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Abstract

Rail-guided vehicles (RGVs) are widely employed in automated freight handling system (AFHS)

to transport surging air cargo. Energy-efficient routing of such vehicles is of great interest for

both financial and environmental sustainability. Given a multi-capacity RGV working on a lin-

ear track in AFHS, we consider its optimal routing under two-sided loading/unloading (TSLU)

operations, in which energy consumption is minimized under conflict-avoidance and time window

constraints. The energy consumption takes account of routing-dependent gross weight and dy-

namics of the RGV, and the conflict-avoidance constraints ensure conflict-free transport service

under TSLU operations. The problem is formulated as a mixed-integer linear program, and solved

by incorporating valid inequalities that exploit structural properties of the problem. The static

problem model and solution approach are then integrated with a rolling-horizon approach to solve

the dynamic routing problem where air cargo enters and departs from the system dynamically in

time. Simulation results suggest that the proposed strategy is able to route an RGV to transport

air cargo with an energy cost that is considerably lower than one of the most common heuristic

methods implemented in current practice.

Keywords: Vehicle routing; energy efficiency; two-sided loading/unloading operations; pickup

and delivery; conflict avoidance; time window constraints; multiple capacity

1. Introduction

Automated freight handling system (AFHS) is a type of automated material handling system

(AMHS), which is widely adopted in facilities with massive material handling requests, such as

freight terminals, distribution centers and production plants, to enhance system efficacy by mini-

mizing operating cost and risk of human errors. As operating cost of AMHS can represent up to

70% of the cost of a product [1, 2], it is critical to smartly design and operate AMHS to improve

the overall economic and environmental performance. There has been a considerable growth of

interest in studying such problems in both industrial and academic contexts.
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This work considers improving AFHS installed in a freight terminal, which employs railed-

guided vehicles (RGVs) to transport a tremendous amount of inbound and outbound cargo from

their origins to destinations distributed along a linear track. The workload, which is especially

high at its peak hour around midnight, leads to a conflict-prone environment that poses great

challenges to terminal operations. The present AFHS has been developed to improve the termi-

nal’s throughput while eliminating potential human errors. However, the design is not optimal

especially in terms of energy efficiency. As energy consumption constitutes one of major sources

of operating cost and has gained increasing attention for enabling a greener and sustainable earth,

improving energy efficiency of AFHS and in particular developing an energy-efficient RGV routing

strategy is of great interest to the industry. So far only heuristic methods have been employed

to route RGVs in the current system, which motivates us to develop a rigorous mathematical

programming method to improve the system performance. The new routing strategy also meets

various service requirements such as delivery time windows (TWs) and avoidance of unloading

deadlocks, etc., by incorporating them into the mathematical program from which the strategy

results. This is contrast to existing methods which achieve that by abruptly compromising the

system’s performance or by means of a posteriori sophisticated supervisory control [2].

1.1. Problem description

A typical work area of the AFHS under consideration is depicted in Figure 1. An RGV is

operated over a linear track to transport containers between work stations located along both sides

of the track. Containers are queued at work stations, and will be picked up and delivered to their

destined stations on either sides of the track by the RGV via so-called two-sided loading/unloading

(TSLU) operations. The RGV and work stations are equipped with roller decks to support the

TSLU operations. When the RGV is docked to a station, the roller decks rotate forward or

backward accordingly to load or unload containers from or to either side of the track. The RGV

can carry multiple containers subject to certain capacity limit.

Each transportation of a container is initiated with a pickup and delivery (PD) request to

the central control system. Midway drop-off is not allowed in the current practice because of the

substantial overhead caused by frequent acceleration and deceleration of the RGV. Once a container

is picked up, it remains on the RGV until being delivered to its destination. As containers enter and

depart from the AFHS dynamically, the control system accumulates unfinished PD requests and

aims at routing the RGV to pick up and deliver the associated containers in an optimal sequence

so as to minimize energy consumption required for completing all transport requests subject to

service quality and conflict-avoidance constraints for smooth operations.
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Figure 1: Typical work area of an RGV in AFHS with exemplary PD requests.

1.2. Related literature

Sequencing PD tasks to be handled by a single vehicle is referred to as vehicle routing or job

sequencing [3, 4, 5], and can be treated as a pickup and delivery problem (PDP) [6, 7]. The problem

is NP-hard in general due to a complex combinatorial nature, and it includes our problem under

consideration as a sophisticated case. Our problem is further complicated by dynamic arrivals of

PD requests. So far there have been a variety of research investigations on static/dynamic vehicle

routing problems (VRPs) for different applications [8, 9, 10]. The literature confined to a single

vehicle is briefly reviewed as follows.

Static VRPs assume that all transport requests are known a priori. Atallah and Kosaraju [11]

proved that the problem is polynomial-time solvable if the vehicle has unit capacity while confined

to a linear track when no precedence and TW constraints are imposed on the transport requests.

The same problem turns out to be NP-hard if the track topology changes to be a tree (or general

graph) [12, 13]. If the vehicle has multiple capacity, the problem is NP-hard even if the track is

a simple path [14]. Another closely related problem, the PDP (for goods transportation) or the

dial-a-ride problem (DARP, for passenger transportation) which includes TW constraints on PD

requests has been well studied. Algorithms based on branch-and-cut or column generation are

available for solving the problem of a small to medium size [7, 15]. Other related literature is on

request/job sequencing in automated storage and retrieval systems (AS/RS), as referred to [4] for

a recent review.

The aforementioned literature all considered PDPs without loading constraints. In many ap-

plications, however, constraints also appear on loading [16]. In the traveling salesman problem with

pickup and delivery and LIFO loading (TSPPDL), a single vehicle must serve paired PD requests

while both pickup and delivery must be performed in LIFO (last in first out) order. Heuristic

algorithms for solving this problem were introduced in [17, 18], and exact formulations and solu-

tions were reported in [19, 20] which rely on tailored branch-and-cut algorithms. Another related

problem is the traveling salesman problem with pickup and delivery and FIFO loading (TSPPDF)

in which both pickup and delivery must be performed in FIFO (first in first out) order. Heuristic

algorithms were introduced in [21] for solving the problem, and exact solutions were explored by

using additive branch-and-bound [19] and tailored branch-and-cut [22], respectively.
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In practice, VRPs are dynamic in nature as PD requests appear stochastically in time. Research

work on dynamic VRPs assumes the requests arrive in an unknown or known stochastic process

[9, 10]. With an unknown arrival process, deterministic algorithms have been proposed to treat

dynamic VRPs and their performances are evaluated by competitive analysis (which compares the

worst-case cost achieved by the algorithm for a dynamic problem and the optimal cost obtained

for its counterpart having all requests being known a priori) [23, 24, 9]. However, the algorithms

and their analyses all rely on the assumption that the dynamic VRPs do not have side constraints

like loading, precedence and TW constraints. On the other hand, if the arrival process of PD

requests is known, strategies based on sampling or Monte Carlo simulations are often used to

handle dynamic VRPs [9]. Rolling-horizon based algorithms can also be employed if deterministic

estimates of future requests are available [8]. Alternatively, heuristic algorithms may be developed

by exploiting structural properties of a problem, as referred to [9] for a relevant review.

In particular, among existing literature, e.g., [25, 26, 27, 28], investigating operational aspects

of AFHS (whereas investigations on higher-layer issues can be referred to [29] and the references

therein), [28] studied a most relevant but simpler problem, in which the RGV is assumed to

have unit capacity and the goal is to minimize RGV’s travel distance for completing all transport

requests. The problem is a dynamic PDP with TW, FIFO queuing, and PD precedence constraints,

and the investigation forms a pilot study towards obtaining a model and solution for the more

complex routing problem considered in this work, of which partial results were reported in [30].

This work differs from existing literature in several aspects. Firstly, the problem under in-

vestigation is a capacitated PDP under unique conflict-free service constraints. We completely

characterize these service constraints under TSLU operations, which include the well-known LIFO

and FIFO service constraints as two special cases. This is the first time that such kind of char-

acterization has become available for transport service under TSLU operations, to the best of our

knowledge. Secondly, the RGV routing problem aims to minimize total energy consumption of

operating an RGV for completing all PD requests, which meets well with the interest of saving

energy and reducing carbon emission in practice. This differs from the existing literature where

travel distance or makespan (i.e., task completion time) is taken as the objective [6, 7, 31]. Thirdly,

structural properties of the new problem are exploited to reduce the problem domain and derive

useful valid inequalities for improving the computational efficiency. Fourthly, a rolling-horizon

approach is developed for treating the dynamic RGV routing problem, where a way of handling

non-zero initial conditions (i.e., the RGV starts with nonempty load) is introduced and explained

in detail. The new issues revealed and solved all explain the challenges of enabling energy-efficient

routing of an RGV confronted in a real AFHS.

The rest of the work is organized as follows. Section 2 perceives the static RGV routing problem

as a sophisticated PDP problem, characterizes its conflict-free service requirements, and develops

a full optimization model for it. Section 3 reformulates the initial model into a mixed-integer linear

program (MILP), reduces its domain by removing infeasible solutions, and derives valid inequalities

from the problem structure for expediting the solution process. Section 4 presents a rolling-

horizon approach to treat the dynamic problem, as followed by comprehensive computational
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studies performed on random instances in Section 5. Finally, conclusions are drawn in Section

6. Supporting materials that are helpful to understand the main results are collected in the

Appendices.

2. Static Routing Problem Formulation

A multi-capacity RGV is routed to serve n PD requests with TW constraints on the deliveries.

As midway drop-off is not allowed in current practice, fulfilling a PD request is equivalent to

completing two tasks, pickup task (i.e., loading a container from its origin) and delivery task (i.e.,

unloading the container at its destination). Therefore, serving n PD requests is equivalent to

completing 2n tasks and the optimal routing solution is a processing order of the 2n tasks for the

RGV to consume least energy under service quality and feasibility constraints.

