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Abstract

We study a generalization of the classical traveling salesman problem, where multiple sales-

men are positioned at different depots, of which only a limited number (k) can be selected

to service customers. For this problem, only two 2-approximation algorithms are available

in the literature. Here, we improve on these algorithms by showing that a non-trivial exten-

sion of the well-known Christofides heuristic has a tight approximation ratio of 2− 1/(2k).

In doing so, we develop a body of analysis which can be used to build new approximation

algorithms for other vehicle routing problems.
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1. Introduction

We study a generalization of the classical traveling salesman problem (TSP), commonly

referred to as the Generalized Multiple Depot Multiple Traveling Salesmen Problem, or

GMDMTSP for short (Malik et al., 2007). Given a set of multiple salesmen positioned

at different depots, the objective of the GMDMTSP is to select at most k ≥ 1 salesmen

to service customers situated at different cities through closed walks (or cycles) so as to

minimize the total travel distance. This problem has a wide range of applications, and can

be found, for example, in routing unmanned aerial vehicles (Chandler and Pachter, 1998;

Chandler et al., 2002), as well as in location and routing optimization for air ambulance

services (Carnes and Shmoys, 2011; Prodhon and Prins, 2014).

The GMDMTSP can be defined on a complete undirected graph G = (V,E) with a

vertex set V and an edge set E. Let n indicate the number of vertices. Let D ⊆ V denote

a set of depots where each depot represents the base location of a distinct salesman. Let

I := V \D denote a set of customers where each customer in I is located in a city. Each

edge (u, v) ∈ E has a non-negative length ℓ(u, v), indicating the distance of the locations of

u and v. We assume that the edge lengths are symmetric and satisfy the triangle inequality.

Let k indicate the maximum number of salesmen that can be selected to visit customers,

where 1 ≤ k ≤ |D|. A feasible solution is thus a collection of at most k cycles that include

each customer exactly once, and where each cycle begins and ends at a distinct depot. The

objective in the GMDMTSP is to find a feasible solution that minimizes the total cycle

length.
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As with the TSP, the GMDMTSP is strongly NP-hard. Hence, it is of practical interest

to develop constant ratio approximation algorithms. Here, we recall that, for a minimization

problem, an algorithm is a ρ-approximation algorithm with an approximation ratio ρ if it

has a polynomial running time and always provides a solution with a value no more than

ρ times the minimum objective value. The ratio ρ is tight if there exists an instance for

which the solution obtained has a value equal to ρ times the minimum objective value.

For the GMDMTSP, only two 2-approximation algorithms are available in the literature

(Malik et al., 2007; Carnes and Shmoys, 2011). Both have polynomial time complexities,

with one being nearly O(n4), and the other being O(n2 logn). Here, we improve on these

algorithms by providing a new non-trivial extension of the well-known Christofides heuristic

of the TSP (Christofides, 1976) which has a tight approximation ratio of 2 − 1/(2k) and

time complexity nearly O(n4).

The rest of the paper is organized as follows: Following a literature review in Section 2

and preliminaries in Section 3, we develop an extension of the Christofides heuristic for the

GMDMTSP in Section 4, and go on to prove that it has a tight approximation ratio of

2− 1/(2k) in Section 5. The proof requires an inequality, which is shown in Section 6. We

conclude the paper in Section 7.

2. Literature Review

For the GMDMTSP, only two 2-approximation algorithms are known, and they both

extend a tree algorithm of the TSP. This algorithm for the TSP has three steps (Papadim-

itriou and Steiglitz, 1998; Rosenkrantz et al., 1977): (1) Find a minimum spanning tree

(MST) of the given graph; (2) construct an Eulerian multigraph by duplicating all edges

of the MST; and (3) find an Eulerian closed walk of the multigraph, remove repeated ver-

tices of the closed walk, and return the resulting cycle. In the TSP, since the MST can

be no longer than the optimal cycle, the tree algorithm has an approximation ratio of 2.

Since the MST and the Eulerian closed walk can be obtained in O(n2) time and O(n) time,

respectively, the tree algorithm for the TSP runs in O(n2) time.

Malik et al. (2007) extended the tree algorithm for the GMDMTSP by introducing a

degree constrained spanning forest (DCSF) w.r.t. (G,D, k), which is defined as a spanning

forest of G that covers all the vertices in V , with each tree of the forest containing a distinct

depot in D as its root, and with the total degree of all the roots not exceeding k. It is

known that a shortest DCSF F ∗ w.r.t. (G,D, k) is a lower bound on the optimal solution

of the GMDMTSP, and that F ∗ can be computed in O(n4α2 log2 α) time by a Lagrangian

relaxation method (Malik et al., 2007). Here α := α(n2, n) is the functional inverse of Ack-

ermann’s function, which grows very slowly and can be considered as a constant (Chazelle,

2000). Thus, by replacing the MST with F ∗, the tree algorithm can be extended to return

a feasible solution of at most twice the length of the optimal solution to the GMDMTSP,
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in O(n4α2 log2 α) time, which is nearly O(n4) time.

Carnes and Shmoys (2011) developed another 2-approximation algorithm for the GMDMTSP,

which they studied as a variant of the classical location-routing problem (Laporte et al.,

1988; Goemans and Williamson, 1995; Mina et al., 1998). Their algorithm also extended

the tree algorithm, but applied a primal and dual schema to obtain a DCSF w.r.t. (G,D, k),

which may not be a shortest DCSF but is a lower bound on the optimal solution of the

GMDMTSP. This algorithm is equivalent to a truncated version of the well known Kruskal’s

minimum spanning tree algorithm, for which the best implementation requires O(n2 logn)

time (Cormen et al., 2001).

To improve on the existing best 2-approximation for the GMDMTSP, Malik et al. (2007)

suggested extending the well-known Christofides heuristic of the TSP. The Christofides

heuristic of the TSP improves on the tree algorithm by revising only Step 2, where it adds

to the MST only edges of a minimum-weight perfect matching for vertices of odd degree

in the MST. Since the number of vertices of odd degree in the MST is even, by short-

cutting the optimal TSP tour, one can obtain the union of two disjoint perfect matchings

on these vertices. It follows, by the triangle inequality, that the length of the minimum-

weight perfect matching obtained in Step 2 is not longer than half of the optimal TSP

tour. This guarantees that the Christofides heuristic achieves a superior ratio of 3/2 for

the TSP. Since there are at most n vertices of odd degree in the MST, the number of edges

that connect these vertices cannot exceed n(n − 1)/2. Thus, the minimum-weight perfect

matching can be obtained in O(n3) time (Gabow, 1990; Cook and Rohe, 1999), implying

that the Christofides heuristic of the TSP runs in O(n3) time. For the GMDMTSP, it is

natural to extend the Christofides heuristic of the TSP by replacing the MST with the

shortest DCSF F ∗ w.r.t. (G,D, k). However, as pointed out by Malik et al. (2007), the

worst-case analysis of this extended heuristic is challenging, since it needs to bound the

length of a minimum-weight perfect matching for vertices of odd degree in F ∗, for which no

effective approach is available in the literature. In this paper, we now develop several new

approaches to bound the edges of this matching, which allows us to show that the extended

Christofides heuristic achieves a tight approximation ratio of 2− 1/(2k).

Extensions of the Christofides heuristic have been proved to guarantee approximation

ratios that are less than 2 for some special cases of the GMDMTSP and their variants.

For the multiple depot multiple TSP (MDMTSP), a special case of the GMDMTSP with

k = |D|, Xu et al. (2011) showed that when k ≥ 2, the Christofides heuristic can be ex-

tended to achieve a tight approximation ratio of 2 − 1/k in O(n3) time, by replacing the

MST with a shortest constrained spanning forest (CSF) w.r.t. (G,D), where a CSF w.r.t.

(G,D) is defined as a spanning forest of G that covers all the vertices in V , with each

tree containing a distinct depot in D. Noting that, unlike the DCSF, the total degree of

the roots of a CSF may exceed k, the worst-case analysis for the extended Christofides
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heuristic of the MDMTSP cannot be directly applied to that of the GMDMTSP. Besides

this, Rathinam and Sengupta (2010) have extended the Christofides heuristic to obtain a

3/2-approximation algorithm that runs in O(n3) time for a two-depot Hamiltonian path

problem, which determines paths instead of cycles for salesmen. The analysis of the ap-

proximation ratio in their work is manageable, since it needs only to consider a two-depot

case with k = |D| = 2. In addition, Xu and Rodrigues (2015) have developed a 3/2-

approximation algorithm for the MDMTSP, but whose running time is O(n3k), which is

exponential in k. In this paper, we develop a [2− 1/(2k)]-approximation algorithm for the

GMDMTSP with a polynomial running time of only about O(n4).

3. Preliminaries

Recall the definitions of walk, tree, rooted tree, forest, matching, and perfect matching

in Diestel (2010). A walk, (v1v2...vtvt+1) where t ≥ 0, is a closed walk if v1 = vt+1. A walk

with no repeated vertices is a path. A closed walk with no repeated vertices except its start

and end vertices is a cycle. A multigraph is an undirected graph that may contain multiple

edges between a pair of vertices. A connected multigraph is Eulerian if the degree of each

vertex is even. Every Eulerian multigraph has an Eulerian closed walk, that is, a closed

walk containing every edge (Diestel, 2010).

Consider any two vertices u and v of a rooted tree T with the root of T denoted by r.

If u is on the unique path that connects r and v in T , then u is an ancestor of v, and v is

a descendant of u. If u is an ancestor of v and (u, v) is in T , then u is the parent of v, and

v is a child of u. Moreover, throughout the paper, for any subgraph H of G, we use V (H),

E(H), and ℓ(H) to denote the vertex set, the edge set, and the total length of edges of H .

For any edge subset W with V (W ) ⊆ V (H), we use H − W to denote a graph on V (H)

with an edge set equal to E(H)\W , and we use H+W to denote a graph on V (H) with an

edge set equal to E(H)∪W . As in Section 2, α := α(n2, n) indicates the functional inverse

of Ackermann’s function, which, as pointed out, grows very slowly and can be considered

as a constant (Chazelle, 2000).

In this paper, we use F ∗ to indicate a shortest DCSF w.r.t. (G,D, k) as defined in

Section 2, and use a cycle collection Copt to indicate an optimal solution to the GMDMTSP.

4. An Extension of the Christofides Heuristic

We elaborate on our extension of the Christofides heuristic for the GMDMTSP in Al-

gorithm 1. It first computes a shortest DCSF F ∗ w.r.t. (G,D, k), and obtains a vertex set

Odd(F ∗) that contains all the vertices of odd degree in F ∗. It then computes a minimum-

weight perfect matching M∗(F ∗) in the subgraph of G induced by Odd(F ∗), and adds to

F ∗ every edge of M∗(F ∗) (or a copy of the edge if the edge is in F ∗). As a result, it ob-

tains a new multigraph on V , in which each vertex is guaranteed to have an even degree.
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Thus, each connected component of the multigraph is Eulerian, and must have an Eulerian

closed walk. By removing repeated vertices and redundant depots in these closed walks,

Algorithm 1 obtains and returns a collection of cycles, denoted by C(F ∗).

Algorithm 1 (An Extended Christofides Heuristic for the GMDMTSP).

1. Compute a shortest DCSF F ∗ w.r.t. (G,D, k), and let Odd(F ∗) denote a vertex set

that contains all the vertices of odd degree in F ∗;

2. Compute a minimum-weight perfect matching M∗(F ∗) in the subgraph induced by

Odd(F ∗), and add to F ∗ every edge e of M∗(F ∗) (or a copy of e if e ∈ E(F ∗)), so as

to obtain a new multigraph on V ;

3. Let C(F ∗) denote the collection of cycles to be output, which is empty initially. For

each connected component of the multigraph constructed above, if it contains at least

one customer, then (i) find its Eulerian closed walk, (ii) use shortcuts to obtain a

cycle by removing repeated vertices and keeping exactly one depot in the closed walk,

and then (iii) add the resulting cycle to C(F ∗). Return C(F ∗).

We now establish Theorem 1 below to show that Algorithm 1 always returns a feasible

solution C(F ∗) to the GMDMTSP with ℓ(C(F ∗)) ≤ ℓ(F ∗)+ℓ(M∗(F ∗)) in about O(n4) time,

given that α, as we explained in Section 3, can be considered as a constant.

Theorem 1. Algorithm 1 runs in O(n4α2 log2 α) time, and the cycle collection C(F ∗) that

it returns is a feasible solution to the GMDMTSP with ℓ(C(F ∗)) ≤ ℓ(F ∗) + ℓ(M∗(F ∗)).

