
The Packing While Traveling Problem

S. Polyakovskiya,∗, F. Neumanna

aSchool of Computer Science
The University of Adelaide

Adelaide, SA 5005, Australia.

Abstract

This paper introduces the Packing While Traveling problem as a new non-linear
knapsack problem. Given are a set of cities that have a set of items of distinct
profits and weights and a vehicle that may collect the items when visiting all the
cities in a fixed order. Each selected item contributes its profit, but produces
a transportation cost relative to its weight. The problem asks to find a subset
of the items such that the total gain is maximized. We investigate constrained
and unconstrained versions of the problem and show that both are NP-hard.
We propose a pre-processing scheme that decreases the size of instances making
them easier for computation. We provide lower and upper bounds based on
mixed-integer programming (MIP) adopting the ideas of piecewise linear ap-
proximation. Furthermore, we introduce two exact approaches: one is based
on MIP employing linearization technique, and another is a branch-infer-and-
bound (BIB) hybrid approach that compounds the upper bound procedure with
a constraint programming model strengthened with customized constraints. Our
experimental results show the effectiveness of our exact and approximate solu-
tions in terms of solution quality and computational time.

Keywords: Combinatorial optimization; non-linear knapsack problem;
linearization technique; piecewise approximation; hybrid optimization.

1. Introduction

Generally, the traditional statements of routing problems studied in the op-
erations research literature base the computation of transportation costs on a
linear function. However, in real practice, it might be necessary to deal with
costs that have a nonlinear nature. For example, the study on the factors affect-
ing truck fuel economy published by GOODYEAR (2008) reveals that vehicle
miles per gallon decreases as gross combination weight increases assuming speed

∗Corresponding author
Email addresses: sergey.polyakovskiy@adelaide.edu.au (S. Polyakovskiy),

frank.neumann@adelaide.edu.au (F. Neumann)

Preprint submitted to Elsevier September 17, 2018

ar
X

iv
:1

51
2.

08
83

1v
2

 [
cs

.D
S]

 2
1

M
ar

 2
01

7

is maintained constant. In other words, a heavily loaded truck will use much
more fuel than a lightly loaded one, and this relation is not linear.

In recent years, the research on dependence of fuel consumption on different
factors, like a travel velocity, a load’s weight, and vehicle’s technical specifica-
tions, in various Vehicle Routing Problems (VRP) has gained attention from the
operations research community. Mainly, this interest is motivated by a wish to
be more accurate with the evaluation of transportation costs, and therefore to
stay closer to reality. Indeed, an advanced precision would immediately benefit
to transportation efficiency measured by the classic petroleum-based costs and
the novel greenhouse gas emission costs. Furthermore, the proper estimation of
costs and its computational simplicity should evolve optimization approaches
and enhance their performance. In VRP in general, and in the Green Vehi-
cle Routing Problems (GVRP) that consider energy consumption in particular,
given are a depot and a set of customers that are to be served by a set of vehi-
cles collecting (or delivering) required items. While the set of items is fixed, the
goal is to find a route for each vehicle such that the total size of assigned items
does not exceed the vehicle’s capacity and the total transportation cost over
all vehicles is minimized. We refer to the book of Toth & Vigo (2014) and the
recent surveys of Laporte (2009) and Lin et al. (2014) for an extended overview
on VRP and GVRP.

Oppositely to VRP and GVRP, we consider the situation of a single vehicle
whose route is given, but items can be either collected or skipped. This situation
gives rise to a problem that we designate as Packing While Traveling (PWT).
In the PWT, the items are distributed among the cities. The vehicle visits all
the cities in a specific order and collects the items of its choice. Each item has
a profit and a weight, and the vehicle may collect any unless the total weight
of chosen items exceeds the vehicle’s capacity. The vehicle travels between two
cities with a velocity that depends on the weight of the items collected in all
the previously attended cities. Being selected, an item contributes its profit
to the overall reward. However, its weight slows down the vehicle. This leads
to a transportation cost depended on a traveling time, and therefore has a
negative impact on the reward. The problem asks to find a packing plan that
maximizes the difference between the total profit of the selected items and their
transportation cost. The PWT arises as a baseline problem in some practical
applications. For example, a supplier having a single truck has to decide on
goods to purchase going through a fixed route in order to maximize profitability
of future sales. Specifically, there might exist only a single major route that
a vehicle has to follow while any deviations from it in order to visit particular
cities on the way may be negligible with respect to the length of the route. The
importance of items may be variable and affected by a specific demand, therefore
the profits of items can be altered accordingly from trip to trip. Obviously,
PWT is a part of a larger picture as a potential subproblem in various VRP
with non-linear costs. Indeed, the objective function of the PWT studied here
is constructed similarly to one that may be based on the dependence between
a fuel cost to drive a distance unit and a gross combination weight as provided
in GOODYEAR (2008).

2

The PWT originates from the Traveling Thief Problem (TTP) introduced
by Bonyadi et al. (2013). The TTP combines the classical Traveling Salesperson
Problem (TSP) with the 0-1 Knapsack Problem (KP) and allows permutation
of the order of the cities. The PWT uses the same cost function as the TTP,
and the only difference is the assumption of a fixed route. In this sense, any ap-
proach to the PWT can also be applied to the TTP as a subroutine to solve its
packing component. The TTP has been introduced and studied mainly by the
evolutionary computation community during the last few years. A benchmark
set based on the TSP and KP instances has been presented in Polyakovskiy
et al. (2014). Approaches to handle the TTP include various meta-heuristics
such as evolutionary algorithms, randomized local search and co-evolutionary
approaches. Mei et al. (2015) solve the problem approximately with the two-
stage memetic algorithm, which consists of a tour improvement stage and an
item picking stage. For the former stage, the local search operators have been
adopted different to those that are traditional for the TSP. The second stage is
solved either by a constructive heuristic or by means of genetic programming.
Mei et al. (2016) propose two meta-heuristics for TTP: one is the cooperative
co-evolution approach that solves the sub-problems separately and transfers the
information between them in each generation, and another is the memetic al-
gorithm that solves TTP as a whole. Faulkner et al. (2015) provide multiple
constructive heuristics where solutions are obtained by finding a near-optimal
TSP tour by applying the Chained Lin-Kernighan heuristic (Applegate et al.
(2003)) to the underlying TSP part first, and then selecting a subset of items
heuristically. The results produced by the heuristics have been compared then
to the same approach where items are selected now by the approximate MIP-
based approach of Polyakovskiy & Neumann (2015). They conclude that, when
giving the same time limit, constructive heuristics perform generally better since
are able to check more TSP tours as the packing part can be solved much faster
than the MIP-based approach does. Indeed, existing approaches solve the TTP
by fixing one of the components, usually the TSP, and then tackling the KP.
Lourenço et al. (2016) follow in a different direction and propose an evolu-
tionary algorithm that addresses both sub-problems at the same time. Their
experimental results show that solving the TTP as a whole creates conditions
for discovering solutions with enhanced quality, and that fixing one of the com-
ponents might compromise the overall results. Recently, the formulation of the
TTP, which allows to skip cities and to visit one city by multiple thieves, has
been investigated by Chand & Wagner (2016). To our best knowledge, no exact
approach has been proposed for the TTP so far.

Vansteenwegen et al. (2011) give a review on the so-called orienteering prob-
lem that is somehow related to TTP. There a set of vertices is given, each with
a score, and the goal is to determine a path, limited in length, that visits some
vertices and maximizes the sum of the collected scores. Feillet et al. (2005)
present a classification of traveling salesman problems with profits (TSPs with
profits) and survey the existing literature on this field. TSPs with profits are a
generalization of the TSP where it is not necessary to visit all vertices. A profit
is associated with each vertex. The overall goal is the simultaneous optimization

3

of the collected profit and the travel costs. In this sense, TTP has some relation
to the Prize Collecting TSP (Balas (1989)) where a decision is to be made on
whether to visit a given city. In the Prize Collecting TSP, a city-dependent
reward is obtained when a city is visited and a city-dependent penalty has to
be paid for each non-visited city. In contrast to this, TTP requires that each
given city is visited. Furthermore, each city has a set of available items with
weights and profits and a decision has to be made on which items to pick. TTP
also relates to the traveling salesman subtour problem studied by Westerlund
et al. (2006), where given is an undirected graph with edge costs and both
revenues and weights on the vertices, and the goal is to find a subtour that
includes a depot vertex, satisfies a knapsack constraint on the vertex weights,
and that minimizes edge costs minus vertex revenues along the subtour. Be-
ham et al. (2015) discuss optimization strategies for integrated knapsack and
traveling salesman problems and study the Lagrangian decomposition to the
knapsack constrained profitable tour problem.

In substance, the PWT considers a trade-off between the profits of collected
items and the transportation cost affected by their total weight. It represents
a class of nonlinear knapsack problems. Knapsack problems belong to the core
combinatorial optimization problems and have been frequently studied in the lit-
erature from the theoretical as well as experimental perspective (Garey & John-
son (1979); Martello & Toth (1990); Kellerer et al. (2004)). While the classical
knapsack problem asks for maximization of a linear pseudo-Boolean function un-
der a single linear constraint, different generalizations and variations have been
investigated such as the multiple knapsack problem (Chekuri & Khanna (2005))
and multi-objective knapsack problems (Erlebach et al. (2001)). Furthermore,
knapsack problems with nonlinear objective functions have been studied in the
literature from different perspectives (Bretthauer & Shetty (2002)). Hochbaum
(1995) considers the problem of maximizing a separable concave objective func-
tion subject to a packing constraint and provided an FPTAS. An exact approach
for a nonlinear knapsack problem with a nonlinear term penalizing the excessive
use of the knapsack capacity has been given by Elhedhli (2005).

Recently, Wu et al. (2016) have investigated the role of the rent rate in the
PWT, which is an important parameter in combining the total profit of selected
items and the associated transportation cost. Specifically, the rent rate is a
constant defining how much one needs to pay per unit time of traveling by the
vehicle. The product of the rent rate and the total traveling time constitutes
the transportation cost. In the TTP, when the value of the rent rate is small,
searching for an efficient solution of the knapsack component becomes priori-
tized. From another hand, when the value of the rent rate is large, the TSP
part of the TTP starts to play a dominating role. In this paper, the rent rate
is formally introduced in Section 2 along with the PWT’s statement. The theo-
retical and experimental investigations of Wu et al. (2016) show how the values
of the rent rate influence the difficulty of a given problem instance through
the items that can be excluded by the pre-processing scheme presented in this
research. Furthermore, their investigations show how to create instances that
are hard to be solved by simple evolutionary algorithms. The preliminary ver-

4

sion of our study on the PWT has appeared in Polyakovskiy & Neumann (2015).
Here, we significantly improve our earlier results. We introduce an upper bound
technique that along with the enhanced pre-processing scheme allows to solve
a lager range of instances to optimality and to dramatically decrease running
times. Furthermore, we introduce a hybrid approach that combines constraint
programming with the upper bound procedure. It is superior on many test
instances and produces optimal results in a very short time.

The rest of the paper is organized as follows. We give the formal statement
of the PWT in Section 2 and discuss its complexity in Section 3. Section 4
addresses sequencing constraints that are repeatedly used later on in our ap-
proaches. In Section 5, we provide a pre-processing scheme which allows to
identify unprofitable and compulsory items, and therefore decrease the size of
the PWT’s instances. Section 6 explains lower and upper bound techniques.
In Sections 7 and 8, we introduce our two exact approaches: one that is based
on MIP, and a hybrid one that adopts a branch-infer-and-bound paradigm. Fi-
nally, we report on the results of our experimental investigations in Section 9
and finish with some conclusions.

2. Problem Statement

The Packing While Traveling problem can be formally stated as follows.
Given is a route N = (1, 2, . . . , n+ 1) as a sequence of n+ 1 unique cities and a
set M of m items distributed among first n cities. Distance di > 0 between two
consecutive cities (i, i + 1) is known, for any 1 ≤ i ≤ n. Every city i contains
a set of distinct items Mi = {ei1, . . . , eimi}, M = ∪ni=1Mi. Each item eik ∈ M
has a positive integer profit pik and a weight wik, 1 ≤ k ≤ mi. There is a single
vehicle that visits all the cities in the order of a route N . The vehicle may
collect any item in any city unless the total weight of selected items exceeds
its capacity W . Collecting an item eik leads to a profit contribution pik, but
increases the transportation cost as the weight wik slows down the vehicle. The
vehicle travels along (i, i + 1) with velocity vi ∈ [υmin, υmax] which depends on
the weight of the items collected in the first i cities. When the vehicle is empty,
it runs with its maximal velocity υmax. And vice verse, it runs with minimal
velocity υmin > 0 when is completely full. The objective is to find a subset
of M such that the difference between the profit of the selected items and the
transportation cost is maximized.

To state the problem precisely, we give a nonlinear binary integer program
formulation. Let a binary decision vector x ∈ {0, 1}m represent a solution of
the problem such that xik = 1 iff eik is selected. Then the travel time ti = di

vi
along (i, i+ 1) is the ratio of the distance di and the current velocity

υi = υmax − ν
i∑

j=1

mj∑
k=1

wjkxjk

which is determined by the weight of the items collected in cities 1, . . . , i. The
value ν = υmax−υmin

W is constant and defined by the input parameters. The

5

velocity depends on the weight of the chosen items linearly. The overall trans-
portation cost is given by the sum of the transportation costs along all the edges
(i, i + 1), 1 ≤ i ≤ n, multiplied by a given rent rate R > 0. In summary, the
problem is given by the following nonlinear binary program (PWTc):

max

n∑
i=1

mi∑
k=1

pikxik −
Rdi

υmax − ν
i∑

j=1

mj∑
k=1

wjkxjk

 (1)

s.t.

n∑
i=1

mi∑
k=1

wikxik ≤W

xik ∈ {0, 1} , eik ∈M

Here, (1) is a non-monotone submodular function.
We also consider the unconstrained version PWTu of PWTc where W ≥∑
eik∈M wik such that every selection of items yields a feasible solution. Given

a real value B, the decision variant of PWTc and PWTu has to answer the
question whether the value of (1) is at least B.

3. Complexity of the Problem

In this section, we investigate the complexity of PWTc and PWTu. PWTc

is NP-hard as it is a generalization of the classical NP-hard 0-1 knapsack
problem (Martello & Toth (1990)). In fact, assigning zero either to the rate
R or to every distance value di in PWTc, we obtain the KP. We demonstrate
that in contrast to the KP the unconstrained version PWTu of the problem
remains NP-hard. We show this by reducing the NP-complete subset sum
problem (SSP) to the decision variant of PWTu which asks whether there is
a solution with objective value at least B. The input for SSP is given by m
positive integers S = {s1, . . . , sm} and a positive integer Q. The question is
whether there exists a vector x ∈ {0, 1}m such that

∑m
k=1 skxk = Q.

Theorem 1. PWTu is NP-hard.

