800, 1000]. So we revised the supply 

chain plan according to the prediction for the next three periods so that the total cost can be 

minimized. All of the other parameters were kept constant, as in Section 5.1. We solved the 

mathematical model that was developed for predictive mitigation plans by using the LINGO 

optimization software.  
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5.3 Reactive mitigation plan for a sudden single disruption 

For the single disruption problem, we used the same basic data as for the ideal system. For 

illustrative purposes, sixteen different disruption scenarios were generated and their 

parameters are presented in Table 3. We classified the disruption start times as early, middle 

and late, and disruption durations as low, medium and high. As when the disruption start time 

was in the late range, it was not possible to have a high disruption duration, because the latter 

was dependent on the former, two scenarios (1-L-H and 2-L-H) were absent from the design 

of this experiment. Then, we generated 10 random test problems for each scenario by varying 

the cost data while using the following additional data. 

  10,   50,   60, and   2 

Table 3: Design of experiment with total of sixteen scenarios 

Disrupted plant 
Disruption start 

time 
Disruption duration Scenario name 

1 0.60 (late) 

– – 

0.35 (medium) 1-L-M 

0.20 (low) 1-L-L 

1 0.30 (middle) 

0.55 (high) 1-M-H 

0.33 (medium)  1-M-M 

0.20 (low)  1-M-L 

1 0.10 (early) 

0.70 (high) 1-E-H 

0.50 (medium)  1-E-M 

0.18 (low) 1-E-L 

2 0.55 (late) 

– – 

0.30 (medium) 2-L-M 

0.15 (low) 2-L-L 

2 0.35 (middle) 

0.60 (high) 2-M-H 

0.40 (medium) 2-M-M 

0.10 (low) 2-M-L 

2 
0.05 (early) 

 

0.75 (high) 2-E-H 

0.30 (medium) 2-E-M 

0.12 (low) 2-E-L 
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The sixteen scenarios in Table 3, each with ten random test problems, were solved using both 

the heuristic and the LINGO optimization software. We compared the results for all 160 

random disruption test problems and the average percentage of deviation between those 

obtained from the two approaches, calculated by equation (40), was only 0.0007%, which, 

again, was negligible. Moreover, this may merely have been due to the rounding of the values 

of the decision variables. It can be said that the results obtained from the two approaches 

were very consistent. 

Average percentage of deviation 

 
 

 
∑

|                                                   |

                       
        (40) 

Here,    total number of test problems. 

 

5.4 Reactive mitigation plans for a series of sudden disruptions 

To demonstrate the usefulness of our proposed heuristic for solving different scenarios with 

multiple production disruptions, we used the same basic data as for the ideal and disrupted 

systems presented in Sections 5.1 and 5.3 respectively. In a supply chain system, a series of 

production disruptions can occur at any plant, one after another, on a real-time basis. The first 

disruption can be managed using the single disruption approach discussed in the previous 

section. If another disruption occurs at any plant during the recovery window of the previous 

one, as this may affect the revised plan of previous disruptions, this plan must be considered 

as a set of additional restrictions. For experimental purposes, several random disruptions were 

generated to occur one after another. Table 4 presents cases with different random 

combinations of a disrupted plant, disruption start times and disruption durations. Although 

disruptions can happen continuously within a production cycle, we present only five 

disruptions as a sample representation. The production and distribution plans were revised 

immediately after each disruption occurred in the system. The problem was solved using the 

proposed heuristic, and the results after each disruptionfor the total supply chain and the total 

lost sales cost in the revised plan are presented in Table 5. It was observed that the system 

utilized both the spare capacity and lost sales options for the first three disruptions for 

revising the plan, and it was capable of revising the plan by using only the back orders option 

for the 4th disruption. After the 5th disruption, the system was capable to recover by utilizing 

the spare capacity of the other plant so no back orders or lost sales are present in the recovery 

plan then. 
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Table 4: A case problem for a series of disruptions 

Disruption 

number 
Disrupted plant 

Disrupted 

period since 

previous 

disruption 

Disruption start 

time 

Disruption 

duration 

1 1 -- 0.05 0.85 

2 2 3 0.22 0.70 

3 2 1 0.55 0.25 

4 1 4 0.35 0.30 

5 2 2 0.70 0.10 

… … … … … 

   