Proof. As mentioned in Section 2, the shortest DCSF F ∗ w.r.t. (G,D, k) can be obtained

in O(n4α2 log2 α) time by a Lagrangian relaxation method (Malik et al., 2007). Since the

perfect matching M∗(F ∗) and Eulerian closed walks can be computed in O(n3) time and

O(n) time, respectively, we can say that Algorithm 1 runs in O(n4α2 log2 α) time.

To show that C(F ∗) is a feasible solution of the GMDMTSP, consider the shortest DCSF

F ∗. By definition, F ∗ covers all customers, and each connected component of F ∗ contains

a distinct depot. Moreover, among all connected components of F ∗, at most k contain

at least one customer. Since these are also true for the multigraph obtained in Step 2 of

Algorithm 1, C(F ∗) must contain at most k cycles and covers every customer, where each

cycle includes a distinct depot. Hence, C(F ∗) is a feasible solution to the GMDMTSP.

Moreover, by the triangle inequality, we know that ℓ(C(F ∗)) cannot be longer than the

total length of the edges of the multigraph that is obtained in Step 2 of Algorithm 1. This

implies that ℓ(C(F ∗)) ≤ ℓ(F ∗) + ℓ(M∗(F ∗)). Thus, Theorem 1 is proved.

We next apply Algorithm 1 to an instance shown in Figure 1(a) with k = 4, where

rectangles are depots, circles are customers, and lines (with numbers) are edges (with their

lengths). For edges that are not shown in Figure 1(a), their lengths are equal to the lengths

of the shortest paths between their endpoints, so as to satisfy the triangle inequality. For
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Figure 1: Illustration of Algorithm 1.
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(d) C(F ∗) returned by Algorithm 1.

example, we have ℓ(v1,4, v1,3) = ℓ(v1,4v1,5v1,1v1,3) = 3. As shown in Figure 1(b), it can be

seen that the length of the optimal solution equals 16, i.e., ℓ(Copt) = 16.

By Step 1 of Algorithm 1, we obtain a shortest DCSF F ∗ w.r.t. (G,D, k) with ℓ(F ∗) =

15, which is shown in solid lines in Figure 1(c). It can be seen that except for v1,5, v2,5, v3,5,

v4,2 and v4,1, all other vertices are of odd degree in F ∗, which form the set Odd(F ∗), and

are shown in gray in Figure 2(c). Thus, by Step 2 of Algorithm 1, we obtain a minimum-

weight perfect matching M∗(F ∗) for the vertices in Odd(F ∗) with ℓ(M∗(F ∗)) = 15, which

is shown in dashed lines in Figure 1(c). By adding edges in M∗(F ∗) to F ∗, we obtain

a multigraph with four connected components with each having an Eulerian closed walk.

Based on these closed walks, from Step 3 of Algorithm 1 we find a feasible solution C(F ∗)

with ℓ(C∗(F ∗)) = 30, as shown in Figure 1(d). Since ℓ(Copt) = 16, we know that the

approximation ratio of Algorithm 1 is at least 30/16 = 15/8 = 2− 1/(2× 4).

We note that it is possible to extend the example above for each k ≥ 1, to show that

the approximation ratio of Algorithm 1 is at least 2− 1/(2k). See Online Appendix A.

5. Approximation Ratio

In this section, we will show that Algorithm 1 has a tight approximation ratio of 2 −

1/(2k). For this, we need to show that ℓ(C(F ∗)) ≤ [2 − 1/(2k)]ℓ(Copt). Since ℓ(C(F ∗)) ≤

ℓ(F ∗) + ℓ(M∗(F ∗)) (by Theorem 1), we will need to bound both ℓ(F ∗) and ℓ(M∗(F ∗)).
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Figure 2: An example which illustrates the analysis in Section 5 and Section 6.
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(d) P = {P1, P2, P3} shown in solid lines.

We begin with some notation. It can be assumed, without loss of generality, that each

cycle in the optimal solution Copt contains at least one customer, since if Copt has a cycle

C that contains no customer, we can exclude C from Copt. Label the cycles in Copt as

C1, C2, ..., Cm where m = |Copt| ≤ k. For each Cj with 1 ≤ j ≤ m, let dj indicate the depot

of Cj. Among the two edges of Cj that dj is incident with, let hj := (dj, bj) indicate the

longer edge (breaking ties arbitrarily), where bj denotes the endpoint of hj other than the

depot dj . Since Cj contains only one depot and at least one customer, bj must be a customer

in I. From each Cj, we can obtain a path Pj by removing dj and the two edges that dj is

incident with. As a result, Pj consists of only customers of Cj . Let P := {Pj : 1 ≤ j ≤ m}.

For each path Pj ∈ P, let gj indicate the longest edge of Pj (breaking ties arbitrarily), and

we take ℓ(gj) = 0 when Pj contains only a single customer.

Example 1. To illustrate the notation introduced above, let us consider an instance shown

in Figure 2(a). Its shortest DCSF F ∗ w.r.t. (G,D, k) is shown in Figure 2(b). Its optimal

solution Copt = {C1, C2, C3} is shown in Figure 2(c). By definition, it can be seen that

h1 = (1, 8), h2 = (2, 11), and h3 = (3, 13). As a result, we have d1 = 1, b1 = 8, d2 = 2,

b2 = 11, d3 = 3, and b3 = 13. From Copt we know that P = {P1, P2, P3} with P1 = (8, 7, 6, 5),

P2 = (11, 10, 9), and P3 = (12, 13), as shown in Figure 2(d). By definition, g1 = (6, 7),

g2 = (9, 10), and g3 = (12, 13).

We first derive two upper bounds on ℓ(F ∗), which are given below in (1) and (2). Notice

that each cycle Cj in Copt for 1 ≤ j ≤ m can be transformed to a tree by deleting edge

hj of Cj . For example, see cycle C1 in Figure 2(c), which can be transformed to a tree by

deleting h1 = (1, 8). Thus, from Copt we can obtain a DCSF F ′ w.r.t. (G,D, k) by first
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deleting edges hj for all 1 ≤ j ≤ m, and then including all the depots that are not in Copt.

Thus, ℓ(F ′) ≤
∑m

j=1 ℓ(Cj)−
∑m

j=1 ℓ(hj) = ℓ(Copt)−
∑m

j=1 ℓ(hj). By ℓ(F ∗) ≤ ℓ(F ′), we have

ℓ(F ∗) ≤ ℓ(Copt)−
m∑

j=1

ℓ(hj). (1)

It is also possible to obtain another DCSF F ′′ w.r.t. (G,D, k) from P as follows.

Notice that each path Pj ∈ P for 1 ≤ j ≤ m can be transformed to a tree by first

including the depot dj , joining the start and end points of Pj , and then removing edge gj

and adding edge hj . For example, see path P1 = (8, 7, 6, 5) in Figure 2(d), which can be

transformed to a tree by adding depot d1 = 1, adding edge (5, 8), deleting edge g1 = (6, 7),

and adding edge h1 = (1, 8). Thus, we can obtain a DCSF F ′′ from P by first including

all depots in D, joining the start and end points of each Pj ∈ P, and then removing

each edge gj and adding each edge hj for 1 ≤ j ≤ m. For each Pj with 1 ≤ j ≤ m,

let C ′
j indicate the cycle that is obtained by joining the start and end points of Pj. By

the triangle inequality we have that ℓ(C ′
j) ≤ ℓ(Cj) for 1 ≤ j ≤ m. Thus, we obtain

that ℓ(F ′′) =
∑m

j=1 ℓ(C
′
j) +

∑m

j=1[ℓ(hj) − ℓ(gj)] ≤
∑m

j=1 ℓ(Cj) +
∑m

j=1[ℓ(hj) − ℓ(gj)] =

ℓ(Copt) +
∑m

j=1[ℓ(hj)− ℓ(gj)], which, together with ℓ(F ∗) ≤ ℓ(F ′′), implies that

ℓ(F ∗) ≤ ℓ(Copt) +

m∑

j=1

[ℓ(hj)− ℓ(gj)]. (2)

We next provide two upper bounds on ℓ(M∗(F ∗)), which are given below in (3) and (4):

ℓ(M∗(F ∗)) ≤ ℓ(Copt) +
m∑

j=1

[ℓ(hj)− ℓ(gj)], (3)

ℓ(M∗(F ∗)) ≤ ℓ(Copt)/2 +

m∑

j=1

[ℓ(hj) + (k − 1)ℓ(gj)]. (4)

It is easy to prove (3) as follows. (See Figure 3 for illustration.) By duplicating all the edges

of F ∗ we can obtain a multigraph, in which each vertex has an even degree. Thus, each

connected component Q of the multigraph has an Eulerian closed walk. From this closed

walk, using shortcuts to remove repeated vertices, we can find a cycle C(Q) that visits only

vertices in V (Q) ∩ Odd(F ∗). Since each tree in F ∗ contains an even number of vertices of

odd degree in F ∗, we know that |V (Q) ∩ Odd(F ∗)| is even. Thus, C(Q) consists of two

disjoint perfect matching for vertices in V (Q) ∩ Odd(F ∗), the shorter of which is denoted

by L(Q). By combining L(Q) for all the connected components Q of the multigraph, we

obtain a perfect matching for vertices in Odd(F ∗). Thus, due to the triangle inequality and

(2), we have ℓ(M∗(F ∗)) ≤ 2ℓ(F ∗)/2 = ℓ(F ∗) ≤ ℓ(Copt) +
∑m

j=1[ℓ(hj)− ℓ(gj)]. (3) is proved.

Compared with the above proof of (3), the proof of (4) is much more complicated. We
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Figure 3: Illustration of the proof of (3), using the instance in Figure 2, with vertices of Odd(F ∗) in gray.
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therefore present it later in Section 6.

Based on the above bounds on ℓ(F ∗) and ℓ(M∗(F ∗)), we can derive the tight approxi-

mation ratio of Algorithm 1 as follows:

Theorem 2. Algorithm 1 has a tight approximation ratio of 2− 1/(2k).

Proof. By Theorem 1, ℓ(C(F ∗)) ≤ ℓ(F ∗) + ℓ(M∗(F ∗)). Thus, by (1) and (3), we have that

ℓ(C(F ∗)) ≤ 2ℓ(Copt)−
m∑

j=1

ℓ(gj), (5)

and by (1) and (4), we have that

ℓ(C(F ∗)) ≤ 3ℓ(C)opt/2 +
m∑

j=1

(k − 1)ℓ(gj). (6)

Thus, multiplying (5) by (k − 1), and adding it to (6), we have that

ℓ(C(F ∗)) ≤ {[(3/2) + 2(k − 1)]/k}ℓ(Copt) = [2− 1/(2k)]ℓ(Copt).

Hence, Algorithm 1 achieves an approximation ratio of 2− 1/(2k), which is also tight, due

to the example in Online Appendix A.

6. Proof of Inequality (4)

In this section, we are going to prove the inequality (4), for which we only need to show

that ℓ(Copt)/2 +
∑m

j=1[ℓ(hj) + (k − 1)ℓ(gj)] is an upper bound on ℓ(M∗(F ∗)). For this, we

need the following notion of an auxiliary edge subset, which extends the notation introduced

in Xu et al. (2011).

Definition 1. An auxiliary edge subset Â w.r.t. (F ∗, Copt) is an edge subset of E such that

each connected component of the graph (V,E(Copt)∪Â) contains an even number of vertices

of odd degree in F ∗.
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Example 2. To illustrate the definition of an auxiliary edge subset, consider the instance

in Figure 2(a), for which F ∗ = {T1, T2, T3, T4} and Odd(F ∗) = {3, 5, 6, 7, 8, 9, 10, 11, 12, 13}

are shown in Figure 2(b). Consider the optimal solution Copt = {C1, C2, C3} shown in

Figure 2(c). It can be seen that C1 contains four vertices in Odd(F ∗), C2 contains three

vertices in Odd(F ∗), and C3 contains three vertices in Odd(F ∗). Thus, since E(Copt)∪∅ =

E(Copt), according to Definition 1 we know that ∅ is not an auxiliary edge subset w.r.t.

(F ∗, Copt). Next, consider an edge subset Â = {(12, 10)}. It can be seen that the edge (12, 10)

connects C2 and C3. Thus, (V,E(Copt)∪{(12, 10)}) contains two connected components with

one component including four and the other including six vertices in Odd(F ∗). Hence, from

Definition 1 we know that Â = {(12, 10)} is an auxiliary edge subset w.r.t. (F∗, Copt).

As defined in Algorithm 1, Odd(F ∗) represents the set of vertices of odd degree in F ∗.

Definition 1 indicates that Â is an auxiliary edge subset w.r.t. (F ∗, Copt) if and only if

for each connected component Q of (V,E(Copt) ∪ Â), the number of its vertices that have

odd degree in F ∗ is even, i.e., |V (Q) ∩ Odd(F ∗)| is even. Based on this, we can follow an

argument similar to that given in Xu et al. (2011) to establish Lemma 1 below, showing

that ℓ(Copt)/2 + ℓ(Â) is an upper bound on ℓ(M∗(F ∗)).