Proof. We start with encoding the instance of SSP given by the set of integers
S and the integer Q as the instance I of PWTu having two cities. The first city
contains all the m items while the second city is a destination point free of items.
We set the distance between two cities as d1 = 1, the capacity of the vehicle
as W =

∑m
k=1 sk, and set p1k = w1k = sk, 1 ≤ k ≤ m. Subsequently, we set

υmax = 2 and υmin = 1 which implies ν = 1/W and defineR∗ = W (2−Q/W)
2
.

Consider the nonlinear function fR∗ : [0,W]→ R defined as

fR∗ (w) = w −
R∗

2− w/W
.

6

fR∗ defined on the interval [0,W] is a continuous concave function that reaches

its unique maximum in the point w∗ = W ·(2−
√
R∗/W) = Q , i.e. fR∗ (w) < fR∗ (w∗)

for w ∈ [0,W] and w 6= w∗. Then fR∗(Q) is the maximum value for fR∗ when
being restricted to integer input, too. Therefore, we set B = fR∗(Q) and the
objective function for PWTu is given by

gR∗ (x) =

m∑
k=1

p1kxk −
R∗

2− 1
W

m∑
k=1

w1kxk

.

There exists an x ∈ {0, 1}m such that gR∗(x) ≥ B = fR∗(Q) = 2 (Q−W) iff∑m
k=1 skxk =

∑m
k=1 w1kxk =

∑m
k=1 p1kxk = Q. Therefore, the instance of SSP

has answer YES iff the optimal solution of the PWTu instance I has objective
value at least B = fR∗ (Q). Obviously, the reduction can be carried out in
polynomial time which completes the proof.

4. Sequencing Constraints

In this section, we derive a set of constraints that speed up the reasoning
to be done within our algorithms. Specifically, the constraints establish priority
among the items positioned in the same or different cities of the route.

The first portion of the constraints results from the fact that item eil in city
i should not be selected prior to another item eik, 1 ≤ l, k ≤ mi and l 6= k,
positioned in the same city when the condition (pil < pik) ∧ (wil ≥ wik) holds.
This constraint (SCi) has the form of

xil ≤ xik, l 6= k, eil, eik ∈Mi : (pil < pik) ∧ (wil ≥ wik) .

Let ∆ji
l denote a lower bound on the cost of transportation of item ejl from city

j to succeeding city i computed as

∆ji
l = R

i−1∑
a=j

da

 1

υmax − ν
(
wjl +

a∑
b=1

wcb

) − 1

υmax − ν
a∑
b=1

wcb

 ,

where wcb is the total weight of the compulsory items collected in city b. Com-
pulsory items must be a part of an optimal solution (see Section 5 for details).

Specifically, ∆ji
l is based on the difference between traveling with all the com-

pulsory items and item ejl and traveling with all the compulsory items only. In
this case, no other items are picked up and the vehicle runs with the maximal
feasible velocity that it may achieve on each of the edges. Then another set of
constraints uses the fact that item ejl in city j should not be selected prior to

item eik in city i such that the condition
(
pjl −∆ji

l < pik

)
∧ (wjl ≥ wik) holds.

This constraint (SCii) takes the form of

xjl ≤ xik, j < i, ejl ∈Mj , eik ∈Mi :
(
pjl −∆ji

l < pik

)
∧
(
wjl ≥ wik

)
.

7

Similarly, let ∆
ji

l denote an upper bound on the cost of transportation of
item ejl from city j to succeeding city i computed as

∆
ji
l = R

i−1∑
a=j

da

 1

υmax − ν ·min
(

a∑
b=1

wmaxb ,W

) − 1

υmax − ν
(
min

(
a∑
b=1

wmaxb ,W

)
− wjl

)
 ,

where wmaxb is the total weight of all the items existing in city b. Specifically,

∆
ji

l represents the difference between traveling having the vehicle loaded as
much as possible and doing so but leaving a free space just for item ejl. In
this case, as many items as possible are picked up and the vehicle travels with
the least feasible velocity that it may achieve on each of the edges. Then one
more set of constraints arises from the fact that item eik in city i should not

be selected prior to item ejl in city j such that
(
pjl −∆

ji

l > pik

)
∧ (wjl ≤ wik)

holds. This constraint (SCiii) has the following form:

xjl ≥ xik, j < i, ejl ∈Mj , eik ∈Mi :
(
pjl −∆

ji
l > pik

)
∧
(
wjl ≤ wik

)
.

5. Pre-processing

In this section, we introduce a pre-processing scheme to identify items of a
given instance I that can be either directly included or discarded. Excluding
such items from solution process can significantly speed up algorithms. We
distinguish between two kinds of items that are identified in the pre-processing:
compulsory and unprofitable items. We call an item compulsory if its inclusion
in any feasible solution increases the objective function value, and call an item
unprofitable if it does not do that. Therefore, an optimal solution must contain
all compulsory items while all unprofitable items must be discarded. In order to
identify compulsory and unprofitable items, we consider the total transportation
cost that a set of items produces.

Definition 1 (Total Transportation Cost). LetO ⊆M be a subset of items.
We define the total transportation cost along route N when the items of O are
selected as

tO = R ·
n∑
i=1

di

υmax − ν
∑i
j=1

∑
ejk∈Oj wjk

,

where Oj = Mj ∩O, 1 ≤ j ≤ n, is the subset of O selected in city j.

Based on the given instance I, we can identify unprofitable items for PWTc

according to the following proposition.

Proposition 1 (Unprofitable Item, PWTc Case). Let I be an arbitrary
instance of PWTc. If pik ≤ R

(
t{eik} − t∅

)
, then eik is an unprofitable item.

8

Proof. We assume that pik ≤ R
(
t{eik} − t∅

)
holds. LetM∗ ⊆M\{eik} denote

an arbitrary subset of items excluding eik such that wik +
∑
ejl∈M∗ wjl ≤W

holds. We consider tM∗∪{eik} and tM∗ . Since the velocity depends linearly on
the weight of collected items and the travel time ti = di/vi along (i, i + 1)
depends inversely proportional on the velocity vi, the inequality

(
t{eik} − t∅

)
≤(

tM∗∪{eik} − tM∗
)

holds. Therefore, pik ≤ R
(
tM∗∪{eik} − tM∗

)
holds for any

M∗ ⊆M \ {eik} that completes the proof.

Proposition 1 helps to determine whether the profit pik of item eik is large
enough to cover the least incremental transportation cost it incurs when selected
in the packing plan x. In this case, the least incremental transportation cost
results from accepting the selection of eik as only selected item in x versus
accepting empty x as a solution. It is important to note that Proposition 1
can reduce PWTc problem to PWTu by excluding items so that the sum of
the weights of all remaining items does not exceed the weight bound W . In
this case, we can further refine the set of items by searching for those ones that
must be a part of any solution of PWTc. We identify compulsory items for the
unconstrained case according to the following proposition.

Proposition 2 (Compulsory Item, PWTu Case). Let I be an arbitrary
instance of PWTu. If pik > R

(
tM − tM\{eik}

)
, then eik is a compulsory item.

Proof. We work under the assumption that pik > R
(
tM − tM\{eik}

)
holds.

In the case of PWTu, all the existing items can fit into the vehicle at once
and all subsets O ⊆ M are feasible. Let M∗ ⊆ M \ {eik} be an arbitrary
subset of items excluding eik, and consider tM\M∗ and tM\M∗\{eik}, respectively.
Since the velocity depends linearly on the weight of collected items and the
travel time ti = di/vi along (i, i + 1) depends inversely proportional on the
velocity vi, we have

(
tM − tM\{eik}

)
≥
(
tM\M∗ − tM\M∗\{eik}

)
. This implies

that pik > R
(
tM\M∗ − tM\M∗\{eik}

)
holds for any subset M \ M∗ of items

which completes the proof.

For the unconstrained variant PWTu, Proposition 2 is valid to determine
whether item eik is able to cover by its pik the largest possible incremental
transportation cost it may generate when has been selected in x. Here, the
largest possible incremental transportation cost is computed with respect to the
worst case scenario when all the possible items are selected along with eik, and
therefore the vehicle has the maximal possible load and the least velocity, versus
accepting all the items but eik. In the unconstrained case, having compulsory
items included according to Proposition 2, we may identify some more unprof-
itable items. Indeed, compulsory items contribute to the collected weight and
therefore limit the potential positive contribution of other items. As a result,
some of the items may become unprofitable after a number of compulsory items
has been detected. We find unprofitable items for PWTu with respect to the
following proposition.

9

Proposition 3 (Unprofitable Item, PWTu Case). Let I be an arbitrary in-
stance of PWTu and M c be the set of all compulsory items. If pik ≤ R

(
tMc∪{eik} − tMc

)
,

then eik is an unprofitable item.

Proof. We assume that pik ≤ R
(
tMc∪{eik} − tMc

)
holds. Let M∗ ⊆ M \

{M c ∪ {eik}} be an arbitrary subset of M that does not include any item
of M c ∪ {eik} and consider tMc∪M∗ and tMc∪M∗∪{eik}. Since the velocity
depends linearly on the weight of collected items and the travel time ti =
di/vi along (i, i + 1) depends inversely proportional on the velocity vi, we
have

(
tMc∪{eik} − tMc

)
≤
(
tMc∪M∗∪{eik} − tMc∪M∗

)
. Hence, we have pik ≤

R
(
tMc∪M∗∪{eik} − tMc∪M∗

)
for any M∗ ⊆ M \ {M c ∪ {eik}} which completes

the proof.

Proposition 3 determines for PWTu whether the profit pik of item eik is
large enough to cover the least incremental transportation cost resulted from its
selection along with all known compulsory items. Specifically, in Proposition 3
the list incremental transportation cost follows from accepting the selection of
eik along with the set of compulsory items M c in x versus accepting just the
selection of M c as a solution. One can see that Proposition 3 is a special case
of Proposition 1 with only the difference that it has t∅ replaced by tMc .

It takes only a linear time to check any instance of PWTc for unprofitable
items with respect to Proposition 1. In fact, each item eik can be checked
in a constant time if the total length of the path from city i to city n + 1
is known. When dealing with PWTu, Propositions 2 and 3 can be applied
iteratively to the remaining set of items until no compulsory or unprofitable
item is found. The running time of all the rounds of the search is bounded
by O

(
nm2

)
. Our preliminary investigation has shown that it is rather time-

consuming to solve large and even moderate-sized unconstrained instances due
to the time spent on computing the incremental transportation cost for each
of the items separately as the Propositions 2 and 3 advise. Indeed, we cannot
perform the pre-processing step reasonably fast with respect to the time limits
we apply in Section 9. Obviously, slow pre-processing can easily stultify all
benefits of its use. To manage this, we use the reasoning similar to one that
the sequencing constraints adopt in Section 4. Specifically, we deduce whether
item eik is compulsory or unprofitable from the answer concerning item ejl for
which it has been already obtained. Algorithm 1 sketches the pseudocode of
the enhanced algorithm, which runs in O

(
m3
)
, but operates up to two orders

of magnitude faster in practice and allows to handle the largest instances of the
test suite (see Section 9 for details).

The pre-processing algorithm works as follows. The loop (6-25) searches for
compulsory items and the loop (30-53) searches for unprofitable ones. Once
either no compulsory or no unprofitable item has been found within the cor-
responding loop, the algorithm terminates (cf. lines 26 and 54). We use two
Boolean variables µuik and µcik that take value true to mark item eik as un-
profitable and compulsory, respectively. Both values are initialized as µuik =

µcik = false. Subsequently, variable wmaxi =
∑i
b=1 w

max
b computes the maxi-

10

mal possible weight of the items that can be collected in city i and in all the
preceding cities. Similarly, variable wci =

∑i
b=1 w

c
b computes the total weight of

compulsory items existing in city i and in all the preceding cities. We use wmaxi

and wci to calculate, respectively, the largest possible incremental cost cmax and
the minimal possible incremental cost cmin for each of the items in the loops of
our algorithm (cf. lines 8-25 and lines 32-53). Furthermore, to make reasoning
on the properties of item eik with respect to the known properties of item ejl,
we introduce the dummy profit p′jl of ejl. Specifically, when item ejl has been
shown to be either compulsory or not, or either unprofitable or not, p′jl defines
how large or small profit pik must be with respect to computed cmax or cmin to
let eik have the same property as ejl (cf. lines 12, 15, 36, and 39). For example,
when item eik is proved to be compulsory independently of any another item
(cf. line 25), its p′ik is set to cmax (cf. line 24). This means that eik would be
compulsory even if its profit was less than pik, but mainly greater than cmax.
Therefore, to become a compulsory item as pik is, another item, say ei′k′ in city
i′ : i′ ≤ i, should have a weight that is smaller or equal to wik and its profit pi′k′

minus the corresponding largest possible incremental cost must be strictly larger
than p′ik (cf. line 15). Similarly, when eik is proved to be not a compulsory item
independently of any other item, its p′ik is also set to cmax (cf. line 24). This
is because eik would not be compulsory even if its profit was larger than pik,
but mainly less or equal to cmax. Therefore, to stay as not a compulsory item
as pik is, another item, say ei′k′ in city i′ : i′ ≤ i, should have a weight that is
greater or equal to wik and its profit pi′k′ minus the corresponding least possible
incremental cost must be at most p′ik (cf. line 12). The same reasoning is to be
done for the case when eik is proved as a compulsory item according to already
known compulsory item ejl. Here, p′ik is set to p′jl+cmax where cmax plays a role
of the largest cost of transportation of eik from city i to succeeding city j (cf.
line 17). In such a way, when considering other items in the future iterations,
they are compared to item ejl through the current item eik since eik implicitly
points to ejl using the assigned dummy profit p′ik. The same reasoning is valid
for proving eik to be not a compulsory item according to already known non-
compulsory item ejl where p′ik is set to p′jl+ cmin (cf. line 13). In a similar way,
we proceed with deduction of unprofitable items in the loop (30-53). Utilizing
the dummy profits of items significantly strengthen deductions by relating the
items to one of the items’ group rapidly. Before applying our approaches given
in Section 6, Section 7, and 8, we remove all unprofitable and compulsory items
from the set M using these pre-processing steps.

6. Lower and Upper Bounds

In practice, approximation of nonlinear terms is an efficient way to deal with
them. Although an approximate solution is likely to be different from an exact
one, it might be close enough and obtainable in a reasonable computational
time. In this section, we propose lower and upper bound techniques based
on mixed-integer programming (MIP) adopting the ideas of piecewise linear
approximation.

