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Abstract 

We examine how park-and-ride commuters living along a rail line compete for seats 

when they travel to their workplace in Australian metropolitan areas. First, we prove that at 

user equilibrium in which each commuter minimizes her expected travel cost, there exists one 

station on the rail line at which some commuters could find a seat and the others have to 

stand; all of the commuters boarding at its upstream stations have seats and all of the 

commuters boarding at its downstream stations must stand in the train. We derive a solution 

algorithm for obtaining a user equilibrium, which involves solving an equation with only one 

variable. We demonstrate that more than one user equilibrium may exist. Second, we examine 

the system optimal station choice that assumes all of the commuters cooperate and minimizes 

their total travel cost. An analytical solution approach is proposed based on the structure of 

the problem. Third, we investigate the optimal train fare design that leads to the system 

optimal station choice. We prove that the optimal train fare satisfies: there exists a particular 

train station that has some seats and the train is full after this station. All of its upstream 

stations have the same fare, which is higher than or equal to the fare of this particular station; 

and all of its downstream stations have the same fare, which is lower than the fare of this 

particular station.  
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1 Introduction 

Commuter rail (suburban rail) is a passenger rail transport service that primarily operates 

between a city centre (central business district, or CBD) and the middle to outer suburbs. 

People using commuter rail services usually travel on a daily basis: from home to workplace 

in the morning and from workplace back home in the evening. In Australia, commuters use 

cars to get to train stations more than almost any others in the world (Department of 

Infrastructure, 2005) because of a high rate of car ownership and poor coverage of the broad 

urban areas by conventional public transport modes (e.g., buses and trams). Commuter rail 

forms a vital part of public transportation in major Australian cities. For instance, around 1 

million people travel in the New South Wales commuter rail system every day, covering 

Sydney, New Castle, and Wollongong, amongst others; the daily ridership of the Melbourne 

railway system is 0.8 million (Commuter Rail in Australia, 2015).  

Fig. 1 shows the South Coast Line of the New South Wales commuter rail system, where 

“Central” is the Central Railway Station of Sydney (Sydney CBD). People living along the 

south coast of New South Wales, mainly including cities and suburbs of Nowra (Bomaderry), 

Kiama, Albion Park, Dapto, Port Kembla, Wollongong, Thirroul, and Helensburgh, travel on 

this line to their workplace in Sydney CBD. The trip is long, for instance, it takes about 1 

hour and 50 minutes from Nowra (Bomaderry) to Sydney CBD, and 1 hour 30 minutes from 

Wollongong to Sydney CBD. Therefore, the commuters have to wake up very early in order 

to arrive at their workplaces on time. As a result, they are still very sleepy when they get on 

the train and most people choose to sleep for half an hour to two in the train. This is in 

contrast to the evening trip from workplace back home during which most people play with 

their electronic devices such as iPad’s and smart phones. An important precondition for 

sleeping in trains in the morning is having a seat. Commuters could not sleep without a seat. 

Due to peak demand and limited train capacity, commuters who get on trains at downstream 

stations may not have a seat and hence could not sleep in trains. Some commuters therefore 

drive to upstream stations so that they could find a seat and then sleep during the trip. Our 

study hence aims to analyse how commuters choose stations to compete for seats when 

traveling to workplaces in the morning and the resulting implications for transport authorities.  
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Fig. 1 South Coast Line (Source: Intercity Trains Network, 2015) 
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1.1 Literature review 

Our study is related to the stream of works on park-and-ride (P&R). A large amount of 

research on P&R investigates the factors that affect the percentage of P&R commuters such 

as train/parking fare, availability of parking facilities at train stations and at workplaces, 

frequency of train services, and culture (Li et al., 2012; Duncan and Christensen, 2013; Habib 

et al., 2013; Mingardo, 2013; Liu and Meng, 2014). Once the factors are identified, effective 

policies for promoting the usage of P&R could be initiated. Some efforts are devoted to the 

location of P&R facilities (i.e., car parks) as well as the capacities of the facilities (Wang et 

al., 2004; Liu et al., 2009). Discrete choice models and transit assignment models are usually 

used to formulate transport mode split and commuters’ route choice behaviour (Farhan and 

Murray, 2008; Aros-Vera et al., 2013). Our study differs from the above-mentioned works as 

we focus on one rail line along which all of the potential commuters park and ride as they all 

live far away from their workplaces. We further assume that parking slots are always 

available, which is the case for most train stations in remote suburbs of Australia. Moreover, 

in our model commuters choose stations based on the generalized cost that incorporates the 

availability of seats. 

Another relevant category of research is transit assignment considering passenger 

congestion. An implicit approach is derived from road network modelling, for which strictly 

non-decreasing continuous disutility functions with respect to the number of commuters in 

trains are defined (Wong and Tong, 1999; Nuzzolo et al., 2001; Wu, et al., 2013). The main 

drawback of this approach is the approximation in assessing the disutility for boarding users 

at stops with respect to users already on board. In other words, the effect of congestion is the 

same for both standing passengers and sitting passengers. Another approach is to impose a 

strict vehicle capacity constraint and passengers are rejected if the vehicles are full (Poon et 

al., 2004; Hamdouch and Lawphongpanich, 2008). The third approach differentiates the 

discomfort level experienced by sitting and standing passengers (Tian et al., 2007; Sumalee et 

al., 2009; Hamdouch et al., 2011; Schmöcker et al., 2011; Leurent, 2012; Palma et al., 2015). 

Nevertheless, models in these studies generally consider only the public transport mode. In 

our research, we analyse a single line and develop analytical models to gain deeper insights 
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into the problem. Moreover, we consider a park-and-ride system consisting of both private 

car mode and public transport, rather than just public transport. 

1.2 Objectives and contributions 

We conduct an in-depth analysis of how P&R commuters compete for seats when they 

travel to their workplace in the morning. We use the words “commuters” and “passengers” 

interchangeably. In our setting, all of the commuters live along a rail line and are 

homogeneous in that they have the same unit travel cost by train with a seat and the same unit 

travel cost by train without a seat. Our major findings are threefold. First, we prove that at 

user equilibrium (UE) in which each commuter minimizes her expected travel cost, there 

exists one station on the line at which some commuters could find a seat and the others have 

to stand; all of the commuters boarding at its upstream stations have seats and all of the 

commuters boarding at its downstream stations must stand in the train. It is possible, in 

extreme cases, that some stations are not used. We derive a solution algorithm for obtaining a 

user equilibrium, which involves solving an equation in one unknown. We demonstrate that 

more than one user equilibrium may exist. Second, we examine the system optimal (SO) 

station choice that assumes all of the commuters cooperate and minimizes their total travel 

cost. An analytical solution approach is proposed based on the structure of the problem. 