Lemma 1. If Â is an auxiliary edge subset w.r.t. (F ∗, Copt), then

ℓ(M∗(F ∗)) ≤ ℓ(Copt)/2 + ℓ(Â). (7)

Proof Sketch. (See Online Appendix B for details.) By duplicating edges in Â and adding

these edges to Copt, we obtain a multigraph H on V , which has the same connected com-

ponents as (V,E(Copt) ∪ Â), and satisfies ℓ(H) = ℓ(Copt) + 2ℓ(Â). It can be seen that each

vertex of H has an even degree. Thus, for each connected component of H , there exists

an Eulerian closed walk. We can show that these closed walks can be transformed to two

disjoint perfect matchings of vertices in Odd(F ∗), the shorter of which, denoted by M ,

satisfies that ℓ(M) ≤ ℓ(H)/2 = ℓ(Copt)/2 + ℓ(Â). This, together with ℓ(M∗(F ∗)) ≤ ℓ(M),

completes the proof of (7) of Lemma 1.

Lemma 1 implies that to prove (4), it is sufficient to establish the following theorem.

Theorem 3. There exists an auxiliary edge subset Â w.r.t. (F ∗, Copt) such that ℓ(Â) ≤
∑m

j=1[ℓ(hj) + (k − 1)ℓ(gj)].

The proof of Theorem 3 is outlined as follows. In Section 6.1, we will first construct an

auxiliary edge subset A w.r.t. (F ∗, Copt) that contains only edges in S, where

S := E(F ∗) \ E(P), (8)

10



and P, as defined in Section 5, is a collection of paths P1, P2, ..., Pm that are obtained by

removing depots and their incident edges from cycles C1, C2, ..., Cm of Copt. We will show

that our construction of A guarantees certain properties, which are useful for the proof of

Theorem 3. In Section 6.2, we will derive several upper bounds on the lengths of the edges

in S. Since A ⊆ S, these bounds are also applicable to the edges in A. In Section 6.3, based

on the properties and bounds obtained, we will derive an upper bound on ℓ(A). Using this

upper bound, we can complete the proof of Theorem 3 in Section 6.4 by showing that either

A satisfies ℓ(A) ≤
∑m

j=1[ℓ(hj)+ (k− 1)ℓ(gj)], or there exist edges (s, t) ∈ A and (s′, t′) ∈ S,

such that A′ := A \ {(s, t)} ∪ {(s′, t′)} is an auxiliary edge subset w.r.t. (F ∗, Copt) that

satisfies ℓ(A′) ≤
∑m

j=1[ℓ(hj) + (k − 1)ℓ(gj)].

6.1. Construction of an auxiliary edge subset A from S

For the construction, we first derive a sufficient condition for an edge subset to be an

auxiliary edge subset w.r.t. (F ∗, Copt). The condition is based on the following observations:

(i) Each tree in F ∗ must contain an even number of vertices of odd degree in F ∗; and (ii) for

any edge subset Â, every two vertices u and v that belong to the same connected component

of (V,E(P) ∪ Â) must belong to the same connected component of (V,E(Copt) ∪ Â).

Lemma 2. An edge subset Â ⊆ E is an auxiliary edge subset w.r.t. (F ∗, Copt), if every

two vertices u and v that belong to the same tree in F ∗ also belong to the same connected

component of (V,E(P) ∪ Â).

Proof. If the condition is satisfied, then due to observation (ii) above, every two vertices u

and v that belong to the same tree in F ∗ must also belong to the same connected component

of (V,E(Copt) ∪ Â). Thus, in view of observation (i) above, we find that every connected

component of (V,E(Copt) ∪ Â) must contain an even number of vertices of odd degree in

F ∗. Hence, by Definition 1, Â is an auxiliary edge subset w.r.t. (F ∗, Copt).

Remark 1. The sufficient condition specified in Lemma 2 may not be necessary for an

edge subset to be an auxiliary edge subset. For example, the auxiliary edge subset Â =

{(12, 10)} in Example 2 does not satisfy the condition, since customers 9 and 7 of T2

of F ∗ belong to two different connected components of (V,E(P) ∪ {(12, 10)}). However,

{(1, 5), (3, 12), (9, 7), (12, 10)}, which is also an auxiliary edge subset, satisfies the condition.

Moreover, the sufficient condition is still valid even if it is relaxed by replacing P with Copt.

In Lemma 2, we use P in the condition so as to simplify our further proof of Theorem 3.

Lemma 2 implies that an auxiliary edge subset A w.r.t. (F ∗, Copt) can be constructed

by iteratively adding to A an edge of F ∗ that joins customers in two different connected

components of (V,E(P) ∪A). Such edges added to A must be in S = E(F ∗) \ E(P).

To guarantee certain properties, which are useful for the further proof of Theorem 3, our

construction of A examines edges of S in a particular predetermined sequence. To determine

11



Figure 4: Illustration of Algorithm 2 for the construction of an auxiliary edge subset A w.r.t. (F ∗, Copt),
using the instance in Figure 2, with vertices of Odd(F ∗) in gray.
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(a) S = E(F ∗) \ E(P) = {(1, 5), (1, 6), (3, 12), (12, 10),
(9, 7), (9, 8)} shown in bold lines.

6

1

5

7

9 11

2

10 12

3

4

8

13

g1

g2

P1 P2

g3

P3

(b) A = {(1, 5), (3, 12), (9, 7), (12, 10)} shown in dashed
lines, which connect P1, P2, and P3.

the sequence, we need the following notation. Denote the trees in F ∗ by T1, T2, ..., T|D|. For

each vertex v, define the depth of v as the number of edges on the unique path that connects

v to the root of the tree in F ∗ that contains v. For each edge (u, v) of F ∗, where u is the

parent of v, the depth of (u, v) is defined to be the same as the depth of u.

As shown in Algorithm 2 below, in our construction of A, we examine edges in E(Ti) \

E(P) sequentially in a non-decreasing order of their depths, for each tree Ti, with i =

1, 2, ..., |D|, respectively. For each edge (u, v) examined, we add (u, v) to A only when u

and v belong to different connected components of (V,E(P) ∪A). Thus, by Lemma 2, the

edge subset A returned by Algorithm 2 must be an auxiliary edge subset w.r.t. (F ∗, Copt).

From Step 2 of Algorithm 2 and (8), we know that A ⊆ E(F ∗) \ E(P) = S.

Algorithm 2 (Construction of an auxiliary edge subset A w.r.t. (F ∗, Copt)).

1. Start with A = ∅.

2. For each tree Ti, where i = 1, 2, ..., |D|, examine edges (u, v) ∈ E(Ti) \ E(P) in a

non-decreasing order of their depths, and if u and v belong to different connected

components of (V,E(P) ∪A), then add (u, v) to A.

3. Return A.

Example 3. To illustrate Algorithm 2, let us apply it to the instance in Figure 2(a) to

construct an auxiliary edge subset A w.r.t. (F ∗, Copt), where F ∗ = {T1, T2, T3, T4}, C
opt, and

P, are shown in Figures 2(b)(c)(d), and S = E(F ∗)\(E(P) = {(1, 5), (1, 6), (3, 12), (12, 10),

(9, 7), (9, 8)} is shown in bold lines in Figure 4(a). Algorithm 2 starts with A = ∅, and

examines the edges of T1, T2, T3, and T4, respectively. For T1, the first edge to be examined

is (1, 5) with a depth of 0, and it is added to A, since vertices 1 and 5 belong to different

connected components of (V,E(P) ∪ A). The second edge to be examined is (1, 6), but this

edge is not added to A, since vertices 1 and 6 belong to the same connected component

of (V,E(P) ∪ A). Similarly, edges (3, 12), (12, 10), (9, 7), and (9, 8) of T2 are examined

sequentially, and only (3, 12), (12, 10), and (9, 7) are added to A. Thus, since E(T3) =

E(T4) = ∅, Algorithm 2 returns A = {(1, 5), (3, 12), (9, 7), (12, 10)}, which, as shown in

12



Figure 4(b), connects all the paths of P, and satisfies the condition specified in Lemma 2.

Hence, it is an auxiliary edge subset w.r.t. (F ∗, Copt).

Algorithm 2 guarantees certain properties for the auxiliary edge subset A that it returns.

To illustrate these properties, we need to introduce the following notation. As shown earlier,

A ⊆ S. Consider each edge (u, v) ∈ S, where u is the parent of v in F ∗. Since v is a customer

in I, there exists a unique path in P that contains v. We refer to this path as the associated

path of (u, v), denoted by Pj(u,v) ∈ P with 1 ≤ j(u, v) ≤ m. For example, from Figure 2(b)

and Figure 2(d) we know that P1 is the associated path of (1, 5), (1, 6), (9, 7) and (9, 8), P2

is the associated path of (12, 10), and P3 is the associated path of (3, 12).

Let R denote the set of root edges of F ∗, i.e.,

R := {(d, x) ∈ E(F ∗) : d ∈ D}. (9)

For example, from Figure 2(b) it can be seen that R = {(1, 5), (1, 6), (3, 12)}. Since the

total degree of roots in F ∗ does not exceed k, we have |R| ≤ k. For each customer v ∈ I,

there exists a unique root edge on the path from a depot to v in F ∗, which we refer to as

the root edge of v. Thus, for each edge (u, v) ∈ E(F ∗), the root edge of (u, v) is defined as

being the same as the root edge of v. For example, from Figure 2(b) it can be seen that

(3,12) is the root edge of (3,12), (12,10), (10,11), (10,9), (9,7), (9,8), and (12,13).

Lemma 3 below provides three properties of A and A ∪ R.

Lemma 3. The following hold: (i) (A ∪ R) ⊆ S; (ii) |A ∪ R| ≤ 2k − 1; and (iii) edges in

A ∪ R that have the same associated path must have different root edges in F ∗.

Proof Sketch. (See Online Appendix C for details.) By the definitions of R and S, and

noting that A ⊆ S, it is easy to verify property (i). Noting that in Step 2 of Algorithm 2,

only edges that join different connected components of (V,E(P) ∪ A) are added to A, we

can show that |A \ R| ≤ |P| − 1 ≤ k − 1. This, together with |R| ≤ k, implies that

|A∪R| = |A \R|+ |R| ≤ 2k− 1, and proves property (ii). Property (iii) can be proved by

contradiction, noting that Algorithm 2 constructs A by examining edges of each tree of F ∗

in a non-decreasing order of their depths.

Remark 2. The three properties in Lemma 3 are later used in the proof of Theorem 3. In

fact, we know that Theorem 3 can be proved if it can be shown that the auxiliary edge subset

A returned by Algorithm 2 satisfies ℓ(A) ≤
∑m

j=1[ℓ(hj) + (k − 1)ℓ(gj)]. For this, property

(i) in Lemma 3 indicates that we can use bounds in Section 6.2 below to bound the lengths

of edges in A, from which we can then derive an upper bound on ℓ(A) in Section 6.3 using

ℓ(gj) for 1 ≤ j ≤ m and using
∑m

j=1 ℓ(hj). In Section 6.4, we will use properties (ii) and

(iii) in Lemma 3 to bound the number of times that each ℓ(gj) appears in the upper bound

on ℓ(A), so as to obtain a condition for A, as well as to gain some insight on how to modify

A, if necessary, to satisfy ℓ(A) ≤
∑m

j=1[ℓ(hj) + (k − 1)ℓ(gj)].
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Figure 5: Illustration of proofs of Lemma 4 and Lemma 6, using the instance in Figure 2.
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(a) F = (F ∗−{(u, v)})+{hj(u,v)}, as defined in the proof
of Lemma 4, where (u, v) = (3, 12) and hj(u,v) = (3, 13).
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(b) F = (F ∗ − {(u, v)}) + {(u′, v′)}, as defined in the
proof of Lemma 6, where (u, v) = (9, 7), (u′, v′) =
(7, 8) is on Pj(u,v) = P1, and u′ = 7 is a descendant of
v = 7 in F ∗ but v′ = 8 is not.

6.2. Upper bounds on the lengths of the edges in S

Consider the auxiliary edge subset A returned by Algorithm 2, the edge subset S defined

in (8), and the edge subset R defined in (9). In view of property (i) in Lemma 3, we have

that ℓ(A) ≤ ℓ(A ∪ R) and (A ∪ R) ⊆ S. Thus, to derive an upper bound on ℓ(A) later

in Section 6.3 for the proof of Theorem 3, we will use ℓ(gj) and ℓ(hj) with 1 ≤ j ≤ m to

derive upper bounds on the lengths of different edges in S, as follows.

