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In some manufacturing and service processes, several stages must be performed, but there is some freedom

in the ordering of stages. Operations reversal means switching the order of two stages. Several authors have

studied the benefits of operations reversal, focusing on the reduction of a certain variable’s variance or a

related measure. This paper focuses instead on cost. We construct a model with the standard objective

of minimizing the long-run average inventory-related cost. First, by using stochastic orders, we identify

conditions under which operations reversal reduces cost. We find that in some cases the variability and cost

objectives agree on when operations reversal is beneficial, but in other cases they disagree. In particular,

when demands are multinomially distributed, variability reduction may be accompanied by cost increase. We

show that, to guarantee a lower cost, we need certain properties on the aggregated demand at the choice-level

(such as demands for sweaters of the same color). Finally, we examine the effects of cost parameters and

lead times on operations reversal under the cost measure.
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1. Introduction

A manufacturing process of a product often consists of many stages, with a certain feature being

added to the product at each stage. As consumers demand increasingly high product variety,

which means more choices for each feature of a product, manufacturers need to develop production

capabilities to maintain customer satisfaction without jeopardizing supply chain costs. Operations

reversal, which reverses two consecutive stages of the original manufacturing process, is one innova-

tive approach some manufacturers employ to achieve this goal. The potential influence of operations

reversal is multidimensional. The intermediate products, which are the unfinished products that
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have just finished the former stage but not started the latter one, vary under different produc-

tion sequences as the feature added to them switches. When the demands for each end product

are uncertain, a properly chosen sequence of production may benefit the supply chain by better

matching the production volumes with demands. One well documented example is a practice at

Benetton (Harvard Business School (1986)), in which the company reversed the dyeing and knitting

stages in the traditional production process to improve operating efficiency and customer service.

(See Harvard Business School (1986) and references therein for many other examples, including

the sequencing of hardware and software installations for personal computers, the order of adding

different features for deskjet printers at Hewlett-Packard, and the sequencing of various assem-

bly stages in fountain pen production.) Other examples include sequencing cutting operations

associated with a CNC machine (Bard and Feo (1989)), delaying the integration of an expensive

component in auto industry (Schraner and Hausman (1997)), and sequencing of machining and

heating operations in the mechanical industry (Shi et al. (2014)).

Noticing that Benetton only applied operations reversal to 20% of its woolen production process,

Lee and Tang (1998) formulate a two-stage model with random demand to explore conditions

under which operations reversal is beneficial. They use the total variability, measured by the sum

of the variances of the production volumes, as the performance measure. Kapuscinski and Tayur

(1999) examine the same issue but define the total variability as the sum of the standard deviations

of the production volumes. Jain and Paul (2001) extend these studies to allow multiple market

segments and random customer preferences. One key insight from these studies is that, the more

distinctive feature (i.e., the feature that has more imbalanced consumer choice probabilities) should

be processed first.

However, as mentioned by Lee and Tang (1998), a major limitation of the above modeling

approach is the “use of the total variability as a performance measure. Future studies can include

the explicit modeling of the cost consequences of variability directly.” Indeed, even though a larger

variability, whether demand- or supply-oriented, is often associated with a higher supply chain
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cost, Ridder et al. (1998) point out that this intuition is not necessarily correct. Given that the

relationship between variability and cost implications of operations reversal has remained unclear,

the goal of the present paper is to examine the problem from a cost perspective and compare the

results with those based on the total variability measure.

More specifically, we construct a model with the standard objective of minimizing the long-

run average inventory-related cost, based on the same manufacturing process as that of Lee and

Tang (1998) and Kapuscinski and Tayur (1999). The standard inventory-cost objective is a simple,

stylized measure of performance, and so are the standard variability measures. But it is worthwhile

to study such simplified formulations to gain insights which more accurate but complex objectives

would obscure.