Third, we investigate the optimal train fare design that leads to the system optimal station 

choice. We prove that the optimal train fare satisfies: there exists a particular train station that 

has some seats and the train is full after this station. All of its upstream stations have the same 

fare, which is higher than or equal to the fare of this particular station; and all of its 

downstream stations have the same fare, which is lower than the fare of this particular station.  

The remainder of the paper is organized as follows. Section 2 describes the problem. 

Section 3 develops a station choice model under user equilibrium. Section 4 investigates 

system optimal assignment of commuters to train stations. Section 5 examines the optimal 

train fare structure that achieves system optimum. Section 6 concludes. For better readability, 

the list of symbols used is summarized below: 
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Indices 

, ,k m n :  A train station; 

,x y :  A passenger (defined by her location); 

Parameters 

1 2, ,a b b :  Auxiliary parameters; 

1c :  Traveling cost per unit distance by train if the passenger has a seat; 

2c :  Traveling cost per unit distance by train if the passenger stands in the train; 

3c :  Driving cost per unit distance (generalized cost that consists of both the direct 

expenses, e.g., fuel cost of cars, and the value of the driving time); 

( , , )nc x n p :  Expected total travel cost of passenger x  boarding at station nL  when the 

probability of having a seat is np ; 

( , )ac x n :  Expected total travel cost of passenger x  boarding at station nL  when there 

are enough seats (the superscript a  means “available”); 

( , )fc x n :  Expected total travel cost of passenger x  boarding at station nL  when there is 

no seat (the superscript f  means “full”); 

( )f x :  Passenger density at location [0, ]x X ; 

nL :  Distance of station 1,2 1n N   to the origin; 

M :  Total number of seats in the train; 

M̂ :  Total number of commuters; 

N :  Number of train stations for commuters to board; 

1N  :  The train station at the commuters’ workplace; 

min min max, 1, ,n n n  :  Possible stations n  satisfying 10, 0n np p    at UE; 

', ' 1n n  :  Possible stations n  satisfying 10, 0n np p    at SO; 

[0, ]X :  Range of commuters’ home locations; 

Decision variables 

n :  Train fare for traveling from station n  to the workplace. 

*( )n x :  The optimal station chosen by passenger x . 

np :  Probability that a passenger boarding at station n  can find a seat; 



 7

SO
np :  Probability that a passenger boarding at station n  can find a seat at SO; 

ny :  Critical points for choosing stations: all of the passengers 1( , )n nx y y  choose 

station n ; 

SO
ny :  Critical points for choosing stations at SO: all of the passengers 1( , )SO SO

n nx y y  

choose station n  at SO; 

nz :  Number of commuters boarding at station n ; 

2 Problem description 

Consider a commuter rail line shown in Fig. 2. We consider one train as trains have fixed 

schedules and a commuter chooses the train based on her working hours. In particular, among 

all of the trains that will make the commuter on time for work, the commuter chooses the one 

that departs the latest. This setting is applicable in two situations. First, if the frequency of the 

train is very low, e.g., one train per hour, then commuters have little choice of departure time. 

Hence, commuters will not depart one hour in advance to seek a seat. Second, when there are 

frequent train services (e.g., every 15 minutes), there is usually a busy period (say, 6:30 to 

8:00) during which the trains are crowded. If a commuter’s ideal departure time is in the 

middle of this busy period, then she should not depart early because departing early does not 

help her to find a seat. Only if her ideal departure time is at the beginning of this busy period 

should she consider departing early to guarantee a seat. Our subsequent analysis is hence 

applicable to the above two situations. 

The commuters live along the railway line and board the train at stations 1,2n N   

(e.g., the cities and suburbs along the south coast of New South Wales shown in Fig. 1), and 

travel to their workplace at station 1N   (e.g., Sydney CBD). We define the passenger who 

lives the farthest to the workplace as the origin 0. The distance of station 1,2 1n N   to 

the origin is nL . Without ambiguity, we use n  or nL  to refer to station n , and use x  or y  to 

refer to a passenger located at x  or y .  
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Fig. 2 An illustrative commuter rail line 

The total number of seats in the train is M  and the total number of passengers is M̂ , 

ˆ0 M M  . We assume that all of the passengers are able to get on the train (some 

passengers have to stand in the train). In reality, passengers may be rejected to take a full 

train (not enough space to stand) and have to wait for the next train to arrive. This is possible 

for some very busy cities (e.g., Beijing) and for some poor underdeveloped countries. In 

developed countries this is not the case as commuters require high-level of comfort (if some 

passengers are rejected, then the train must be extremely crowded). For example, our 

personal experience is that this almost never happens in Australia or Germany (with the 

exception of special events like world-class football games or Olympic games). For 

extremely busy subway systems in which passengers have to wait for a few trains before they 

can board as there are too many passengers waiting, we will have to model the station choice 

and departure time choice behaviour of passengers (Zhang et al., 2005, 2008; Yang et al., 

2013; Liu et al., 2016). 

We further assume that if there are more passengers boarding than the number of 

available seats at a station, all of the boarding passengers have the same chance of finding a 

seat. For instance, if 400M  , 370 passengers board the train at stations 1 to 4, and 60 

passengers board the train at station 5, then each of these 60 passengers who compete for 

400 370 30   seats has a chance of 50% to find a seat. 

A passenger x  has to drive to a station n  ( n  is to be determined), and then take the train 

to the workplace 1N  . We define 1c  as the traveling cost per unit distance by train if the 

passenger has a seat, 2c  the traveling cost per unit distance by train if the passenger stands in 

the train, and 3c  the driving cost per unit distance, 1 2 3c c c  . Note that here 3c  is the 
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generalized cost that consists of both the direct expenses (e.g., fuel cost of cars) and the value 

of the driving time.  

Our study investigates how the passengers choose the stations to board. We assume that 

each passenger minimizes her expected travel cost.  