Table 5: Summary of results for a series of disruptions 

Disruption 

number 
Total cost ($) 

Total back orders 

cost ($) 

Total lost sales cost 

($) 

1 3,79,990 17,250 4,000 

2 3,76,240 17,250 250 

3 3,78,990 17,250 3,000 

4 3,17,912 250 0 

5 3,16,830 0 0 

… … … … 

 

5.5 Effect of disruption duration in reactive mitigation 

As the disruption duration has a significant impact on the total supply chain, back orders and 

lost sales costs, its relationships with these factors reanalysed. This section presents a number 

of studies, in each of which only one variable is changed while the other parameters have the 

default values of the ideal system presented in Section 5.1. We consider an independent and a 

single disruption to analyse the effect of disruption duration.  

Figures 5, 6 and 7 respectively show the changes in the total supply chain, back orders and 

lost sales costs for varying disruption durations. In this analysis, the disruption start time is 
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kept constant at 0, and it is observed that the total supply chain cost increases with increasing 

durations of disruptions at both plants 1 and 2.  

In Figure 5, it is observed that the revised plan uses no additional cost when the disruption 

durations are less than or equal to 0.20 and 0.30 for disruptions at plant 1 and 2 respectively. 

This is because the system utilizes the spare capacity of the disrupted period to fill the 

quantity lost. However, there then is an increasing trend in the total supply chain cost because 

of the introduction of back orders and lost sales costs in the solutions.  

 

Figure 5: Changes in total supply chain cost for varying disruption durations 

Figure 6 presents changes in the back orders cost with different disruption durations. It is 

observed that they occur in the system after disruption durations of 0.2 and 0.3 at plants 1 and 

2 respectively and increase up to those of 0.65 and 0.85 respectively. Then, the lost sales cost 

appears in the system and the back orders cost becomes a fixed amount. 

 

Figure 6: Changes in total back orders cost for varying disruption durations 
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Figure 7 presents changes in the lost sales cost for different disruption durations. It is 

observed that they occur in the system after disruption durations of 0.6 and 0.85 at plants 1 

and 2 respectively and then increase. Previously, the system was capable of recovering using 

only the back orders option. 

 

Figure 7: Changes in total lost sales cost for varying disruption durations 

5.6 Effect of  ,   and   in reactive mitigation 

The parameters for back orders, lost sales and outsourcing costs are very important for 

decision making in the reactive mitigation plan. These parameters have significant impacts on 

different costs. In this section, a sensitivity analysis is performed to analyse the impact of 

those parameters and how they effect the decisions for the reactive plan. For this analysis, we 

considered a single and independent sudden disruption at plant 2 with disruption duration 0.8 

starting at the beginning of the period. For each of this analysis study, one variable is changed 

while the other parameters have the default values of the ideal system presented in Section 

5.1. 

Figure 8 presents the changes of different costs with back orders cost. We observed, that both 

total cost and total back orders cost increase with increasing back orders cost. This is because 

of the increment of per unit back orders cost, and the reactive plan utilizes both back orders 

and lost sales policies in the recovery plan. We also observed that there is no outsourcing cost 

because the optimal plan did not use the outsourcing policy, as the outsourcing cost is greater 

than the lost sales cost. So it was beneficial to use lost sales option.  
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Figure 8: Changes of different costs with   (default:   = 50,   = 60) 

 

 

Figure 9: Changes of different costs with   (default:   =10,   = 60) 
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sales cost becomes zero. So management should utilize the outsourcing option, instead of lost 

sales, only when per unit outsourcing cost less than or equal to per unit lost sales cost. 

 

6. APPLICABILITY AND VALUE IN PRACTICE 

This paper developed three different approaches for supply chain mitigation: 

i. Updated plan for any change in data – the plan was revised if there were any 

changes in cost and demand data. 

ii. Predictive mitigation plan – the changes in demand over the base forecast were 

predicted in advance by using a rule and logic based FIS prediction tool that is 

based on information of demand fluctuation, unexpected incidents and natural 

incidents. The supply chain plan was revised in advance according to that 

prediction.  

iii. Reactive mitigation plan – the supply chain plan was revised after the occurrence 

of any sudden disruption, which cannot be predicted, on a real-time basis. An 

efficient heuristic was developed which was capable of dealing with both a single 

and a series of sudden disruptions on a real-time basis and the supply chain plan 

was revised just after the occurrence of each disruption, as long as disruptions 

took place in the system. 