11

Algorithm 1: The Pre-processing Algorithm
1 initialize the indicator variables µuik = µcik = false for each item eik ∈ M;

2 while true do
3 set flag ← false;
4 for each city i from 1 to n do
5 calculate wmaxi ;

6 for each city i from n to 1 do

7 for each item eik ∈ Mi : ¬
(
µuik ∨ µ

c
ik

)
do

8 cmax ← 0; cmin ← 0;

9 initialize flag′ ← false;
10 for each city j from i to n do
11 for each item ejl ∈ Mj : ¬µujl ∧ ((i 6= j) ∨ (k > l)) do

12 if
(
¬µcjl

)
∧
(
wik ≥ wjl

)
∧
(
pik − cmin ≤ p

′
jl

)
then

13 p′ik ← p′jl + cmin;

14 flag′ ← true; break;

15 if µcjl ∧
(
wik ≤ wjl

)
∧
(
pik − cmax > p′jl

)
then

16 µcik ← true;

17 p′ik ← p′jl + cmax;

18 flag ← true;

19 flag′ ← true; break;

20 if flag′ then break;

21 cmin ← cmin + Rdj

 1

υmax−ν
(
wc
j
+wik

) − 1
υmax−νwcj

;

22 cmax ← cmax + Rdj

 1
υmax−νwmaxj

− 1

υmax−ν
(
wmax
j

−wik
)
;

23 if flag′ then break;

24 p′ik ← cmax;

25 if cmax < pik then µcik ← true; flag ← true;

26 if ¬flag then break;
27 set flag ← false;
28 for each city i from 1 to n do
29 calculate wci ;

30 for each city i from n to 1 do

31 for each item eik ∈ Mi : ¬
(
µuik ∨ µ

c
ik

)
do

32 cmax ← 0; cmin ← 0;

33 initialize flag′ ← false;
34 for each city j from i to n do
35 for each item ejl ∈ Mj : ¬µcjl ∧ ((i 6= j) ∨ (k > l)) do

36 if
(
¬µujl

)
∧
(
wik ≤ wjl

)
∧
(
pik − cmax > p′jl

)
then

37 p′ik ← p′jl + cmax;

38 flag′ ← true; break;

39 if µujl ∧
(
wik ≥ wjl

)
∧
(
pik − cmin ≤ p

′
jl

)
then

40 µuik ← true;

41 p′ik ← p′jl + cmin;

42 flag ← true;

43 flag′ ← true; break;

44 if flag′ then break;

45 cmin ← cmin + Rdj

 1

υmax−ν
(
wc
j
+wik

) − 1
υmax−νwcj

;

46 if cmin ≥ pik then
47 µuik ← true;

48 p′ik ← cmin;

49 flag ← true;

50 flag′ ← true; break;

51 cmax ← cmax + Rdj

 1
υmax−νwmaxj

− 1

υmax−ν
(
wmax
j

−wik
)
;

52 if flag′ then break;

53 p′ik ← cmin;

54 if ¬flag then break;

12

6.1. Lower Bound

a) b)

τ τ

τ

τ

τ τ

τ

τ

Figure 1: Piecewise linear approximation of t (υ) = 1/υ

Consider an arbitrary edge (i, i+ 1) and the traveling time t′i ∈ [tmin, tmax]
per distance unit along it, for any i = 1, . . . , n. Here, tmin = 1/υmax and
tmax = 1/υmin bound t′i from below and from above, respectively. We partition
the interval [tmin, tmax] into λ equal-sized sub-intervals and determine thus a
set T = {τ1, . . . , τλ} of straight line segments to approximate the curve of the
function t (υ) as illustrated in Figure 1a. Each segment τ ∈ T is characterized
by its minimal velocity υminτ and its corresponding maximum traveling time per
distance unit tmaxτ , and by its maximum velocity υmaxτ and its corresponding
minimum traveling time per distance unit tminτ . Specifically,

(
υminτ , tmaxτ

)
and(

υmaxτ , tminτ

)
are the endpoints of segment τ referred to as breakpoints. We

approximate t′i by the linear combination of tminτ and tmaxτ if υi ∈
[
υminτ , υmaxτ

]
.

Our lower bound MIP-based model uses three types of variables in addi-
tion to the binary decision variable xik for each item eik ∈ M from Sec-
tion 2. Let wi be a real variable equal to the total weight of selected items
when traveling along the (i, i+ 1). Let pi be a real variable equal to the
difference of the total profit of selected items and their total transportation
cost when delivering them to city i + 1. Let Ti ⊆ T , 1 ≤ i ≤ n, denote
a set of possible segments to which velocity υi of the vehicle may relate, i.e.
Ti =

{
τ ∈ T :

(
υmin
τ ∈

[
υmin
i , υmax

i

])
∨
(
υmax
τ ∈

[
υmin
i , υmax

i

])}
, where υmax

i =

υmax − ν
∑i
j=1 w

c
j is the maximal possible velocity that the vehicle can move

along (i, i+ 1) when packing in all compulsory items only, and υmin
i = υmax −

ν · min
(∑i

j=1 w
max
j ,W

)
the minimum possible velocity along (i, i + 1) af-

ter having packed in all items available in cities 1, . . . , i. Actually, we have
υi ∈

[
υmini , υmaxi

]
. When υi ∈

[
υmin
τ , υmax

τ

]
for τ ∈ T , any point in between

endpoints of τ is a weighted sum of them. Let Bi denote a set of all break-

13

points that the linear segments of Ti have. Then the value of the real variable
yib ∈ [0, 1] is a weight assigned to the breakpoint b ∈ Bi associated with the pair
of values (υb, tb). When the linear combination

∑
b∈Bi υbyib under the constraint∑

b∈Bi yib = 1 equals υi, the linear combination
∑
b∈Bi tbyib overestimates t′i.

This underestimates the resulting profit minus the total transportation cost
and gives a valid lower bound for PWTc (and PWTu) that can be obtained by
solving the following linear mixed 0-1 program (LBλ):

max pLB(x) = pn (2)

s.t. pi = pi−1 + pci +
∑

eik∈Mi

pikxik −Rdi
∑
b∈Bi

tbyib, i = 1, . . . , n (3)

wi = wi−1 + wci +
∑

eik∈Mi

wikxik, i = 1, . . . , n (4)

νwi +
∑
b∈Bi

υbyib = υmax, i = 1, . . . , n (5)

∑
b∈Bi

yib = 1, i = 1, . . . , n (6)

wn ≤W (7)

xik ∈ {0, 1} , eik ∈M (8)

yib ∈ [0, 1] , i = 1, . . . , n, b ∈ Bi (9)

pi ∈ R, i = 1, . . . , n (10)

wi ∈ R≥0, i = 1, . . . , n (11)

p0 = w0 = 0 (12)

The value of λ in LBλ sets its precision. Indeed, the precision of the lower
bound may be increased at the cost of a running time as this also increases
the number of segments, and thus raises the number of y-type variables to be
involved. Equation (2) defines the objective function pLB(x) as pn that is the
difference of the total profit of selected items delivered to city n + 1 and their
total transportation cost. Since the transportation cost is approximated in LBλ,
the actual objective value for PWTc (and PWTu) should be computed on the
values of the decision variables of vector x. The resulting value then is also a
valid lower bound. Equation (3) computes the difference pi of the total profit
of selected items and their total transportation cost when arriving at city i+ 1
by summing up the value of pi−1 concerning (i− 1, i), the profit of compulsory
items pci and the profit

∑
eik∈Mi

pikxik of items selected in city i, and subtracting
the approximated transportation cost along (i, i + 1). Equation (4) gives the
weight wi of the selected items when the vehicle departs city i by summing
up wi−1, the weight of compulsory items wci and the weight

∑
eik∈Mi

wikxik of
items selected in city i. Remind that we determine compulsory items according
to the Proposition 2 of Section 5 when the problem is unconstrained. Equation
(5) implicitly defines segment τ ∈ Ti to which the velocity of the vehicle υi
belongs and sets the weights for its endpoints. Equation (6) forces the total
weight of the breakpoints of Bi be exactly 1. Equation (7) imposes the capacity
constraint, and Eq. (8) declares xik as binary. Equation (9) states yib as a real

14

variable defined in [0, 1]. Equation (10) declares pi as a real variable, while Eq.
(11) defines wi as a non-negative real. Finally, Equation (12) establishes the
base cases for p0 and w0. Obviously, one can relax the integrality imposed on
the x-type variables that leads to a linear programming model. In fact, this
generally worsens the lower bound value, but gives an advantage in running
time.

6.2. Upper Bound
We now describe the upper bound technique that adopts the piecewise linear

approximation proposed for the lower bound. This time, our goal is to under-
estimate the traveling time t′i that the vehicle spends to pass a distance unit
when traveling along the (i, i+ 1), for any i = 1, . . . , n. We utilize the same
set of breakpoints Bi generated from the set of linear segments Ti. In each
point b ∈ Bi, we draw a tangent to the curve of the function t (υ) = 1/υ as
depicted in Figure 1b. Subsequently, a new set of points Bi is derived from the
left and the rightmost points of Bi, and the points of intersection of each pair
of neighboring tangents. This yields totally |Bi|+ 1 points that produce a new
set of |Bi| linear segments T i resulted from connecting every two closest points
in Bi. Then a valid upper bound for PWTc (and PWTu) can be obtained via
the model of LBλ with only the difference that the set of breakpoints Bi is used
instead of Bi. We designate this altered model as UBλ and the corresponding
objective function as pUB(x). Again, one can manage precision of the upper
bound adjusting the value of λ. Furthermore, the integrality imposed on the
x-type variables may be relaxed to speed up computations at the price of the
upper bound’s quality.

7. Mixed-Integer Programming-Based Approach

Both PWTc and PWTu belong to the specific class of fractional binary pro-
gramming problems for which several efficient reformulation techniques exist to
handle nonlinear terms. We follow the approach of Li (1994) and Tawarmalani
et al. (2002) to reformulate PWTc (and PWTu) as a linear mixed 0-1 program.
It is applicable since the denominator of each fractional term in (1) is not equal
to zero since υmin > 0. We start with introduction of auxiliary real-valued vari-

ables yi, i = 1, . . . , n, such that yi = 1/
(
υmax − ν

∑i
j=1

∑mj
k=1 wjkxjk

)
. The

variables yi express the travel time per distance unit along the edge (i, i+ 1).
According to Li (1994), we can reformulate PWTc as a mixed 0-1 quadratic
program by replacing (1) with (13) and adding the set of constraints (14) and
(15).

max

n∑
i=1

(
mi∑
k=1

pikxik −Rdiyi

)
(13)

s.t. υmaxyi + ν
i∑

j=1

mj∑
k=1

wjkxjkyi = 1, i = 1, . . . , n (14)

yi ∈ R+, i = 1, . . . , n (15)

15

According to Tawarmalani et al. (2002), if z = xy is a polynomial mixed 0-1
term where x is binary and y is a real-valued variable, then it can be linearized
via the set of linear inequalities: (i) z ≤ Ux; (ii) z ≥ Lx; (iii) z ≤ y+L (x− 1);
(iiii) z ≥ y + U (x− 1). Here, U and L are the upper and lower bounds on
y, i.e. L ≤ y ≤ U . We can linearize the xjkyi term in (14) by introducing a
new real-valued variable zijk = xjkyi and new linear constraints. Let pci and wci
denote the total profit and the total weight of the compulsory items in city i
obtained with respect to Proposition 2. Similarly, let wmaxi be the total weight
of the items (including all the compulsory items) in city i. Then variable yi,

i = 1, . . . , n, can be bounded from below by Li = 1/
(
υmax − ν

∑i
j=1 w

c
j

)
and

from above by Ui = 1/
(
υmax − ν ·min

(∑i
j=1 w

max
j ,W

))
. In summary, we

can formulate PWTc (and PWTu) as the following linear mixed 0-1 program
(MIPλ):

max pMIP (x) =

n∑
i=1

(
pci +

mi∑
k=1

pikxik −Rdiyi

)

s.t. υmaxyi + ν

wci +
i∑

j=1

mj∑
k=1

wjkz
i
jk

 = 1, i = 1, . . . , n

zijk ≤ Uixjk, i, j = 1, . . . , n, j ≤ i, ejk ∈Mj

zijk ≥ Lixjk, i, j = 1, . . . , n, j ≤ i, ejk ∈Mj

zijk ≥ yi + Ui
(
xjk − 1

)
, i, j = 1, . . . , n, j ≤ i, ejk ∈Mj

zijk ≤ yi + Li
(
xjk − 1

)
, i, j = 1, . . . , n, j ≤ i, ejk ∈Mj

n∑
i=1

mi∑
k=1

wikxik ≤W (16)

pLB(x) ≤ pMIP (x) ≤ pUB(x) (17)

xik ∈ {0, 1} , eik ∈M

zijk ∈ R+, i, j = 1, . . . , n, j ≤ i, ejk ∈Mj

yi ∈ R+, i = 1, . . . , n

A solution of LBλ can be used as a starting solution for MIPλ and can yield
the lower bound value pLB(x). In its turn, UBλ can provide the upper bound
value pUB(x). To set the value of λ to be used in both LBλ and UBλ, we specify
its value through the notation MIPλ. To strengthen the relaxation of MIPλ, the
sequencing constraints of Section 4 can be imposed as valid inequalities as has
been earlier proposed in Polyakovskiy & Neumann (2015). However, our current
investigations show that they are not beneficial anymore when the upper bound
produced by UBλ is applied in Eq. 17. An effective set of inequalities in order to
obtain tighter relaxations can be obtained from the reformulation-linearization
technique (RLT) by Sherali & Adams (1999), which uses 3n additional inequal-
ities for the capacity constraint (16). Specifically, multiplying (16) by yl, Ul−yl
and yl − Ll, l = 1, . . . , n, we obtain the following inequalities:

16

n∑
i=1

mi∑
k=1

wikz
l
ik ≤Wyl;

Ul

n∑
i=1

mi∑
k=1

wikxik −
n∑
i=1

mi∑
k=1

wikz
l
ik ≤ UlW −Wyl;

n∑
i=1

mi∑
k=1

wikz
l
ik − Ll

n∑
i=1

mi∑
k=1

wikxik ≤Wyl − LlW.