To simplify the notation as well as to focus on the main idea of the research, we assume 

that the commuters live along the railway line for a distance of X , NX L , and do not 

consider commuters living between X  and 1NL  . Moreover, in our problem setting, there are 

actually more stations between X  and 1NL  , denoted by station (1) (2),N N  , and we do not 

consider these stations. We do not consider these stations and commuters because commuters 

boarding at these stations never have a seat, provided that X  satisfies two criteria: First, X  

should be large enough so that commuters living farther than X  or even a little closer than 

X  never have a seat, and the nearest upstream station at which passengers can find a seat is 

so far away such that it does not make sense for these commuters to drive to it to compete for 

a seat. Second, X  should be much closer to station N  than to the first station (1)N , so that 

when neither N  nor (1)N  has a seat, commuter X  will choose station N  rather than (1)N . 

Such an X  is not difficult to identify in reality. We will see later that when stations 

(1) (2),N N   never have a seat and commuters between X  and 1NL   never have a seat, the 

UE station choice is the same for these commuters and at these stations as the SO station 

choice. Hence, they can be excluded from the model.  

One may wonder, what if we cannot identify a suitable X , either because we do not 

have the practical knowledge about the commuter rail line or such an X  does not exist. 

Under this circumstance, we can set 1: NX L   and use the model proposed in the study with 

the following modifications: (i) we need to take into account all of the stations 

(1) (2)1, 2 , , 1n N N N N     rather than just 1, 2 , 1N N  ; and (ii) we allow commuters to 

choose any of the stations including 1N   rather than allow commuters to board just at 
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1,2 N ; if a commuter chooses station 1N  , that means the commuter drives to the 

workplace without taking the train.  

 Finally, we define the passenger density as ( ) 0f x   at location [0, ]x X . Therefore, 

the total number of passengers 
0

ˆ ( )
X

M f x dx  . 

3 Station choice model at user equilibrium 

In this section we assume that the train fares for the travel between any station 

1,2n N   to station 1N   are all the same and hence do not affect the choice of stations to 

board. This assumption will be extended in Section 3.2.3. We identify properties of the station 

choice problem in section 3.1, based on which we formulate the station choice model in 

section 3.2 and prove that more than one equilibrium may exist. Section 3.3 conducts a case 

study to show the key findings. 

3.1 Fundamental properties 

Suppose that nz  passengers board the train at station n  ( nz  is to be determined), then the 

probability that a passenger boarding at station n  can find a seat is: 
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 (1) 

Hence, the probabilities np  are functions of 1 2( , )nz z z . To simplify the notation, we use  

np  instead of 1 2( , )n np z z z  in the sequel. 

Proposition 1: The probability of having a seat at each station 1,2n N   satisfies:  

 1 21 0Np p p     , (2) 
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 1Np  , (3) 

and at most at one station the probability is strictly greater than 0 and strictly less than 1. 

Moreover, there exists exactly one {1,2 }n N  , such that 0np   and 1 0np   , and such 

that all of the commuters who board at its upstream stations can find a seat and no commuters 

boarding at its downstream stations can find a seat: 

 
1, 1, 2 1,

0, 1, 2 .k

k n
p

k n n N

 
    




 (4) 

Proposition 1 is self-explanatory. The expected travel cost of passenger x  boarding at 

station nL  is 

 3 1 2 1( , , ) | | [ (1 ) ]( )n n n n N nc x n p c x L p c p c L L      . (5) 

At equilibrium, passenger x  chooses station *( )n x  with the lowest expected travel cost: 

 *

1,2
( ) arg min ( , , )n

n N
n x c x n p





. (6) 

3.2 Station choice model 

Lemma 1: If nx L , then passenger x  will not use stations 1, 2k n n N    . 

Proof: For 1, 2k n n N    , we have 
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c L x p c p c L L

c L x L L p c p c L L L L

c L x p c p c L L c L L p c p c L L
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         

           

  1 2 1 1 2 3

1 2 3

| [ (1 ) ]( ) ( )[ (1 ) ]

( , , ) ( )[ (1 ) ]

( , , ).

k k N k k n n n
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k

x p c p c L L L L p c p c c

c x k p L L p c p c c

c x k p

         

     


 (7) 

The “≤” holds because of Eq. (2), and the “<” holds because 3 1c c  and 3 2c c .□ 

Similar to Lemma 1, we have  

Lemma 2: If nx L  and 1np  , then passenger x  will not board at stations 1,2 1m n  .□ 
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Proposition 1, Eq. (6), and Lemmas 1 and 2 imply that the choice of stations by 

passengers has the structure shown in Fig. 3, i.e., * *
1 2( ) ( )n x n x  if 1 2x x ; in words, a 

passenger 2x  who lives closer to the workplace than another passenger 1x  will not choose a 

station farther to the workplace than the one chosen by 1x . To simplify the notation, we 

define ny  as the critical points for choosing stations, 1,2n N  , that is, all of the 

passengers 1[0, )x y  choose station 1, all of the passengers 1 2( , )x y y  choose station 2, etc. 

Note that we do not need to worry about the difference between 1 2( , )y y  and 1 2[ , ]y y  as we 

consider continuously distributed passengers on the interval between 0 and X . Defining 

0 0y  , we have 

 0 1 20 Ny y y y X      . (8) 

The number of passengers boarding at station n  can be expressed as 

 
1

( )
n

n

y

n y
z f x dx



  . (9) 

Hence, once we know ny , all of the information, including the number of passengers 

boarding the train at each station and the probability that a passenger boarding at each station 

could find a seat, i.e., Eq. (1), can be calculated. 

 

1L 2L 3L 4L 5L 6L 7NL  8L

0 0y  3y 7y X6y5y4y2y1y
1z 2z 7z

6z
5z4z3z

 

Fig. 3 Station choice by passengers 
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3.2.1 Cases in which some stations are not used at equilibrium 

It should be noted that it is possible, at least in theory, to have 1n ny y   in Eq. (8), which 

means station n  is not used by any passenger. For instance, stations 4 and 5 are very close on 

the line shown in Fig. 4. The probability 4 (0,1)p  , meaning that no passenger at station 5 

can find a seat. Therefore, a passenger between station 4 and station 6 will either board at 

station 4 (to compete for a seat) or at station 6 (to reduce the driving distance). This insight 

has practical significance for commuter rail planners. Take the South Coast Line show in Fig. 

1 as an example. Most people board the train at the stations of Wollongong and North 

Wollongong because the population of the city of Wollongong is much larger than the other 

cities/suburbs. The distance between the two stations is only 3.1 km. If the train capacity 

were not large enough for all of the passengers boarding at the station of North Wollongong, 

the station of Wollongong, and all of their upstream stations, it would be possible that all of 

the passengers living in the city of Wollongong would board the train at the station of 

Wollongong to compete for a seat and nobody would use the station of North Wollongong.  