We show that under multivariate normal demand, the total variability measure used by Kapus-

cinski and Tayur (1999) is equivalent to our cost measure. This is consistent with the classic

single-item, single-stage inventory model with normal demand, where the optimal cost is propor-

tional to the standard deviation of demand. However, for a general demand distribution, this is not

always true. Indeed, we have examples to demonstrate that re-sequencing the production stages

according to the criterion of total variability, as adopted by Lee and Tang (1998) and Kapuscinski

and Tayur (1999), may even increase cost instead of reducing it in certain cases.

Using ideas from the theory of stochastic order, we introduce a new set of sufficient conditions

under which operations reversal reduces cost. While the previous works demonstrate that the more

“distinctive” feature should be processed first, our sufficient conditions imply that the feature

with less variable demand (in the sense of convex order and dilation order) for each choice should

be processed early in the production. Interestingly, the total variability criteria proposed by the

previous studies are also implied by our sufficient conditions, even though these criteria are not

sufficient conditions on their own. That is, our condition for reversal to improve performance is

stronger than lower total variability.

While our focus is on multiple products, several researchers have studied optimal operations

sequencing of single-product production systems. For example, Schraner and Hausman (1997)
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investigate the effect of holding costs and production lead times of different production stages. Shi

et al. (2014) examine the effect of yield loss. Both of these studies also use the total system cost

as a measure of effectiveness. Our paper can thus be considered complementary to these works. Of

course, it would be ideal to combine all these features – different production costs and lead times,

yield loss, multiple products – in one single model, but such a model presents tremendous challenge

to analytical tractability even without considering production sequencing issues. Nonetheless, we

take an initial step in examining the effect of different cost parameters and general lead times in

our multiproduct model by further restricting the end product demands to be independent and

identically distributed. We hope our analysis here can help facilitate future research efforts in

developing more comprehensive models.

Finally, it is worth mentioning that our use of stochastic comparison techniques was inspired

by and expands the efforts in the applications of these tools in the supply chain management

literature. Gerchak and Mossman (1992) utilize variability order to study the effect of demand

randomness on optimal inventory levels and the expected costs in the newsvendor model. Ridder

et al. (1998) employ stochastic dominance relations to characterize demand variabilities in the

newsvendor problem. Song (1994a) adopts stochastic comparison methods to study the effect of

lead time and demand uncertainties in a base-stock system with the objective of long-run average

cost. Song (1994b) conducts a similar analysis under the criteria of infinite-horizon expected total

discounted cost. Song and Yao (2002) and Lu et al. (2003) investigate the influence of lead-time and

demand variabilities in assemble-to-order systems. Iyer and Jain (2003) compare both the size and

the variability of lead-time distributions for retailers in a manufacturer-retailer system. Gerchak

and He (2003) utilize mean-preserving transformation and convex order to study the benefits of

risk pooling for the newsvendor problem. Gupta and Cooper (2005) study the relationship between

yield rate uncertainty and expected profit. Jemäı and Karaesmen (2005) explore inter-demand time

variabilities in a make-to-stock queue. Corbett and Rajaram (2006) study the pooling effect for

general multivariate demand distributions. Using multivariate stochastic comparision, they find
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the value of pooling to be larger when faced with less positively correlated demand. Zhang and

Cheung (2008) derive the optimal retailer replenishment sequences in a distribution system with

one supplier and multiple retailers via convex order and stochastic order. Song et al. (2010) analyze

the effect of lead time and demand uncertainties in an (r, q) inventory system. More recently,

Federgruen and Wang (2013) derive conditions for monotonicity of optimal policy parameters for

inventory systems with (r, q) or (r,nq) policy, Huang et al. (2015) examine the sourcing strategy

under random demand surges.

While most of the studies in the literature such as the ones mentioned above work with end

product demands, our problem requires working with intermediate product demands, which are

aggregated from end product demands. This is because our model involves multiple end products in

a two-stage system and allows the option to reverse the two stages, as will be demonstrated in detail

in Section 2.1. Working with intermediate product demand complicates the analysis substantially.