First, consider any edge (u, v) ∈ S, where u is the parent of v in F ∗, such that bj(u,v)

of the associated path Pj(u,v) of (u, v), with 1 ≤ j(u, v) ≤ m, is a descendant of v in F ∗.

We refer to such an edge (u, v) ∈ S as a b-type edge, and use B ⊆ S to denote the set of

all b-type edges. For example, consider the DCSF F ∗ in Figure 2(b), and the edge set S

shown in Example 3. From Figures 2(b)(c)(d) we know that edge (12, 10) ∈ S is a b-type

edge, since its associated path is P2, and b2 = 11 is a descendant of 10 in F ∗. Similarly,

(9, 8) and (3, 12) are also b-type edges, and thus B = {(12, 10), (9, 8), (3, 12)}. For such

a b-type edge (u, v), Lemma 4 shows that ℓ(hj(u,v)) is an upper bound on ℓ(u, v) if u is a

depot or |R| < k.

Lemma 4. For each b-type edge (u, v) ∈ B, where u is the parent of v in F ∗, if u ∈ D or

|R| < k, then ℓ(u, v) ≤ ℓ(hj(u,v)).

Proof. Let F := (F ∗ − {(u, v)}) + {hj(u,v)} = (F ∗ − {(u, v)}) + {(dj(u,v), bj(u,v))}. (See

Figure 5(a) for illustration.) Since (u, v) is a b-type edge, bj(u,v) is a descendant of v in F ∗.

Hence, if u ∈ D or |R| < k, then since dj(u,v) ∈ D, it can be seen that F is also a DCSF

w.r.t. (G,D, k). Thus, ℓ(F ∗) ≤ ℓ(F ), which implies that ℓ(u, v) ≤ ℓ(hj(u,v)).

Next, for any b-type edge (u, v) ∈ B \R and any edge (u′, v′) ∈ R \B, Lemma 5 below

shows that ℓ(gj(u′,v′)) + ℓ(hj(u,v)) is an upper bound on ℓ(u′, v′) + ℓ(u, v).

Lemma 5. Consider any b-type edge (u, v) ∈ B\R, where u is the parent of v in F ∗. Then,

for each (u′, v′) ∈ R\B, where u′ is the parent of v′ in F ∗, it satisfies that ℓ(u′, v′)+ℓ(u, v) ≤

ℓ(gj(u′,v′)) + ℓ(hj(u,v)).
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Proof Sketch. (See Online Appendix D for details.) Consider F := (F ∗−{(u, v)})+{hj(u,v)}.

It can be shown that F is a CSF w.r.t. (G,D), with the total degree of the roots no

more than k + 1. Moreover, it can be shown that for any edge (u′, v′) ∈ R \ B, there

exists an edge (x, y) on Pj(u′,v′) with x ∈ I and y ∈ I, such that (u′, v′) is the root

edge of x but is not the root edge of y in F . From this it can be seen that F ′ :=

(F − {(u′, v′)}) + {(x, y)} is a DCSF w.r.t. (G,D, k). This implies that ℓ(F ∗) ≤ ℓ(F ′),

and so ℓ(u, v) + ℓ(u′, v′) ≤ ℓ(hj(u,v)) + ℓ(x, y). Hence, since edge (x, y) is on Pj(u′,v′), which

implies that ℓ(x, y) ≤ ℓ(gj(u′,v′)), we obtain that ℓ(u′, v′) + ℓ(u, v) ≤ ℓ(gj(u′,v′)) + ℓ(hj(u,v)),

which completes the proof of Lemma 5.

Moreover, consider any edge (u, v) ∈ S, where u is the parent of v in F ∗, such that the

associated path Pj(u,v) of (u, v) contains a customer that is not a descendant of v in F ∗.

We refer to such an edge (u, v) ∈ S as a y-type edge, and use Y ⊆ S to denote the set of all

y-type edges. For example, consider the DCSF F ∗ shown in Figure 2(b), and the edge set

S shown in Example 3. From Figures 2)(b)(c)(d) we know that (9, 7) ∈ S is a y-type edge,

since its associated path P1 contains 8, which is not a descendant of 7 in F ∗. Similarly,

(1, 5), (1, 6) and (9, 8) are all y-type edges, and thus Y = {(1, 5), (1, 6), (9, 7), (9, 8)}. For

such a y-type edge (u, v), Lemma 6 below shows that ℓ(gj(u,v)) is an upper bound on ℓ(u, v).

Lemma 6. For each y-type edge (u, v) ∈ Y , where u is the parent of v in F ∗, it satisfies

that ℓ(u, v) ≤ ℓ(gj(u,v)).

Proof. Since (u, v) is a y-type edge, by definition we know that path Pj(u,v) must contain a

customer that is not a descendant of v in F ∗. Thus, since v is a customer on Pj(u,v), it can

be seen that Pj(u,v) must contain an edge (u′, v′), such that u′ is a descendant of v in F ∗ but

v′ is not. (See Figure 5(b) for illustration.) Thus, u′ and v′ must both be in I. Therefore,

F := (F ∗ −{(u, v)})+ {(u′, v′)} is also a DCSF w.r.t. (G,D, k). Hence, ℓ(F ∗) ≤ ℓ(F ), and

so ℓ(u, v) ≤ ℓ(u′, v′) ≤ ℓ(gj(u,v)).

In view of Lemma 7 below, the bound presented in Lemma 6 above is also valid for

edges in R \B and S \B.

Lemma 7. (R \B) ⊆ (S \B) ⊆ Y .

Proof. By (i) of Lemma 3, R ⊆ S, which implies that (R \ B) ⊆ (S \ B). For each

(u, v) ∈ S \B, where u is the parent of v in F ∗, we know that the customer bj(u,v) of Pj(u,v)

is not a descendant of v in F ∗. Thus, by definition we know that (u, v) is a y-type edge in

Y . This implies that (S \B) ⊆ Y , and completes the proof of Lemma 7.

6.3. An upper bound on ℓ(A)

We now establish Theorem 4 below to derive an upper bound on ℓ(A) for the auxiliary

edge subset A returned by Algorithm 2, by using ℓ(gj) for 1 ≤ j ≤ m and
∑m

j=1 ℓ(hj).
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Theorem 4. Consider the edge subset S defined in (8), the edge subset R defined in (9),

and the set B of all b-type edges of S. Then, the auxiliary edge subset A w.r.t. (F ∗, Copt)

returned by Algorithm 2 satisfies:

ℓ(A) ≤
∑

e∈(A∪R)\(R∩B)

ℓ(gj(e)) +

m∑

j=1

ℓ(hj). (10)

To prove Theorem 4, we only need to prove (10). For this, we notice that ℓ(A) ≤

ℓ(A ∪ R) = ℓ(R) + ℓ(A \R) = ℓ(R) + ℓ(A \R \ Y ) + ℓ((A \R) ∩ Y ). Define

H := A \R \ Y, (11)

and note that

[(A \R) ∩ Y ] = (A \R) \ [(A \R) \ Y ] = (A \R \H). (12)

We have that

ℓ(A) ≤ ℓ(R) + ℓ(H) + ℓ(A \R \H). (13)

Moreover, (12) implies that every e ∈ A \ R \ H is a y-type edge, which, together with

Lemma 6, implies that ℓ(A \R \H) ≤
∑

e∈A\R\H ℓ(gj(e)). Thus, from (13) we obtain that

ℓ(A) ≤ ℓ(R) + ℓ(H) +
∑

e∈A\R\H

ℓ(gj(e)). (14)

Therefore, to prove (10) we need to derive an upper bound on ℓ(R) + ℓ(H).

To derive an upper bound on ℓ(R) + ℓ(H), we first examine some properties of H . For

each edge (u, v) ∈ H , where u is the parent of v in F ∗, we know from (11) that (u, v) ∈ A\R

and (u, v) ∈ A \ Y . Thus, u ∈ I, and customers on Pj(u,v) are all descendants of v in F ∗.

Example 4. To illustrate other properties of H, consider the instance given in Figure 2,

for which we know from Example 3 that A = {(1, 5), (3, 12), (9, 7), (12, 10)} and S =

{(1, 5), (1, 6), (3, 12), (12, 10), (9, 7), (9, 8)}. As we have shown, R = {(1, 5), (1, 6), (3, 12)},

B = {(12, 10), (9, 8), (3, 12)}, and Y = {(1, 5), (1, 6), (9, 7), (9, 8)}. Thus, by (11), H =

{(12, 10)}. Moreover, we have R ∩ B = {(3, 12)}, (S \ R) ∩ B = {(12, 10), (9, 8)}, and

H ∪ (R ∩B) = {(12, 10), (3, 12)}. Thus, we can see that (i) H and R ∩B are disjoint; (ii)

H ⊆ (S \R) ∩ B; and (iii) different edges in H ∪ (R ∩B) have different associated paths.

By Lemma 8 below, the three properties of H observed in Example 4 are in fact valid

in general.
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Lemma 8. The following hold: (i) H and R ∩ B are disjoint; (ii) H ⊆ (S \ R) ∩ B; and

(iii) different edges in H ∪ (R ∩B) have different associated paths.

Proof Sketch. (See Online Appendix E for details.) We can verify properties (i) and (ii)

by the definition of H in (11). To prove (iii), notice that (ii) implies that H ∪ (R∩B) ⊆ B,

and H = A \ R \ Y implies that H ∪ (R ∩ B) ⊆ (A ∪ R). Based on these and the fact

shown in (iii) of Lemma 3 that edges in A ∪ R that have the same associated path must

have different root edges in F ∗, we can prove property (iii) by contradiction.

By properties (i) and (iii) of Lemma 8, and by |P| ≤ k, we find that

|H|+ |R ∩ B| ≤ |P| ≤ k. (15)

Moreover, for each (u, v) ∈ H , where u is the parent of v in F ∗, since H ⊆ B (due to (ii) of

Lemma 8), we have that (u, v) is a b-type edge, implying that bj(u,v) is a descendant of v in

F ∗. This, together with H ⊆ (B \R) (due to (ii) of Lemma 8) and with (15), allows us to

utilize Lemmas 4–6 to derive an upper bound on ℓ(R) + ℓ(H) as shown below in Lemma 9.

Lemma 9. ℓ(R) + ℓ(H) ≤
∑

e∈R\B ℓ(gj(e)) +
∑

e∈R∩B ℓ(hj(e)) +
∑

e∈H ℓ(hj(e)).

Proof Sketch. (See Online Appendix F for details.) Since |R| ≤ k, we can prove Lemma 9

by taking into account the following two cases. For Case 1, where |R| < k, noting that

ℓ(R)+ ℓ(H) = ℓ(R \B)+ ℓ(R∩B)+ ℓ(H) and H ⊆ B, we can prove Lemma 9 by applying

Lemma 4 to bound ℓ(R∩B)+ℓ(H), and applying Lemma 6 and Lemma 7 to bound ℓ(R\B).

For Case 2, where |R| = k, it can be seen from (15) that |H| ≤ k−|R∩B| = |R|−|R∩B| =

|R\B|. This allows us to arbitrarily select |H| different edges of R\B, so as to form a subset

R̂ of R\B with |R̂| = |H|. Thus, by Lemma 5, ℓ(R̂)+ℓ(H) ≤
∑

e∈R̂ ℓ(gj(e))+
∑

e∈H ℓ(hj(e)).

With this and Lemmas 4–6, noting that ℓ(R)+ℓ(H) = ℓ(R\B\R̂)+ℓ(R∩B)+[ℓ(R̂)+ℓ(H)]

we can prove Lemma 9 for Case 2.

We are now ready to prove Theorem 4.

Proof of Theorem 4. As shown in (14), ℓ(A) ≤ ℓ(R) + ℓ(H) +
∑

e∈A\R\H ℓ(gj(e)). Thus, by

the upper bound on ℓ(R) + ℓ(H) shown in Lemma 9, we obtain that

ℓ(A) ≤
∑

e∈R\B

ℓ(gj(e)) +
∑

e∈R∩B

ℓ(hj(e)) +
∑

e∈H

ℓ(hj(e)) +
∑

e∈A\R\H

ℓ(gj(e)). (16)

Due to (i) and (iii) of Lemma 8, we have that

∑

e∈R∩B

ℓ(hj(e)) +
∑

e∈H

ℓ(hj(e)) =
∑

e∈(R∩B)∪H

ℓ(hj(e)) ≤
m∑

j=1

ℓ(hj). (17)
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Moreover, since R \ B and A \ R \ H are disjoint, and since [(R \ B) ∪ (A \ R \ H)] ⊆

[(A ∪ R) \ (R ∩ B)], we have that

∑

e∈R\B

ℓ(gj(e)) +
∑

e∈A\R\H

ℓ(gj(e)) ≤
∑

e∈(A∪R)\(R∩B)

ℓ(gj(e)). (18)

Therefore, from (16), (17) and (18), we can obtain (10) as follows:

ℓ(A) ≤
∑

e∈R\B

ℓ(gj(e)) +
m∑

j=1

ℓ(hj) +
∑

e∈A\R\H

ℓ(gj(e)) ≤
∑

e∈(A∪R)\(R∩B)

ℓ(gj(e)) +
m∑

j=1

ℓ(hj),

and so Theorem 4 is proved.