 

1L 2L 3L 4L 5L 6L 7NL  8L

0 0y  3y 7y X6y4 5y y2y1y

4 (0,1)p 

 

Fig. 4 A commuter rail line with station 5 not used 

3.2.2 Station choice equations at equilibrium 

Now we can state the formula regarding the station choice at equilibrium: 

Theorem 1: Suppose that we know the station n  satisfying 10, 0n np p   , that is, station n  

is the last station that has some available seats. Suppose further we know the station 1k n   

that is the first station used by passengers after n  in view of the case shown in Fig. 4. In other 
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words, stations 1, 2 1n n k    are not used. Then at equilibrium, np  and , 1, 2my m N   

satisfy 

 0 0y   (10) 

 3 1 1
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2
m m
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c c L L
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 0 1np   (18) 

Eqs. (11)–(13) and (15) follow from Eq. (6). Let us take Eq. (11) as an example. The 

definition of my  implies that commuter my  is indifferent between station m  and station 

1m  . Since both stations have available seats, the travel cost of boarding at station m  is 

3 1 1( , ,1) ( ) ( )m m m N mc y m c y L c L L     and the travel cost of boarding at station 1m   is 

3 1 1 1 1( , 1,1) ( ) ( )m m m N mc y m c y L c L L       . As ( , ,1) ( , 1,1)m mc y m c y m  , we have 

3 1 1 3( )( ) / (2 )m m m my L c c L L c    . 
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Eq. (11) shows that when there is always a seat at very upstream stations, the station 

choice depends on the relative cost of seating in a train 1c  and driving 3c . In this case, when 

3c  is much larger than 1c , reducing the driving distance is the first priority and my  lies in the 

middle of mL  and 1mL  . When 3c  is just slightly larger than 1c , hardly anyone will drive to 

the upstream station. This equation also shows that if the driving distance to the downstream 

station is shorter than that to the upstream one and both stations have enough seats, the 

passenger will always choose the downstream station. 

Eq. (12) demonstrates that when np  is larger, station nL  is more attractive and hence 

1ny   is smaller. It also implies when 1NL   is larger, meaning that a seat is more desirable, 

more people will drive to the upstream station 1nL   as indicated by a larger 1ny  . Comparing 

Eq. (12) with Eq. (11), we see that the former has an extra term 

2 1 1 3(1 )( )( ) / (2 )n N np c c L L c   . Because of this term, it is possible that a passenger living 

closer to nL  than 1nL   chooses station 1nL   to ensure the availability of a seat. Such a scenario 

will not happen if both 1nL   and nL  always have seats, as shown in Eq. (11). 

Eq. (13) implies that when np  is larger, station nL  is more attractive; when 1NL   is 

larger, the advantage of using station nL  rather than downstream stations is more evident 

because a seat is more desirable for longer trips. In both cases, ny  is larger. 

Eq. (14) is based on the definition of k , ensuring that stations 1, 2 1n n k    will not 

be used. If Eq. (14) is violated, then the assumption that station 1k n   is the first station 

used by passengers after n  is incorrect. 

Eq. (15) is similar to Eq. (13): when there is always no seat at downstream stations, the 

choice of station only depends on the relevant costs 2c  and 3c  and the distances to the 

upstream and downstream stations. 
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 Eq. (16) comes from the problem definition. Eq. (17) is implied by Eqs. (1) and (9). Eq. 

(18) is based on the definition of n . If Eq. (18) is violated, then the assumption that station n  

is the last station that may have a seat is incorrect. 

3.2.3 Extensions of the station choice model 

The station choice model consisting of Eqs. (10)–(18), although based on simplifying 

assumptions, can be slightly revised to handle a number of practical issues.  

First, if we consider the commuters who live very close to a station and hence walk to 

the station (note that in this case there is no station choice), we can simply add the number of 

commuters who walk to station n  to the denominator 
1

( )
n

n

y

y
f x dx


  of Eq. (17), and deduct the 

total number of commuters who walk to stations 1,2 1n   from the numerator of Eq. (17). 

Second, if we consider that commuters may need to arrive early because of the uncertain 

time required for finding a parking place, then we can add a fixed extra cost term, denoted by 

nC  for station n , which is the buffer time multiplied by the value of time. If nC  is the same 

for all stations, then the model does not need to be changed. Otherwise, in Eqs. (11) and (15) 

my  should increase by 1 3( ) / (2 )m mC C c  (note my  decreases if 1m mC C  ); in Eq. (12) 1ny   

should increase by 1 3( ) / (2 )n nC C c  ; in Eq. (13) ny  should increase by 3( ) / (2 )n kC C c ; 

and in Eq. (14) the first term should increase by 1 3( ) / (2 )k kC C c  . 

Third, if the train fare is to be included, then we can add a fixed train fare n  for 

boarding at station n  and revise the model similar to the above buffer time cost. If there is 

parking fee at a train station, or if a schedule delay cost at each station is to be included, the 

model can be revised accordingly. 

3.2.4 Algorithm for finding the station choice at equilibrium 

To find the station choice at equilibrium for a commuter rail line based on Theorem 1, 

we can enumerate all of the possible values of n  from min 1n   to 

 max
1,2 0

arg min ( )
nL

n Nn f x dx M  , then enumerate all of the possible values of k  from 
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1n   to N , then calculate np  and , 1, 2my m N   by Eqs. (11)–(13) and (15)–(17), and 

finally check whether Eqs. (14) and (18) hold. The difficult part is obtaining np , 1ny   and ny  

based on Eqs. (12), (13) and (17). To this end, we rewrite Eqs. (12) and (13) as 

 1 1n ny ap b     (19) 

 2n ny ap b   (20) 

in which 

 2 1 1

3

( )( )
:

2
N nc c L L

a
c

 
  (21) 

 3 1 1 2 1 1
1 1

3

( )( ) ( )( )
:

2
n n N n

n

c c L L c c L L
b L

c
 



    
   (22) 

 3 2
2

3

( )( )
:

2
k n

n

c c L L
b L

c

 
   (23) 

Eqs. (19) and (20) imply that the change in np  will lead to the same amount of change in 

1ny   and ny , albeit in opposite directions. Substituting Eqs. (19) and (20) into Eq. (17), 

 

1

0

2

1

( )

( )

n

n

n

ap b

y
n ap b

ap b

M f x dx
p

f x dx

 



 







 (24) 

Since Eq. (24) has only one unknown np  with limited support (0,1]  and the integrand ( )f x  

is bounded in real applications, given a tolerance 0  , we can discretize the domain (0,1]  

and use enumeration methods to find all of the  -approximate solutions of np  and then 

derive , 1, 2my m N  . 