To facilitate problem formulation, we assign a unique integer ID to each task. A pickup task

is associated with an integer i, where 1 ≤ i ≤ n, and its corresponding delivery task associated

with i + n. So the ith PD request means a pair of directed tasks i 99K i + n, where 99K means a

simple path that may contain multiple arcs. We denote the sets of pickup and delivery tasks as P

and D, respectively, i.e., P = {1, 2, . . . , n} and D = {n+ 1, n+ 2, . . . , 2n}. In the example shown

in Figure 1, there are seven PD requests indicated by dashed arrows, in which P = {1, 2, . . . , 7},
D = {8, 9, . . . , 14} and the PD requests correspond to seven pairs of PD tasks {1 99K 8, 2 99K

9, . . . , 7 99K 14}. For convenience, we refer to the PD requests by their pickup tasks, as P .

The static RGV routing problem is then modeled by a directed graph G = (V,A), where a

vertex i in V represents a pickup or delivery task with the ID of i and an arc (i, j) in A represents a

plausible processing order between the two tasks i and j, i.e., whether the task j could be processed

right after the task i. Two virtual tasks, 0 and 2n + 1, are added to represent the start and end

positions of the RGV, respectively. Define V ′ = P ∪D = {1, 2, . . . , 2n} and V = {0}∪V ′∪{2n+1}.
The arcs (i, j) for all i, j ∈ V ′ and i, j ∈ V give rise to arc sets A′ and A, respectively (both of

which can be reduced by removing infeasible arcs in Section 3.2).

A feasible routing solution is then a path starting from vertex 0, going through all vertices

in V ′ exactly once and ending at vertex 2n + 1. While a path can generally be formulated by a

sequence of binary decision variables xij which indicate the arcs (i, j) used in the path, another

group of binary decision variables ykij , which indicate the arcs traversed during the service of each

request k is also required for enforcing conflict-free service constraints as revealed next. The new

problem and its unique model differentiate our work from existing literature.

2.1. Conflict-free service constraints

In practice there are physical constraints, such as containers on an RGV cannot swap positions,

that restrict the TSLU operations. The multi-capacity RGV thus must be routed to load and

unload containers in a valid order in order to avoid infeasible operations and deadlock. Here,

infeasible operation means an operation that attempts to unload a container before another one

which is however impossible to realize in practice for physical constraints; and deadlock means that

a container cannot be unloaded without temporally dropping off another container and it remains
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so if the order of unloading the two containers is reversed. The requirements are equivalent

to imposing conflict-free service constraints on the TSLU operations. Before describing these

constraints, we classify all PD requests to be handled by the TSLU operations into four types:

P 1 , {i ∈ P : ai = ai+n = 0}, P 2 , {i ∈ P : ai = ai+n = 1},

P 3 , {i ∈ P : ai = 0, ai+n = 1}, P 4 , {i ∈ P : ai = 1, ai+n = 0}, (1)

where ai is an indicator variable to show on which side task i occurs, and it indicates the north side

if ai = 0 and the south side otherwise. The four types of PD requests are illustrated in Figure 2.

For the example shown in Figure 1, we have P 1 = {1}, P 2 = {3, 5} P 3 = {2, 6} and P 4 = {4, 7}.

Figure 2: Four types of PD requests.

Various conflicts may arise if tasks belonging to different types of PD requests are processed

sequentially. The types of conflicts reviewed in the literature (e.g., [20, 22, 21]) can be regarded

as loading/unloading systems restricted to one type of the PD requests defined above. Thus, their

conflict-free service constraints can be satisfied by sticking to a certain task service order: If PD

requests are all of Type-1 (or Type-2), the LIFO service order will suffice; and if PD requests are

all of Type-3 (or Type-4), the FIFO service order will do.

Under TSLU operations, however, a single LIFO or FIFO service order cannot guarantee

conflict-free services. As there are four mixed types of PD requests, we will face 10 groups of

scenarios for serving different combinations of PD requests. Among them, one group is always

conflict-free in which tasks of different types of requests can be served in any order, and that the

rest 9 groups have to be constrained to avoid conflicts. Specifically, the conflict-free scenarios

are concerned with service of PD request pairs P 1 ∼ P 2, and the rest 9 groups of scenarios are

concerned with service of PD request pairs P 1 ∼ P 1/P 3/P 4, P 2 ∼ P 2/P 3/P 4, P 3 ∼ P 3/P 4,

P 4 ∼ P 4, where the symbol / means “or”. Different constraints may be imposed in the 9 groups

of scenarios to ensure conflict-free services.

The ten groups of scenarios and their associated service constraints can be classified into six

cases below. The first two cases correspond to conventional scenarios with LIFO or FIFO loading

restrictions, and the next three cases are unique to the routing problem under consideration, and

the last case describes conflict-free scenarios where no special service constraint is required.

2.1.1. Case 1. P 1 ∼ P 1 and P 2 ∼ P 2: LIFO service

As illustrated in Figure 3, LIFO service order should be maintained between any pair of PD

requests in P 1 (or P 2 alike) for conflict avoidance. Given requests j, k ∈ P 1 which share the RGV

for a certain period of time, if the pickup task j is processed after the pickup task k, then the
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delivery task j + n must be processed before the delivery task k + n.
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Figure 3: LIFO service: P 1 ∼ P 1 and P 2 ∼ P 2.

To characterize this mathematically, we introduce binary decision variables ykij for all request

k ∈ P and arc (i, j) in a feasible set. We have ykij = 1, if arc (i, j) is traversed on the path from

vertex k to vertex k + n (i.e., during the service for request k); and ykij = 0 otherwise. The LIFO

service order is enforced by the following constraints:

∑
i:(i,j)∈A′

ykij =
∑

i:(i,j+n)∈A′
yki,j+n,

∀j ∈ P 1\{k}, k ∈ P 1,

∀j ∈ P 2\{k}, k ∈ P 2.
(2)

Constraint (2) means that if task j is processed between k and k + n, then task j + n must also

be processed between k and k + n, namely, the LIFO service order is implemented.

2.1.2. Case 2. P 3 ∼ P 3 and P 4 ∼ P 4: FIFO service

Similarly, FIFO service order should be maintained between any pair of PD requests in P 3

(or P 4 alike) for conflict avoidance, as illustrated in Figure 3. This requirement can be met by

enforcing constrain (3) below, which means that if a pickup task of request k in P 3 (or P 4) is

processed before the service of request j of the same type, then the delivery task of request k must

be processed before the completion of request j, i.e., the FIFO service order is enforced.
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Unconstrained loading

(12) Conditional AFO loading

(14) LILO (or FIFO) loading
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Figure 4: FIFO service: P 3 ∼ P 3 and P 4 ∼ P 4.

∑
i:(i,j)∈A′

ykij +
∑

i:(i,j+n)∈A′
yki,j+n ≤ 1,

∀j ∈ P 3\{k}, k ∈ P 3,

∀j ∈ P 4\{k}, k ∈ P 4.
(3)

2.1.3. Case 3. P 1 ∼ P 3 and P 2 ∼ P 4: crossing first in (CFI) service

This case is illustrated in Figure 5. Assume j ∈ P 3, k ∈ P 1 and they are simultaneously served

by an RGV in a certain time interval. The PD request j is a crossing request whose pickup and

delivery locations are on opposite sides of the track. If the pickup task j is processed after the

pickup task k but before the delivery task k+n, then the delivery task j+n cannot be performed

because the container associated with the request k will block the way out. Thus, in this case, the
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crossing request must be handled first for ensuring conflict-free service, leading to the so-called

CFI service order. This applies to the case for j ∈ P 4, k ∈ P 2 alike.
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Figure 5: CFI service: P 1 ∼ P 3 and P 2 ∼ P 4.

The CFI service order can be enforced by the following constraints:

ykij = 0, ∀(i, j) ∈ A′,

∀j ∈ P 3, k ∈ P 1,

∀j ∈ P 4, k ∈ P 2.
(4)

Also note that, for j ∈ P 1, k ∈ P 3 (or j ∈ P 2, k ∈ P 4), we can obtain another set of conflict-free

service constraints,
∑

i:(i,j+n)∈A′ y
k
i,j+n ≤

∑
i:(i,j)∈A′ y

k
ij , meaning that if task j + n is processed

between tasks k and k + n, then task j must also have been processed. As shown in Appendix A,

this set of constraints are equivalent to the constraints in (4) and hence can be ignored.

2.1.4. Case 4. P 1 ∼ P 4 and P 2 ∼ P 3: crossing last out (CLO) service

Similarly, CLO service order should be maintained in Case 4 as illustrated in Figure 6. Assume

that j ∈ P 4, k ∈ P 1 and they are simultaneously served by the RGV in a certain time interval.

Request j is still the crossing request. This time, the pickup tasks j and k can be processed in a

flexible order, but the delivery task j + n must be processed after the delivery task k + n because

the container associated with request j is queued behind the one associated with request k on the

RGV.
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Figure 6: CLO service: P 1 ∼ P 4 and P 2 ∼ P 3.

The CLO service order can be enforced by the following constraints:

yki,j+n = 0, ∀(i, j + n) ∈ A′,

∀j ∈ P 4, k ∈ P 1,

∀j ∈ P 3, k ∈ P 2.
(5)

As in the CFI case, for all j ∈ P 1, k ∈ P 4 (or j ∈ P 2, k ∈ P 3) we can obtain another set of

conflict-free service constraints,
∑

i:(i,j)∈A′ y
k
ij ≤

∑
i:(i,j+n)∈A′ y

k
i,j+n, which are equivalent to the

constraints in (5) and hence can be ignored. A proof of this fact is again referred to Appendix A.
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2.1.5. Case 5. P 3 ∼ P 4: Deadlock

This case corresponds to the deadlock case for any pair of PD requests P 3 ∼ P 4 as illustrated

in Figure 7. Such pair of PD requests should never be simultaneously served by the RGV because

the corresponding containers will block their way out from each other.
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Figure 7: Deadlock: P 3 ∼ P 4.