6.4. Proof of Theorem 3

In the following, we will prove Theorem 3, to show that there exists an auxiliary edge

subset w.r.t. (F ∗, Copt) of length not greater than
∑m

j=1[(k− 1)ℓ(gj) + ℓ(hj)]. As explained

earlier, in view of Lemma 1, this is sufficient for the proof of the inequality (4).

The proof of Theorem 3 for k = 1 is trivial, since when k = 1, it can be easily verified

that the set R of root edges in F ∗ is an auxiliary edge subset w.r.t. (F ∗, Copt) that satisfies

ℓ(R) ≤
∑m

j=1[(k − 1)ℓ(gj) + ℓ(hj)]. See Online Appendix G.

Thus, in the following, we only need to consider the situation where k ≥ 2. To prove

Theorem 3 for this situation, we first derive a sufficient condition for the auxiliary edge

subset A constructed by Algorithm 2 to satisfy ℓ(A) ≤
∑m

j=1[(k−1)ℓ(gj)+ ℓ(hj)], and then

show that when this condition is not true, A can be transformed to another auxiliary edge

subset A′ that satisfies ℓ(A′) ≤
∑m

j=1[(k − 1)ℓ(gj) + ℓ(hj)].

For the auxiliary edge subset A constructed by Algorithm 2, we know from Theorem 4

that ℓ(A) ≤
∑

e∈(A∪R)\(R∩B) ℓ(gj(e)) +
∑m

j=1 ℓ(hj). Notice that (i) of Lemma 3 implies that

[(A ∪ R) \ (R ∩ B)] ⊆ S. Thus, each edge e ∈ [(A ∪ R) \ (R ∩ B)] has an associated path

Pj(e) ∈ P. We now partition the set [(A∪R) \ (R∩B)] into m disjoint subsets, denoted by

A1, A2, ..., Am, where each Aj for 1 ≤ j ≤ m consists of all those edges in [(A∪R)\ (R∩B)]

that have Pj as their associated path. Accordingly, by Theorem 4 we have that

ℓ(A) ≤
∑

e∈(A∪R)\(R∩B)

ℓ(gj(e)) +

m∑

j=1

ℓ(hj) =

m∑

j=1

|Aj |ℓ(gj) +
m∑

j=1

ℓ(hj). (19)

Moreover, due to (iii) of Lemma 3 and |R| ≤ k we know that |Aj | ≤ |R| ≤ k for 1 ≤ j ≤ m.

Without loss of generality, let P1 denote the path that maximizes |Aj| over all Pj ∈ P for

1 ≤ j ≤ m. Thus, we have |Aj| ≤ |A1| ≤ k for 2 ≤ j ≤ m.

Example 5. To illustrate the partition A1, A2, ..., Am of (A∪R) \ (R ∩B), let us consider

the instance in Figure 2, where m = 3, and the values of A, R, and B are referred to in Ex-
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ample 4. By definition, it can be seen that (A∪R)\(R∩B) = {(1, 5), (12, 10), (9, 7), (1, 6)},

and from Figure 2(d) we have A1 = {(1, 5), (1, 6), (9, 7)}, A2 = {(12, 10)}, and A3 = ∅.

It can now be seen that |A1| ≤ k − 1 is a sufficient condition for A to satisfy ℓ(A) ≤
∑m

j=1[(k−1)ℓ(gj)+ ℓ(hj)]. This is because if |A1| ≤ k−1, which implies that |Aj| ≤ |A1| ≤

k − 1 for 2 ≤ j ≤ m, then from (19) we can obtain that ℓ(A) ≤
∑m

j=1[(k − 1)ℓ(gj) + ℓ(hj)],

and thus Theorem 3 is proved.

If the condition |A1| ≤ k − 1 is not true, then |A1| ≥ k, which, together with |A1| ≤ k

and k ≥ 2 as shown above, implies that |A1| = k ≥ 2. For this case, where |A1| = k ≥ 2,

since (ii) of Lemma 3 indicates that |A| ≤ |A ∪R| ≤ 2k − 1, we find that for 2 ≤ j ≤ m,

|Aj| ≤ |(A ∪ R) \ (R ∩ B)| − |A1| ≤ (2k − 1)− k = k − 1. (20)

Thus, by (19), we can obtain the following upper bound on ℓ(A):

ℓ(A) ≤ |A1|ℓ(g1) +
m∑

j=2

|Aj|ℓ(gj) +
m∑

j=1

ℓ(hj) ≤ kℓ(g1) +

m∑

j=2

(k − 1)ℓ(gj) +

m∑

j=1

ℓ(hj). (21)

Notice that the upper bound on ℓ(A) shown in (21) is greater by ℓ(g1) than the upper bound

that we need for the proof of Theorem 3. In the following, we are going to show that for this

case, A can be transformed to A′ by replacing an edge (s, t) ∈ A1\R with a new edge (s′, t′) ∈

S \R, such that (i) A′ = A\ {(s, t)}∪{(s′, t′)} is also an auxiliary edge subset (as shown in

Lemma 10 below), and that (ii) ℓ(A′) ≤ (|A1| − 1)ℓ(g1) +
∑m

j=2 |Aj |ℓ(gj) +
∑m

j=1 ℓ(hj) (as

shown in Lemma 11 below), which, together with (20), are sufficient to complete the proof

of Theorem 3.

First, let us determine which edge (s, t) ∈ A1 \R is to be replaced. By (iii) of Lemma 3,

edges in A1 have different root edges in F ∗. Notice that |R| ≤ k and |A1| = k, implying

that for each edge in |R|, it must be a root edge of an edge in A1. Thus, there must exist

an edge (s, t) ∈ A1, where s is the parent of t in F ∗, such that both the edge (s, t) of A1

and the customer b1 of path P1 have the same root edge in F ∗, which is denoted by (d, x)

with d ∈ D and x ∈ I. See Figure 6(a). It can also be shown that (s, t) ∈ A1 \ R. By

contradiction, suppose that (s, t) is not in A1 \ R. Thus, since (s, t) ∈ A1, we know that

(s, t) ∈ R, which implies that (s, t) = (d, x). Therefore, since (s, t) has P1 as its associated

path, by definition we know that (s, t) is a b-type edge. Thus, (s, t) ∈ R ∩ B, which

contradicts that (s, t) ∈ A1 ⊆ [(A ∪R) \ (R ∩ B)]. Hence, we have (s, t) ∈ A1 \R.

Next, we can establish Lemma 10 below to determine which edge (s′, t′) to replace (s, t)

for the construction of a new auxiliary edge subset A′, with a guarantee that the customer

b1 of P1 is a descendant of t′ in F ∗. This ensures that such an edge (s′, t′) has a similar

property to that of a b-type edge, and accordingly, as we will explain later, bounds shown

in Lemma 4 and Lemma 5 for the b-type edges can be extended for (s′, t′), which will be
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Figure 6: Illustration of the construction of A′ for the proof of Theorem 4, using the instance in Figure 2.
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(a) Edges in A obtained by Algorithm 2 shown in
dashed lines, where (s, t) = (9, 7) ∈ A1 \ R, and
(d, x) = (3, 12) is the root edge of both (s, t) and b1 = 8.
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(b) Edges in A′ = A \ {(s, t)} ∪ {(s′, t′))} shown in
dashed lines, where (s, t) = (9, 7), and (s′, t′) = (9, 8) ∈
S \R is on the path from x = 12 to b1 = 8 in F ∗.

useful in the later proof of Lemma 11 for a bound on ℓ(A′).

Lemma 10. There exists an edge (s′, t′) ∈ S \ R, where s′ ∈ I is the parent of t′ in F ∗,

such that b1 is a descendant of t′ in F ∗, and that A′ := A\{(s, t)}∪{(s′, t′)} is an auxiliary

edge subset w.r.t. (F ∗, Copt).

Proof Sketch. (See Online Appendix H for details.) First, by (s, t) ∈ A1 \ R and A1 ⊆

[(A∪R)\ (R∩B)] we have (s, t) ∈ A. Thus, it can be seen from Step 2 of Algorithm 2 that

both s and t belong to the same connected component of (V,E(P) ∪ A), denoted by Gst,

and that Gst must be split into two connected components in (V,E(P)∪ (A\{(s, t)})), one

containing s, denoted by Gs, and the other containing t, denoted by Gt.

Next, as we have shown earlier, (d, x) is the root edge of both (s, t) and b1 in F ∗, and

vertices s, t, and b1 are all customers in I. Thus, s, t, and b1 are all descendants of x in

F ∗. Let L denote the path from x to b1 in F ∗. We can show that there must exist an edge

(s′, t′) on L, where s′ is the parent of t′ in F ∗, such that s′ ∈ V (Gs) and t′ ∈ V (Gt). (See

Figure 6(b) for illustration.) This implies that (s′, t′) ∈ E(L) \E(P), which, together with

E(L) ⊆ E(F ∗) and S = E(F ∗) \ E(P), implies that (s′, t′) ∈ S. In addition, since x and

b1 are the endpoints of the path L in F ∗, we obtain that (s′, t′) ∈ S \R, s′ ∈ I, and b1 is a

descendant of t′ in F ∗. Based on these, we can verify that A′ = A \ {(s, t)} ∪ {(s′, t′)} is an

auxiliary edge subset w.r.t (F ∗, Copt), which completes the proof of Lemma 10.

Now, consider the auxiliary edge subset A′ = A \ {(s, t)} ∪ {(s′, t′)} as defined in

Lemma 10. We can establish Lemma 11 below to derive an upper bound on ℓ(A′) shown

in (22), which is smaller by ℓ(gj) than the upper bound on ℓ(A) shown in (19).

Lemma 11. The auxiliary edge subset A′ w.r.t. (F ∗, Copt) satisfies that

ℓ(A′) ≤ (|A1| − 1)ℓ(g1) +

m∑

j=2

|Aj|ℓ(gj) +
m∑

j=1

ℓ(hj). (22)

Proof Sketch. (See Online Appendix I for details.) Since A1, A2, ..., Am arem disjoint sub-

sets that form a partition of (A ∪ R) \ (R ∩ B), and since (s, t) ∈ A1, we find that
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∑
e∈(A∪R)\(R∩B)\{(s,t)} ℓ(gj(e)) = (|A1| − 1)ℓ(g1) +

∑m

j=2 |Aj|ℓ(gj). Thus, to prove (22) for

Lemma 11, it is sufficient to show that ℓ(A′) ≤
∑

e∈(A∪R)\(R∩B)\{(s,t)} ℓ(gj(e)) +
∑m

j=1 ℓ(hj).

We can show this by first extending the bounds for the b-type edges (in Lemma 4 and

Lemma 5) to the edge (s′, t′), and then following an argument similar to the proof of the

upper bound on ℓ(A) given in (10) of Theorem 4.

Hence, for the case with |A1| = k ≥ 2, we have shown in Lemma 11 that A′ = A \

{(s, t)}∪{(s′, t′)}, as defined in Lemma 10, is an auxiliary edge subset that satisfies ℓ(A′) ≤

(|A1| − 1)ℓ(g1) +
∑m

j=2 |Aj|ℓ(gj) +
∑m

j=1 ℓ(hj). Thus, from (20) we obtain that ℓ(A) ≤
∑m

j=1[(k − 1)ℓ(gj) + ℓ(hj)], and so Theorem 3 is proved. This completes the proof of (4).

7. Conclusions

In this work, we studied the GMDMTSP to find a solution where at most k salesmen

as used. For this, we developed a non-trivial extension of the well-known Christofides

heuristic which achieves a tight approximation ratio of 2− 1/(2k). This is an improvement

on the current best 2-approximation algorithms available in the literature. Moreover, the

analysis developed here can be applied to other generalized multi-depot vehicle routing

problems. See Online Appendix J for two such examples. Arising out of this work, a

natural question for future research would be to find improved approximation algorithms

for this problem. Since the best approximation algorithm known for the classical TSP

achieves an approximation ratio of 3/2, It will be of significant theoretical and practical

interest to determine whether or not there exists a 3/2-approximation algorithm for the

GMDMTSP that runs in polynomial time.
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Online Appendix A. A Problem Instance Showing the Lower Bound on the

Approximation Ratio of Algorithm 1

The instance below shows that the approximation ratio of Algorithm 1 is at least 2 −

1/(2k), for each k ≥ 1. Consider the following complete graph G = (V,E). Set the vertex

set V =
⋃k

i=1 Vi where Vi = {vi,j : 1 ≤ j ≤ 5} for 1 ≤ i ≤ k−1, and Vk = {vk,j : 1 ≤ j ≤ 4}.