3.2.5 Possibility of multiple equilibria 

Evidently, Eq. (24) may admit more than one solution even for very simple density 

functions such as ( ) : 1f x  . This means that there are multiple equilibria. In fact, since the 
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functional form of ( )f x  is arbitrary as long as ( ) 0f x  , it is possible to construct an 

example with any number of equilibria by ensuring that Eq. (24) has the required number of 

solutions in (0,1] . 

We look at a basic example shown in Fig. 5 to demonstrate multiple equilibria. 

Passengers are uniformly distributed between 0 and 3.5X   with density ( ) 1f x  , 

0 x X  . There are four stations: 1 0L  , 2 2L  , 3 3.25L  , 4 12L  . The total number of 

seats in the train is 127 / 64M  . The cost parameters are 1 0c  , 2 0.2c  , 3 1c  . 

 

3 3.5y X x

( ) 1f x 

1L 2L 3NL  4L
2 1.25 8.75

1y 2y0 0y 
1

2

3

0

0.2

1

c

c

c





127

64
M 

 

Fig. 5 A case with two equilibria 

We can find that station 2 satisfies 2 (0,1)p  . Therefore, 2n   and 3k  . We calculate 

that 

 1 2 2y p   , (25) 

 2 2 2.5y p  . (26) 

Hence 

 

22

0

2 2

2 2

22

0

2 2.5 2.5

2 2

127
1( )

64

( ) 1

pp

y

p p

p p

dxM f x dx
p

f x dx dx

  

 

   


 


 

 (27) 

which is a quadratic equation in one unknown: 

 2
2 2

1
4( ) 0

32
p p    (28) 

It has two solutions: 
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 (1) (2)
2 2

1 0.5 1 0.5
,

8 8
p p

 
  .  

Therefore, this problem has two equilibria.  

3.3 Case study  

We conduct a case study based on the South Coast Line in Fig. 1. We consider 17N   

stations that represent the 17 stations from Wollongong to Helensburgh (both inclusive). The 

layout is shown in Fig. 6. For simplicity, we assume that the distance between two adjacent 

stations is 2km, and the distance from the 17th station to the destination is 32km. 32X  . The 

density of commuters is ( ) 10f x  , 0 32x  . The total number of seats in the train is 

100M  . The cost parameters are 1 0.5c  , 2 0.7c  , 3 1.5c  .  
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Fig. 6 Case study based on the South Coast Line of Australia 

 

We calculate that 4n  , 7k  , and 0.85np  . The travel cost of each commuter x  is 

shown in Fig. 7. The travel cost for commuter 0y  is 32. 3 5.27y   and commuter 3y  has the 

same travel cost 31.90 no matter whether she uses station 3 or station 4. Stations 5 and 6 are 

not used. 4 5 6 10.87y y y    and commuter 4y  has the same travel cost 38.10 no matter 

whether she uses station 4 or station 7. 
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Fig. 7 Travel cost of each passenger at equilibrium 

 

In addition, we see very interesting and similar “zigzag” travel cost patterns for 

commuters at very upstream locations who can always find a seat (e.g., commuters on 3[0, ]L ) 

and whose at very downstream locations who never have a seat (e.g., commuters on 7 17[ , ]L L ). 

The similarities of the travel cost of the two clusters of commuters are (i) a commuter living 

at a station has a lower travel cost than her neighbouring commuters who live between two 

stations, for instance, commuter 2L  has a lower cost than commuters 1y  and 2y , and 

commuter 8L  has a lower cost than commuters 7y  and 8y ; and (ii) the overall pattern of each 

cluster is that the travel cost decreases at locations closer to the workplace, for example, 

commuter 1L  has a lower cost than commuter 2L , commuter 1y  has a lower cost than 

commuter 2y , commuter 7L  has a lower cost than commuter 8L , commuter 7y  has a lower 
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cost than commuter 8y . The difference of the travel cost of the two clusters of commuters is, 

for example, 2y  is farther away from 2L  than the distance from 7y  to 7L ; in other words, 

commuter 2y  would drive farther upstream than 7y  because the travel cost in train with a 

seat from 2L  to 3L  is smaller than that without a seat from 7L  to 8L . 

Based on the case study, we find that in extreme cases, it is possible that all of 

commuters drive to station 1 to compete for a seat. Note that the commuter located at the 

middle of 1L  and 1NL   will not drive to station 1 because the cost for the commuter to use 

station 1 is  

 3 1 1 1 1 1 2 1 1

3 1 1

( ) / 2 ( (1 ) )( )

( ) / 2
N N

N

c L L p c p c L L

c L L
 



    
 

  

and the cost of driving to the workplace 1NL   is 3 1 1( ) / 2Nc L L  . Therefore, we slightly 

change the case study by setting 1 80NL    instead of 64 and setting ( ) 3.5f x  , 0 32x  , 

and investigate the relation between 1c , 2c , and 3c , that makes all of the commuters drive to 

station 1. To this end, we have 1 100 /112 0.89p    and all of the commuters drive to station 

1 only if the commuter located at NL  drives to station 1, i.e., the travel cost for commuter NL  

to use station 1 is not greater than that of station NL . We thus have 

 3 1 1 1 1 2 1 1 2 1( ) ( (1 ) )( ) ( )N N N Nc L L p c p c L L c L L        . (29) 

We can see that all commuters tend to drive to station 1 if 3c  is not too much larger than 1c  

and 2c  (to make sure that the first term on the left-hand side of Eq. (29) is small), 1c  is much 

smaller than 2c  (to make sure that the second term on the left-hand side of Eq. (29) is small), 

and 1p  is large (i.e., not too many people take the train, to make sure that the second term on 

the left-hand side of Eq. (29) is small),  among other conditions. In particular, if 1 0.1c  , 
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2 1.4c  , and 3 1.5c   in this example, then all of commuters drive to station 1 to compete for 

a seat. 

4 System optimal station choice 

In this section we examine the system optimal station choice to minimize the total 

expected travel cost of all of the M̂  commuters assuming they cooperate.  