8. Branch-Infer-and-Bound Approach

Constraint programming (CP) has been shown to be a promising solution
technique for various combinatorial optimization problems (Rossi et al. (2006,
2008)). It deals with a problem consisting of a set of variables X = {x1, . . . , xn}
and a finite set of constraints C given on the elements of X. Each variable
xi ∈ X is associated with a domain Di of available values. When the domain of
every variable xi is reduced to a singleton {vi}, a values vector v = (v1, . . . , vn)
is obtained. A satisfiability problem asks for a decision vector x = v such that
all the constraints in C are satisfied simultaneously. A constraint optimization
problem involves in addition an objective function f(x) that is to be either
maximized or minimized over the set of all feasible solutions. In CP, constraints
are given in a declarative way, but are viewed individually as special-purpose
procedures that operate on a solution space. Each procedure applies a filtering
algorithm that eliminates those values from the domains of the involved variables
which cannot be a part of any feasible solution with respect to that constraint.
The restricted domains generated by the constraints are in effect elementary
in-domain constraints that restrict a variable to a domain of possible values.
They become a part of a constraint store. To link all the procedures together
in order to solve a problem as a whole, the constraint store is passed on to the
next constraint to be processed. In such a way, the results of one filtering pro-
cedure are propagated to the others. In general, filtering algorithms are called
repeatedly to achieve a certain level of consistency. This is because achieving
arc consistency for one constraint might make other constraints inconsistent.
Specifically, constraint c ∈ C involving variables xi and xj is said to be arc con-
sistent with respect to xi if for each value v′ ∈ Di there is an allowed value of
xj . A constraint satisfaction problem is arc consistent iff every constraint c ∈ C
is arc consistent with respect to xi as well as to xj . Therefore, multiple runs of
filtering are required for those constraints that share common variables of X.
This process is called constraint propagation. CP aims to enumerate solutions
with respect to the constraint store in order to find the best feasible solution.
To cope with this, a search tree is used, and every variable xi with domain Di

is examined in some node of the tree. If Di = ∅, an infeasible solution is found.
If |Di| > 1, one can branch on xi by partitioning Di into smaller domains, each
corresponding to a branch. The domains of the variables decrease as they are
reduced via constraint propagation when one descends into the tree. In the

17

case of the constraint optimization problem, the search continues unless either
the best solution is determined over those solutions where all the domains are
singletons, or at least one of the domains is empty for every leaf node of the
search tree. Certainly, the order in which the variables are instantiated and how
the domains are partitioned matters for a running time.

Combining CP with the branch-and-cut method is a natural hybridization
which results from the complementary strengths of both techniques. It gives rise
to the so-called branch-infer-and-relax (BIR) approach presented by Bockmayr
& Hooker (2005). The idea of BIR is to combine filtering and propagation used
in CP with relaxation and cutting plane generation used in MIP. In each node
of a search tree, constraint propagation creates a constraint store of in-domain
constraints, while polyhedral relaxation creates a constraint store of inequali-
ties. The two constraint stores can enrich each other, since reduced domains
impose bounds on variables, and bounds on variables can reduce domains. The
inequality relaxation is solved to obtain a bound on the optimal value, which
prunes the search tree as in the branch-and-cut method.

Here, to solve PWTc (and PWTu), we adopt this idea and introduce a
branch-infer-and-bound approach that compounds CP and the upper bound
introduced in Section 6.2. Specifically, we substitute the relaxation used in BIR
with a stand-alone upper bound procedure to be executed in each node of the
search tree in order to prune some of its branches. In each node, we create
a refined set of items M ′ = M \ ∪eik∈Meik : |Dik| = 1 and add the weight
and profit of those items whose Dik = {1} to wci and wmaxi in the model of
pUB(x), respectively. In other words, we treat the items accepted by the search
as compulsory. Finally, we apply UBλ to x formed on M ′ and prune a branch if
the resulting pUB(x) is smaller than the objective value of the best incumbent
solution known.

Similarly to the previous MIP formulations, our CP model bases the search
on binary decision vector x where variable xik takes the value of 1 to indicate
that item eik ∈M is chosen. To speed up computations, it employes an auxiliary
integer variable wi that calculates the total weight of the items selected in city
i and all the preceding cities when traveling along the edge (i, i+ 1), for any
i = 1, . . . , n. Again, wci and pci denote the total weight and the total profit of
compulsory items collected in city i. Here, we assume that the both values come
out of the pre-processing step. The model has the following objective function
and constraints (BIBλ):

18

max pBIB(x) =

n∑
i=1

(
pci +

mi∑
k=1

pikxik −
Rdi

υmax − νwi

)
(18)

s.t. wi = wi−1 + wci +
∑

eik∈Mi

wikxik, i = 1, . . . , n (19)

n∑
i=1

(
wci +

mi∑
k=1

wikxik

)
≤W (20)

xil ≤ xik, i=1, . . . , n, eil, eik∈Mi : (pil < pik) ∧ (wil ≥ wik) , l 6= k, (21)

xjl ≤ xik, i=1, . . . , n, j < i, ejl∈Mj , eik∈Mi :
(
pjl −∆ji

l < pik

)
∧
(
wjl ≥ wik

)
(22)

xjl ≥ xik, i=1, . . . , n, j < i, ejl∈Mj , eik∈Mi :
(
pjl −∆

ji
l > pik

)
∧
(
wjl ≤ wik

)
(23)

sequencing
(
xjl, [w1, . . . , wn]

)
, j = 1, . . . , n,

ejl ∈Mj :
(
∃eik ∈Mi, j < i : pjl −∆

ji
l ≤ pik ≤ pjl −∆ji

l

)
(24)

xik ∈ {0, 1} , eik ∈M (25)

wi ∈ {0, . . . ,W} , i = 1, . . . , n (26)

w0 = 0 (27)

Function 18 represents the objective function of the problem. For each edge
(i, i+ 1), i = 1, . . . , n, it sums up the profits of items taken in city i minus the
cost of transportation of all the items that have been placed to the vehicle in
city i and all the cities prior to i. Equation (19) calculates the weight wi of
all the items taken in the cities 1, . . . , i. Equation (20) is a capacity constraint.
Equations (21), (22) and (23) impose the set of redundant sequencing constraints
SCi, SCii, and SCiii of Section 4, respectively. This set may be rather small,
and therefore might have a limited impact on inference of in-domain constraints
during the search. Indeed, more constraints might be involved if wcb in ∆ji

l of

constraint SCii was larger and wmaxb in ∆
ji

l of constraint SCiii was smaller. The
values of these two variables wcb and wmaxb can in fact be considered as initial
lower and upper bounds on the weight of the items collected in city b. As one
descends into the tree, items are either collected or rejected. Being picked up in
some city, an item contributes its weight that increases the lower bound. Being
rejected, it lowers the upper bound. We include those constraints into the pool
that still may work out when the lower or upper bound on the weight reaches a
certain level. Specifically, (24) adds a redundant customized constraint for each
item ejl that has at least one related item eik, j < i, such that their mutual
sequencing depends on the weight of the items collected in cities j, . . . , i − 1.
Equations (25) and (26) define the domains of the variables. Finally, Equation
(27) sets the base case w0 = 0.

We assume a depth-first search strategy for traversing the binary search tree
and instantiate variables in the order in which the cities appear in N . No order
is given to the items within the same city. Therefore, at the moment when item
eik is to be instantiated by the search, the domains of the variables associated
with the items in cities 1, . . . , i − 1 and with those in city i that appear prior

19

to eik in the set Mi have been already reduced to singletons. Accordingly, the
domain of variable wi is reduced to a singleton once the decision variables of
the items in city i have been all fixed to singletons.

The customized sequencing constraint sequencing(xjl, [w1, . . . , wn]) applies
to variable xjl for which there exists at least one item, say xik, such that pjl −
∆
ji

l ≤ pik ≤ pjl −∆ji
l holds and j < i. Algorithm 2 sketches the pseudocode of

the corresponding filtering algorithm. We use a Boolean variable Θejleik , which
takes value true to indicate the situation when selection of items ejl and eik
may be potentially sequenced. First, the algorithm initializes variables wmax

and wmin that, respectively, represent the upper and lower bounds on the weight
of collected items that the vehicle has in city i. It sets both variables to the sum
of weights of items collected in the cities prior to city j, i.e. wj−1, and adds
the weight of item ejl if its variable xjl has been fixed to 1 (cf. line 1). Then
the algorithm starts exploring the items positioned in the cities succeeding j.
Each time the next city i is taken into consideration, it adds the weight of all
the items existing in i to wmax and the weight of all the compulsory items in i
to wmin (cf. line 5). In each city i, the algorithm examines the items that the
city contains. When the corresponding variable xik of item eik is a singleton,
the algorithm modifies the bounds on collected weight accordingly (cf. lines
10 and 11). Subsequently, if Θejleik is true, it tries to establish a sequencing
relation between eik and ejl. If the condition in line 13 holds, it excludes 1 from
domain Dik, and therefore declines item eik since ejl is assumed to be rejected
by the search. At the same time, it lowers wmax by the value of wik. On the
other hand, if the condition in line 18 holds, it excludes 0 from domain Dik, and
therefore selects item eik because ejl is assumed to be selected. In addition, it
increases wmin by the value of wik. If no relation has been established at that
stage, the algorithm adds eik to the set of items M∗. Continuing to explore
other items, it tries to prove each item of M∗ to be unprofitable every time
it finishes investigating city i (cf. line 31). Furthermore, having all the cities
analyzed, the algorithm returns back to set M∗ and tries to prove each of its
items to be compulsory if the instance I at hands refers to PWTu (cf. line 37).

9. Computational Experiments

In this section, we investigate the effectiveness of the proposed approaches
by experimental studies. On the one hand, we assess the advantage of the
pre-processing scheme in terms of quantity of discarded items and auxiliary
decision variables. On the other hand, we evaluate our LBλ, MIPλ, and BIBλ

models in terms of solution quality and running time. The program code is
implemented in JAVA using the IBM Optimization Studio 12.6.2. To solve
the mixed-integer programs LBλ, UBλ and MIPλ, we use Cplex with default
settings. When running UBλ, we increase Cplex’s precision by setting the
relative tolerance on the gap between the best integer objective and the objective
of the best node remaining to 1e−7. To solve the constrained program within
BIBλ, we use CP Optimizer switched to the depth-first search mode and set

20

Algorithm 2: The Filtering Algorithm of Constraint
sequencing(xjl, [w1, . . . , wn])

1 initialize wmax ← wj−1 + wjlxjl; initialize wmin ← wj−1 + wjlxjl;

2 initialize M∗ ← ∅;

3 set ∆
jj
l
← 0; ∆

jj
l
← 0;

4 for each city i from j to n do

5 wmax ← wmax + wmaxi ; wmin ← wmin + wci ;

6 for each item eik ∈ Mi, eik 6= ejl do

7 initialize flag ← true;

8 if DomainSize
(
Dik

)
≤ 1 then

9 flag ← false;
10 if xik = 0 then wmax ← wmax − wik;

11 if xik = 1 then wmin ← wmin + wik;

12 if Θejleik
then

13 if
(
wjl ≤ wik

)
∧
(
pjl −∆

ji
l
> pik

)
∧
(
xjl = 0

)
then

14 if DomainSize
(
Dik

)
= 2 then

15 wmax ← wmax − wik;
16 flag ← false;

17 RemoveValue
(
Dik, 1

)
;

18 if
(
wjl ≥ wik

)
∧
(
pjl −∆

ji
l
< pik

)
∧
(
xjl = 1

)
then

19 if DomainSize
(
Dik

)
= 2 then

20 wmin ← wmin + wik;
21 flag ← false;

22 RemoveValue
(
Dik, 0

)
;

23 if flag then
24 M∗ ← M∗ ∪

{
eik

}
;

25 initialize ∆
in+1
k

← 0; ∆
in+1
k

← 0;

26 ∆
ji+1
l

← ∆
ji
l

+ Rdi

(
1

υmax−νmin(wmax,W)
− 1
υmax−ν

(
min(wmax,W)−wik

));

27 ∆
ji+1
l

← ∆
ji
l

+ Rdj

 1

υmax−ν
(
min

(
wmin,W

)
+wik

) − 1

υmax−νmin
(
wmin,W

)
;

28 for each item eab ∈ M
∗ do

29 ∆
an+1
b

← ∆
an+1
b

+ Rdi

 1

υmax−νmin
(
wmax
j

,W
) − 1

υmax−ν
(
min(wmax,W)−wab

)
;

30 ∆
an+1
b

← ∆
an+1
b

+ Rdj

 1

υmax−ν
(
min

(
wmin,W

)
+wab

) − 1

υmax−νmin
(
wmin,W

)
;

31 if pab −∆
an+1
b

≤ 0 then

32 RemoveValue
(
Dab, 1

)
;

33 wmax ← wmax − wab;
34 M∗ ← M∗ \

{
eab

}
;

35 if ProblemType(I) ≡PWTu then
36 for each item eab ∈ M

∗ do

37 if pab −∆
an+1
b

> 0 then RemoveValue
(
Dab, 0

)
;

the relative tolerance gap to 0. Furthermore, we limit the parallel mode to only
a single thread for Cplex and CP Optimizer to make them both comparable
to each other when dealing with the small size instances in Section 9.1. We
set the number of threads to the maximum number of cores available when
investigating the large size instances in Section 9.2.

The test instances are adopted from the benchmark set B of Polyakovskiy
et al. (2014). This benchmark set is constructed on TSP instances from TSPLIB
introduced by Reinelt (1991) augmented by a set of items distributed among all
the cities but the first one. We use the set of items available in each city and
obtain the route from the corresponding TSP instance by running the Chained
Lin-Kernighan heuristic proposed by Applegate et al. (2003). Given the permu-

21

tation π = (π1, π2, . . . , πn) of the cities computed by the Chained Lin-Kernighan
heuristic, where π1 is free of items, we use N = (π2, π3, . . . , πn, π1) as the route
for our problem. We consider the uncorrelated (uncorr), uncorrelated with sim-
ilar weights (uncorr-s-w), and bounded strongly correlated (b-s-corr) types of
items’ generation, and set υmin and υmax to 0.1 and 1 as proposed for B.

9.1. Computational Experiments on the Set of Small Size Instances

Here, using a set of small instances, our goal is to evaluate the performance
of our pre-processing scheme and the performance of the proposed approximate
and exact approaches. Unlike experiments carried out in our earlier research
(Polyakovskiy & Neumann (2015)), here we are able to find optimal solutions
to all the small instances within the same time limit. Therefore, the main focus
of our investigation with respect to the exact approaches is their running times
rather than any qualitative performance measures.

We study three families of small size instances based on the TSP problems
eil51, eil76, and eil101 with 51, 76 and 101 cities, respectively. This series
of experiments has been carried out on PC with 4 Gb RAM and a 3.06 GHz
Dual Core processor. The results of the experiments are shown in Table 1. All
the instances of a family have the same route N . We consider instances with
1, 5, and 10 items per city. The postfixes 1, 6 and 10 in the instances’ names
indicate the vehicle’s capacity W . The greater the value of a postfix is, the
larger W is given. Column 2 specifies the total number of items m. Ratio
α = 100 · (m−m′) /m in Column 3 denotes a percentage of items discarded in
a pre-processing step, where m′ is the number of items left after pre-processing.
Column ver identifies by “u” whether PWTc has been reduced to PWTu by
pre-processing. Columns 5-7 report results for LBλ with λ = 100. Specifically,
column 5 gives ρ as a ratio between the lower bound obtained by LB100 and the
optimum obtained by the branch-infer-and-bound approach. Column 6 contains
the running time t of LB100. Column 7 shows a rate β that is a percentage of
auxiliary y-type variables used in practice by LBλ. At most λn variables is
required by LBλ. Thus, β is computed as β = 100 · (

∑n
i=1 |Bi|) / (λn). Column

8 presents the running time t for the MIP-based exact approach MIPλ when λ is
set to 1000. Therefore, both LBλ and UBλ incorporated into MIPλ use λ = 1000
as well to compute initial lower and upper bounds. The time limit of 1 day has
been given to MIPλ in total, while LBλ and UBλ have got the time limit of 2
hours each. The running time of MIPλ provided in the table includes the total
time taken by LBλ and UBλ. For most of the instances except the instance
“uncorr-s-w 01” of the family eil101, this time is found negligible. Column 9
reports ω as a relative gap in percents that compares the running time of MIPλ

to the smallest running time over all the algorithms studied in the experiment.
In general, ω is to be computed as ω = 100 ·

(
tALG − tMIN

)
/tMIN , where tALG

is the running time of a particular algorithm and tMIN is the minimum over
the running times of the various configurations of MIPλ and BIBλ investigated
here.