Take the depot set D = {vi,4 : 1 ≤ i ≤ k} ∪ {vk,1}, so that I = V \ D contains |I| =

4k − 2 customers. Next, we set lengths for the following edges, as shown in Figure A.7:

ℓ(vi,1, vi,2) = ℓ(vi,1, vi,3) = 1, for 1 ≤ i ≤ k; ℓ(vi,4, vi,5) = 0 and ℓ(vi,1, vi,5) = ℓ(vi,2, vi+1,3) =

2, for 1 ≤ i ≤ k−1; ℓ(vk,2, v1,3) = 2; and ℓ(vk,2, vk,4) = 1. Take lengths of the other edges of

G to be the lengths of the shortest paths between their endpoints, so as to satisfy the triangle

inequality. For example, we have ℓ(vk,2, vk,3) = ℓ(vk,2vk,1vk,3) = ℓ(vk,2, vk,1)+ℓ(vk,1, vk,3) = 2.

For the instance above, we first show as follows that Copt = {C1, ..., Ck} is an optimal

solution, where Ci = (vi,4vi,5vi,4) for 1 ≤ i ≤ k− 1 and Ck = (vk,1vk,2v1,3v1,1v1,2v2,3v2,1v2,2....

vk−1,3vk−1,1vk−1,2vk,3vk,1). It can be seen that Copt is a feasible solution with ℓ(Copt) = 4k.

Consider any feasible solution C. To show that Copt is an optimal solution, it is sufficient to

show that ℓ(C) ≥ 4k. Let E0 = {e ∈ E : ℓ(e) = 0} and E1 = {e ∈ E : ℓ(e) = 1}. We have

|E0| = k − 1 and |E1| = 2k + 1. Since (vk,2, vk,4) ∈ E1 and (vk,2, vk,1) ∈ E1 join vk,2 with

different depots, at most one of them can appear in C. Thus, since C must contain at least

|I|+ 1 edges, we have ℓ(C) ≥ 0× |E0|+ 1× (|E1| − 1) + 2× [|I|+ 1− |E0| − (|E1| − 1)] =

(2k + 1− 1) + 2[4k − 2 + 1− (k − 1)− 2k] = 4k = ℓ(Copt). Hence, Copt is optimal.

Apply Algorithm 1 on the instance above. Let us consider a spanning forest F ∗ =

{T1, T2, ..., Tk, Tk+1}, as shown in solid lines in Figure A.7, where each tree Ti = (Vi, {(vi,4, vi,5),

(vi,5, vi,1), (vi,1, vi,2), (vi,1, vi,3)}) for 1 ≤ i ≤ k−1, tree Tk = ({vk,2, vk,3, vk,4}, {(vk,4, vk,2), (vk,2, vk,3)}),

and tree Tk+1 = ({vk,1}, ∅). We now show as follows that F ∗ is a shortest DCSF w.r.t.

(G,D, k). To show this, since we know that F ∗ is a DCSF with ℓ(F ∗) = 4k − 1, we only

need to show as follows that for any DCSF F , it satisfies that ℓ(F ) ≥ 4k− 1. Let x denote

the number of edges in E0 that appear in F . Since (vk,2, vk,4) ∈ E1 and (vk,2, vk,1) ∈ E1 join

vk,2 with different depots, at most one of them can appear in F . Thus, since F must contain

exactly |I| edges, we find that ℓ(F ) ≥ 0× x+ 1× (|E1| − 1) + 2 × [|I| − x− (|E1| − 1)] =

(2k + 1 − 1) + 2[4k − 2 − x − (2k + 1 − 1)] = 6k − 4 − 2x. Thus, if x ≤ k − 2, then

ℓ(F ) ≥ 4k > 4k − 1 = ℓ(F ∗), and hence F ∗ is a shortest DCSF. Otherwise, x ≥ k − 1, and

thus by x ≤ |E0| = k − 1, we have x = k − 1. Hence, F must contain all (k − 1) edges of

E0. Since these (k−1) edges are all incident on depots, at most one edge among (vk,4, vk,2),

(vk,1, vk,2), and (vk,1, vk,3) of E1 can be included in F . Thus, ℓ(F ) ≥ 0× (k−1)+1× (|E1|−

2)+2×[|I|−(k−1)−(|E1|−2)] = (2k+1−2)+2[4k−2−(k−1)−(2k+1−2)] = 4k−1 = ℓ(F ∗),

and so F ∗ is a shortest DCSF w.r.t. (G,D, k).

From F ∗ we find that Odd(F ∗) = {vi,1, vi,2, vi,3, vi,4 : 1 ≤ i ≤ k − 1} ∪ {vk,3, vk,4}, and

so |Odd(F ∗)| = 4k − 2. We next show that M∗(F ∗) := (
⋃k−1

i=1 {(vi,1, vi,2), (vi,4, vi,3)}) ∪

i



Figure A.7: Illustration of the instance to show the lower bound on the approximation ratio of Algorithm 1.
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{(vk,4, vk,3)} is a minimum-weight perfect matching for Odd(F ∗). It can be seen that

M∗(F ∗) is a perfect matching for Odd(F ∗) with ℓ(M∗(F ∗)) = 4k − 1. Consider any

perfect matching M for Odd(F ∗). We have 2|M | = |Odd(F ∗)|. To show that M∗(F ∗)

is minimum, it only needs to be shown that ℓ(M) ≥ 4k − 1. Let W denote the set of

edges in M of length equal to 1. It can be seen that every edge e ∈ W must cover a

vertex vi,1 for some i with 1 ≤ i ≤ k − 1, and that no edge e ∈ W covers any vi,4 with

1 ≤ i ≤ k. By the triangle inequality, we have ℓ(e) ≥ 2 for every edge e ∈ M \ W . Let

Z denote the set of edges in M that cover vi,4 for some i with 1 ≤ i ≤ k, such that either

i = k, or vi,1 ∈ V (W ). Thus, |Z| = |W | + 1, and Z and W are disjoint. Moreover, for

every edge e ∈ Z, using the triangle inequality, it can be seen that ℓ(e) ≥ 3, and that if

e = (vi,4, vi′,4) with 1 ≤ i < i′ ≤ k, then ℓ(e) ≥ 6. This implies that ℓ(Z) ≥ 3|Z|. Thus, we

find that ℓ(M) = ℓ(W ) + ℓ(Z) + ℓ(M \W \ Z) ≥ 1 × |W |+ 3 × |Z| + 2 × |M \W \ Z| =

|W |+3(|W |+1)+2[|M |−|W |−(|W |+1)] = 2|M |+1 = |Odd(F ∗)|+1 = 4k−1 = ℓ(M∗(F ∗)),

and so M∗(F ∗) is a minimum-weight perfect matching for Odd(F ∗).

By adding M∗(F ∗) to F ∗, we obtain a multigraph where every vertex is of even de-

gree. Among the k + 1 connected components of the multigraph, k components include at

least one customer. Thus, from this multigraph, we can obtain k closed walks, including

(vi,4v1,5vi,2vi,1vi,2v1,3vi,4) for 1 ≤ i ≤ k − 1, and (vk,4vk,2vk,3vk,4), which include every cus-

tomer. Thus, by removing repeated vertices, Algorithm 1 returns a feasible solution C(F ∗) =

{C ′
1, ..., C

′
k}, where C ′

i = (vi,4vi,5vi,2vi,1vi,3vi,4) for 1 ≤ i ≤ k − 1, and C ′
k = (vk,4vk,2vk,3vk,4).

Hence, ℓ(C(F ∗)) =
∑k−1

i=1 ℓ(C ′
i) + ℓ(C ′

k) = 8(k − 1) + 6 = [2 − 1/(2k)]ℓ(Copt), and so the

approximation ratio of Algorithm 1 is at least 2− 1/(2k).

Online Appendix B. Proof of Lemma 1

Consider any auxiliary edge subset Â w.r.t. (F ∗, Copt). As illustrated in Figure B.8(a),

by duplicating edges in Â and adding these edges to Copt, we obtain a multigraph H on

V , which has the same connected components as (V,E(Copt) ∪ Â), and satisfies ℓ(H) =

ℓ(Copt) + 2ℓ(Â). It can also be seen that each vertex of H has an even degree. Thus, for

each connected component Q of H , there exists an Eulerian closed walk, which covers all

ii



Figure B.8: Illustration of the proof of Lemma 1, using the instance in Figure 2, where vertices in Odd(F ∗)
are in gray, and Â = {(12, 10)}, as shown in Example 2, is an auxiliary edge subset w.r.t (F ∗, Copt).
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(a) Duplicating the edge in Â = {(12, 10)}, and adding
them to Copt.
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(b) Shortcutting the Eulerian closed walk of each connected
component in Figure B.8(a) by removing repeated vertices
to obtain two disjoint matchings for vertices in Odd(F ∗), as
shown in dashed and solid lines.

vertices of Q. As illustrated in Figure B.8(b), from this closed walk, using shortcuts to

remove repeated vertices, we can find a cycle C(Q) that visits only vertices in V (Q) ∩

Odd(F ∗). Since Â is an auxiliary edge subset w.r.t. (F ∗, Copt), by Definition 1 we know

that each connected component Q of H contains an even number of vertices in Odd(F ∗).

Thus, |V (Q) ∩ Odd(F ∗)| must be even. This implies that C(Q) consists of two disjoint

perfect matchings for vertices in V (Q)∩Odd(F ∗), the shorter of which is denoted by L(Q).

Therefore, we obtain ℓ(L(Q)) ≤ ℓ(C(Q))/2 ≤ ℓ(Q)/2.

Furthermore, by combining L(Q) for all connected components Q of H , we can obtain

a perfect matching M for vertices in Odd(F ∗). Since ℓ(L(Q)) ≤ ℓ(Q)/2 for each connected

component Q of H , we have ℓ(M) ≤ ℓ(H)/2 = [ℓ(Copt) + 2ℓ(Â)]/2 = ℓ(Copt)/2 + ℓ(Â).

This, together with ℓ(M∗(F ∗)) ≤ ℓ(M), implies that ℓ(M∗(F ∗)) ≤ ℓ(Copt)/2 + ℓ(Â), which

completes the proof of (7) of Lemma 1.

Online Appendix C. Proof of Lemma 3

Consider the auxiliary edge subset A w.r.t. (F ∗, Copt) constructed by Algorithm 2. To

prove (i) of Lemma 3, we note that by definition, P contains no depot, which, together with

(9), implies that R ⊆ E(F ∗) \ E(P) = S. Thus, since A ⊆ S, we know that (A ∪ R) ⊆ S,

and so (i) of Lemma 3 is proved.

To prove (ii) of Lemma 3, we note from Step 2 of Algorithm 2 that for each edge

(u, v) ∈ A \R with u ∈ I and v ∈ I, u and v must belong to two different paths of P that

are not connected by any edges that are added to A before (u, v). Thus, at most |P| − 1

such edges can be in A, and so |A \R| ≤ |P| − 1 ≤ k − 1. Hence, since |R| ≤ k, we obtain

that |A ∪ R| = |A \R|+ |R| ≤ 2k − 1, and so (ii) of Lemma 3 is proved.

To prove (iii) of Lemma 3, consider any two edges (u, v) and (u′, v′) in A∪R that have

the same associated path P ∈ P, where u is the parent of v in F ∗, and u′ is the parent of v′

in F ∗. By contradiction, suppose that (u, v) and (u′, v′) have the same root edge (d, x) for

d ∈ D and x ∈ I. Without loss of generality, suppose that (u, v) is examined before (u′, v′)

in Step 2 of Algorithm 2. Moreover, since in Step 2 of Algorithm 2, edges in each tree of
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Figure D.9: Illustration of the proof of Lemma 5, using the instance in Figure 2.
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(a) F := (F ∗ − {(u, v)}) + {hj(u,v)}, where (u, v) =
(12, 10) and hj(u,v) = (2, 11).
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(b) F ′ := (F − {(u′, v′)}) + {(x, y)}, where (u′, v′) =
(1, 6), (x, y) = (6, 5) is on Pj(u′,v′) = P1, and (u′, v′) is
the root edge of x but not of y.

F ∗ are examined in a non-decreasing order of their depths, we know that (d, x) must be

examined before (u′, v′). Thus, we obtain that u′ ∈ I.