No matter how commuters choose stations, Proposition 1 holds. That is, there exists a 

station {1,2 }n N   such that 10, 0n np p   . At station n , some commuters can find a 

seat and the others (possibly nobody) cannot. Suppose that we have an SO station choice 

scheme with 10, 0n np p   . In the SO scheme, we can consider that some commuters who 

board at station n  have a reserved seat and the others always have to stand. This does not 

change the total travel cost. We further consider that those who board at station stations 

1,2 1n   also have reserved seats. Now we can classify the commuters at SO into four 

categories: (i) those who board at stations 1,2 1n   with a reserved seat, (ii) those who 

board at station n  with a reserved seat, (iii) those who board at station n  and stand, and (iv) 

those who board at stations 1, 2n n N    and stand. Commuters in categories (i) and (ii) 

have reserved seats and commuters in categories (iii) and (iv) do not have seats and must 

stand. This “reserved seat” idea could considerably facilitate the analysis of the SO station 

choice scheme. 

Lemma 3: At SO, the commuter located at kL , 1, 2k N  , will board at station kL . This 

implies that no station is skipped at SO. 

Proof:  Consider a commuter located at kL , 1, 2k N   and suppose that she does not board 

at station kL . We prove that this is impossible at SO by contradiction. Using the “reserved 

seat” idea, the commuter kL  either has a reserved seat or not. If she has a reserved seat, then 

she should board at kL  because driving to upstream stations increases both the driving costs 

and travel cost by train, and driving to downstream stations leads to a higher driving costs 
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increase than the decrease in travel cost by train. If she has no seat, then she should still board 

at kL  because driving to an upstream station increases both the driving costs and travel cost 

by train, and driving to downstream stations leads to a higher driving costs increase than the 

decrease in travel cost by train. Therefore, the commuter located at kL , 1, 2k N  , will 

board at station kL  at SO. □ 

Lemma 4: Similar to the argument in Lemma 3, at SO, the commuters located sufficiently 

close to station kL , 1, 2k N  , will board at station kL . □ 

Theorem 2: At SO, we have  

 0 1 1 2 20 Ny L y L y y X        . (30) 

Proof: At SO, a passenger 2x  who lives closer to the workplace than another passenger 1x  

will not choose a station farther to the workplace than the one chosen by 1x , because 

otherwise using the “reserved seat” idea we can exchange the choice of stations of two 

commuters and exchange the two commuters’ reservations of seats and thereby reduce the 

total travel cost. Hence, Eq. (8) holds at SO. Moreover, Lemma 4 implies that 1( , )k k kL y y , 

1, 2k N  . The facts of Eq. (8) and 1( , )k k kL y y  imply Eq. (30). □ 

 

The station n  with 10, 0n np p    satisfies 
0

( )
ny

f x dx M  and 
1

0
( )

ny
f x dx M

  . Since 

1 1 1n n n n nL y L y L      , we have 

 
1

0
( )

nL
f x dx M

   (31) 

and 

 
1

0
( )

nL
f x dx M

   (32) 

Therefore, station n  is either the station 'n  defined below: 

  0
' : arg min | ( )

mL
n m f x dx M  . (33) 
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or station ' 1n  . We will prove later that at SO station n  takes exact one value from 'n  and 

' 1n  . 

4.1 SO station choice model 

Given station n  satisfying 10, 0n np p   , the values of , 1, 2,3 2my m n   can be 

determined by Eq. (11), and , 1, 2 1my m n n N     can be determined by Eq. (15), 

meaning that the total travel cost of the passengers on 1 1[0, ] [ , ]n nL L X   is fixed. Hence, we 

optimize 1ny   and ny  to minimize the total travel cost of the passengers on 1 1[ , ]n nL L  , which 

consists of four parts: 1 1[ , ]n nL y  , 1( , ]n ny L , ( , ]n nL y , and 1 1( , ]n ny L  , as shown in Fig. 8. 

These four parts correspond to the four terms in the objective function of the model below.  

 

1L 1nL  nL 1nL  2nL  NL 1NL 

0 ny X1ny 

 

Fig. 8 Structure of the SO station choice 

 

The model is: 
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

 (34) 

subject to: 
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1

0

1

( )

( )

n

n

n

y

y
n y

y

M f x dx
p

f x dx











 (35) 

 0 1np   (36) 

 1 1 1n n n n nL y L y L       (37) 

4.2 Structure of SO station choice model 

The model (34) seems to be very difficult to solve because of the integrations in the 

objective function and constraints. We examine its properties and identify an analytical 

solution. 

Define  

 3 2 1( , ) : | | ( )f
n N nc x n c x L c L L     (38) 

and  

 3 1 1( , ) : | | ( )a
n N nc x n c x L c L L     (39) 

where the superscript f  means the train is full (has no available seats) before it arrives at 

station n , and a  means the train has sufficient available seats at station n . Therefore, 

( , )fc x n  is the total travel cost of passenger x  boarding at station n  without a seat, and 

( , )ac x n  is the total travel cost of passenger x  boarding at station n  with a seat. 

Theorem 3: Given station n  satisfying 10, 0n np p   , if 1np   at SO, then 1ny   satisfies 

1 1( , 1) ( , )a a
n nc y n c y n   ,  ny  can be determined by  

 
0

( )
ny

y
f x dx M  (40) 

and it has to satisfy 

 ( , ) ( , 1)a a
n nc y n c y n   and ( , ) ( , 1)f f

n nc y n c y n  . (41) 
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Proof: Using the “reserved seat” idea, commuter 1ny   has a reserved seat and is indifferent 

between station 1n   and station n , and hence 1 1( , 1) ( , )a a
n nc y n c y n   . Eq. (40) holds 

because of the assumption that 1np  . Using the “reserved seat” idea, commuter ny  (i.e., the 

commuter located slightly closer to the origin 0 than ny ) has a reserved seat and she chooses 

to board at station n  instead of 1n  . This implies ( , ) ( , 1)a a
n nc y n c y n    and thereby 

( , ) ( , 1)a a
n nc y n c y n   due to continuity of the cost function. Similarly, commuter ny  (i.e., 

the commuter located slightly farther to the origin 0 than ny ) has no seat and she chooses to 

board at station 1n   instead of n . This implies ( , ) ( , 1)f f
n nc y n c y n    and thereby 

( , ) ( , 1)f f
n nc y n c y n  . □ 

Consider the example shown in Fig. 5 except that the total number of seats in the train is 

2.5M  . Then at SO, 2n  , 1np  , 1 1SOy  , 2 2.5SOy  , and 3 3.5SOy  . 