For instance, few distributions preserve under convolution, and the intermediate product demands

in the reversed system are intrinsically connected with those in the original system, excluding

many results of stochastic comparison to be adopted without obtaining trivial results. The online

Appendix B provides more details on this point.

The rest of this paper is organized as follows. Section 2 introduces our cost model and summarizes

previous works. Section 3 develops our results and relates them to those based on the variability

measures. Section 4 examines the effect of different cost parameters and general lead times on

reversal decisions (The online Appendix C provides detailed derivations of the inventory variables).

Section 5 concludes our study. All proofs are provided in Appendix A.

2. Model and Previous Works
2.1. Model and Assumptions

Consider a periodic-review manufacturing process for a product (e.g., a sweater) with two features

– feature A (e.g., style) and feature B (e.g., color). The process consists of two steps, each of which

involves adding a separate feature to the base module through some processing procedure, such

as knitting or dyeing. Suppose there are m choices for feature A (e.g., turtleneck, v-neck) and
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n choices for feature B (e.g., red, blue), then there are mn variants of the end product. Denote

M = {1, ...,m}, and N = {1, ..., n}. We rank the m (n) choices of feature A (B) in an arbitrary

order labeled from 1 to m (n). Our objective is to determine whether we should process feature A

or feature B in the first stage of the process. The two corresponding systems are denoted as System

AB and System BA. If feature A (B) is processed first, there are m (n) different intermediate

products with feature A (B) only. For simplicity, we use Ai (Bj) to denote the intermediate product

with the ith (jth) choice of feature A (B). Similarly, AiBj denotes the end product with the ith

choice of feature A and jth choice of feature B. The process charts of the two systems are displayed

in Figure 1.

(a) System AB (b) System BA

Figure 1 Process Charts for the Two Systems under Different Processing Sequences

We assume the demands for each end product are i.i.d. over time, and let Dij denote the one-

period demand of product AiBj. However, demands across different end products in the same

period can be correlated. In System AB, let Di =
∑

j∈N Dij denote the one-period demand for Ai

(e.g., the aggregate one-period demand for turtleneck sweaters). Similarly, D̃j =
∑

i∈M Dij is the

one-period demand for Bj (e.g., the aggregate one-period demand for red sweaters) in System BA.

Denote

D=
∑
i∈M

Di =
∑
j∈N

D̃j =
∑

i∈M,j∈N

Dij
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the aggregate end-product demand. Let

E(D) = μ, V (D) = σ2.

Here and throughout the paper, for any random variable Z, we use E(Z), V (Z), and SD(Z) to

denote its mean, variance, and standard deviation. Also, Cov(Z,Z ′) denotes the covariance of Z

and Z ′.

Similar to Lee and Tang (1998), we assume the processing time at each stage is one period. Also,

each stage follows a periodic-review, base-stock policy. (The inventory policy parameters and other

related notation are summarized in Table 1.) Thus, we have a pull system and the production

volume for each stage equals the demand of the previous period at that stage. Moreover, the system

operates in an uncapacitated manner and no backlog is allowed. As implicitly implied by Lee and

Tang (1998) and similar to Lee et al. (2000), in each period, if there is a shortage, whether at

the level of intermediate product or end product, the manufacturer can expedite the production

at a higher cost (eg. working overtime, hiring temporary workers, leasing extra machines, etc.).

Alternatively, it can borrow products from other sources immediately to fill the demand at a higher

cost, and returns those products when they become available eventually. We call this extra cost

the penalty cost for inventory shortage.