The deadlock can be avoided by enforcing the following constraint, which completely avoids

overlap between services of the aforementioned two types of PD requests:

ykij = 0, ∀(i, j) ∈ A′,

∀j ∈ P 4, k ∈ P 3,

∀j ∈ P 3, k ∈ P 4.
(6)

It can be shown that the above condition implies that yki,j+n = 0, for all (i, j+n) ∈ A′ with j, k in

the domains given in (6).

2.1.6. Case 6. P 1 ∼ P 2: Free case

This case corresponds to the free case illustrated in Figure 8, in which any pair of PD requests

do not interfere from each other. The requests can thus be freely served by the RGV with no

dedicated service constraints.
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Figure 8: Free service: P 1 ∼ P 2.

Remark 1. The LIFO and FIFO service constraints formulated in (2) and (3) have forms con-

ciser than those developed in [21] where two additional groups of binary variables with the same

dimensionality of ykij are required. The current formulation avoids those binary variables and the

constraints associated, and hence is computationally more efficient in general.

2.2. Problem formulation

This subsection develops a mathematical model of the energy-efficient RGV routing problem.

The major parameters and notations used are listed below for ease of reference:
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(a) Container with unit load. (b) Containers with two units of load.

Figure 9: Containers with different capacities.

n The number of PD requests; |P | = |D| = n;

P The set of pickup tasks, P = {1, 2, . . . , n};
D The set of delivery tasks, D = {1 + n, 2 + n, . . . , 2n};
V ′ The union of pickup and delivery tasks, V ′ = P ∪D ;

A′ The set of arcs (i, j) with i, j ∈ V ′;
V The full tasks including virtual start and end tasks, V = {0} ∪ V ′ ∪ {2n+ 1};
A The set of arcs (i, j) with i, j ∈ V ;

Q The RGV’s capacity in units of load (and every unit has the same weight 1);

qi The units of load associated with task i, satisfying qi > 0, qi+n < 0 and qi = −qi+n

for all i ∈ P . There are several types of containers with different sizes. For example,

the container in Figure 9(a) admits one unit of load, and so qi = 1, qi+n = −1; and the

container in Figure 9(b) admits two units of load, and so qi = 2, qi+n = −2;

si The operating duration of task i ∈ V \{2n+ 1}, with s0 , 0;

[ei, li] The delivery TW associated with each PD request i ∈ P ;

rij The RGV travelling distance between tasks i and j;

tij The RGV travelling time between tasks i and j;

There are four groups of decision variables:

xij The binary variable to indicate whether task i is processed right before task j;

ykij The binary variable to indicate whether the arc (i, j) is traversed on the path from

vertices k to k + n, where k ∈ P ;

bi The time starting to handle task i ∈ V , with b0 , 0;

wi The units of load on the RGV upon completion of task i ∈ V , with w0 , 0.

The static optimal RGV routing problem can be formulated as a mixed integer program defined

in (7)-(20). For convenience of presentation, we term it as the pickup and delivery problem with

TSLU operations, or PDP-TSLU for short.

1Generalization can be made to associate each unit of load with a different weight if such information is available.
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PDP-TSLU : min
∑

i,j:(i,j)∈A

cij(wi)xij (7)

subject to,
∑

j: (i,j)∈A

xij = 1 ∀i ∈ V \{2n+ 1}; (8)

∑
j: (j,i)∈A

xji = 1 ∀i ∈ V \{0}; (9)

bi+n ≥ bi + si + ti,i+n ∀i ∈ P ; (10)

bi⊕1 ≥ bi + si ∀bi⊕1 6= ∅, i ∈ P ; (11)

xij = 1⇒

{
bj ≥ bi + si + tij
wj ≥ wi + qj

∀(i, j) ∈ A, j ∈ V ′ ∪ {2n+ 1},
∀(i, j) ∈ A, j ∈ V ′; (12)

ei ≤ bi+n + si+n ≤ li ∀i ∈ P ; (13)

max{0, qi} ≤ wi ≤ min{Q,Q+ qi} ∀i ∈ V ′; (14)

∑
j: (i,j)∈A′

ykij −
∑

j: (j,i)∈A′

ykji =


1 if i = k

−1 if i = k + n

0 otherwise

∀i ∈ V ′, k ∈ P ; (15)

(2)− (6); (16)

ykij ≤ xij ∀(i, j) ∈ A′, k ∈ P ; (17)

ykij ∈ {0, 1} ∀(i, j) ∈ A′, k ∈ P ; (18)

xij ∈ {0, 1} ∀(i, j) ∈ A; (19)

bi ≥ 0, wj ≥ 0 ∀i ∈ V ′ ∪ {2n+ 1}, j ∈ V ′. (20)

The objective function in (7) measures the total energy consumption and is a bilinear function

in wi and xij , whose specific form is derived as follows. Each arc (i, j) ∈ A is associated with

an energy cost cij(wi) (as explicitly depends on the load weight) and a travel time tij . With the

operating profile of the RGV shown in Figure 10, the arc travel time can be expressed as an explicit

function of the arc distance rij as

tij =

2
√

rij
a if 0 ≤ rij ≤ 2r1,

2t1 +
rij−2r1
vc

if rij > 2r1,
(21)

where the parameters a, vc, t1 and r1 are defined in Figure 10. Let wRGV be the net weight of

the empty RGV and wi denote the load weight upon leaving vertex i. The energy cost cij(wi) is

calculated as the work done by the RGV for traversing the arc (i, j). By Newton’s law we have,

cij(wi) =


µgrij(wRGV + wi) if a ≤ µg,

arij(wRGV + wi) if a > µg and 0 ≤ rij ≤ 2r1,

(2(a− µg)r1 + µgrij) (wRGV + wi) if a > µg and rij > 2r1,

(22)

where µ is the rolling friction coefficient while the RGV moves on the track and g is the gravitational

acceleration, both of which are given constants. Although µ, g and rij are given constants, the

energy cost cij(wi) are variables controllable by adjusting the task service order. This cost is
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Figure 10: Operating profile of an RGV.

generally increasing in wi, in contrast to conventional routing cost which is merely determined by

the arc distance rij . In the meanwhile, we set ci, 2n+1 = 0 for all i ∈ D, to account for the practice

that the RGV stops at the last delivery.

We briefly explain the constraints of PDP-TSLU. Constraints (8) and (9) ensure that each

task is served exactly once, with the service starting and ending at virtual tasks 0 and 2n + 1,

respectively. Constraint (10) states that each pickup task should be processed before its paired

delivery task, and constraint (11) means that containers at the same work station are picked up

in FIFO order. In (11), the term i ⊕ 1 represents the pickup task queued right behind task i at

the same station. For the example shown in Figure 1, we have 1⊕ 1 = 2 and 4⊕ 1 = 5 .

The indicator constraint (12) ensures the consistency of service time and load variables and

also the route connectivity, which can be linearized using the big-M method (refer to Appendix

B for details). In (12), the load inequality constraints are valid alternatives of the corresponding

equality constraints for the optimization considered, but this is true for the time constraints if

only latest but earliest service constraints are active. Constraint (13) imposes a TW constraint

on completion time of each request. Constraint (14) enforces the RGV’s capacity limit, which is

often tighter than applying the obvious bound 0 ≤ wi ≤ Q for all i ∈ V ′.
Constraint (15) ensures a path from vertices k to k + n for any PD request k that does

not pass through the virtual start or end vertex. Constraint (16) consists of unique conflict-free

service constraints resulting from the TSLU operations as revealed in the previous subsection, and

constraint (17) binds the overall routing decisions with the individual routing decisions of every

PD request. Finally, constraints (18)-(20) specify domains of the decision variables.

Remark 2. If the objective function is replaced with total travel distance or time, the PDP-TSLU

reduces to TSPPDL confined on a linear track if there are only PD requests of Type-1 (or -2), and

to TSPPDF confined on a linear track if there are only PD requests of Type-3 (or -4). In the two

reduced cases, the conflict-free service constraints (2)-(6) collapse to mean the LIFO and the FIFO

service order, respectively.
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3. Solution approach

This section reformulates the bilinear PDP-TSLU into an MILP, and then reduces the arc set

(and so the variables and constraints associated) based on delicate insights into the PDP-TSLU,

and next introduces a couple of valid inequalities that exploit structural properties of the problem

for solving it more efficiently.

3.1. Reformulating PDP-TSLU as an MILP

Let αij , arij and βij , 2(a − µg)r1 + µgrij . The PDP-TSLU is bilinear in its present form

because the objective function has the following explicit form:∑
(i,j)∈A

cij(wi)xij =
∑

(i,j)∈A,rij≤2r1

αij (wRGV + wi)xij +
∑

(i,j)∈A,rij>2r1

βij (wRGV + wi)xij , (23)

which contains bilinear terms of wixij . This makes the problem difficult to optimize directly.

Fortunately, the objective function can be linearized by introducing new decision variables and

additional linear constraints.

Without loss of generality, let us assume a > µg (which means that braking is required for

stopping a moving RGV at a deceleration of a). In this case, the objective function of the PDP-

TSLU is equivalent to ∑
(i,j)∈A

cij(wi)xij =
∑

i∈V \{2n+1}

zi,

subject to, for all feasible index j,

xij = 1⇒ zi =

αij(wRGV + wi) ∀(i, j) ∈ A, rij ≤ 2r1,

βij(wRGV + wi) ∀(i, j) ∈ A, rij > 2r1.

Note that it is unnecessary to introduce zij for each xij , because there always exists one and only

one immediate successor j to i such that xij = 1 by constraint (8).