The rest columns of the table describe results for the branch-infer-and-bound
approach BIBλ with λ ∈ {500, 1000, 1500}. Furthermore, two cases of BIBλ for

22

λ = 1000 have been studied. BIB1000 is exactly that one which is described in
Section 8. BIB1000

no seq. is its copy that does not include the customized sequencing
constraints to the model. In such way, we evaluate the impact of the constraint
on the performance of BIBλ. We employ LB100, which we give 2 hours of
running time limit, to provide BIBλ with a lower bound to be used then to
prune the search tree. Within BIB500, BIB1000, BIB1000

no seq., and BIB1500, we run

the variant of UBλ where the integrality constraints on x-type decision variables
are removed. This makes UBλ a linear program and significantly speeds up
computations at the very small cost of solution quality. Each of the columns t
reports the total computational time for the corresponding BIBλ and includes
the time taken by LB100. Similarly, each of the columns named ω does when
reporting ω that compares the running time of BIBλ to the smallest running
time found over the studied MIPλ and BIBλ approaches. The least running
time obtained for a particular instance is marked by bold and underlined in the
entry t of the corresponding approach. The entries of the table marked by “-”
indicate that optimal solutions have not been obtained within the given time
limit.

9.1.1. Performance of the Pre-processing Scheme

Here, we evaluate the performance of our pre-processing scheme by calculat-
ing the percentage of discarded items and auxiliary decision variables. We aim
to understand for which classes and types of the instances the pre-processing
scheme works fine and which instances are hard to be reduced. Furthermore,
we wonder how many of the instances of PWTc become those of PWTu.

The results of the experiments demonstrate efficiency of the pre-processing
scheme. It is rather good with respect to the instances of uncorr type and
removes on average 31.6% of their items. Concerning the uncorr-s-w type of the
instances, it is able to exclude on average 18.5% of the items that they contain.
Within these two categories, the instances with large W are rather liable to
reduction to instances of PWTu. Because W is large, they get more chances to
loose enough items so that the total weight of rest items becomes less or equal
to W . The pre-processing scheme does not work well for the b-s-corr type of
the instances. No instance of this type has been reduced to PWTu. Because
the profit of an item approaches its weight, the pre-processing encounters a
difficulty to find unprofitable items for this instance type. In general, the way
of how profits and weights are generated is not an obstacle in itself for the pre-
processing to be successful. There are other factors, like the value of rent rate
R, the value of capacity W , and a distance to the destination from the city
where an item is positioned, that hinder its application. For example, if a route
is long enough, some items in the first cities can be shown to be unprofitable
even in the case of their b-s-corr type of generation. Clearly, the fact that we
cannot handle the instances of this type is a proper property of the benchmark
suite B.

Obviously, discarding items within pre-processing reduces the number of
auxiliary variables in LBλ. The rate β demonstrates that in practice LB100

23

uses a very reduced set of them. The average over all the entries is just 48.5%.
Therefore, less than a half of all possible variables is used only. In general, β
is significantly small when W is large, since latter results in a slower growth of
diapason

[
υmin
i , υmax

i

]
in LBλ, for i = 1, . . . , n. In other words, the instances

with large W require less number of auxiliary decision variables comparing to
the instances where W is smaller.

9.1.2. Performance of the Approximate Approach

We now aim to evaluate the performance of LB100 concerning its running
time and solution quality compared to optima. LB100 is particularly fast and its
model is solved to optimality in a very short time for all the small size instances.
Only one instance of the whole test suite causes a difficulty in terms of running
time. The approximate approach looks very swift even with instances of the b-s-
corr type and produces very good approximation for reasonably small λ = 100.
The ratio ρ close to 1 points out that LB100 obtains approximately the same
result as the optimal objective value is, but in a shorter time. Therefore, LBλ

gives an advanced trade-off in terms of computational time and solution’s quality
comparing to the exact approaches. The larger λ = 1000 has been tested in our
earlier experiments (Polyakovskiy & Neumann (2015)). However, it results to a
very limited improvement in the value of the total reward at the larger cost of
running time, and more importantly at the larger cost of memory consumption.
Indeed, as λ increases, the approach requires more memory as the number of
auxiliary variables grows.

9.1.3. Performance of the Exact Approaches

In this part of the analysis, our goal is to evaluate the performance of the
MIPλ and BIBλ approaches and determine which classes and types of the in-
stances are hard to be solved by each of them. Since all the instances can be
solved to optimality, we treat a time spent to achieve an optimal solution as
hardness of an instance.

Comparing to the earlier results, we see now that the unconstrained instances
of the problem are not to be easier to handle as it has been previously observed
(Polyakovskiy et al. (2014); Polyakovskiy & Neumann (2015)). Now, our mixed-
integer programming approach is able to solve all the small size instances to
optimality as it is strengthened with the upper bound UBλ. Specifically, MIPλ

takes much less time than the given limit and can be executed on an ordinary PC
instead of the highly productive computational cluster that has been previously
utilized.

The results show that the instances of the uncorr-s-w type are harder to solve
for MIPλ comparing to other types. This fact looks interesting. Comparing to
the b-s-corr type, this type has around 20% of items per instance excluded by
the pre-processing step and needs much less auxiliary variables, but takes more
time to achieve an optimal solution. This also differs PWT from the classical
0-1 knapsack problem for which the b-s-corr type is shown to be the hardest
one (Martello et al. (1999)). The b-s-corr type is not easier to solve than the

24

uncorr type in terms of running time, nor the latter is when compared to the
former.

MIPλ outperforms BIBλ mainly on the set of b-s-corr type instances with the
least capacity W . BIB500 is superior on the wide range of instances. It is highly
effective for the set of uncorr and uncorr-s-w type instances with large capacity.
Depending on the parameter λ, performance of BIBλ can be further improved
for some instances. Specifically, setting λ to larger values allows BIBλ to solve
b-s-corr type instances with many items and large capacity faster. The further
increase of λ up to 1500, leads to the best result for some of those instances.
However, this degrades performance of BIBλ on other instances. Performance
of BIBλ with the values of λ less than 500 and greater than 1500 have also
been investigated. However, using too small or too large values increases the
running time of the approach. The same behavior has been observed for MIPλ,
for which the value of 1000 is the most promising one. In summary, we argue
that selecting λ = 1000 represents a good balance when the classification of
instances is unknown, e.g. a new problem instance is to be solved. BIB1000

works reasonably fast over all the instances. Although it loses against BIB500

on many instances, these loss are insignificant when compared to gains on some
other instances, for example, on those ones prefixed by “b-s-corr 10”.

9.1.4. Impact of the Sequencing Constraints

Here, we are interested in understanding the impact of the sequencing con-
straints on the performance of the CP Search. We wonder how strong the
constraint can be in pruning the search tree and for which types and classes of
the instances it performs well.

Table 2 presents the details on the constraint programming search performed
by BIBλ on small size instances of the benchmark suite. Columns 1-3 spec-
ify the instance’s name, the total number of items m, and the version of the
problem solved. Other columns of the table describe results for BIBλ with
λ ∈ {500, 1000, 1500}. Each of the sections shows the number of branches b
totally explored and the number of fails f obtained by the CP solver during
the search when the corresponding parameter value λ is in use. Furthermore,
each of the columns “UBλ runs” reports the number of successful UBλ runs,
say rs, that resulted in pruning of the search tree and the total number of runs,
say rt. The two values are separated by “|”. In the parentheses, it also gives a
percentage of successful runs η computed as η = 100 · rs/rt.

The sequencing constraints of BIBλ look weak when dealing with the in-
stances of the b-s-corr type. This can be observed from the results, which show
that the number of UBλ runs considerably decreases when λ increases. This
means that BIBλ needs to tighten the upper bound by increasing the value of
λ in order to achieve a better performance for this type of the instances. In
other words, BIBλ relies more on a tight upper bound to prune the search tree
rather than on the sequencing constraints. In contrast, considering other types
of the instances, the growth of the number of runs is not that much for them.
Moreover, the number of explored branches b and the number of fails f obtained

25

remain almost the same for different values of λ. This means that BIBλ exten-
sively rely on the sequencing constraints when solving the uncorr and uncorr-s-w
types of the instances. When we turn off the sequencing constraints in the case
of BIB1000

no seq., the approach explores more branches with respect to the uncorr
and uncorr-s-w types and spends more time to do this, while the number of
branches traversed and the running time stay almost the same for the b-s-corr
type. The reason why the sequencing constraints are weak with respect to the
b-s-corr type is the same as for the pre-processing scheme which also has low
performance when dealing with this type.

9.2. Computational Experiments on the Set of Large Size Instances

The goal of our second experiment is to understand how fast LBλ finds
the approximate solutions of larger size instances and how efficient the pre-
processing scheme is in this case. Solving large size instances turns out to be
costly and requires computational capacity beyond that of an ordinary com-
puter. Therefore, this series of experiments has been carried out on a computa-
tional cluster with 128 Gb RAM and 2.8 GHz 48-cores AMD Opteron processor.
We use the same settings for the MIP solver as in our first experiment and set
λ = 100 for LBλ. We investigate two families of the largest size instances of
benchmark suite B, namely those based on the TSP problems pla33810 and
pla85900 with 33810 and 85900 cities, respectively. Table 3 reports the results.
Columns 1-4 specify the instance’s name, the total number of items m, the per-
centage of items discarded within the pre-processing step α, and the version
of the problem solved. The rest of the table describes the results for LB100

and for its two special cases: LB100
no pre-pr. when LB100 is run without any pre-

processing at all and LB100
red. pre-pr. when LB100 does not use the reasoning based

on the sequencing constraints to accelerate deduction of compulsory and unprof-
itable items when a problem in hand is unconstrained (see Section 5 for details).
Columns 5 and 10 provide the running time t of LB100 (including the time taken
by pre-processing) and of LB100

no pre-pr., respectively, while columns 6 and 11 give
details on β, which is the percentage of auxiliary y-type variables that they
use. The way to calculate α and β is given in Section 9.1. Columns 8 and 12
report ω as a relative gap in percents that compares the running times of LB100

and LB100
no pre-pr.. Specifically, ω is computed as ω = 100 ·

(
tALG − tMIN

)
/tMIN ,

where tALG is the running time of LB100 or LB100
no pre-pr. and tMIN is the mini-

mum of their running times. Column tp gives the pre-processing time taken by
LB100. Column γ shows a ratio between the number of y-type variables used
by LB100

no pre-pr. and LB100. Column ρ gives a ratio between the upper bound

obtained by UBλ with the same λ = 100 and the lower bound LB100. We do not
provide runtime and some other results for LB100

red. pre-pr. as it always performs

worse than LB100. For it, we only show the ratio η between the pre-processing
time of LB100

red. pre-pr. and that one of LB100 to evaluate a speedup gained by
utilizing the sequencing constraints for deduction of compulsory and unprof-
itable items in the case of PWTu. Note that in LB100

red. pre-pr. the pre-processing

26

Table 1: Results of Computational Experiments on Small Size Instances

instance m α, % ver
LB100 MIP1000 BIB500 BIB1000 BIB1000

no seq. BIB1500

ρ t, sec β, % t, sec ω, % t, sec ω, % t, sec ω, % t, sec ω, % t, sec ω, %

instance family eil51

uncorr 01 50 42.0 c 1.00000 0.2 55.8 2.3 34.9 1.7 0.0 3.5 107.4 6.4 278.1 6.1 256.9
uncorr 06 50 14.0 c 1.00000 0.2 39.2 3.2 255.5 0.9 0.0 1.7 82.8 3.2 252.2 2.6 184.7
uncorr 10 50 12.0 u 1.00000 0.1 11.1 0.8 104.2 0.4 0.0 0.5 30.9 0.6 50.2 0.6 58.0

uncorr-s-w 01 50 30.0 c 1.00000 0.3 77.4 2.9 84.3 1.6 0.0 3.1 94.1 7.6 381.5 4.8 205.0
uncorr-s-w 06 50 24.0 c 1.00000 0.1 35.8 1.4 52.6 0.9 0.0 1.7 84.8 2.3 144.7 2.7 190.9
uncorr-s-w 10 50 34.0 u 1.00000 0.1 13.2 1.6 379.2 0.3 0.0 0.4 9.6 0.5 36.1 0.4 28.1

b-s-corr 01 50 4.0 c 1.00000 0.3 89.7 4.5 0.0 23.2 412.4 49.0 982.1 52.0 1049.0 77.8 1620.7
b-s-corr 06 50 0.0 c 1.00000 0.2 53.4 2.5 0.0 2.9 14.0 6.4 152.1 6.3 146.0 11.0 333.1
b-s-corr 10 50 0.0 c 1.00000 0.2 25.7 1.9 0.0 1.9 0.9 3.7 100.1 3.5 89.3 6.4 241.0
uncorr 01 250 39.2 c 1.00000 0.3 65.5 10.4 127.5 4.6 0.0 9.1 97.6 21.5 368.7 14.7 220.7
uncorr 06 250 16.4 c 1.00000 0.2 38.3 65.1 2353.2 2.7 0.0 4.2 57.0 7.3 175.2 6.1 131.7
uncorr 10 250 54.4 u 1.00000 0.1 10.9 20.4 2512.1 0.8 0.0 1.0 28.1 1.8 131.3 1.2 60.0

uncorr-s-w 01 250 20.8 c 1.00000 0.3 88.0 7.1 97.4 3.6 0.0 6.8 87.9 40.8 1026.9 10.4 187.1
uncorr-s-w 06 250 14.0 c 1.00000 0.2 44.6 41.7 2520.9 1.6 0.0 2.4 50.0 5.8 262.0 3.5 118.8
uncorr-s-w 10 250 19.2 u 0.99998 0.2 15.7 83.3 7761.7 1.1 0.0 1.3 19.2 2.3 120.0 1.5 42.7