There is no production setup cost, but there is an inventory holding cost at all stages. Assume

there are always abundant base modules available for processing (at the beginning of stage 1, termed

stage 0). We shall neglect the holding cost associated with the base module in our analysis since

operations reversal does not affect the total amount of base modules used up in the manufacturing

process. To focus exclusively on the effect of demand variability on operations reversal and facilitate

comparison with the existing results, we assume the holding and penalty costs are stage dependent

but feature independent, that is, the cost of adding any feature in a given stage is considered the

same. We also assume they are homogeneous across different choices of a given feature within each

stage , i.e., choice independent. Denote by hk and pk the unit per-period holding and penalty costs

at stage k, k= 1,2, respectively. We adopt the long-run average cost as the performance measure.
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It is well known that for serial systems without setup costs, a base-stock policy is optimal (see

Clark and Scarf (1960)). According to Theorem 6 in Van Houtum et al. (1996), a base-stock

policy is optimal for the two-stage divergent system with independent demands under a balance

assumption. Note that our system is a two-stage divergent system and the balance assumption is

automatically satisfied due to the assumption that the manufacturer can borrow items and return

them later. Hence a base-stock policy is optimal here when the demands for different end products

are independent of each other. When demands are dependent, however, the optimal policy remains

unknown. Nonetheless, base-stock policies are prevalent in many supply chains that involve multiple

products with no setup costs, including serial systems, distribution systems, and assemble-to-order

systems. Any analysis developed upon this type of policy would shed light on how to manage

realistic supply chains. Thus, we assume a base-stock policy.

For stage k= 1,2, define

Rk(x, y) = hk(x− y)+ + pk(y−x)+. (1)

Note that (1) is the classic form of a newsvendor function, where x means the base-stock level, and

y is the product demand. Clearly, Rk(x, y) is convex in y for any given x. The long-run average

costs for system AB and system BA for given base-stock policies can be expressed respectively as

CAB(s;S) =
∑
i∈M

E(R1(si,Di))+
∑

i∈M,j∈N

E(R2(Sij,Dij)), (2)

and

CBA(̃s; S̃) =
∑
j∈N

E(R1(s̃j, D̃j))+
∑

i∈M,j∈N

E(R2(S̃ij,Dij)), (3)

where si and s̃j are the order up to levels for intermediate products Ai and Bj, Sij and S̃ij are

the order up to levels for end product AiBj in Systems AB and BA, Di and D̃j are the one-period

demands for intermediate products Ai and Bj, Dij is the one-period demand for end product AiBj,

all of which can be found in Table 1.
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System AB System BA

End Product Demand Dij, i∈M , j ∈N Dij, i∈M , j ∈N

Base-Stock Level Sij, i∈M , j ∈N S̃ij, i∈M , j ∈N

Base-Stock Level Vector S S̃

Intermediate Product Demand Di =
∑

j∈N Dij D̃j =
∑

i∈M Dij

Distribution/Density Fi/fi F̃j/f̃j

Base-Stock Level si s̃j

Base-Stock Level Vector s= {s1, ..., sm} s̃= {s̃1, ..., s̃n}

Sum of Variances VAB =
∑

i∈M V (Di) VBA =
∑

j∈N V (D̃j)

Sum of Standard Deviations SDAB =
∑

i∈M SD(Di) SDBA =
∑

j∈N SD(D̃j)

Long-Run Average Cost CAB(s;S) CBA(̃s; S̃)

Optimal Base-Stock Levels {s∗,S∗} {s̃∗, S̃∗}
Table 1 Notations for System AB and System BA

The system costs in (2) and (3) are both composed of two sums. The first sum exclusively related

to intermediate products, while the second sum is exclusively related to end products. Optimizing

the cost function is equivalent to optimizing the two sums separately. Given S= S̃, the second sum

is the same for the two systems, implying that the optimal solutions for this part are also the same.

Therefore, S∗ = S̃∗. Denote the optimal long-run average costs of system AB and system BA as

C∗
AB ≡CAB(s

∗;S∗), C∗
BA ≡CBA(̃s

∗; S̃∗). (4)
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The difference between the two optimal costs is

ΔC∗ ≡C∗
AB −C∗

BA =
∑
i∈M

E(R1(s∗i ,Di))−
∑
j∈N

E(R1(s̃∗j , D̃j)). (5)

Since our subsequent analysis only involves the intermediate stage (stage 1), we suppress the

superscripts from now on and replace h1, p1 and R1 with h, p and R.