The above indicator constraints can be handled directly by solvers embedded in software like

CPLEX [32]. Alternatively, they can be reformulated into linear forms as

zi ≥ αij(wRGV + wi)− γij(1− xij), ∀(i, j) ∈ A, rij ≤ 2r1,

zi ≥ βij(wRGV + wi)− γij(1− xij), ∀(i, j) ∈ A, rij > 2r1,

where γij are upper bounds of αij(wRGV + wi) if rij ≤ 2r1 and of βij(wRGV + wi) if rij > 2r1.

It is feasible to set γij = αij(wRGV + min{Q,Q + qi}) and γij = βij(wRGV + min{Q,Q + qi})
for the two cases, respectively. Note that the inequality relaxations of the indicator constraints

do not change the optimal solution because the objective function minimizes the sum of zi wtih

unit coefficients. Consequently, the PDP-TSLU becomes an MILP solvable by standard solvers.
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The solution process can further be enhanced by exploiting structural properties underlying the

problem, which are pursued in the next two subsections.

3.2. Arc set reduction

For practical reasons, not all arcs of the complete graph are feasible. By exploiting structural

properties of the problem, the arc set A in PDP-TSLU is reducible to the one defined in (24),

where the relation iC j (or iB j) means that pickup task i is queued in front of (or behind) pickup

task j at the same station and the term i⊕ 1 was defined when explaining (11).

A =
{

(0, j) : j ∈ P such that {k : k C j} = ∅
}

∪
{

(i, 2n+ 1) : i ∈ D such that {k : k B i− n} = ∅
}

∪
{

(i, j) : i ∈ P, j ∈ P ∪D\ ∪4
l=1 S

i
P,l\ ∪3

l=1 S
i
D,l

}
∪
{

(i, j) : i ∈ D, j ∈ P ∪D\ ∪9
l=5 S

i
P,l\ ∪8

l=4 S
i
D,l

}
∖{

(i, j) : i, j ∈ P ∪D such that i = j or i = j + n
}
, (24)

where

SiP, 1 , {j ∈ P : j C i} ,

SiP, 2 , {j ∈ P : j B i⊕ 1} ,

SiP, 3 ,
{
j ∈ P : j ∈ P 3, if i ∈ P 1 ∪ P 4

}
,

SiP, 4 ,
{
j ∈ P : j ∈ P 4, if i ∈ P 2 ∪ P 3

}
,

SiP, 5 , {j ∈ P : j C i− n} ,

SiP, 6 ,
{
j ∈ P : {k ∈ P 3 : i− nC k C j} 6= ∅, if i− n ∈ P 1

}
SiP, 7 ,

{
j ∈ P : {k ∈ P 4 : i− nC k C j} 6= ∅, if i− n ∈ P 2

}
,

SiP, 8 ,
{
j ∈ P :

∣∣ {k ∈ P 3 : i− nC k C j}
∣∣ ≥ Q, if i− n ∈ P 3

}
SiP, 9 ,

{
j ∈ P :

∣∣ {k ∈ P 4 : i− nC k C j}
∣∣ ≥ Q, if i− n ∈ P 4

}
,

SiD, 1 , {j ∈ D : j − nB i} ,

SiD, 2 ,
{
j ∈ D : j − n ∈ P 1 ∪ P 4\{i}, if i ∈ P 1 ∪ P 3

}
SiD, 3 ,

{
j ∈ D : j − n ∈ P 2 ∪ P 3\{i}, if i ∈ P 2 ∪ P 4

}
,

SiD, 4 ,
{
j ∈ D : j − nB i− n, if i− n ∈ P 1 ∪ P 2

}
,

SiD, 5 ,
{
j ∈ D : j − nC i− n, if i− n ∈ P 3 ∪ P 4

}
,

SiD, 6 ,
{
j ∈ D : j − n ∈ SiP, 8 ∪ SiP, 9

}
,

SiD, 7 ,
{
j ∈ D : j − n ∈ P 2 ∪ P 4, if i− n ∈ P 3

}
,

SiD, 8 ,
{
j ∈ D : j − n ∈ P 1 ∪ P 3, if i− n ∈ P 4

}
.

Of the reduced arc set A, the first subset consists of arcs connecting the start vertex with the
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head vertex of each pickup queue. The second subset consists of arcs connecting each delivery

vertex, whose paired pickup vertex is the tail of a pickup queue, with the end vertex. The third

subset consists of arcs connecting a pickup vertex with all other pickup vertices that are neither

predecessors of the current vertex (SiP, 1) nor successors other than the nearest one in the same

pickup queue (SiP, 2 ) and meanwhile services of which avoid unloading deadlock (i.e., excluding

SiP, 3 ∪ SiP, 4), and with delivery vertices whose paired pickup vertices are not successors of the

current vertex (SiD, 1) and meanwhile services of which avoid unloading deadlock (i.e., excluding

SiD, 2 ∪ SiD, 3).

The fourth subset of A is most complicated. It includes arcs connecting a delivery vertex with

pickup vertices which are neither predecessors of the pickup vertex currently in pair (SiP, 5) nor

successors that queue after the first successor of which the service leads to unloading deadlock

(SiP, 6 ∪ SiP, 7), nor successors that queue after the pickup vertex currently in pair for more than

Q request distance away while the requests are of Type-3 or Type-4 as the same as the current

request (SiP, 8 ∪ SiP, 9), and also includes arcs connecting a delivery vertex with delivery vertices

whose paired pickup vertices are neither successors of the pickup vertex currently in pair if the

current request is of Type-1 or Type-2 (SiD, 4) nor predecessors or successors that queue after the

pickup vertex currently in pair for more than Q request distance away if the current request is of

Type-3 or Type-4 (SiD, 5 ∪ SiD, 6), and with delivery vertices that are not on the same side of the

current vertex while the current request is of Type-3 or Type-4 (i.e., excluding SiD, 7 ∪ SiD, 8).

Overall the above reductions of the arc set owe to the precedence, loading and capacity con-

straints inherent in the transport service. To have a feel of the power of the above reductions,

consider the toy example shown in Figure 1. The arc set is reduced from an original size of 225

(152, for the complete graph) to a size of 114 (for a much sparser graph), cutting almost half of

the full arcs. A direct consequence of such reductions is that decision variables and constraints

associated with the identified infeasible arcs are eliminated before formulating and solving the

problem, contributing to a conciser model and hence higher computational efficiency in general.

It should be noted, however, that the elimination of infeasible arcs is incomplete, which bears the

necessity of using the precedence, loading and capacity constraints in PDP-TSLU to achieve that.

3.3. Valid inequalities for PDP-TSLU

For a branch-and-cut algorithm to solve the PDP-TSLU, valid inequalities exploiting struc-

tural properties of the problem can be useful to tighten the lower bounds and avoid unnecessary

branching which will consequently expedite the process of searching for an optimal solution.

The PDP-TSLU is essentially a generic PDP subject to new loading/unloading constraints.

Therefore some valid inequalities known for a generic PDP apply to the PDP-TSLU. New valid

inequalities can also be derived from the unique conflict-free service constraints in a way similar to

those from LIFO or FIFO loading constraints as presented in [20, 22]. Although there are dozens

of such valid inequalities, not all of them achieve good trade-offs between performance benefit

and implementation cost: According to the numerical studies reported in [20, 22], some kinds of

valid inequalities require complicated implementations (with respect to the demand for computer
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memory and computational burden) but only slightly accelerate the solution process. Similar kinds

of valid inequalities are therefore ignored for the PDP-TSLU without further validation.

3.3.1. Valid inequalities inherited from generic PDP

Let S be a subset of P ∪D. Define x(S) =
∑

i,j∈S xij , and let π(S) = {i ∈ P |i + n ∈ S} and

σ(S) = {i + n ∈ D|i ∈ S ∩ P} which denote the sets of predecessors and successors of certain

vertices in S, respectively, where i + n is the delivery task paired with the pickup task i ∈ P .

Define S̄ = V \S. Then the following subtour elimination constraints are well-known for the PDP

(as a generic property of TSP problems) [20, 22]:

x(S) ≤ |S| − 1, ∀ |S| ≥ 2. (25)

By taking account of precedence restrictions in PDP, these constraints can further be strengthened

as [33, 20, 22]:

x(S) +
∑
i∈S

∑
j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑
j∈S̄\π(S)

xij ≤ |S| − 1, (26)

x(S) +
∑

i∈S̄∩σ(S)

∑
j∈S

xij +
∑

i∈S̄\σ(S)

∑
j∈S∩σ(S)

xij ≤ |S| − 1. (27)

Another set of valid inequalities for the PDP are known as lifted D+
k and D−k inequalities.

The D+
k and D−k inequalities were firstly introduced by Grotschel and Padberg [34] and later

strengthened by Cordeau [35]. The lifted inequalities apply to any ordered set S = {i1, i2, . . . , ik} ⊆
V for k ≥ 3, and take the form of

k∑
h=1

xihih+1
+ 2

k−1∑
h=2

xihi1 +

k−1∑
h=3

h−1∑
l=2

xihil +
∑

j+n∈S̄∩σ(S)

xj+n,i1 ≤ k − 1, (28)

k∑
h=1

xihih+1
+ 2

k−1∑
h=3

xi1ih +
k∑

h=4

h−1∑
l=3

xihil +
∑

j∈S̄∩π(S)

xi1j ≤ k − 1, (29)

where ik+1 , i1.