Consider the time when (u′, v′) is examined, and let A′′ denote the set of edges added to

A before (u′, v′). From Step 2 of Algorithm 2 we know that, by this time, all edges on the

path from x to v and the path from x to u′ in F ∗ must have been examined. Thus, u′ must

belong to the same connected component of (V,E(P) ∪ A′′) as are all the vertices on the

associated path P of (u, v) and (u′, v′). Therefore, since P contains v′, we find that (u′, v′)

cannot be added to A, which, together with (u′, v′) ∈ A ∪ R, implies that (u′, v′) ∈ R \ A.

Thus, u′ ∈ D, which contradicts that u′ ∈ I. Hence, (u, v) and (u′, v′) must have different

root edges, and so (iii) of Lemma 3 is proved.

Online Appendix D. Proof of Lemma 5

Consider any b-type edge (u, v) ∈ B \R, where u is the parent of v in F ∗, and consider

any (u′, v′) ∈ R \ B, where u′ is the parent of v′ in F ∗. To prove Lemma 5, we only need

to show as follows that ℓ(u′, v′) + ℓ(u, v) ≤ ℓ(gj(u′,v′)) + ℓ(hj(u,v)).

First, consider F := (F ∗−{(u, v)})+{hj(u,v)}. Due to (u, v) ∈ B, bj(u,v) is a descendant

of v in F ∗. Thus, since hj(u,v) joins bj(u,v) and the depot dj(u,v) of path Pj(u,v), it can be seen

that F is a CSF w.r.t. (G,D), with the total degree of the roots no more than k + 1. (See

Figure D.9(a) for illustration.)

Next, from F we can construct a DCSF F ′ w.r.t. (G,D, k) as follows. Since (u, v) ∈

B \R, we have u ∈ I. Since (u′, v′) ∈ R \B, we have u′ ∈ D. Thus, (u, v) 6= (u′, v′), which

implies that (u′, v′) is in both F ∗ and F . Moreover, by (u′, v′) ∈ R\B, we know that (u′, v′) is

not a b-type edge, and thus, by the definition of b-type edge, (u′, v′) cannot be the root edge

of bj(u′,v′) in F ∗. Let e∗ indicate the root edge of bj(u′,v′) in F ∗. We have (u′, v′) 6= e∗. Let e

denote the root edge of bj(u′,v′) in F . From F = (F ∗−{(u, v)})+{hj(u,v)} it can be seen that

e must either equal e∗ or equal hj(u,v). Thus, we know e 6= (u′, v′), because, if e = (u′, v′),

then since (u′, v′) 6= e∗, we have e = hj(u,v), which, together with e = (u′, v′) ∈ R ⊆ E(F ∗)

and F = (F ∗ − {(u, v)}) + {hj(u,v)}, implies that E(F ) ⊆ E(F ∗), and so e = (u′, v′) must

also be the root edge of bj(u′,v′) in F ∗, leading to a contradiction. Thus, e 6= (u′, v′), which

implies that (u′, v′) cannot be the root edge of bj(u′,v′) in F . However, (u′, v′) is the root

edge of v′ in F . Thus, since both bj(u′,v′) and v′ are on the path Pj(u′,v′), there must exist
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an edge (x, y) on Pj(u′,v′) with x ∈ I and y ∈ I, such that (u′, v′) is the root edge of x but is

not the root edge of y in F . Hence, F ′ := (F −{(u′, v′)}) + {(x, y)} is a CSF w.r.t. (G,D).

Noting that u′ ∈ D, x ∈ I, and y ∈ I, we find that the total degree of the roots in F ′

cannot exceed k. Therefore, F ′ is a DCSF w.r.t. (G,D, k). (See Figure D.9(b).)

Furthermore, since F ∗ is a shortest DCSF w.r.t. (G,D, k), we obtain that ℓ(F ∗) ≤ ℓ(F ′),

which implies that ℓ(u, v) + ℓ(u′, v′) ≤ ℓ(hj(u,v)) + ℓ(x, y). Since edge (x, y) is on Pj(u′,v′),

which implies that ℓ(x, y) ≤ ℓ(gj(u′,v′)), we obtain that ℓ(u′, v′) + ℓ(u, v) ≤ ℓ(gj(u′,v′)) +

ℓ(hj(u,v)). This completes the proof of Lemma 5.

Online Appendix E. Proof of Lemma 8

Consider the set H = A \ R \ Y defined in (11). We prove properties (i), (ii), and (iii)

of H as follows to establish Lemma 8. First, properties (i) and (ii) can be verified by the

definition of H . To see this, consider each (u, v) ∈ H , where u is the parent of v in F ∗. By

H = A \ R \ Y , we have that H and R ∩ B are disjoint. Thus, (i) of Lemma 8 is proved.

By H = A \ R \ Y , we also have that (u, v) is not a y-type edge. Thus, bj(u,v) must be a

descendant of v in F ∗, which implies that (u, v) ∈ B, and so H ⊆ B. Therefore, by (11)

and A ⊆ S, we have H ⊆ (A \R \ Y ) ∩B ⊆ (S \R) ∩B. Thus, (ii) of Lemma 8 is proved.

Next, to prove (iii) of Lemma 8, notice that H ∪ (R ∩B) ⊆ B (since H ⊆ B), and that

H∪(R∩B) ⊆ (A∪R) (since H ⊆ A). By contradiction, suppose that H∪(R∩B) contains

two edges (u, v) and (u′, v′) both having Pj as the associated path, where u is the parent

of v, and u′ is the parent of v′ in F ∗. From H ∪ (R∩B) ⊆ B we know that both (u, v) and

(u′, v′) are b-type edges. Thus, bj is a descendant of both v and v′ in F ∗. It follows that

both (u, v) and (u′, v′) must have the same root edge in F ∗. This, together with the fact

that H ∪ (R∩B) ⊆ (A∪R) and (iii) of Lemma 3, implies that (u, v) and (u′, v′) must have

different associated paths. This leads to a contradiction, and proves (iii) of Lemma 8.

Online Appendix F. Proof of Lemma 9

Since |R| ≤ k, we can prove Lemma 9 by taking into account the following two cases. For

Case 1, where |R| < k, since (ii) of Lemma 8 implies that H ⊆ B, by Lemma 4 we have that

ℓ(H) ≤
∑

e∈H ℓ(hj(e)). Moreover, by Lemma 6 and Lemma 7, ℓ(R\B) ≤
∑

e∈R\B ℓ(gj(e)). By

Lemma 4, ℓ(R∩B) ≤
∑

e∈R∩B ℓ(hj(e)). Thus, since ℓ(R)+ℓ(H) = ℓ(R\B)+ℓ(R∩B)+ℓ(H),

we obtain that ℓ(R) + ℓ(H) ≤
∑

e∈R\B ℓ(gj(e)) +
∑

e∈R∩B ℓ(hj(e)) +
∑

e∈H ℓ(hj(e)). Lemma 9

is proved for Case 1.

For Case 2, where |R| = k, since (15) shows that |H| + |R ∩ B| ≤ k = |R|, we have

|H| ≤ |R| − |R ∩ B| = |R \ B|. This allows us to arbitrarily select |H| different edges of

R \B, so as to form a subset R̂ of R \B such that |R̂| = |H|. By Lemma 5, ℓ(R̂) + ℓ(H) ≤
∑

e∈R̂ ℓ(gj(e)) +
∑

e∈H ℓ(hj(e)). Moreover, by Lemma 7 and Lemma 6, ℓ(R \ B \ R̂) ≤
∑

e∈R\B\R̂ ℓ(gj(e)). By Lemma 4, ℓ(R ∩ B) ≤
∑

e∈R∩B ℓ(hj(e)). Thus, since R̂ ⊆ (R \ B)
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implies that ℓ(R) + ℓ(H) = ℓ(R \ B) + ℓ(R ∩ B) + ℓ(H) = [ℓ(R \ B \ R̂) + ℓ(R̂)] + ℓ(R ∩

B) + ℓ(H) = ℓ(R \ B \ R̂) + ℓ(R ∩ B) + [ℓ(R̂) + ℓ(H)], we obtain that ℓ(R) + ℓ(H) ≤
∑

e∈R\B ℓ(gj(e)) +
∑

e∈R∩B ℓ(hj(e)) +
∑

e∈H ℓ(hj(e)). Lemma 9 is proved for Case 2.

Online Appendix G. Proof of Theorem 3 for k = 1

To prove Theorem 3 for the case with k = 1, we only need to show that when k = 1,

the set R of root edges in F ∗ is an auxiliary edge subset w.r.t. (F ∗, Copt) and satisfies

that ℓ(R) ≤
∑m

j=1[(k − 1)ℓ(gj) + ℓ(hj)]. Since k = 1, we know that P contains only one

path P1, which must include all the customers. Thus, m = |P| = 1. From k = 1, it can

also be seen that R must contain only one root edge e′ of F ∗, and we use d′ to denote the

depot that e′ is incident on. Notice that both F ∗ and E(P) ∪ R have only one connected

component that connects r′ and all the customers in I. Thus, by Lemma 2, R is an auxiliary

edge subset w.r.t. (F ∗, Copt). Moreover, since e′ is the only root edge of F ∗, it must be

a b-type edge. Thus, by Lemma 4 and k = m = 1, we have ℓ(R) = ℓ(e′) ≤ ℓ(h1) =
∑m

j=1[(k − 1)ℓ(gj) + ℓ(hj)], and so Theorem 3 is proved for the case with k = 1.

Online Appendix H. Proof of Lemma 10

First, as we have shown earlier, (s, t) ∈ A1 \ R. Thus, since A1 ⊆ [(A ∪ R) \ (R ∩ B)],

we have (s, t) ∈ A \ R. Since (s, t) ∈ A, it can be seen from Step 2 of Algorithm 2 that

both s and t belong to the same connected component of (V,E(P) ∪ A), denoted by Gst,

and that Gst must be split into two connected components in (V,E(P)∪ (A\{(s, t)})), one

containing s, denoted by Gs, and the other containing t, denoted by Gt.

Next, we can determine edge (s′, t′) as follows. As shown earlier, (d, x) is the root edge of

both (s, t) and b1 in F ∗, and vertices s, t, and b1 are all customers in I. Thus, s, t, and b1 are

all descendants of x in F ∗. Let L denote the path from x to b1 in F ∗. We have that vertices

s, t, and vertices in V (L) (including b1 and x) are in the same connected component of F ∗.

Thus, since A satisfies the condition in Lemma 2, we obtain that V (L) ⊆ V (Gst). Moreover,

from Step 2 of Algorithm 2 it can be seen that for every edge e on the path from x to s in

F ∗, since its depth is smaller than the depth of (s, t), edge e must be examined before (s, t)

is added to A. This implies that x and s must belong to the same connected component of

(V,E(P) ∪ (A \ {(s, t)})). Thus, x ∈ V (Gs). It can also be seen that since both b1 and t

are on P1, they must belong to the same connected component of (V,E(P)∪ (A\ {(s, t)})).

Thus, b1 ∈ V (Gt). Therefore, since x ∈ V (Gs) and b1 ∈ V (Gt) are the endpoints of the

path L, there must exist an edge (s′, t′) on L, where s′ is the parent of t′ in F ∗, such that

s′ ∈ V (Gs) and t′ ∈ V (Gt). (See Figure 6(b) for illustration.)

Moreover, by the definition of (s′, t′) above, it can be seen that s′ and t′ must belong to

different connected components of (V,E(P) ∪ (A \ {(s, t)})). Thus, (s′, t′) ∈ E(L) \ E(P),

which, together with E(L) ⊆ E(F ∗) and S = E(F ∗) \ E(P), implies that (s′, t′) ∈ S. In
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addition, since x and b1 are the endpoints of the path L in F ∗, we obtain that (s′, t′) ∈ S\R,

s′ ∈ I, and b1 is a descendant of t′ in F ∗.

Now, let us consider A′ := A \ {(s, t)} ∪ {(s′, t′)}. Since s′ ∈ V (Gs) and t′ ∈ V (Gt),

(V,E(P)∪A′) must have the same connected components as (V,E(P)∪A). Thus, the same

as with A, the edge subset A′ must also satisfy the condition in Lemma 2, implying that

A′ is an auxiliary edge subset w.r.t (F ∗, Copt). This completes the proof of Lemma 10.

Online Appendix I. Proof of Lemma 11

Consider the auxiliary edge subset A′ := A \ {(s, t)}∪{(s′, t′)} as defined in Lemma 10.

To prove Lemma 11, we only need to show as follows that A′ satisfies (22), i.e., ℓ(A′) ≤

(|A1| − 1)ℓ(g1) +
∑m

j=2 |Aj|ℓ(gj) +
∑m

j=1 ℓ(hj).