It should be noted that the SO result with 1np   can only happen when ' 1n n   

because otherwise Eq. (33) and Eq. (40) contradict with each other. 

Theorem 4: Given station n  satisfying 0 1np  , at SO, 1ny   satisfies 

 1 1( , 1) ( , )a a
n nc y n c y n    (42) 

and ny  satisfies 

 ( , ) ( , 1)f f
n nc y n c y n  . (43) 

Proof: Using the “reserved seat” idea, commuter 1ny   has a reserved seat and she is 

indifferent between station 1n   and station n , and hence 1 1( , 1) ( , )a a
n nc y n c y n   . Some 

commuters on 1( , )n ny y  have reserved seats and the others do not. We specify that there 

exists a 1( , )n n ny y y  such that all commuters on 1( , )n ny y  have reserved seats and no 

commuter on ( , )n ny y  has a reserved seat. Of course, ny  can be determined by 



 27

0

( )
ny

y
f x dx M . Hence, commuter ny  has no seat and she is indifferent between station n  

and 1n  . This implies ( , ) ( , 1)f f
n nc y n c y n  . □ 

Based on Theorem 3 and Theorem 4, we can classify all possible SO scenarios into three 

cases. Case I: ' 1n n  , 1np   and 1ny   and ny , denoted by ' 2 ( )ny I  and ' 1( )ny I , 

respectively, can be calculated according to Theorem 3.  Case II:  ' 1n n  , (0,1)np   and 

1ny   and ny , denoted by ' 2 ( )ny II  and ' 1( )ny II , respectively, can be calculated according to 

Theorem 4. Case III:  'n n , (0,1)np   and 1ny   and ny , denoted by ' 1( )ny III  and ' ( )ny III , 

respectively, can be calculated according to Theorem 4. Given a problem instance, we can 

analyze the three cases one by one. We have  

Theorem 5: At SO exactly one of the above three cases holds. 

Proof:  We first prove Case (I) and Case (II) cannot be true simultaneously. (i) Because in 

Case (I) ' 1 1np    and in Case (II) ' 1 1np   , we have 

 ' 1 ' 1( ) ( )n ny II y I  . (44) 

 (ii) Eq. (41) implies  

 ' 1 ' 1( ( ), ' 1) ( ( ), ')f f
n nc y I n c y I n   . (45) 

(iii) Eq. (43) implies  

 ' 1 ' 1( ( ), ' 1) ( ( ), ')f f
n nc y II n c y II n   . (46) 

Points (i), (ii) and (iii) contradict with each other. 

We then prove Case (I) and Case (III) cannot be true simultaneously. (i) We have 

' 1 ' 1( ) ( )n ny III y I   because in Case (I) ' 1 1np    and in Case (III) ' 0np  . (ii) Eq. (41) 

implies ' 1 ' 1( ( ), ' 1) ( ( ), ')a a
n nc y I n c y I n   . (iii) Eq. (42) implies 

' 1 ' 1( ( ), ' 1) ( ( ), ')a a
n nc y III n c y III n   . Points (i), (ii) and (iii) contradict with each other. 

We finally prove Case (II) and Case (III) cannot be true simultaneously. (i) We have 

' 1 ' 1( ) ( )n ny III y II   because in Case (II) ' 1 0np    and in Case (III) ' 0np  . (ii) Eq. (42) 
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implies ' 1 ' 1( ( ), ' 1) ( ( ), ')a a
n nc y III n c y III n   . (iii) Eq. (43) implies 

' 1 ' 1( ( ), ' 1) ( ( ), ')f f
n nc y II n c y II n   , which implies ' 1 ' 1( ( ), ' 1) ( ( ), ')a a

n nc y II n c y II n    as 

1 2c c . Points (i), (ii) and (iii) contradict with each other.□ 

We now summarize the algorithm to find the station choice at SO. First, there are two 

possible candidates of station n  with 10, 0n np p    based on Eq. (33). As at SO station n  

takes exact one value, we can investigate each candidate of station n  and identify which one 

is SO. Given the station n , the values of 1ny   can be computed by Eqs. (42) and (43). As a 

result, all information about the SO can be obtained. 

4.3 Case study (continued) 

Consider the case in Section 3.3. Based on based on Eq. (33), we can calculate that 

' 7n  . When 'n n  ( 1np  ), Eq. (32) is violated. When ' 1n n   and 1np  , 6ny L  and 

the requirement ( , ) ( , 1)f f
n nc y n c y n   in Eq. (41) is violated. Therefore, ' 1n n   and 

1np  . Eqs. (42) and (43) imply 1( ') 8.67ny n   and ( ') 10.53ny n  . We then check 

1

0

( ')
( ) 87

ny n

y
f x dx M

   , and hence this is an SO solution with 0.71np  . Therefore, 

5 8.67SOy   and 6 10.53SOy   at SO. 

The travel cost of each commuter at SO, together with the travel cost at UE, is plotted in 

Fig. 9. Evidently at SO the travel cost curve is not continuous: there are two jumps at 5
SOy  

and 6
SOy . In particular, if the commuter 5

SOy  boards at station 5, then she always has a seat 

and her travel cost is 29; if she boards at station 6, then she may not have a seat and her travel 

cost is 32.09; if the commuter 6
SOy  boards at station 6, then she may have a seat and her travel 

cost is 30.89; if she boards at station 7, then she does not have a seat and her travel cost is 

38.6. Comparing the SO travel cost for each passenger with the UE travel cost, we can see 

that those commuters living on 3 6( , )SO SOy y  have their travel cost reduced at SO, the 

commuters who live on 6
3[0, ] [ , ]SO

Ny y L  have the same travel cost, and only a small 
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proportion of commuters, i.e., those who live on 6 6( , )SOy y , experience a higher travel cost at 

SO.  
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Fig. 9 Travel cost of each commuter at SO in comparison to UE 

5 Optimal train fare design 

The SO assignment is not sustainable when all of stations charge the same fare for the 

trips to the workplace because some commuters could switch to other stations to reduce their 

travel cost. We therefore examine the optimal train fares that could lead to SO assignment. 