b-s-corr 01 250 0.0 c 1.00000 0.3 90.2 8.9 0.0 28.9 223.5 58.3 552.7 65.6 634.2 94.1 953.0
b-s-corr 06 250 0.0 c 0.99997 0.2 55.8 20.9 0.0 27.3 31.0 53.7 157.3 55.4 165.7 57.4 175.0
b-s-corr 10 250 0.0 c 1.00000 0.2 26.7 55.6 633.3 7.6 0.0 9.8 29.4 9.5 25.5 16.1 112.5
uncorr 01 500 37.0 c 1.00000 0.3 67.7 12.9 12.0 11.5 0.0 22.1 91.4 68.5 493.1 35.8 210.4
uncorr 06 500 15.2 c 0.99993 0.3 38.8 81.6 1369.8 5.6 0.0 8.3 49.2 17.8 221.4 12.0 116.6
uncorr 10 500 51.4 u 1.00000 0.2 11.6 93.1 7093.6 1.3 0.0 1.5 19.4 3.4 160.2 1.9 43.4

uncorr-s-w 01 500 20.2 c 1.00000 0.2 89.1 12.1 149.1 4.9 0.0 8.7 79.2 63.3 1200.5 13.1 168.9
uncorr-s-w 06 500 15.2 c 0.99990 0.2 44.2 147.7 4854.8 3.0 0.0 3.9 32.4 9.9 231.5 5.3 78.5
uncorr-s-w 10 500 18.6 u 1.00000 0.2 16.1 208.2 9788.2 2.1 0.0 2.3 11.1 4.6 118.6 2.6 21.5

b-s-corr 01 500 0.0 c 0.99993 0.3 91.3 29.9 0.0 226.7 657.2 324.1 982.6 396.9 1225.8 535.0 1687.3
b-s-corr 06 500 0.0 c 0.99995 0.3 55.4 71.3 0.0 316.7 344.1 149.0 109.0 161.5 126.4 235.7 230.4
b-s-corr 10 500 0.0 c 1.00000 0.2 26.0 100.8 294.4 87.9 243.8 25.7 0.4 25.6 0.0 27.4 7.0

instance family eil76

uncorr 01 75 26.7 c 1.00000 0.3 76.7 5.4 9.5 5.0 0.0 10.4 110.1 20.7 316.6 17.7 257.6
uncorr 06 75 14.7 c 1.00000 0.3 33.9 9.8 433.3 1.8 0.0 3.3 80.5 4.3 134.7 5.2 183.2
uncorr 10 75 48.0 u 1.00000 0.1 11.3 1.9 303.0 0.5 0.0 0.6 20.1 1.0 112.2 0.7 53.2

uncorr-s-w 01 75 26.7 c 1.00000 0.4 78.2 4.9 2.3 4.8 0.0 9.6 99.0 30.4 529.9 15.6 224.3
uncorr-s-w 06 75 17.3 c 1.00000 0.3 40.7 7.8 495.3 1.3 0.0 2.2 67.9 5.0 283.8 3.2 147.7
uncorr-s-w 10 75 16.0 u 1.00000 0.2 16.6 10.8 1437.9 0.7 0.0 0.9 31.1 1.5 119.4 1.1 59.8

b-s-corr 01 75 0.0 c 1.00000 0.4 93.5 6.2 0.0 215.6 3371.7 463.3 7362.1 510.3 8119.1 770.3 12305.6
b-s-corr 06 75 0.0 c 1.00000 0.3 58.9 8.6 68.3 5.1 0.0 11.1 117.7 11.5 124.7 19.1 272.8
b-s-corr 10 75 0.0 c 1.00000 0.3 25.5 6.7 15.5 5.8 0.0 9.8 68.7 10.1 73.8 11.1 90.4
uncorr 01 375 38.1 c 1.00000 0.3 66.3 30.6 204.5 10.0 0.0 19.9 98.0 48.9 386.5 32.4 222.2
uncorr 06 375 16.0 c 1.00000 0.2 37.0 162.0 2825.0 5.5 0.0 9.6 73.0 17.5 216.1 14.5 162.6
uncorr 10 375 9.9 u 1.00000 0.2 11.8 105.4 7412.1 1.4 0.0 1.6 15.6 6.0 329.1 1.8 30.0

uncorr-s-w 01 375 14.9 c 1.00000 1.0 89.7 26.4 205.8 8.6 0.0 15.3 77.1 347.2 3917.0 24.3 181.0
uncorr-s-w 06 375 12.3 c 1.00000 0.3 46.8 165.9 4625.3 3.5 0.0 5.4 52.5 15.7 348.4 7.4 110.7
uncorr-s-w 10 375 14.9 u 1.00000 0.2 17.0 230.9 10782.5 2.1 0.0 2.4 14.7 4.1 94.9 2.9 34.5

b-s-corr 01 375 0.0 c 1.00000 0.3 94.1 24.4 0.0 51.2 110.4 100.2 311.6 116.8 379.6 154.4 533.9
b-s-corr 06 375 0.0 c 1.00000 0.3 56.6 83.5 47.0 149.0 162.1 56.8 0.0 59.4 4.6 98.2 72.9
b-s-corr 10 375 0.0 c 0.99998 0.3 27.5 181.4 579.8 92.7 247.3 26.7 0.0 27.6 3.5 37.8 41.8
uncorr 01 750 32.5 c 1.00000 0.4 71.4 92.1 332.9 21.3 0.0 33.4 57.0 131.9 520.2 52.8 148.3
uncorr 06 750 14.8 c 1.00000 0.2 39.0 429.8 2564.3 19.6 21.7 16.1 0.0 40.0 148.1 22.8 41.1
uncorr 10 750 43.1 u 1.00000 0.2 13.0 306.7 8792.8 3.8 10.4 3.4 0.0 10.4 201.6 3.6 3.6

uncorr-s-w 01 750 16.7 c 1.00000 0.5 88.7 117.0 950.9 11.1 0.0 19.2 72.0 255.2 2190.9 28.9 159.8
uncorr-s-w 06 750 13.5 c 1.00000 0.2 45.7 472.0 7119.9 6.5 0.0 7.8 19.6 23.5 258.9 10.2 56.3
uncorr-s-w 10 750 14.4 u 1.00000 0.3 17.0 823.7 17214.5 4.8 0.0 5.1 7.3 10.8 127.2 5.6 17.7

b-s-corr 01 750 0.0 c 0.99999 0.3 93.7 161.4 0.0 183.8 13.8 287.4 78.0 388.3 140.5 442.4 174.0
b-s-corr 06 750 0.0 c 1.00000 0.5 55.4 259.6 67.3 975.0 528.1 175.8 13.2 203.1 30.9 155.2 0.0
b-s-corr 10 750 0.0 c 0.99999 0.2 25.9 281.7 106.7 20261.7 14767.4 176.7 29.7 185.2 35.9 136.3 0.0

instance family eil101

uncorr 01 100 49.0 c 1.00000 0.4 60.7 7.4 144.7 3.0 0.0 6.0 98.5 12.9 325.4 10.3 237.6
uncorr 06 100 16.0 c 0.99993 0.3 39.7 20.5 746.2 2.4 0.0 4.0 65.9 8.3 241.5 6.0 147.2
uncorr 10 100 57.0 u 1.00000 0.2 10.0 4.8 524.7 0.8 0.0 1.0 28.5 1.8 136.2 1.2 63.4

uncorr-s-w 01 100 25.0 c 1.00000 0.3 90.3 6.8 70.2 4.0 0.0 7.9 95.3 25.7 537.4 12.4 207.0
uncorr-s-w 06 100 17.0 c 1.00000 0.4 41.9 17.2 1001.7 1.6 0.0 2.6 65.0 6.0 285.0 3.8 144.2
uncorr-s-w 10 100 15.0 u 1.00000 0.2 17.2 39.6 3748.5 1.0 0.0 1.3 25.6 2.1 106.7 1.6 59.1

b-s-corr 01 100 0.0 c 1.00000 0.5 94.4 12.7 0.0 60.2 373.0 126.5 893.6 135.5 964.3 209.2 1543.2
b-s-corr 06 100 0.0 c 1.00000 0.4 56.2 11.3 8.5 10.4 0.0 22.9 119.6 22.9 119.1 40.1 284.5
b-s-corr 10 100 0.0 c 0.99990 0.2 28.2 16.6 4.5 15.9 0.0 27.3 71.7 27.0 69.3 41.6 161.3
uncorr 01 500 38.8 c 1.00000 0.4 65.9 31.6 120.2 14.4 0.0 28.0 94.8 76.3 430.7 43.8 204.8
uncorr 06 500 14.4 c 1.00000 0.3 39.2 397.3 4678.5 8.3 0.0 13.7 64.2 26.3 216.9 19.6 135.7
uncorr 10 500 51.4 u 1.00000 0.2 11.4 212.8 9707.2 2.2 0.0 2.5 16.5 5.6 157.1 3.0 38.8

uncorr-s-w 01 500 20.4 c 1.00000 4.5 88.4 88.7 293.4 22.5 0.0 39.4 74.7 1924.5 8437.4 60.2 167.2
uncorr-s-w 06 500 14.2 c 1.00000 0.4 44.8 365.2 6825.2 5.3 0.0 7.7 46.2 20.7 293.1 10.7 102.7
uncorr-s-w 10 500 16.4 u 1.00000 0.2 16.3 525.4 16328.3 3.2 0.0 3.5 10.7 7.3 128.3 4.0 25.4

b-s-corr 01 500 0.0 c 1.00000 0.4 93.5 64.6 0.0 433.8 571.5 624.6 867.0 773.4 1097.2 991.3 1434.6
b-s-corr 06 500 0.0 c 1.00000 0.5 54.8 248.7 154.4 458.6 369.2 97.8 0.0 101.6 3.9 166.2 70.0
b-s-corr 10 500 0.0 c 0.99998 0.4 26.1 381.1 118.2 2264.5 1196.4 219.1 25.4 228.3 30.7 174.7 0.0
uncorr 01 1000 37.0 c 0.99999 0.4 66.6 240.8 166.3 90.4 0.0 115.0 27.2 571.4 532.1 168.9 86.9
uncorr 06 1000 15.1 c 1.00000 0.5 39.1 1293.3 4648.3 27.2 0.0 37.3 37.1 91.5 236.1 46.6 71.1
uncorr 10 1000 50.4 u 1.00000 0.2 11.7 625.8 13008.4 4.8 0.0 5.0 5.2 10.9 127.3 5.6 18.3

uncorr-s-w 01 1000 19.7 c 0.99993 3355.4 88.4 7158.2 97.8 3618.7 0.0 3754.5 3.8 - - 3946.9 9.1
uncorr-s-w 06 1000 13.7 c 1.00000 0.5 45.1 1187.7 9252.4 12.7 0.0 13.3 4.7 34.8 173.9 17.0 33.9
uncorr-s-w 10 1000 15.9 u 1.00000 0.2 16.5 2162.6 28539.7 7.6 0.0 7.9 4.3 15.4 104.1 8.5 13.0

b-s-corr 01 1000 0.0 c 0.99996 1.4 93.0 456.5 0.0 7802.0 1609.3 6130.9 1243.1 7992.7 1651.0 9258.4 1928.3
b-s-corr 06 1000 0.0 c 1.00000 0.3 55.2 661.4 32.1 38211.7 7531.9 919.5 83.7 1007.2 101.2 500.7 0.0
b-s-corr 10 1000 0.0 c 0.99999 0.2 26.8 874.5 30.0 - - 1646.7 144.9 1760.5 161.8 672.5 0.0

27

Table 2: Details on the CP Search Performed by BIBλ on Small Size Instances

instance m ver
BIB500 BIB1000 BIB1000

no seq. BIB1500

b f UBλ runs b f UBλ runs b f UBλ runs b f UBλ runs

instance family eil51

uncorr 01 50 c 42 20 16|64 (25%) 42 20 16|64 (25%) 91 44 26|119 (22%) 42 20 16|64 (25%)
uncorr 06 50 c 34 17 17|65 (26%) 34 17 17|65 (26%) 72 35 31|101 (31%) 34 17 17|65 (26%)
uncorr 10 50 u 22 11 11|36 (31%) 22 11 11|36 (31%) 50 22 20|58 (35%) 22 11 11|36 (31%)

uncorr-s-w 01 50 c 46 21 14|84 (17%) 46 21 14|84 (17%) 163 79 41|199 (20%) 46 21 14|84 (17%)
uncorr-s-w 06 50 c 36 16 16|64 (25%) 36 16 16|64 (25%) 62 30 30|94 (32%) 36 16 16|64 (25%)
uncorr-s-w 10 50 u 8 4 4|33 (12%) 8 4 4|33 (12%) 26 12 12|54 (22%) 8 4 4|33 (12%)

b-s-corr 01 50 c 676 334 220|609 (36%) 676 334 220|609 (36%) 722 355 278|754 (37%) 676 334 220|609 (36%)
b-s-corr 06 50 c 100 50 50|139 (36%) 100 50 50|139 (36%) 104 51 61|169 (36%) 100 50 50|139 (36%)
b-s-corr 10 50 c 90 45 45|129 (35%) 90 45 45|129 (35%) 92 45 54|155 (35%) 90 45 45|129 (35%)
uncorr 01 250 c 110 52 50|254 (20%) 110 52 50|254 (20%) 293 138 97|472 (21%) 110 52 50|254 (20%)
uncorr 06 250 c 152 75 75|346 (22%) 130 64 64|324 (20%) 228 112 112|456 (24%) 130 64 64|324 (20%)
uncorr 10 250 u 36 18 18|145 (12%) 36 18 18|145 (12%) 151 74 73|264 (28%) 36 18 18|145 (12%)

uncorr-s-w 01 250 c 58 29 24|268 (9%) 58 29 24|268 (9%) 415 203 154|749 (21%) 58 29 24|268 (9%)
uncorr-s-w 06 250 c 48 23 23|255 (9%) 48 23 23|255 (9%) 175 86 85|415 (21%) 48 23 23|255 (9%)
uncorr-s-w 10 250 u 30 14 14|225 (6%) 30 14 14|225 (6%) 187 90 86|404 (21%) 30 14 14|225 (6%)

b-s-corr 01 250 c 600 296 265|1188 (22%) 600 296 265|1188 (22%) 684 338 366|1112 (33%) 600 296 265|1188 (22%)
b-s-corr 06 250 c 1148 572 567|1388 (41%) 662 331 331|885 (37%) 700 350 420|1104 (38%) 444 222 222|670 (33%)
b-s-corr 10 250 c 412 206 205|628 (33%) 232 116 116|452 (26%) 238 119 143|547 (26%) 232 116 116|452 (26%)
uncorr 01 500 c 1032 508 376|1080 (35%) 964 470 354|1034 (34%) 2292 1132 809|2482 (33%) 932 455 344|1014 (34%)
uncorr 06 500 c 332 164 163|755 (22%) 266 131 131|683 (19%) 610 301 300|1104 (27%) 266 131 131|683 (19%)
uncorr 10 500 u 36 18 18|285 (6%) 36 18 18|285 (6%) 269 131 128|548 (23%) 36 18 18|285 (6%)