3.3.2. Valid inequalities derived from LIFO and CLO service restrictions

We derive new valid inequalities from the LIFO and CLO service constraints as unique to

PDP-TSLU. Given i ∈ P 1, j ∈ P 1\{i}, if xij = 1 is a feasible integer solution, then the pickup

and delivery sequence must satisfy 0 ≺ i ≺ j ≺ j + n ≺ i + n ≺ 2n + 1, where the operator ≺
represents the precedence relationship. To enforce LIFO service order under TSLU operations,

the predecessor of i + n can only be a pickup task in P 2 ∪ P 4 or a delivery task of a request in

P\(P 4 ∪ {i}) (including j). Meanwhile, a valid successor of j + n can only be a pickup task in

P\{P 3 ∪ {i, j}} or a delivery task of a request in P 2 ∪ P 3 ∪ {i}. Similar reasoning can be applied

to determine the possible predecessors of i + n and successors of j + n for i belonging to P 4 and
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for following CLO service order under TSLU operations. In summary, if arc (i, j) is included in

the routing path, then the set of possible predecessors of i+ n are given as

Pi+n(i, j) = P 2 ∪ P 4 ∪ {k + n : k ∈ P\(P 4 ∪ {i})}, ∀i ∈ P 1, j ∈ P 1\{i},

Pi+n(i, j) =
(
P 2 ∪ P 4\{i}

)
∪ {k + n : k ∈ P\(P 3 ∪ {i})}, ∀i ∈ P 4, j ∈ P 1,

Pi+n(i, j) = P 1 ∪ P 3 ∪ {k + n : k ∈ P\(P 3 ∪ {i})}, ∀i ∈ P 2, j ∈ P 2\{i},

Pi+n(i, j) =
(
P 1 ∪ P 3\{i}

)
∪ {k + n : k ∈ P\(P 4 ∪ {i})}, ∀i ∈ P 3, j ∈ P 2,

and meanwhile the set of possible successors of j + n are

Sj+n(i, j) =
(
P\(P 3 ∪ {i, j})

)
∪ {k + n : k ∈ P 2 ∪ P 3 ∪ {i}}, ∀i ∈ P 1, j ∈ P 1\{i},

Sj+n(i, j) =
(
P\(P 3 ∪ {i, j})

)
∪ {k + n : k ∈ P\(P 3 ∪ {j})}, ∀i ∈ P 4, j ∈ P 1,

Sj+n(i, j) =
(
P\(P 4 ∪ {i, j})

)
∪ {k + n : k ∈ P 1 ∪ P 4 ∪ {i}}, ∀i ∈ P 2, j ∈ P 2\{i},

Sj+n(i, j) =
(
P\(P 4 ∪ {i, j})

)
∪ {k + n : k ∈ P\(P 4 ∪ {j})}, ∀i ∈ P 3, j ∈ P 2.

On the other hand, given i ∈ P 1, j ∈ P 1\{i}, if xj+n,i+n = 1 is a feasible solution, then the

pickup and delivery sequence again must follow the aforementioned precedence order. To enforce

the LIFO service order under TSLU operations, the predecessor of j can only be a pickup task in

{i}∪P 2∪P 4 or a delivery task of a request in P\(P 4∪{i, j}). Meanwhile, a valid successor of i can

only be a pickup task in P\(P 3 ∪{i}) or a delivery task of a request in P 2 ∪P 3. Similar reasoning

can be applied to determine the possible predecessors of j and successors of i for i belonging to P 4

and for satisfying the CLO service order under TSLU operations. In summary, if arc (j+n, i+n)

is included in the routing path, then the set of possible predecessors of j are given as

Pj(j + n, i+ n) = {i} ∪ P 2 ∪ P 4 ∪ {k + n : k ∈ P\(P 4 ∪ {i, j})}, ∀i ∈ P 1, j ∈ P 1\{i},

Pj(j + n, i+ n) = {0} ∪ P 2 ∪ P 4 ∪ {k + n : P\(P 3 ∪ {i, j})}, ∀i ∈ P 4, j ∈ P 1,

Pj(j + n, i+ n) = {i} ∪ P 1 ∪ P 3 ∪ {k + n : k ∈ P\(P 3 ∪ {i, j})}, ∀i ∈ P 2, j ∈ P 2\{i},

Pj(j + n, i+ n) = {0} ∪ P 1 ∪ P 3 ∪ {k + n : P\(P 4 ∪ {i, j})}, ∀i ∈ P 3, j ∈ P 2,

and meanwhile the set of possible successors of i are

Si(j + n, i+ n) =
(
P\(P 3 ∪ {i})

)
∪ {k + n : k ∈ P 2 ∪ P 3}, ∀i ∈ P 1, j ∈ P 1\{i},

Si(j + n, i+ n) =
(
P\(P 3 ∪ {i})

)
∪ {k + n : k ∈ P 1 ∪ (P 4\{i})}, ∀i ∈ P 4, j ∈ P 1,

Si(j + n, i+ n) =
(
P\(P 4 ∪ {i})

)
∪ {k + n : k ∈ P 1 ∪ P 4}, ∀i ∈ P 2, j ∈ P 2\{i},

Si(j + n, i+ n) =
(
P\(P 4 ∪ {i})

)
∪ {k + n : k ∈ P 2 ∪ (P 3\{i})}, ∀i ∈ P 3, j ∈ P 2.

In the second and fourth cases of predecessors set of j, the vertex 0 instead of i is included in the

set because j + n ≺ i+ n does not imply i ≺ j in those two cases.

With the above insights, four groups of valid inequalities can be obtained for the PDP-TSLU,
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each of which indicates a group of arcs that are incompatible with the arc (i, j) or (j+n, i+n) as

included in a valid routing path.

Proposition 1. For each of the vertex pairs i ∈ P 1 ∪P 4, j ∈ P 1\{i}, or i ∈ P 2 ∪P 3, j ∈ P 2\{i},
the following inequalities hold for the PDP-TSLU:

xij +
∑

l /∈Pi+n(i,j)

xl,i+n ≤ 1, (30)

xij +
∑

l /∈Sj+n(i,j)

xj+n,l ≤ 1, (31)

xj+n,i+n +
∑

l /∈Pj(j+n,i+n)

xlj ≤ 1, (32)

xj+n,i+n +
∑

l /∈Si(j+n,i+n)

xil ≤ 1, (33)

where the variables are zero if their corresponding arcs are not defined in A.

The next inequality comes from the fact that whenever an arc (i, i + n) for any i ∈ P 3 ∪ P 4

is used, it follows from the CLO loading restriction that the vehicle must arrive empty at i and

leaves empty from i+ n.

Proposition 2. For each of the vertex pairs i ∈ P 4, j ∈ P 1, or i ∈ P 3, j ∈ P 2, the following

inequality holds for the PDP-TSLU:

xij + xji + xi,i+n + xi+n,j+n ≤ 1, (34)

where the variables are zero if their corresponding arcs are not defined in A.

The following inequality merges the two valid inequalities xij + xi+n,j+n + xj+n,i ≤ 1 and

xij + xi+n,j+n + xi+n,j ≤ 1, for each pair of i and j in proper sets.

Proposition 3. For each of the vertex pairs i ∈ P 1 ∪P 4, j ∈ P 1\{i}, or i ∈ P 2 ∪P 3, j ∈ P 2\{i},
the following inequality holds for the PDP-TSLU:

xij + xi+n,j+n + xj+n,i + xi+n,j ≤ 1, (35)

where the variables are zero if their corresponding arcs are not defined in A.

3.3.3. Valid inequalities derived from FIFO and CLO service restrictions

This subsection derives new valid inequalities pertinent to the FIFO and CLO service con-

straints of the PDP-TSLU. Given i ∈ P 4, j ∈ P 4\{i}, if xij = 1 is a feasible solution, then the

pickup and delivery sequence must satisfy 0 ≺ i ≺ j ≺ i + n ≺ j + n ≺ 2n + 1. To enforce the

FIFO service order under TSLU operations, the successor of i + n can only be a pickup task in

P\(P 3 ∪{i, j}) or a delivery task of a request in P 2 ∪{j}. Meanwhile, a valid predecessor of j+n

can only be a pickup task in P 2 ∪ (P 4\{i, j}) or a delivery task of a request in P 1 ∪ P 2 ∪ {i}.
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Similar reasoning can be applied to determine the possible successors of i + n and predecessors

of j + n for i belonging to P 1 and for satisfying CLO service order under TSLU operations. In

summary, if arc (i, j) is included in the routing path, then the set of possible successors of i + n

are obtained as

Si+n(i, j) =
(
P\(P 3 ∪ {i, j})

)
∪
{
k + n : k ∈ P\(P 3 ∪ {i})

}
, ∀i ∈ P 1, j ∈ P 4,

Si+n(i, j) =
(
P\(P 3 ∪ {i, j})

)
∪
{
k + n : k ∈ P 2 ∪ {j}

}
, ∀i ∈ P 4, j ∈ P 4\{i},

Si+n(i, j) =
(
P\(P 4 ∪ {i, j})

)
∪
{
k + n : k ∈ P\(P 4 ∪ {i})

}
, ∀i ∈ P 2, j ∈ P 3,

Si+n(i, j) =
(
P\(P 4 ∪ {i, j})

)
∪
{
k + n : k ∈ P 1 ∪ {j}

}
, ∀i ∈ P 3, j ∈ P 3\{i},

and meanwhile the set of possible predecessors of j + n are

Pj+n(i, j) = P 2 ∪ (P 4\{j}) ∪
{
k + n : k ∈ P\(P 3 ∪ {j})

}
, ∀i ∈ P 1, j ∈ P 4,

Pj+n(i, j) = P 2 ∪ (P 4\{i, j}) ∪
{
k + n : k ∈ P 1 ∪ P 2 ∪ {i}

}
, ∀i ∈ P 4, j ∈ P 4\{i},

Pj+n(i, j) = P 1 ∪ (P 3\{j}) ∪
{
k + n : k ∈ P\(P 4 ∪ {j})

}
, ∀i ∈ P 2, j ∈ P 3,

Pj+n(i, j) = P 1 ∪ (P 3\{i, j}) ∪
{
k + n : k ∈ P 1 ∪ P 2 ∪ {i}

}
, ∀i ∈ P 3, j ∈ P 3\{i}.