In a real-life supply chain environment, a decision maker can easily use any of the three 

developed approaches to make an efficient and prompt decision quantitatively. Most 

importantly, this paper developed quantitative approaches for generating both predictive and 

reactive mitigation plans. In practice, it is common that the forecasted demand can change, 

but there are limited appropriate tools in the literature to predict that change. The developed 

FIS tool will help practitioners to predict changes in demand and to so develop better supply 

chain plans well in advance. This paper developed a rule and logic based FIS tool to predict 

changes in demand in advance based on information of demand fluctuation, unexpected 

incidents and natural incidents. The incidents may also affect the plant capacities and 

transportation routes depending on the nature of incidents.  However, the demand is 

influenced by many external factors, such as consumer behaviour and external incidents, that, 

that requires sophisticated prediction tools to predict the changes. The nature of changes in 

plant capacity and transportation is different from the demand. The plant capacities and 

transportation are influenced mainly by the internal factors such as preventive maintenance 

and breakdown. To incorporate the effect of such preventive maintenance, the plan can be 
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revised using the changed data as discussed in the contribution (i).  For breakdown or any 

other incidents that may disrupt the production suddenly, which is impossible to predict in 

advance, contributions (iii) to (v) are capable to deal with them. To manage this sudden 

disruption, this paper developed a reactive mitigation quantitative approach. After the 

occurrence of a disruption, a decision maker can make an efficient decision by revising the 

future plan with the help of the developed heuristics for reactive mitigation, whenever a 

single or series of sudden disruptions occur in the system. We believe that the attractive 

features of the developed quantitative approaches have added value in the real-life practice of 

supply chain systems.    

7. CONCLUSIONS 

The main objective of the paper was to develop quantitative approaches for managing any 

changes in data and for generating both a predictive and reactive mitigation plan. In the case 

of any changes in data that were known in advance, the supply chain plan was updated 

according to the changes. For a predictive mitigation plan, a FIS based prediction tool was 

developed to predict changes in future demand, which are hence not known but predicted and 

the supply chain plan was revised to obtain a better plan based on the prediction. Random 

experimentation was conducted by using LINGO for both update and predictive mitigation 

plans. Finally, this paper developed a quantitative reactive mitigation plan for managing 

sudden production disruptions that were not known and cannot be predicted. The supply 

chain plan was revised for a finite period into the future, just after the occurrence of a 

disruption. The objective is to minimize the effect of the disruption and to return the system 

to its ideal plan as quickly as possible. For this purpose, we developed an efficient heuristic to 

obtain the reactive plan. We then developed sixteen different scenarios, each with ten 

randomly generated disruption test problems, and compared the performances of the heuristic 

and LINGO for them. It was shown that the average percentage of deviation in the results 

was only a negligible 0.0007%. We also developed an extended heuristic for managing a 

series of disruptions, because they are common in real-life supply chain practice. We 

presented several numerical examples and experimentations to analyse the results and 

usefulness of the models.  

As the developed approaches have great practical implications, so it can be said that the 

proposed quantitative and heuristic approaches offer a potentially very useful quantitative 

means of helping decision makers arrive at prompt and accurate decisions regarding both 

predictive and reactive mitigation plans. An organization can immediately update/revise its 
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plan (i) for any changes in data, (iii) for any future prediction of demand changes, and/or (iii) 

after the occurrences of any single and/or series of sudden production disruptions in the 

system. 

In future, the proposed approaches can be extended by considering sudden disruptions in 

supply, distribution and delivery. Additionally, it would be worthwhile to incorporate 

environmental aspects, such as lowering supply chain costs by reducing travel distances, 

carbon emission, production costs, product waste, and unplanned activities. Another 

interesting extension would be to relax the assumption of a single type of item, so as to 

consider multiple types of items, as well as to analyse the impacts of disruptions on different 

types of items in a multi-tier supply chain system. 