uncorr-s-w 01 500 c 66 33 28|474 (6%) 66 33 28|474 (6%) 466 224 167|1160 (14%) 66 33 28|474 (6%)
uncorr-s-w 06 500 c 96 46 46|511 (9%) 94 45 45|509 (9%) 386 191 191|911 (21%) 94 45 45|509 (9%)
uncorr-s-w 10 500 u 38 17 16|442 (4%) 36 16 16|440 (4%) 382 187 187|872 (21%) 36 18 18|440 (4%)

b-s-corr 01 500 c 8318 4154 4061|9992 (41%) 4486 2238 2148|6128 (35%) 5310 2639 3034|7044 (43%) 4486 2238 2148|6128 (35%)
b-s-corr 06 500 c 21858 10918 10771|22543 (48%) 2804 1396 1391|3305 (42%) 3212 1601 1915|4433 (43%) 1960 976 976|2453 (40%)
b-s-corr 10 500 c 6402 3199 3167|6844 (46%) 628 314 313|1102 (28%) 650 324 388|1346 (29%) 354 177 177|830 (21%)

instance family eil76

uncorr 01 75 c 96 46 44|138 (32%) 96 46 44|138 (32%) 199 97 65|254 (25%) 96 46 44|138 (32%)
uncorr 06 75 c 56 26 26|107 (24%) 56 26 26|107 (24%) 91 44 44|149 (30%) 56 26 26|107 (24%)
uncorr 10 75 u 10 5 5|45 (11%) 10 5 5|45 (11%) 58 28 28|91 (30%) 10 5 5|45 (11%)

uncorr-s-w 01 75 c 110 54 33|170 (19%) 110 54 33|170 (19%) 338 167 86|433 (20%) 110 54 33|170 (19%)
uncorr-s-w 06 75 c 38 19 17|96 (18%) 38 19 17|96 (18%) 94 46 42|151 (28%) 38 19 17|96 (18%)
uncorr-s-w 10 75 u 20 10 10|74 (14%) 20 10 10|74 (14%) 65 29 28|121 (23%) 20 10 10|74 (14%)

b-s-corr 01 75 c 6218 3100 2684|6446 (42%) 6218 3100 2684|6446 (42%) 6856 3419 3592|8249 (44%) 6210 3096 2680|6437 (42%)
b-s-corr 06 75 c 110 55 55|178 (31%) 110 55 55|178 (31%) 128 63 76|233 (32%) 110 55 55|178 (31%)
b-s-corr 10 75 c 318 159 157|358 (44%) 224 112 112|272 (41%) 246 123 148|353 (42%) 174 87 87|226 (38%)
uncorr 01 375 c 212 106 102|438 (23%) 212 106 102|438 (23%) 473 236 178|785 (23%) 212 106 102|438 (23%)
uncorr 06 375 c 160 79 79|461 (17%) 160 79 79|461 (17%) 302 148 146|653 (22%) 160 79 79|461 (17%)
uncorr 10 375 u 46 22 21|230 (9%) 46 22 21|230 (9%) 545 268 260|718 (36%) 46 23 23|230 (10%)

uncorr-s-w 01 375 c 200 99 96|560 (17%) 186 92 89|545 (16%) 3624 1806 1386|4938 (28%) 186 92 89|545 (16%)
uncorr-s-w 06 375 c 78 38 37|437 (8%) 78 38 37|437 (8%) 266 127 126|661 (19%) 78 38 37|437 (8%)
uncorr-s-w 10 375 u 32 14 14|347 (4%) 30 15 15|345 (4%) 156 77 76|528 (14%) 30 15 15|345 (4%)

b-s-corr 01 375 c 568 278 227|1901 (12%) 568 278 227|1901 (12%) 662 325 318|1252 (25%) 568 278 227|1901 (12%)
b-s-corr 06 375 c 3360 1679 1667|3708 (45%) 414 207 207|771 (27%) 454 227 272|973 (28%) 414 207 207|771 (27%)
b-s-corr 10 375 c 5232 2610 2572|5543 (46%) 586 290 289|935 (31%) 668 331 396|1217 (33%) 472 233 233|822 (28%)
uncorr 01 750 c 488 243 238|991 (24%) 352 175 170|851 (20%) 1094 545 419|1924 (22%) 352 175 170|851 (20%)
uncorr 06 750 c 1254 624 610|1891 (32%) 348 172 172|970 (18%) 869 430 427|1610 (27%) 348 172 172|970 (18%)
uncorr 10 750 u 174 84 71|604 (12%) 92 46 46|510 (9%) 626 307 301|1091 (28%) 58 29 29|475 (6%)

uncorr-s-w 01 750 c 152 75 71|838 (8%) 150 74 70|836 (8%) 1668 824 630|3122 (20%) 150 74 70|836 (8%)
uncorr-s-w 06 750 c 136 65 62|803 (8%) 74 36 35|736 (5%) 384 191 187|1200 (16%) 74 36 35|736 (5%)
uncorr-s-w 10 750 u 28 13 13|677 (2%) 22 11 11|667 (2%) 550 274 271|1342 (20%) 22 11 11|667 (2%)

b-s-corr 01 750 c 2576 1282 1152|6124 (19%) 1754 871 744|5281 (14%) 2324 1150 1170|3725 (31%) 1754 871 744|5281 (14%)
b-s-corr 06 750 c 39336 19666 19490|39884 (49%) 1866 932 930|2597 (36%) 2158 1077 1290|3470 (37%) 686 343 343|1416 (24%)
b-s-corr 10 750 c 1664464 832213 819235|1652903 (50%) 4906 2450 2435|5635 (43%) 5288 2640 3150|7241 (44%) 1890 943 940|2615 (36%)

instance family eil101

uncorr 01 100 c 48 24 24|97 (25%) 48 24 24|97 (25%) 91 46 36|151 (24%) 48 24 24|97 (25%)
uncorr 06 100 c 90 42 42|161 (26%) 90 42 42|161 (26%) 151 72 72|228 (32%) 90 42 42|161 (26%)
uncorr 10 100 u 26 13 13|62 (21%) 26 13 13|62 (21%) 96 47 46|127 (36%) 24 12 12|60 (20%)

uncorr-s-w 01 100 c 44 21 12|121 (10%) 44 21 12|121 (10%) 149 73 34|269 (13%) 44 21 12|121 (10%)
uncorr-s-w 06 100 c 20 9 9|97 (9%) 20 9 9|97 (9%) 74 35 32|161 (20%) 20 9 9|97 (9%)
uncorr-s-w 10 100 u 22 11 11|105 (10%) 22 11 11|105 (10%) 67 31 30|158 (19%) 22 11 11|105 (10%)

b-s-corr 01 100 c 720 360 296|870 (34%) 720 360 296|870 (34%) 756 377 376|1015 (37%) 720 360 296|870 (34%)
b-s-corr 06 100 c 144 72 72|237 (30%) 144 72 72|237 (30%) 152 76 91|294 (31%) 144 72 72|237 (30%)
b-s-corr 10 100 c 582 291 289|658 (44%) 460 230 230|544 (42%) 466 233 280|660 (42%) 426 213 213|510 (42%)
uncorr 01 500 c 200 100 98|494 (20%) 200 100 98|494 (20%) 485 242 199|872 (23%) 200 100 98|494 (20%)
uncorr 06 500 c 196 98 98|606 (16%) 196 98 98|606 (16%) 360 176 176|840 (21%) 196 98 98|606 (16%)
uncorr 10 500 u 48 22 20|282 (7%) 44 22 21|278 (8%) 242 119 107|486 (22%) 44 22 22|278 (8%)

uncorr-s-w 01 500 c 626 308 253|1098 (23%) 612 301 247|1084 (23%) 27178 13577 10687|35473 (30%) 612 301 247|1084 (23%)
uncorr-s-w 06 500 c 68 33 33|488 (7%) 68 33 33|488 (7%) 300 148 144|815 (18%) 68 33 33|488 (7%)
uncorr-s-w 10 500 u 28 14 14|445 (3%) 28 14 14|445 (3%) 202 101 100|704 (14%) 28 14 14|445 (3%)

b-s-corr 01 500 c 6140 3065 2870|9999 (29%) 3732 1862 1702|7038 (24%) 4416 2203 2432|5966 (41%) 3706 1849 1689|7012 (24%)
b-s-corr 06 500 c 11490 5742 5695|11887 (48%) 714 357 356|1194 (30%) 758 379 454|1487 (31%) 670 335 334|1150 (29%)
b-s-corr 10 500 c 119750 59866 59499|115983 (51%) 4822 2408 2403|5161 (47%) 5044 2519 3017|6460 (47%) 2224 1111 1111|2642 (42%)
uncorr 01 1000 c 2148 1073 1063|2854 (37%) 1082 540 537|1726 (31%) 4006 2002 1679|5659 (30%) 896 447 444|1538 (29%)
uncorr 06 1000 c 986 491 486|1851 (26%) 750 374 371|1607 (23%) 1954 970 966|3011 (32%) 508 253 253|1357 (19%)
uncorr 10 1000 u 126 58 47|637 (7%) 76 38 37|572 (6%) 482 239 232|1057 (22%) 76 38 37|572 (6%)

uncorr-s-w 01 1000 c 32440 16204 12353|31686 (39%) 31940 15954 12152|31158 (39%) - - - 31826 15897 12107|31031 (39%)
uncorr-s-w 06 1000 c 376 185 172|1261 (14%) 96 47 47|955 (5%) 463 226 223|1530 (15%) 96 47 47|955 (5%)
uncorr-s-w 10 1000 u 36 17 15|875 (2%) 34 17 17|872 (2%) 350 175 174|1375 (13%) 34 17 17|872 (2%)

b-s-corr 01 1000 c 242728 121358 120894|252979 (48%) 73622 36807 36423|82106 (44%) 84676 42324 50052|103974 (48%) 65682 32837 32463|73997 (44%)
b-s-corr 06 1000 c 2087110 1043547 1025660|2115122 (48%) 7142 3570 3561|8126 (44%) 7758 3876 4640|10501 (44%) 1882 941 938|2867 (33%)
b-s-corr 10 1000 c - - - 35006 17496 17387|35797 (49%) 37988 18985 22651|46530 (49%) 7190 3589 3579|8131 (44%)

28

scheme decides whether an item is compulsory or unprofitable or none of these
cases independently of other items whose properties are already known.

The results show that the pre-processing step is important and leads to
great speeding-up. The pre-processing scheme excludes on average 27.7% of
items per instance of the uncorr type and 13.2% of items per instance of the
uncorr-s-w type. The instances of these two types are vulnerable for reduc-
tion when the problem is PWTu and when capacities are large. Furthermore,
they are processed relatively fast as require much less number of auxiliary vari-
ables. Pre-processing allows LB100 to accelerate computations for the uncorr
and uncorr-s-w types of the instances by 328% and 421% on average, respec-
tively. The average value of ratio γ is 1.5 for the uncorr type against 1.2 for the
uncorr-s-w type. Interestingly, despite on the larger portion of auxiliary y-type
variables excluded for the uncorr type, its speeding-up indicator ω is less than
that one of the uncorr-s-w type. Pre-processing is rather costly when applied to
the unconstrained instances. However, the reasoning based on the sequencing
constraints significantly improves the situation. This is shown by the values of
η, which indicate that the time taken by pre-processing can be reduced up to
∼400 times when comparing LB100 to LB100

red. pre-pr.. Otherwise, the running

time of LB100
red. pre-pr. often dominates one of LB100

no pre-pr. that leads to avoiding
the pre-processing stage when dealing with PWTu.

In general, LB100 proves its ability to master large instances in a reasonable
time. It needs less than ∼30 minutes to find an approximate solution to any
instance of family pla33810. Almost all the instances of family pla85900 can
be solved approximately within 1 hour; it takes no longer than ∼4 hours for any
of them. The quality of approximate solutions is outstanding as is confirmed by
the very small values of ratio ρ.

10. Conclusion

We have introduced a new non-linear knapsack problem where items to be
selected are subject to the total reward that a vehicle obtains by summing
up the profits of chosen items and the subtracting costs resulted from their
transportation along a fixed route. We have shown that both the constrained
and unconstrained versions of the problem are NP-hard. Our proposed pre-
processing scheme can significantly decrease the size of instances making them
easier for computation. The experimental results show that small size instances
can be solved to optimality in a reasonable time by any of the two proposed exact
approaches. Larger instances can be efficiently handled by our approximate
approach producing near-optimal solutions.

As a future work, this problem has several natural generalizations. The first
evident generalization is for sure the traveling thief problem where the sequence
of cities may be changed. This variant asks for the mutual solution of the
traveling salesman and knapsack problems. Another interesting situation takes
place when cities may be skipped because are of no worth, for example any
item stored there has in fact low or negative contribution to the total reward.

29

Table 3: Results of Computational Experiments on Large Size Instances

instance m α, % ver
LB100 LB100

no pre-pr. LB100
red. pre-pr.