When 1SO
np  , Eqs. (42) and (43) imply that 

 1 1 1( , 1, ) ( , , )SO SO SO SO
n n n nc y n p c y n p     (47) 

 1( , , ) ( , 1, )SO SO SO SO
n n n nc y n p c y n p   . (48) 
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Theorem 6: Let n  be the train fare for traveling from station n  to the workplace. The 

optimal fare design has the structure below: all of the stations 1,2,3 1m n   charge the 

same fare, station n  charges a fare lower than station 1n   by 

 1 1 1 1( , , ) ( , 1, )SO SO SO SO
n n n n n nc y n p c y n p         (49) 

All of the stations 1, 2m n n N     charge the same fare that is lower than station n  by 

 1 1( , 1, ) ( , , )SO SO SO SO
n n n n n nc y n p c y n p       . (50) 

The differences between fares for adjacent stations n  and 1n   and adjacent stations n  and 

1n   are actually the “heights” of the “steps” in the SO travel cost curve in Fig. 9. 

Theorem 6 tells us that the fare at station 1n   is higher than n , which is again higher 

than 1n  . The intuition behind this result is that (i) station 1n   charges higher than n  so 

that people between the two stations will not drive too far to the upstream station to secure a 

seat; and (ii) station n  charges higher than 1n   so that people between the two stations will 

not drive too far to the upstream station to take the chance of finding a seat. Theorem 6 

implies that the price should only decrease at the last station that may have a seat ( 0 1np  ), 

and decrease again at the first station with no seat available. Note that in reality there could 

be equity considerations if many stations have the same fare. 

When 1SO
np  , as there is always a seat at station n , “=” holds in Eq. (47) and 1n n    

in Eq. (49). Therefore, the train fare only needs to change once. 

If the train fare is regulated and may not be able to reach the system optimal, then the park 

fee at train stations may be another complementary measure to be used to achieve the system 

optimal. 

Consider the case study in Section 4.3. Assuming that 7  is given, then the optimal fares 

at stations 6 and 5 are, respectively, 

 6 7 1 7 7( , 1, ) ( , , ) ( )38.6 30.89 7.71SO SO SO SO
n n n nc y n p c y n p               . (51) 

 5 6 1 1 1 7 7( , , ) ( , 1, ) 7.71 (32.09 29) 10.8SO SO SO SO
n n n nc y n p c y n p                  . (52) 
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Next, we analyze a few practical situations for determining the fares.  

If a maximum fare max , max
5 7    , is imposed, the fares can be set as follows to 

maximize the total fare income: 

 max
5 6 5 7 6, 3.09, 7.71 0            . (53) 

It is possible that a maximum fare is imposed on each travel zone. Suppose that station 5 

is in zone 1 with a maximum fare max
[1] , stations 6 and 7 are in zone 2 with a maximum fare 

max
[2] . The fares can be set as follows to maximize the total fare income: 

 max max max max
5 [1] [2] 6 [1] [2] 7 6min{ , 3.09}, min{ 3.09, }, 7.71              . (54) 

If the total fare income is to be minimized, then the fares are: 

 5 6 710.8, 7.71, 0      . (55) 

If the total fare income is set at  , then the fares can be determined by: 

 5 6 6 73.09 , 7.71        . (56) 

 
1

1
5 6 70

( ) ( ) ( )
SO SO
n n

SO SO
n n

y y X

y y
f x dx f x dx f x dx





         . (57) 

6 Conclusions  

We have conducted an in-depth analysis of how park-and-ride commuters compete for 

seats when they travel to their workplace in the morning. In our setting, all of the commuters 

live along a rail line and are homogeneous in that they have the same unit travel cost with a 

seat and the same unit travel cost without a seat. First, we proved that at user equilibrium in 

which each commuter minimizes her expected travel cost, there exists one station that has 

some seats; all of the commuters boarding at its upstream stations have seats and all of the 

commuters boarding at its downstream stations must stand in the train. It is possible, in 

extreme cases, that some stations are not used. We derived a solution algorithm for obtaining 

a user equilibrium, which involves solving an equation in one unknown. We demonstrated 

that more than one user equilibrium may exist. Second, we examined the system optimal 

station choice that assumes all of the commuters cooperate and minimizes their total travel 
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cost. An analytical solution approach is proposed based on the structure of the problem. 

Third, we investigated the optimal train fare design that leads to the system optimal station 

choice. We proved that the optimal train fare satisfies: there exists a particular train station 

that has some seats and the train is full after this station. All of its upstream stations have the 

same fare, which is higher than or equal to the fare of this particular station; and all of its 

downstream stations have the same fare, which is lower than the fare of this particular station.  

Two issues are noteworthy. First, the current train fare structure is mostly zone-based. 

The system-optimal fare structure studied in our paper is a variant of zone-based structure as 

one critical station on the boundary of two zones has a special fare: a few farthest stations 

have the highest fare (one zone), one critical station has a medium fare, and the other nearest 

stations have the lowest fare (the other zone). If a flat fare system is imposed, then the total 

cost for all commuters will not increase too much in general, as only passengers near the 

critical station may drive too much upstream to compete for a seat; however, since we study 

suburban train routes, the farthest passengers may be over 100 km away from the city center, 

while the nearest may be just e.g. 10 km; as a result, flat fare may be unfair for those who live 

very near the city center. Second, we have only considered the fare as the decision variable. 

We may also consider both the fare and the train frequency as the decision variables. In this 

case, if we assume that the train frequency is constant and the headway is so long that 

passengers will not choose trains but just take the one most suitable for their working hours, 

then the joint problem can be easily solved by enumerating the train frequency first, which 

determines the number of passengers to choose the train, and then the approach proposed by 

our study can be applied to evaluate the total travel cost; if the train frequency is not constant, 

then we can use dynamic programming to find the optimal timetable of the trains; if the 

frequency is very high and passengers choose both the train and the station, then this problem 

is much more complex and is thus a valuable future research topic. 

There are a few extensions of our study. First, we have assumed that all of the 

commuters are homogeneous in that they have the same unit travel cost with a seat and the 

same unit travel cost without a seat. In reality, commuters are heterogeneous. For instance, 

some commuters may be used to waking up early. They thus do not need to sleep in trains 
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and can play with their electronic devices even when they are standing. As a result, these 

commuters have a smaller unit travel cost difference with and without a seat than the 

commuters who are used to waking up late and are eager to have more sleep in trains. When 

heterogeneous commuters are considered, all of the train stations will be used at user 

equilibrium and the extreme case shown in Fig. 4 will not occur. Second, we have assumed 

all of the commuters live along a rail line, circumventing the complex routing problems in 

urban road networks. Since in the outer suburbs in Australia road congestion is not a problem 

and people drive to train stations very early in the morning (before the morning peak hours), 

we conjecture that incorporating the distribution of commuters in a realistic two-dimensional 

area and considering road networks will not change the major findings of the study.  
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