Given i ∈ P 4, j ∈ P 4, if xi+n,j+n = 1 is a feasible solution, then to comply with the FIFO

service order under TSLU operations, the successor of i can only be a pickup vertex in {j}∪P 1∪P 2

or a delivery vertex of a request in P 1∪ (P 4\{j}). Meanwhile, a valid predecessor of j can only be

a pickup vertex in {i} ∪ P 1 or a delivery vertex of a request in P\(P 3 ∪ {i, j}). Similar reasoning

can be applied to determine the possible successors of i and predecessors of j for i belonging to

P 1 and for satisfying CLO service order under TSLU operations. In summary, if arc (i+ n, j + n)

is included in the routing path, then the set of possible successors of i are obtained as

Si(i+ n, j + n) = {j} ∪ (P 1\{i}) ∪ P 2 ∪
{
k + n : k ∈ P 2 ∪ P 3 ∪ {i}

}
, ∀i ∈ P 1, j ∈ P 4,

Si(i+ n, j + n) = {j} ∪ P 1 ∪ P 2 ∪
{
k + n : k ∈ P 1 ∪ (P 4\{j})

}
, ∀i ∈ P 4, j ∈ P 4\{i},

Si(i+ n, j + n) = {j} ∪ P 1 ∪ (P 2\{i}) ∪
{
k + n : k ∈ P 1 ∪ P 4 ∪ {i}

}
, ∀i ∈ P 2, j ∈ P 3,

Si(i+ n, j + n) = {j} ∪ P 1 ∪ P 2 ∪
{
k + n : k ∈ P 2 ∪ (P 3\{j})

}
, ∀i ∈ P 3, j ∈ P 3\{i},

and meanwhile the set of possible predecessors of j are

Pj(i+ n, j + n) = {0} ∪ P 1 ∪ (P 4\{j}) ∪ {k + n : k ∈ P\{i, j}} , ∀i ∈ P 1, j ∈ P 4,

Pj(i+ n, j + n) = {i} ∪ P 1 ∪
{
k + n : k ∈ P\(P 3 ∪ {i, j})

}
, ∀i ∈ P 4, j ∈ P 4\{i},

Pj(i+ n, j + n) = {0} ∪ P 2 ∪ (P 3\{j}) ∪ {k + n : k ∈ P\{i, j}} , ∀i ∈ P 2, j ∈ P 3,

Pj(i+ n, j + n) = {i} ∪ P 2 ∪
{
k + n : k ∈ P\(P 4 ∪ {i, j})

}
, ∀i ∈ P 3, j ∈ P 3\{i}.

With the above insights, four groups of valid inequalities in analog to those in (30)-(33) can

be obtained to invalidate infeasible predecessors and successors to a given task:
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Proposition 4. For each of the vertex pairs i ∈ P 1 ∪P 4, j ∈ P 4\{i}, or i ∈ P 2 ∪P 3, j ∈ P 3\{i},
the following inequalities hold for the PDP-TSLU:

xij +
∑

l /∈Si+n(i,j)

xi+n,l ≤ 1, (36)

xij +
∑

l /∈Pj+n(i,j)

xl,j+n ≤ 1, (37)

xi+n,j+n +
∑

l /∈Si(i+n,j+n)

xil ≤ 1, (38)

xi+n,j+n +
∑

l /∈Pj(i+n,j+n)

xlj ≤ 1. (39)

The next inequality is adapted from the one proposed for TSPPDF in [22]. It comes from the

fact that whenever an arc (i, i + n) for any i ∈ P 3 ∪ P 4 is traversed, it follows from the FIFO

service restriction that the vehicle must arrive empty at i and leaves empty from i+ n.

Proposition 5. For each of the vertex pairs i ∈ P 4, j ∈ P 4\{i}, or i ∈ P 3, j ∈ P 3\{i}, the

following inequality holds for the PDP-TSLU:

xji + xi,i+n + xi+n,j+n ≤ 1, (40)

where the variables are zero if their corresponding arcs are not defined in A.

The following inequality is again adapted from [22], which merges the two inequalities xij +

xj+n,i+n + xj+n,i ≤ 1 and xij + xj+n,i+n + xi+n,j ≤ 1 , for each pair i and j in proper request sets.

Proposition 6. For each of the vertex pairs i ∈ P 1 ∪P 4, j ∈ P 4\{i}, or i ∈ P 2 ∪P 3, j ∈ P 3\{i},
the following inequality holds for the PDP-TSLU:

xij + xj+n,i+n + xj+n,i + xi+n,j ≤ 1, (41)

where the variables are zero if the corresponding arcs are not defined in A.

The valid inequalities (26)-(41) will be used to enhance the branch-and-cut algorithm embed-

ded in CPLEX for solving the PDP-TSLU, and their usefulness will be evaluated via numerical

experiments.

Remark 3. The above valid inequalities are not exclusive to the PDP-TSLU and other derivations

are possible. For example, valid inequalities can also be derived from the CFI service restrictions in

a similar way. Our experiments have shown that they do not contribute much to the computational

efficiency, and hence are ignored in our studies. For another example, valid inequalities can be

derived from the geometric restriction of a linear track, known as the “edge degree balance” property

[11]. The property says that, for an RGV (which starts and ends at the same position) traversing

any track segment, the number of times it moves towards the right must be equal to that towards

the left. The property remains true for the PDP-TSLU if a virtual arc is introduced to connect
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Figure 11: Initial delivery requests and their completion as virtual PD requests.

the end vertex with the start vertex. Simulations have shown that such valid inequalities hardly

accelerate the solution process of PDP-TSLU and hence are ignored also.

4. Rolling-horizon approach for handling dynamic PDP-TSLU

In practice PD requests arrive stochastically and the PDP-TSLU becomes dynamic. Ideally the

dynamic PDP-TSLU should be solved to optimality at each decision point as a static alternative

which sequences all PD tasks up to the decision point. In reality, however, a computer has limited

computational capacity and a suboptimal solution which considers a limited number of PD requests

has to be explored at each decision point. This motivates us to adopt a rolling-horizon approach

for handling the dynamic PDP-TSLU. To that end, we need to treat PDP-TSLU with nonzero

initial load first.

4.1. Handling nonzero initial conditions

At the time of recomputing a routing solution, the RGV may contain containers which have

not been delivered, i.e., w0 ≥ 1. In this case, the re-optimization is subject to a nonzero initial

condition. The initial load on the RGV may consist of containers that are destined to stations on

the same or different sides of the track, as depicted in Figure 11, where the impossible types of

initial requests are avoided by the previous routing solution.

To recompute a routing decision, extra constraints are required for handling new requests

without causing conflict with the existing load. Characterizing these constraints and incorporating

them into the present routing model are thus necessary. The renewed problem can be reformulated

as a standard one with zero initial load and partially determined arcs, as explained below.

Let there be n0 delivery requests at the time when a renewal of routing is triggered, of which

n0,1 are destined to north stations and n0,2 (equal to n0 − n0,1) to south stations. In the graph

model, it is feasible to represent the n0,1 transport requests by n0,1 virtual PD requests of Type-1,

each associated with a travel distance equal to the current distance of the RGV to the destined

station (because visiting a virtual pickup vertex does not introduce a routing cost). Similarly, the

rest n0,2 transport requests can be represented by n0,2 virtual PD requests of Type-2. See Figure

11 for a depiction of the virtual PD requests, as indicated by arrows comprised of dashed and solid

lines. In the meantime, the current position of the RGV is represented by a virtual start vertex

as directed to one of the virtual pickup vertices with zero routing cost. The order of visiting the

virtual start and pickup vertices is specified in such a way that yields the initial load setting.
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The routing model is then augmented to include the initial delivery vertices, the virtual pickup

and start vertices, and the arcs associated. Denote the set of virtual pickup vertices of Type-1 as

P 1
0 , {1, 2, . . . , n0,1}, and those of Type-2 as P 2

0 , {n0,1 +1, n0,1 +2, . . . , n0}, and let P0 , P 1
0 ∪P 2

0 ,

as a subset of the augmented pickup vertex set P . Without loss of generality, we let the RGV

start at the virtual start vertex 0 and visit the virtual pickup vertices in the order of 1, 2, . . . , n0,

resulting in the initial load setting. The arcs associated with these virtual vertices ({0} ∪ P0) are

thus known a priori and the related arc set reduces to

A0 = {(k, k + 1) : k = 0, 1, . . . , n0 − 1}

∪
{

(n0, j) : j ∈ P 1 ∪ P 2 ∪ {n0,1 + h, n0,2 + h}
}

∪
{

(n0, j) : j ∈ P 3, if n0,1 = 0
}

∪
{

(n0, j) : j ∈ P 4, if n0,2 = 0
}
,

where h is a given size of the rolling horizon, satisfying h ≥ n0. All arcs defined in A directing

to {0} ∪ P0 become null since all these vertices have already been visited. For each arc (i, j) in

the first subset of A0 above, the arc distance rij is equal to zero; and for each arc (i, j) in the rest

subsets of A0 above, rij is equal to the distance of the current position of the RGV to vertex j.

Consequently, the RGV routing problem with nonzero initial load is transformed into a PDP-

TSLU with partially determined arcs, in which an empty RGV starts at a virtual vertex 0, visits

the virtual pickup vertices in a predefined order, and then the rest pickup and delivery vertices

within the rolling horizon by following an order determined by solving the PDP-TSLU.

4.2. The rolling-horizon approach

As PD requests arrive stochastically in a complex manner, we adopt a rolling-horizon approach

to handling the dynamic PDP-TSLU. To make the approach work in real time, we need to address

two issues: One is to select an appropriate rolling-horizon size and the other is about online

implementation of the routing decisions. In principle, the rolling horizon should be as long as

possible in order to avoid myopic decisions, but in the meantime it must be short enough to afford

real-time decisions. The size of the horizon is thus limited by the computational time required for

solving a static PDP-TSLU, and the specific size needs to be determined via simulations. Regarding

the implementation of rolling decisions, two situations have to be handled appropriately: One is

when re-optimization is demanded while the previous optimization is still in progress; and the other

is when a new decision is available while the RGV is on the way of executing the previous decision.

With these situations in mind, the rolling-horizon approach is designed to work as follows.