t, sec β, % tp ω, % ρ t, sec β, % ω, % γ η

instance family pla33810

uncorr 01 33809 29.0 c 515 78.7 0 0 1.001 3358 93.6 551 1.19 1
uncorr 06 33809 12.8 c 342 42.8 0 0 1.001 2083 56.3 509 1.32 1
uncorr 10 33809 35.9 u 52 15.0 13 0 1.001 334 26.4 543 1.76 10

uncorr-s-w 01 33809 19.3 c 435 89.5 0 0 1.001 1411 93.5 225 1.04 1
uncorr-s-w 06 33809 11.2 c 607 47.7 0 0 1.001 2795 56.2 361 1.18 1
uncorr-s-w 10 33809 8.7 c 25 18.2 0 0 1.001 251 26.3 902 1.44 1

b-s-corr 01 33809 0.0 c 447 93.6 0 0 1.001 463 93.6 4 1.00 1
b-s-corr 06 33809 0.0 c 566 56.3 0 0 1.001 610 56.3 8 1.00 1
b-s-corr 10 33809 0.0 c 563 26.5 0 0 1.001 603 26.5 7 1.00 1
uncorr 01 169045 30.6 c 587 76.6 0 0 1.001 3050 93.6 419 1.22 1
uncorr 06 169045 12.8 c 1204 42.7 0 0 1.001 2299 56.2 91 1.32 1
uncorr 10 169045 35.8 u 157 14.7 94 36 1.001 115 26.4 0 1.79 8

uncorr-s-w 01 169045 15.2 c 348 90.5 0 0 1.001 1561 93.5 348 1.03 1
uncorr-s-w 06 169045 11.7 c 590 47.2 0 0 1.001 2141 56.2 263 1.19 1
uncorr-s-w 10 169045 9.0 c 549 18.0 0 0 1.001 6245 26.3 1037 1.46 1

b-s-corr 01 169045 0.0 c 1384 93.7 0 0 1.001 1410 93.7 2 1.00 1
b-s-corr 06 169045 0.0 c 438 56.4 0 0 1.002 442 56.4 1 1.00 1
b-s-corr 10 169045 0.0 c 718 26.3 0 0 1.002 814 26.3 13 1.00 1
uncorr 01 338090 31.6 c 1589 75.4 0 0 1.001 9315 93.5 486 1.24 1
uncorr 06 338090 12.8 c 1023 42.6 0 0 1.001 1645 56.2 61 1.32 1
uncorr 10 338090 35.9 u 947 14.7 238 0 1.001 1224 26.3 29 1.79 6

uncorr-s-w 01 338090 15.2 c 1209 90.5 0 0 1.001 5125 93.5 324 1.03 1
uncorr-s-w 06 338090 11.9 c 966 47.1 0 0 1.001 2033 56.2 111 1.19 1
uncorr-s-w 10 338090 9.0 c 1156 18.0 0 0 1.001 3621 26.3 213 1.46 1

b-s-corr 01 338090 0.0 c 829 93.6 0 0 1.001 857 93.6 3 1.00 1
b-s-corr 06 338090 0.0 c 873 56.3 0 0 1.002 947 56.3 8 1.00 1
b-s-corr 10 338090 0.0 c 1095 26.3 0 0 1.002 1176 26.3 7 1.00 1

instance family pla85900

uncorr 01 85899 32.4 c 2514 73.8 0 0 1.002 10614 93.5 322 1.27 1
uncorr 06 85899 13.5 c 3028 41.6 0 0 1.002 40283 56.1 1230 1.35 1
uncorr 10 85899 40.8 u 213 13.7 59 0 1.002 323 26.3 52 1.92 28

uncorr-s-w 01 85899 16.4 c 1683 88.6 0 0 1.002 9566 93.5 468 1.06 3
uncorr-s-w 06 85899 12.3 c 1985 46.6 0 0 1.002 13408 56.2 575 1.20 1
uncorr-s-w 10 85899 13.6 u 158 17.2 3 0 1.002 1165 26.3 637 1.53 393

b-s-corr 01 85899 0.0 c 3967 93.6 0 2 1.002 3903 93.6 0 1.00 1
b-s-corr 06 85899 0.0 c 1570 56.3 0 0 1.002 1575 56.3 0 1.00 1
b-s-corr 10 85899 0.0 c 3491 26.4 0 0 1.002 3627 26.4 4 1.00 1
uncorr 01 429495 32.5 c 3436 73.6 0 0 1.002 27833 93.5 710 1.27 1
uncorr 06 429495 13.6 c 5495 41.4 0 0 1.002 47092 56.2 757 1.36 1
uncorr 10 429495 40.4 u 1471 13.8 936 58 1.001 934 26.3 0 1.90 18

uncorr-s-w 01 429495 16.3 c 2380 90.2 0 0 1.002 20790 93.5 773 1.04 1
uncorr-s-w 06 429495 12.8 c 4508 46.3 0 0 1.002 10825 56.2 140 1.21 1
uncorr-s-w 10 429495 13.2 u 545 17.4 23 0 1.001 1311 26.3 141 1.51 256

b-s-corr 01 429495 0.0 c 3105 93.6 0 0 1.002 3145 93.6 1 1.00 1
b-s-corr 06 429495 0.0 c 5483 56.2 0 0 1.002 5457 56.2 0 1.00 1
b-s-corr 10 429495 0.0 c 4751 26.3 0 0 1.002 4872 26.3 3 1.00 1
uncorr 01 858990 33.2 c 6904 72.6 0 0 1.002 11982 93.5 74 1.29 1
uncorr 06 858990 13.6 c 5510 41.4 0 0 1.002 7860 56.2 43 1.36 1
uncorr 10 858990 40.6 u 3650 13.9 1544 0 1.001 4627 26.3 27 1.90 16

uncorr-s-w 01 858990 16.4 c 4859 90.2 0 0 1.002 43064 92.9 786 1.03 1
uncorr-s-w 06 858990 12.7 c 7095 46.3 0 0 1.002 15904 56.2 124 1.21 1
uncorr-s-w 10 858990 13.2 u 5058 17.4 68 0 1.001 12868 26.3 154 1.51 183

b-s-corr 01 858990 0.0 c 5474 93.5 0 0 1.002 5498 93.5 0 1.00 1
b-s-corr 06 858990 0.0 c 12566 56.2 0 0 1.002 12681 56.2 1 1.00 1
b-s-corr 10 858990 0.0 c 13806 26.4 0 0 1.002 13981 26.4 1 1.00 1

30

Finally, the possibility to pickup and deliver the items is for certain one another
challenging problem. The outcomes of our research can further be adopted to
solve routing problems with nonlinear cost functions, for example those when
such a measure as gallon per vehicle mile versus load is used.

11. Acknowledgements

We want to thank the referees for their valuable suggestions which helped to
improve the paper. This research has been supported through ARC Discovery
Project DP130104395.

12. References

References

Applegate, D., Cook, W. J., & Rohe, A. (2003). Chained lin-kernighan for large
traveling salesman problems. INFORMS Journal on Computing , 15 , 82–92.

Balas, E. (1989). The prize collecting traveling salesman problem. Networks,
19 , 621–636.

Beham, A., Fechter, J., Kommenda, M., Wagner, S., Winkler, S. M., & Af-
fenzeller, M. (2015). Optimization strategies for integrated knapsack and
traveling salesman problems. In R. Moreno-Dı́az, F. Pichler, & A. Quesada-
Arencibia (Eds.), Computer Aided Systems Theory – EUROCAST 2015: 15th
International Conference, Las Palmas de Gran Canaria, Spain, February 8-
13, 2015, Revised Selected Papers (pp. 359–366). Cham: Springer Interna-
tional Publishing. doi:10.1007/978-3-319-27340-2_45.

Bockmayr, A., & Hooker, J. N. (2005). Constraint programming. In G. N.
K. Aardal, & R. Weismantel (Eds.), Discrete Optimization (pp. 559 – 600).
Elsevier volume 12 of Handbooks in Operations Research and Management
Science. doi:10.1016/S0927-0507(05)12010-6.

Bonyadi, M. R., Michalewicz, Z., & Barone, L. (2013). The travelling thief
problem: The first step in the transition from theoretical problems to realistic
problems. In Proceedings of the IEEE Congress on Evolutionary Computa-
tion, CEC 2013, Cancun, Mexico, June 20-23, 2013 (pp. 1037–1044). IEEE.
doi:10.1109/CEC.2013.6557681.

Bretthauer, K. M., & Shetty, B. (2002). The nonlinear knapsack problem -
algorithms and applications. European Journal of Operational Research, 138 ,
459–472.

Chand, S., & Wagner, M. (2016). Fast heuristics for the multiple traveling
thieves problem. In Proceedings of the 2016 Annual Conference on Genetic
and Evolutionary Computation GECCO ’16. New York, NY, USA: ACM.
doi:10.1145/2908812.2908841.

31

http://dx.doi.org/10.1007/978-3-319-27340-2_45
http://dx.doi.org/10.1016/S0927-0507(05)12010-6
http://dx.doi.org/10.1109/CEC.2013.6557681
http://dx.doi.org/10.1145/2908812.2908841

Chekuri, C., & Khanna, S. (2005). A polynomial time approximation scheme
for the multiple knapsack problem. SIAM J. Comput., 35 , 713–728.

Elhedhli, S. (2005). Exact solution of a class of nonlinear knapsack problems.
Oper. Res. Lett., 33 , 615–624.

Erlebach, T., Kellerer, H., & Pferschy, U. (2001). Approximating multi-objective
knapsack problems. In F. K. H. A. Dehne, J.-R. Sack, & R. Tamassia (Eds.),
WADS (pp. 210–221). Springer volume 2125 of Lecture Notes in Computer
Science.

Faulkner, H., Polyakovskiy, S., Schultz, T., & Wagner, M. (2015). Approximate
approaches to the traveling thief problem. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation GECCO ’15 (pp. 385–
392). New York, NY, USA: ACM. doi:10.1145/2739480.2754716.

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems with
profits. Transportation Science, 39 , 188–205. doi:10.1287/trsc.1030.0079.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

GOODYEAR (2008). Factors Affecting Truck Fuel Economy.
http://www.goodyeartrucktires.com/pdf/resources/publications/Factors
Affecting Truck Fuel Economy.pdf.

Hochbaum, D. S. (1995). A nonlinear knapsack problem. Oper. Res. Lett., 17 ,
103–110.

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. Springer,
Berlin, Germany.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43 ,
408–416. doi:10.1287/trsc.1090.0301.

Li, H.-L. (1994). A global approach for general 0-1 fractional programming.
European Journal of Operational Research, 73 , 590 – 596. doi:10.1016/
0377-2217(94)90257-7.

Lin, C., Choy, K., Ho, G., Chung, S., & Lam, H. (2014). Survey of green vehicle
routing problem: Past and future trends. Expert Systems with Applications,
41 , 1118 – 1138. doi:10.1016/j.eswa.2013.07.107.

Lourenço, N., Pereira, F. B., & Costa, E. (2016). An evolutionary approach to
the full optimization of the traveling thief problem. In F. Chicano, B. Hu, &
P. Garćıa-Sánchez (Eds.), Evolutionary Computation in Combinatorial Opti-
mization: 16th European Conference, EvoCOP 2016, Porto, Portugal, March
30 - April 1, 2016, Proceedings (pp. 34–45). Cham: Springer International
Publishing. doi:10.1007/978-3-319-30698-8_3.

32

http://dx.doi.org/10.1145/2739480.2754716
http://dx.doi.org/10.1287/trsc.1030.0079
http://dx.doi.org/10.1287/trsc.1090.0301
http://dx.doi.org/10.1016/0377-2217(94)90257-7
http://dx.doi.org/10.1016/0377-2217(94)90257-7
http://dx.doi.org/10.1016/j.eswa.2013.07.107
http://dx.doi.org/10.1007/978-3-319-30698-8_3

Martello, S., Pisinger, D., & Toth, P. (1999). Dynamic programming and strong
bounds for the 0-1 knapsack problem. Manage. Sci., 45 , 414–424. doi:10.
1287/mnsc.45.3.414.

Martello, S., & Toth, P. (1990). Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons.

Mei, Y., Li, X., Salim, F., & Yao, X. (2015). Heuristic evolution with genetic pro-
gramming for traveling thief problem. In 2015 IEEE Congress on Evolution-
ary Computation (CEC) (pp. 2753–2760). doi:10.1109/CEC.2015.7257230.

Mei, Y., Li, X., & Yao, X. (2016). On investigation of interdependence between
sub-problems of the travelling thief problem. Soft Computing , 20 , 157–172.
doi:10.1007/s00500-014-1487-2.

Polyakovskiy, S., Bonyadi, M. R., Wagner, M., Michalewicz, Z., & Neumann,
F. (2014). A comprehensive benchmark set and heuristics for the traveling
thief problem. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation GECCO ’14 (pp. 477–484). New York, NY, USA:
ACM.

Polyakovskiy, S., & Neumann, F. (2015). Packing while traveling: Mixed in-
teger programming for a class of nonlinear knapsack problems. In L. Michel
(Ed.), Integration of AI and OR Techniques in Constraint Programming (pp.
332–346). Springer International Publishing volume 9075 of Lecture Notes in
Computer Science. doi:10.1007/978-3-319-18008-3_23.

Reinelt, G. (1991). TSPLIB - A Traveling Salesman Problem Library. ORSA
Journal on Computing , 3 , 376–384. doi:10.1287/ijoc.3.4.376.

Rossi, F., van Beek, P., & Walsh, T. (2008). Chapter 4 constraint programming.
In V. L. Frank van Harmelen, & B. Porter (Eds.), Handbook of Knowledge
Representation (pp. 181 – 211). Elsevier volume 3 of Foundations of Artificial
Intelligence. doi:10.1016/S1574-6526(07)03004-0.

Rossi, F., Beek, P. v., & Walsh, T. (2006). Handbook of Constraint Programming
(Foundations of Artificial Intelligence). New York, NY, USA: Elsevier Science
Inc.

Sherali, H., & Adams, W. (1999). A Reformulation Linearization Technique for
Solving Discrete and Continuous Nonconvex Problems. J Kluwer Academic
Publishing, Boston, MA.

Tawarmalani, M., Ahmed, S., & Sahinidis, N. (2002). Global optimization
of 0-1 hyperbolic programs. Journal of Global Optimization, 24 , 385–416.
doi:10.1023/A:1021279918708.

Toth, P., & Vigo, D. (2014). Vehicle Routing . Society for Industrial and Applied
Mathematics. doi:10.1137/1.9781611973594.

33

http://dx.doi.org/10.1287/mnsc.45.3.414
http://dx.doi.org/10.1287/mnsc.45.3.414
http://dx.doi.org/10.1109/CEC.2015.7257230
http://dx.doi.org/10.1007/s00500-014-1487-2
http://dx.doi.org/10.1007/978-3-319-18008-3_23
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1016/S1574-6526(07)03004-0
http://dx.doi.org/10.1023/A:1021279918708
http://dx.doi.org/10.1137/1.9781611973594

Vansteenwegen, P., Souffriau, W., & Oudheusden, D. V. (2011). The orienteer-
ing problem: A survey. European Journal of Operational Research, 209 , 1 –
10. doi:http://10.1016/j.ejor.2010.03.045.

Westerlund, A., Göthe-Lundgren, M., & Larsson, T. (2006). A stabilized col-
umn generation scheme for the traveling salesman subtour problem. Discrete
Applied Mathematics, 154 , 2212 – 2238. doi:10.1016/j.dam.2005.04.012.
International Symposium on Combinatorial Optimization CO’02.

Wu, J., Polyakovskiy, S., & Neumann, F. (2016). On the impact of the rent-
ing rate for the unconstrained nonlinear knapsack problem. In Proceedings
of the 2016 Annual Conference on Genetic and Evolutionary Computation
GECCO ’16 (pp. 413–419). New York, NY, USA: ACM. doi:10.1145/
2908812.2908862.

34

http://dx.doi.org/http://10.1016/j.ejor.2010.03.045
http://dx.doi.org/10.1016/j.dam.2005.04.012
http://dx.doi.org/10.1145/2908812.2908862
http://dx.doi.org/10.1145/2908812.2908862

	1 Introduction
	2 Problem Statement
	3 Complexity of the Problem
	4 Sequencing Constraints
	5 Pre-processing
	6 Lower and Upper Bounds
	6.1 Lower Bound
	6.2 Upper Bound

	7 Mixed-Integer Programming-Based Approach
	8 Branch-Infer-and-Bound Approach
	9 Computational Experiments
	9.1 Computational Experiments on the Set of Small Size Instances
	9.1.1 Performance of the Pre-processing Scheme
	9.1.2 Performance of the Approximate Approach
	9.1.3 Performance of the Exact Approaches
	9.1.4 Impact of the Sequencing Constraints

	9.2 Computational Experiments on the Set of Large Size Instances

	10 Conclusion
	11 Acknowledgements
	12 References