Since A1, A2, ..., Am are m disjoint subsets that form a partition of (A∪R)\(R∩B), and

since (s, t) ∈ A1, we find that
∑

e∈(A∪R)\(R∩B)\{(s,t)} ℓ(gj(e)) = (|A1|−1)ℓ(g1)+
∑m

j=2 |Aj |ℓ(gj).

Thus, to prove (22) for Lemma 11, it is sufficient to show that

ℓ(A′) ≤
∑

e∈(A∪R)\(R∩B)\{(s,t)}

ℓ(gj(e)) +
m∑

j=1

ℓ(hj). (I.1)

Our proof of (I.1) for ℓ(A′) is similar to the proof of (10) in Theorem 4 for ℓ(A). Recall

that H = A \R \ Y as defined in (11) for the proof of (10). Thus, we define that

H ′ := H ∪ {(s′, t′)}. (I.2)

Note that (A′ \R \H ′) = [A \ {(s, t)}∪ {(s′, t′)} \R \H \ {(s′, t′)}] ⊆ (A \R \H \ {(s, t)}).

Thus, since ℓ(A′) ≤ ℓ(R) + ℓ(H ′) + ℓ(A′ \R \H ′), we obtain that

ℓ(A′) ≤ ℓ(R) + ℓ(H ′) + ℓ(A \R \H \ {(s, t)}). (I.3)

Moreover, from (12) we know that each e ∈ (A \ R \H \ {(s, t)}) is a y-type edge, which,

together with Lemma 6 and (I.3), implies the following upper bound on ℓ(A′),

ℓ(A′) ≤ ℓ(R) + ℓ(H ′) +
∑

e∈A\R\H\{(s,t)}

ℓ(gj(e)), (I.4)

which is similar to the upper bound on ℓ(A) shown in (14).

We are now going to derive an upper bound on ℓ(R) + ℓ(H ′), which is similar to the

upper bound on ℓ(R) + ℓ(H) in Lemma 9. First, noting that H ′ = H ∪ {(s′, t′)}, we can

prove as follows that

|H ′|+ |R ∩B| ≤ k, (I.5)
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which strengthens the inequality |H|+ |R ∩ B| ≤ k in (15). To prove (I.5), we know from

definition of A1 and (iii) of Lemma 3 that there exist at least |A1| = k ≥ 2 vertices on

P1 that have different root edges. Since A1 ⊆ (A ∪ R) \ (R ∩ B), it can be seen from the

definition of A1 and (iii) of Lemma 3 that edges in A1 all have P1 as their associated path,

but have different root edges in F ∗. Thus, since |A1| = k ≥ |R| and (R ∩ B) ∩ A1 = ∅,

by (iii) of Lemma 8 we obtain that no edge in R ∩ B can have P1 as its associated path.

Moreover, since there are at least two vertices on P1 that have different root edges, every

edge that has P1 as its associated path must be a y-type edge. Thus, since H = A \R \ Y ,

no edge in H can have P1 as its associated path. Hence, we have obtained that no edge

in H or R ∩ B can have P1 as its associated path. Therefore, by (i) and (iii) of Lemma 8

we have |H| + |R ∩ B| ≤ |P| − 1 ≤ k − 1. Thus, we obtain (I.5) by |H ′| + |R ∩ B| ≤

|H|+ 1 + |R ∩ B| ≤ k − 1 + 1 = k.

Next, let us examine edge (s′, t′), which, by definition, is in S \ R. Due to Lemma 10,

we know that b1 of path P1 is a descendant of t′ in F ∗, and so (s′, t′) is similar to a b-type

edge. Thus, although (s′, t′) may not have P1 as its associated path, it can be verified

that the inequalities in Lemma 4 and Lemma 5 for edges (u, v) with j(u, v) replaced by

1 are also valid for (s′, t′). Note that by (ii) of Lemma 8, H ⊆ B \ R, which, together

with (s′, t′) ∈ S \ R, implies that H ′ ⊆ (B ∪ {(s′, t′)}) \ R. Thus, define i(u, v) := j(u, v)

for (u, v) ∈ H , and i(s′, t′) := 1. We have that bi(u,v) is a descendant of v in F ∗ for each

(u, v) ∈ H ′, and that Lemma 4 and Lemma 5 are also valid for each (u, v) ∈ H ′ if they are

revised by replacing j(u, v) with i(u, v).

Accordingly, by replacing H with H ′, replacing j(e) with i(e) for e ∈ H ′, and applying

the revised Lemma 4 and Lemma 5 for e ∈ H ′, we can follow an argument similar to the

proof of Lemma 9 to obtain the following upper bound on ℓ(R) + ℓ(H ′):

ℓ(R) + ℓ(H ′) ≤
∑

e∈R\B

ℓ(gj(e)) +
∑

e∈R∩B

ℓ(hj(e)) +
∑

e∈H′

ℓ(hi(e)), (I.6)

which is similar to the upper bound on ℓ(R) + ℓ(H) in Lemma 9, with H replaced by H ′,

and j(e) replaced by i(e) for e ∈ H ′.

From (I.4) and (I.6) we have that

ℓ(A′) ≤
∑

e∈R\B

ℓ(gj(e)) +
∑

e∈R∩B

ℓ(hj(e)) +
∑

e∈H′

ℓ(hi(e)) +
∑

e∈A\R\H\{(s,t)

ℓ(gj(e)). (I.7)

Since, as shown above, no edge in R ∩ B or H can have P1 as its associated path, by the

definition of i(e) for e ∈ H ′, and by (iii) of Lemma 8, we find that

∑

e∈R∩B

ℓ(hj(e)) +
∑

e∈H′

ℓ(hi(e)) =
∑

e∈R∩B

ℓ(hj(e)) +
∑

e∈H

ℓ(hj(e)) + ℓ(hi(s′,t′)) ≤
m∑

j=1

ℓ(hj). (I.8)
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Moreover, (s, t) ∈ A1 \ R implies that (R \ B) ∪ (A \ R \ H \ {(s, t)}) is a subset of

(A ∪ R) \ (R ∩ B) \ {(s, t)}. Thus, since (R \B) and (A \R \H \ {(s, t)}) are disjoint,

∑

e∈R\B

ℓ(gj(e)) +
∑

e∈A\R\H\{(s,t)}

ℓ(gj(e)) ≤
∑

e∈(A∪R)\(R∩B)\{(s,t)}

ℓ(gj(e)). (I.9)

Therefore, by (I.7), (I.8), and (I.9), we can obtain (I.1) as follows:

ℓ(A′) ≤
∑

e∈R\B

ℓ(gj(e)) +
m∑

j=1

ℓ(hj) +
∑

e∈A\R\H\{(s,t)}

ℓ(gj(e)) ≤
∑

e∈(A∪R)\(R∩B)\{(s,t)}

ℓ(gj(e)) +
m∑

j=1

ℓ(hj),

which completes the proof of Lemma 11.

Online Appendix J. Applications to Other Vehicle Routing Problems

The analysis developed earlier for the GMDMTSP can be applied to other generalized

multi-depot vehicle routing problems. We do this here by describing two such applications.

Online Appendix J.1. The generalized multi-depot multi-stacker-crane problem

The stacker crane problem (SCP) is defined on a mixed graph G = (V, Z ∪E), where Z

is a set of directed arcs, and E a set of undirected edges. The problem seeks the shortest

cycle which includes each arc of Z exactly once. Thus, given a depot set D ⊂ V and k ≥ 1,

the generalized multi-depot multi-stacker-crane problem (GMDMSCP) seeks the shortest

collection of at most k cycles that start and end at distinct depots in D, with the objective

to visit each arc of Z exactly once. Frederickson et al. (1978) provided two heuristics for the

SCP, known as LARGEARCS and SMALLARCS. The better solution returned by these

heuristics achieves an approximation ratio of 9/5. Here, we show it possible to extend these

heuristics to solve the GMDMSCP based on the results we obtained for the GMDMTSP.

Without loss of generality, assume that arcs of Z are not incident to any depot of D

(otherwise, we can construct an equivalent instance by making a copy of each depot and

move all edges incident to the depot to its copies, such that the resulting instance satisfies

the assumption). Use Copt to denote the optimum solution to the GMDMSCP.

The LARGEARCS in Frederickson et al. (1978) inserts into G a minimum bipartite

matching M between heads and tails of arcs of Z, contracts connected components of the

resulting graph to obtain a contracted graph Ĝ, and then constructs a minimum spanning

tree of the contracted graph. To solve the GMDMSCP, we construct a shortest DCSF F ∗

w.r.t. (Ĝ,D, k). It is easy to verify that ℓ(F ∗) ≤ ℓ(Copt)− ℓ(Z). Following the same steps

as in LARGEARCS in Frederickson et al. (1978), we can construct from F ∗, M , and Z a

solution CL to the GMDMSCP such that ℓ(CL) ≤ 3ℓ(Copt)− 2ℓ(Z).

The SMALLARCS heuristic in Frederickson et al. (1978) contracts arcs of Z to obtain

a contracted graph G′, and then applies the Christofides heuristic to obtain a solution to
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the TSP on G′. To solve the GMDMSCP, we take G′ to include depots of D, and then

apply Algorithm 1 to obtain a solution C′ to the GMDMTSP on G′ and D. By Theorem 1,

ℓ(C′) ≤ [2 − 1/(2k)][ℓ(Copt) − ℓ(Z)]. Following the same steps as in SMALLARCS, we

can then construct from C′ and Z a solution CS to the GMDMSCP with ℓ(CS) ≤ [2 −

1/(2k)]ℓ(Copt) + [1/(2k)]ℓ(Z).

Hence, the shorter of the solutions L and S returned by LARGEARCS and SMALL-

ARCS achieves an approximation ratio of [2− 1/(4k + 1)] for the GMDMSCP.

Online Appendix J.2. The generalized clustered MDMTSP

Given a collection of clusters that forms a partition of the vertex set, the clustered TSP

seeks to determine the shortest cycle that visits every vertex exactly once and vertices of

each cluster consecutively. Thus, given a depot set D ⊂ V and k ≥ 1, the generalized

clustered MDMTSP (GCMDMTSP) seeks the shortest collection of at most k cycles that

start and end at distinct depots in D, so as to visit each customer in V \D exactly once,

with vertices of each cluster being visited consecutively. Anily et al. (1999); Guttmann-

Beck et al. (2000) proposed several approximation algorithms for the clustered TSP. These

algorithms can be extended for the GCMDMTSP.

For example, consider the case with given start and end vertices for each cluster. In

Guttmann-Beck et al. (2000), a (21/11)-approximation scheme is used to solve the cor-

responding variant of the clustered TSP. The first step of their method is to determine

a Hamiltonian path for each cluster with the start and end vertices of the cluster as its

endpoints. We use P to denote the collection of these paths. The second step solves the

stacker-crane problem on a graph with directed arcs from start to end vertices of the clus-

ters, and as a result, it obtains a tour that can be transformed to a solution of the clustered

TSP by replacing directed arcs with the corresponding Hamiltonian paths of the first step.

To solve the GCMDMTSP, we solve in the second step the GMDMSCP on the same graph,

depot set D, and k, and we denote the approximation solution obtained for the GMDMSCP

by CSCP. Let C represent the approximation solution obtained for the GCMDMTSP, Copt

the optimal solution to the GCMDMTSP, Y the set of edges of Copt that connect different

clusters, X the set of edges in Copt but not in Y , and Z the set of directed arcs from the

start to the end vertices of the clusters. By following a similar analysis as in Guttmann-

Beck et al. (2000) and using the analysis developed in Section Online Appendix J.1 for

the GMDMSCP, we can obtain the following: (i) ℓ(C) = ℓ(P)− ℓ(Z) + ℓ(CSCP); (ii) ℓ(P) ≤

min{2ℓ(X)−ℓ(Z), (3/2)ℓ(X)+(1/2)ℓ(Z)} ≤ α[2ℓ(X)−ℓ(Z)]+(1−α)[(3/2)ℓ(X)+(1/2)ℓ(Z)]

for every 0 ≤ α ≤ 1; (iii) ℓ(CSCP) ≤ min{3ℓ(Y ) + ℓ(Z), [2 − (1/2k)]ℓ(Y ) + 2ℓ(Z)} ≤

β[3ℓ(Y ) + ℓ(Z)] + (1 − β){[2 − (1/2k)]ℓ(Y ) + 2ℓ(Z)} for every 0 ≤ β ≤ 1. By choosing

α = (8k + 1)/(8k + 3) and β = 3/(8k + 3), we have ℓ(C) = ℓ(P) − ℓ(Z) + ℓ(CSCP) ≤

[2−1/(8k+3)][ℓ(X)+ℓ(Y )] = [2−1/(8k+3)]ℓ(Copt). This achieves an approximation ratio

of [2− 1/(8k + 3)] for the GCMDMTSP with given start and end vertices of each cluster.
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