Rolling-horizon approach: Whenever a new PD request is issued or there are un-sequenced PD

tasks in the system, the approach recomputes a solution of sequencing of PD requests by solving

the (augmented) PDP-TSLU with a given horizon size (if there were so many requests), say, h.

If there are more than h PD requests to sequence, h of them are selected based on the “Earliest

Due First” rule while satisfying the FIFO service order at each station. In this way, the RGV

keeps serving PD tasks as sequenced by the previous decision until a new decision comes out.
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In addition, executing the first task of each decision is made compulsory and a new decision is

adopted only after the RGV completes a current task of the previous decision.

Following this approach, an RGV is able to handle PD requests continuously without obvious

disruption although the decision is renewed over time. This is true as long as the computation of

a new decision can be finished before the RGV completes all requests in the previous horizon.

5. Computational studies

A toy example is first given to illustrate the modeling and solution of a static PDP-TSLU.

Then computational results of static PDP-TSLUs with randomly generated requests of various

sizes are presented to evaluate the usefulness of the valid inequalities for solving the PDP-TSLUs.

Based on the results, an appropriate horizon size is selected for implementing the rolling-horizon

approach. Then the rolling-horizon approach is applied to handle dynamic PDP-TSLUs of random

instances, and the results are compared with those obtained with a typical rule-based method.

The basic scenario settings of the static and dynamic PDP-TSLUs are as follows. In each

instance, the PD requests are randomly generated within a work area. Specifically, for each static

instance a queue of PD requests at any station on both sides of the track are generated with a

size following a uniform distribution within [0, a], where a is a given integer which is different

for instances of different sizes. For each dynamic instance, the arrival time of a new PD request

follows a Poisson distribution and its location follows a uniform distribution within the range of

stations. The distance between two neighboring stations is treated as a unit distance, and a unit

service time is assumed for each PD request as equally divided between the pickup and the delivery

operations. In our studies, an RGV is assumed to have a constant mass equal to two units of load.

The travel distance of an RGV is defined as the total distance it travels before the last delivery,

and the energy cost of an RGV is defined as per (23). The friction coefficient of the track is set as

0.05 and the gravitational acceleration as 9.8 m/s2. The problems are coded in C++ and solved

via IBM ILOG CPLEX 12.4 [32] which runs on a PC with Intel Core2 Duo CPU @ 2.66 GHz and

2 GB of RAM.

5.1. A toy example of static PDP-TSLU

Consider seven PD requests distributed in nine pairs of face-to-face stations as shown in Figure

1, whose graph representation is shown in Figure 12. In the representation, pickup vertices sit in

FIFO queues while delivery vertices do not follow any precedence order and are represented to sit

side by side of each other. The RGV starts from location 3.

Two scenarios are investigated: (a) the RGV starts with empty load, and (b) the RGV starts

with two units of load on board. The RGV is simulated with different capacities. The numerical

results of scenario (a) are summarized in part (a) of Table 1. We observe that the energy cost

drops considerably once the capacity increases from 1 to 2, but it ceases dropping as the RGV’s

capacity becomes larger. This is because the service restrictions and the weight-dependent energy

consumption are to prevent full loading and hence limit the benefit of having a larger capacity.

The results also indicate that there can be multiple solutions for achieving the same energy cost.
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(a) RGV starting with empty load. (b) RGV starting with two units of load.

Figure 12: Graph representations of scenarios with empty and nonempty initial load.

Table 1. Computational results of the toy example.

Case RGV’s
capacity

Energy
cost

Travel
distance

Completion
time

Vertex service order

(a)
1 50.47 38 63.78 4→11→7→14→3→10→5→12→1

→8→6→13→2→9

2/3/4/6 42.63 30 55.64 3→10→4→11→7→5→14→12→1
→8→6→2→13→9

5 42.63 30 55.64 1→8→6→2→13→9→3→10→4
→11→7→5→14→12

(b) 2/3/4/5/6 55.86 36 65.58 1→4→10→2→13→11→8→3→17
→12→5→14→6→15→9→7→18→16

In comparison, minimizing travel distance results in higher energy costs for all RGV capacities

tested, whose values are 44.59, 52.43, 52.43, 48.51 and 52.43 for the capacity equal to 2, 3, . . . , 6,

respectively (while achieving travel distances of 30, 29, 29, 29 and 29, correspondingly).

In scenario (b), the RGV starts with two units of load on board, one to be delivered to the

north station at location 6 and the other to the south station at location 9. The other PD requests

keep the same as in scenario (a). By introducing a virtual start vertex (0) and two virtual pickup

vertices (1 and 4), the graph model is augmented as in Figure 12(b). By solving the augmented

PDP-TSLU with zero initial load and partially determined arcs under five different RGV capacities,

it yields the computational results summarized in part (b) of Table 1. The routing solutions turn

out to be the same for the five choices of capacity, resulting in a total energy cost of 55.86. In

comparison, minimizing travel distance gives total energy costs of 56.84, 62.72, 66.64, 66.64 and

64.68 for the five capacities, respectively (all achieving a travel distance of 36), which are higher

than the aforementioned minimum counterparts obtained by solving the PDP-TSLUs.

5.2. Evaluating the valid inequalities and selecting a size for the rolling horizon

This subsection evaluates the usefulness of the valid inequalities introduced in Section 3.3 for

solving the PDP-TSLU and meanwhile determines an appropriate size for the rolling horizon to

enable online decisions in a dynamic environment.

The valid inequalities (25)-(41) are added as redundant constraints to the PDP-TSLU. More

precisely, the valid inequalities (25) with a subtour size of 2 are added, and the special cases of
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constraints (26)-(29) are added:

• the constraints (26) with S equal to {i, j}, {i, j + n}, and {i, i + n, j}, and the constraints

(27) with S equal to {i+ n, j + n}, {i, j + n}, and {i, i+ n, j + n};

• the constraints (28) and (29) with k = 3: xi+n,j + xji + xi,i+n + xj+n,i+n + 2xj,i+n ≤ 2 and

xi,i+n + xi+n,j+n + xj+n,i + xij + 2xi,j+n ≤ 2.

These simple constraints were once used in solving TSPPDL and TSPPDF [20, 22]. In the mean-

time, the valid inequalities (30)-(41) unique to PDP-TSLU each has a polynomial cardinality and

are added as redundant constraints to the PDP-TSLU directly.

For convenience of investigation, we classify the valid inequalities (25)-(29) inherited from a

generic PDP as Group 1, and (30)-(35) derived from LIFO and CLO service restrictions as Group

2, and (36)-(41) derived from FIFO and CLO service restrictions as Group 3. The usefulness of

including various combinations of these three groups of valid inequalities for solving PDP-TSLU

with/without TW constraints is evaluated via 20 random instances. In each instance, the work

area consists of 10 pairs of face-to-face stations and the TW constraints (if present) are generated as

delivery deadlines. The deadline for request i is a random variable following a uniform distribution

within [Ti−15, Ti], where Ti is the completion time of request i for the same instance in the absence

of TW constraints.

The average CPU times to solve the instances are summarized in Table 2. We observe that in

general, use of any of the three groups of valid inequalities is able to reduce the computational time,

which is however least likely when valid inequalities of Group 1 are applied. This implies that the

inequalities inherited from a generic PDP is not as useful as those derived from the specific PDP-

TSLU, and hence the single inclusion of the Group 1 inequalities is not recommended. Instead, a

combination of the 1-3 or 2-3 groups of valid inequalities is able to reduce the computational time

in both simulation cases, either with or without TW constraints.

The simulation results also indicate that using a rolling-horizon size of eight would allow the

control system to recompute a routing solution within one minute when the RGV has a capacity of

2 and about three minutes when the RGV has a capacity of 4. This suggests that a rolling-horizon

size of eight is reasonable for rendering online routing solutions in a dynamic environment.

5.3. Evaluating the proposed approach for handling dynamic PDP-TSLU

Random instances with and without TW constraints are generated to evaluate the rolling-

horizon approach for treating dynamic PDP-TSLUs. In each instance, 50 PD requests are randomly

generated in a range of 20 pairs of face-to-face stations. With each request is associated an arrival

time which follows a Poisson distribution with a mean of 0.5 as simulates the stochastic arrival

practice.

In the case with TW constraints, each PD request is associated with a delivery deadline, tight

or loose. Tight deadlines follow a uniform distribution in the range of [50, 80], and loose deadlines

follow a uniform distribution in the range of [150, 200]. In each pickup queue the request joining

first is assigned with a closer deadline. Thus the deadline in each pickup queue is sorted in an
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Table 2. CPU solution time (in second) when different groups (grps.) of valid inequalities were used.

|P | 7 8 9 10
Average

Q 2 4 2 4 2 4 2 4

None 9.5 17.7 42.9 198.6 95.1 438.8 316.2 1120.2 279.9

Grp. 1 9.2 16.9 38.8 151.5 111.1 658.3 208.6 2061.7 407.0

Without
TW cons.

Grp. 2 9.0 18.0 26.6 131.1 110.0 352.1 226.0 1179.6 256.6

Grp. 3 6.0 18.4 26.2 134.3 87.6 295.6 227.0 1000.9 224.5

Grps. 2-3 6.6 17.0 31.3 132.8 82.4 237.9 272.2 645.7 178.2

Grps. 1-3 7.5 16.1 35.7 144.2 95.1 414.1 283.9 972.1 246.1

None 9.5 19.3 42.3 185.5 149.2 837.6 387.9 2691.6 540.4

Grp. 1 10.8 21.6 44.7 200.1 207.8 533.0 530.1 2301.6 481.2

Grp. 2 8.8 18.9 39.3 201.4 135.9 596.8 400.8 1801.6 400.4

With TW
cons.