In addition, several aspects could be introduced into the developed approaches, and some of 

them are listed in the following. 

i. Considering safety-stock level and analysing the effect of disruption on safety 

stock, and determining the optimum level to minimize the effect of a disruption. 

ii. Considering lead time factors and analysing the effect of disruption on lead time 

and disruption recovery. 

iii. Considering different shipment policies, such as the multiple-lot for lot, including 

equal-sized shipment policy, geometric shipment policy and mixtures of them. 
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Appendix A 

Formulation of updated and predictive mitigation plans 

  Number of periods in finite planning horizon 

    Production quantity of plant   at period   

     Maximum production capacity of plant   at period   

     Maximum handling capacity of DC   at period   

     Transportation quantity from plant   to DC   at period   

     Transportation quantity from DC   to retailer   at period   

    Demand of retailer   at period   

    Production cost per unit at plant   at period   

     Holding cost per unit per period at plant   at period   

     Handling cost per unit at DC   at period   

     Holding cost per unit per period at retailer   at period   

      Transportation cost per unit from plant   to DC   at period   

      Transportation cost per unit from DC   to retailer   at period   

     Operating cost of DC   at period   

Costs at plant 

Production cost ∑ ∑       
 
   

 
          (A1) 

Average holding cost  ∑ ∑
 

 
       

 
   

 
         (A2) 

Transportation cost  ∑ ∑ ∑          
 
   

 
   

 
        (A3) 

Costs at DCs 

Operating cost  ∑ ∑     
 
   

 
          (A4) 

Handling cost  ∑ ∑ ∑     
 
   

 
       

 
         (A5) 

Transportation cost  ∑ ∑ ∑          
 
   

 
   

 
        (A6) 

Cost at retailer 

Average holding cost  ∑ ∑
 

 
       

 
   

 
        (A7) 

Objective function 

The total supply chain cost (TC), which is the objective function, is derived using equations 

(A1) – (A7), and equals the total plant cost + total DC cost + total retailer cost, with     ,      

and      decision variables, subject to the following constraints. 
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        ;             (A9)  

    ∑     
 
   ; ∀            (A10)  

∑     
 
    ∑     

 
    ; ∀           (A11)  

∑     
 
         ; ∀           (A12)  

∑ ∑    
 
   

 
    ∑ ∑    

 
   

 
          (A13)  

   ,      and      ≥ 0 and integer; ∀             (A14)  

 

Appendix B 

Table B1: Optimal production and distribution plan for the ideal system 

Production 

plan 

Distribution plan 

 DC  Retailer 

P1 P2 Plant 1 2 3 DC 1 2 3 4 5 6 

2000 2125 

1 0 2000 0 1 0 0 0 0 0 625 

2 625 0 1500 2 0 0 650 725 250 375 

– – – – 3 450 500 0 0 550 0 

 

Appendix C 

Updated plan 

The updated plan is generated if there are any changes in data. For experimentation purposes, 

we analysed the results for 50 test problems that were generated randomly by varying ±20% 

of the demand and cost data from the value of ideal plan. The test problems were solved 

using LINGO to obtain an updated plan in a finite planning horizon of three periods, their 

total cost patterns are presented in Figure C1.  

 

Figure C1: Total cost of random experimentation for updated plan 
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Test problem 

Pattern of total cost in updated plan 
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Appendix D 

Developed pertinent rules for FIS tool 

1. If (Fluctuation is NH) then (FIS Value is NH)  

2. If (Fluctuation is NM) then (FIS Value is NM)  

3. If (Fluctuation is NL) then (FIS Value is NL)  

4. If (Fluctuation is PL) then (FIS Value is PL)  

5. If (Fluctuation is PM) then (FIS Value is PM)  

6. If (Fluctuation is PH) then (FIS Value is PH)  

7. If (Unexpected incident is L) then (FIS Value is PL)  

8. If (Unexpected incident M) then (FIS Value is PM)  

9. If (Unexpected incident is H) then (FIS Value is PH)  

10. If (Natural incident is NH) then (FIS Value is NH)  

11. If (Natural incident is NM) then (FIS Value is NM)  

12. If (Natural incident is NL) then (FIS Value is NL)  

13. If (Natural incident is PL) then (FIS Value is PL)  

14. If (Natural incident is PM) then (FIS Value is PM)  

15. If (Natural incident is PH) then (FIS Value is PH)  

16. If (Fluctuation is NH) and (Natural incident is NH) then (FIS Value is NH)  

17. If (Fluctuation is PH) and (Unexpected incident is H) and (Natural incident is PH) 

then (FIS Value is PH) 

 

 

 

 

 

 

 