Grp. 3 6.5 19.4 31.4 207.5 110.7 600.0 317.7 1079.5 296.6

Grps. 2-3 7.3 20.0 34.6 165.3 167.8 790.4 286.1 1776.2 406.0

Grps. 1-3 7.1 18.5 37.4 173.9 146.6 668.1 266.9 1086.9 300.7

increasing order from head to the rear. To simulate schedulable practice, one out of three of the

PD requests are imposed with tight deadlines and the others with loose ones.

In each instance, the total energy cost is computed by applying each of the two routing ap-

proaches: the rolling-horizon approach and a rule-based approach. The rolling-horizon approach

was introduced in Section 4, and is implemented with a rolling-horizon size of eight and by includ-

ing valid inequalities of Groups 1-3 into the problem model. In contrast, the rule-based approach

is heuristic and it works as follows.

Rule-based approach: In the absence of TW constraints, all PD requests are queued in each

station by their arrival times. The pickup service follows the priority rule of “Earliest Arrival

First”, in which the RGV will first load the container with the earliest arrival time and follow up

with next arrival container without causing unloading conflict with previously loaded containers,

until the RGV is full. The RGV will then deliver all loaded containers before picking up any

new ones. If delivery requests are assigned with TW constraints, the priority rule base is shifted

from arrival time to deadline to ensure compliance of the TW constraints. The popular heuristics

of “Earliest Due First” is thus adopted, in which the RGV keeps loading containers with closest

deadlines as long as no service conflict arises until the RGV is full. Similarly, the RGV will not

pick up new containers until all loaded ones are delivered. The complete priority rule mimics the

method used in the current AFHS under consideration, and similar rules had been reported in

the literature [4, 36]. This rule-based approach updates the routing decision whenever a new PD

request is issued, and the simple algorithm is able to recompute a routing decision in real time for

a problem having up to fifty requests.

The two approaches are applied to solving random instances of dynamic PDP-TSLUs without

and with TW constraints. The average simulation results are summarized in Table 3. We observe

that, compared to the rule-based approach, the rolling-horizon approach is able to reduce energy
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Table 3. Total energy costs for operating an RGV.

Energy cost (without TW constraints) Energy cost (with TW constraints)

Rule-based
approach

Rolling-
horizon

approach

Rule-based
approach

Rolling-
horizon

approach

Instance Q = 2 Q = 3 Q = 2 Q = 3 Q = 2 Q = 3 Q = 2 Q = 3

a 1335.7 1222.0 1067.2 910.4 1386.8 1352.4 1173.6 1076.0

b 1324.0 1169.7 1112.9 1128.6 1504.3 1239.7 1135.8 1214.3

c 571.3 583.7 552.7 477.3 592.9 595.9 569.4 505.7

d 618.4 555.7 516.5 464.8 651.7 607.5 559.6 471.5

e 641.9 563.5 567.4 540.0 645.9 571.3 639.9 561.3

Average 898.3 818.9 763.3 704.2 956.3 873.4 815.7 765.8

Percentage saving 15.03% 14.01% 14.7% 12.32%

cost by up to 15%. However, the percentage saving decreases as the RGV’s capacity increases

or when TW constraints are imposed on the PD requests. We also note that the rolling-horizon

approach has an extra advantage of being able to render feasible decisions in the presence of TW

constraints, in which case the rule-based approach is often hard to offer.

Another interesting observation is that, when the RGV’s capacity is increased from 2 to 3,

both approaches achieve lower energy consumption, but the marginal energy savings are much less

than the naive estimate of
∣∣∣n/3−n/2

n/2

∣∣∣×100% ≈ 33.33%. This occurs because the conflict-free service

constraints and the weight-dependent energy consumption prevent the RGV exploiting its full

capacity. The insight can be useful to warehouse designers, helping them determine appropriate

capacities for RGVs which work in a similar environment by evaluating the trade-off between extra

construction and operational cost it would take and the actual benefit it would bring.

6. Conclusions

This work studied an RGV routing problem in an automated freight handling system. The

problem was formulated as an MILP that aims to minimize energy consumption for an RGV to

complete pickup and delivery tasks under conflict-avoidance and time window constraints. The

energy consumption takes account of routing-dependent gross weight and also dynamics of the

RGV, and the conflict-avoidance constraints guarantee conflict-free service under two-sided load-

ing/unloading operations. Arc reduction and valid inequalities were exploited from the problem

structure to enhance the MILP solution process. The static problem model and solution approach

were integrated with a rolling-horizon approach to handle the dynamic routing problem where air

cargo enters and departs from the system dynamically in time. Numerical experiments suggest

that the proposed routing strategy is able to route an RGV to transport cargo with an energy cost

up to 15% lower than a heuristic method implemented in current practice.

The current routing problem assumes a single RGV serving the system. In practice, however,

multiple RGVs may be employed which work on a single track or different tracks that handle

coupled transport tasks, and meanwhile a container may be relayed to its destination via multiple
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RGVs. The routing problem thus becomes more complex, and collective routing of the RGVs

and containers will be required for achieving optimal energy efficiency under service quality and

feasibility constraints. This constitutes interesting and challenging work for the future research.
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Appendices

A. Equivalent forms of the CFI and CLO service constraints

Lemma 1. The following CFI service constraints are equivalent:

(See (4))
∑

i:(i,j)∈A′

ykij = 0, ∀j ∈ P 3, k ∈ P 1

⇐⇒
∑

i:(i,j+n)∈A′

yki,j+n ≤
∑

i:(i,j)∈A′

ykij , ∀j ∈ P 1, k ∈ P 3,

and the following CLO service constraints are equivalent:

(See (5))
∑

i: (i, j+n)∈A′

yki, j+n = 0, ∀j ∈ P 4, k ∈ P 1

⇐⇒
∑

i: (i, j)∈A′

ykij ≤
∑

i: (i, j+n)∈A′

yki, j+n, ∀j ∈ P 1, k ∈ P 4.

Proof. The proofs of the two equivalences follow similar reasoning. For brevity, we only detail the proof for equiva-
lence between the two CFI service constraints. We prove it by contradiction.

“⇒”: It is sufficient to show that, given an arbitrary pair j ∈ P 3, k ∈ P 1, it must have
∑

i:(i,k+n)∈A′ y
j
i,k+n ≤∑

i:(i,k)∈A′ y
j
ik. Suppose this is not true, i.e., there exists a pair j ∈ P 3, k ∈ P 1 such that

∑
i:(i,k+n)∈A′ y

j
i,k+n >∑

i:(i,k)∈A′ y
j
ik. This implies that

∑
i:(i,k+n)∈A′ y

j
i,k+n = 1 and

∑
i:(i,k)∈A′ y

j
ik = 0, which means that request k is

picked up before service of request j and delivered during service of request j. Equivalently, this means that request
j is picked up during the service of request k, i.e.,

∑
i: (i, j)∈A′ y

k
ij = 1. This is contradictory to the given condition

and hence proves the sufficiency.
“⇐”: It is proved alike. Given an arbitrary pair j ∈ P 1, k ∈ P 3, suppose

∑
i:(i,k)∈A′ y

j
ik = 1. Thus,∑

i:(i,k)∈A′ y
j
ik ≥

∑
i:(i,k+n)∈A′ y

j
i,k+n, which means that request k can either be picked up and delivered, or be

picked up but not delivered during the service of request j. This implies that in certain circumstance the request j
can be delivered but not picked up during the service of request k, i.e., it is possible to have

∑
i:(i,j+n)∈A′ y

k
i,j+n =

1 > 0 =
∑

i:(i,j)∈A′ y
k
i,j . This is contradictory to the given condition and hence proves the necessity.

B. Big-M formulation of (12)

The indicator constraint (12) can be linearized by using regular big-M formulation as

bj ≥ bi + si + tij − ηij(1− xij), ∀(i, j) ∈ A,
wj ≥ wi + qj − ρij(1− xij), ∀(i, j) ∈ A,

(42)

where ηij and ρij are large enough constants such that the right hand sides of the inequalities are lower bounds of
bj and wj , respectively. Specific lower bounds can be derived by using the constraints (10), (13), (14) and (20),
resulting in feasible ηij and ρij as summarized in Table 4, where l0 = q0 = q2n+1 , 0. The detailed derivation is
given below.
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Table 4. Feasible constant pairs (ηij , ρij) (∀(i, j) ∈ A)

i ∈ P ∪ {0} i ∈ D

j ∈ P (li − si+n − ti,i+n + tij , Q) (li−n + tij , Q+ qi)

j ∈ D ∪ {2n+ 1} (li − si+n − ti,i+n + tij − ej−n, Q+ qj) (li−n + tij − ej−n, Q+ qi + qj)

Valid reformations of the time and loading consistency constraints in (12) require that ηij ≥ bi +si + tij−bj and
ρij ≥ wi+qj−wj for any (i, j) ∈ A. It is sufficient to set ηij and ρij as respective upper bounds of η

ij
, bi+si+tij−bj

and ρ
ij

, wi + qj −wj for a given (i, j). Based on (10), (13), (14) and (20), such upper bounds are derived for four

cases of arcs as follows.
Case a: i ∈ P ∪ {0}, j ∈ P . It follows that η

ij
≤ bi+n − ti,i+n + tij − bj ≤ li − si+n − ti,i+n + tij , and that

ρ
ij
≤ wi + qj − qj ≤ Q.

Case b: i ∈ P ∪{0}, j ∈ D∪{2n+1}. It follows that η
ij
≤ bi+n− ti,i+n + tij−bj ≤ li−si+n− ti,i+n + tij−ej−n,

and that ρ
ij
≤ wi + qj ≤ Q+ qj .

Case c: i ∈ D, j ∈ P . It follows that η
ij
≤ li−n + tij − bj ≤ li−n + tij , and that ρ

ij
≤ wi + qj − qj ≤ Q+ qi.

Case d : i ∈ D, j ∈ D ∪ {2n + 1}. It follows that η
ij
≤ li−n + tij − bj ≤ li−n + tij − ej−n, and that

ρ
ij
≤ wi + qj ≤ Q+ qi + qj .
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