With the cost measure defined above, we say System AB is optimal (better than System BA, or

A should be processed first) if

C∗
AB <C∗

BA or ΔC∗ < 0. (6)

2.2. Previous Works

Before proceeding further, we briefly summarize the important results from three relevant papers

using our notation.

2.2.1. Lee and Tang (1998) consider the same basic system as ours, but with the main

focus on the case m= n= 2; that is, there are two features (e.g., style and color) and two choices

for each feature (e.g., turtleneck and v-neck for style, red and blue for color). They assume end-

product demands are multinomially distributed, and analyze the impact of operations reversal on

the variabilities of production volumes. The authors argue that operations reversal only affects the

variabilities in the intermediate stage, and use the sum of the variances of production volumes in

that stage, i.e., VAB for System AB and VBA for System BA, as the performance measure. In other

words, System AB is optimal if

VAB <VBA. (7)

In terms of the sweater example, this says the sum of the variance of demand for turtleneck sweaters

and that for v-neck sweaters is smaller than the sum of the variance of demand for red sweaters

and that for blue sweaters. Let α (β) be the probability that a customer chooses the first choice of

A (B) (e.g., turtleneck (red)). Assuming the aggregate demand of all end products satisfies

μ> σ2, (8)
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a key result of the paper is that a necessary and sufficient condition for (7) is

|α− 0.5|> |β− 0.5|. (9)

That is, System AB is optimal if feature A has more “distinctive” or “imbalanced” choice probabil-

ities than feature B. In the sweater context, this means that, if turtleneck is either more popular or

less popular than v-neck while red and blue are of similar popularity, then it is optimal to process

the style feature first.

2.2.2. Kapuscinski and Tayur (1999) consider the same model as Lee and Tang (1998)

and prove that condition (8) is not needed if the performance measure is replaced by the sum of

the standard deviations of the production volumes in the intermediate stage, i.e., SDAB for system

AB and SDBA for system BA. In other words, System AB is optimal if

SDAB <SDBA, (10)

which holds if and only if (9) holds.

2.2.3. Jain and Paul (2001) also focus on the case of m= n= 2 but generalize the demand

model of the previous two studies by incorporating characteristics of fashion-good markets, namely,

market fragmentation and unpredictable customer preferences. To depict market fragmentation,

the authors assume there are T independent market segments; within each segment τ , the demand

follows a multinomial distribution with market size Nτ and choice probabilities ατ (βτ ) for the

first choice of feature A (B) as in Lee and Tang (1998) and Kapuscinski and Tayur (1999). To

capture the unpredictable customer preferences, the authors further assume ατ (βτ ) to be random.

Using this framework, the authors prove that if (i) the coefficient of variation ratios of all choice

probabilities are greater than one, (ii) V (ατ ) ≤ V (βτ ) for τ = 1,2, ..., T , then for any positive δ,

there exists a positive integer Zδ such that (iii) as long as the number of segments T is greater

than Zδ, SDAB+δ < SDBA. Clearly, under conditions (i)-(iii), (10) holds, so System AB is optimal

under the performance measure defined in Kapuscinski and Tayur (1999). In addition, the authors
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show these conditions also imply (7), hence System AB is optimal under the performance measure

defined in Lee and Tang (1998) as well.

These works do not directly consider the cost implications of operations reversal.

3. Main Results

In this section, we identify conditions under which operations reversal is beneficial under our cost

measure.

3.1. Necessary and Sufficient Condition

Working directly from the optimal cost comparison in (6), we can obtain the following necessary

and sufficient condition for System AB to be optimal. Let

w=
p

h+ p
.

Proposition 1. System AB is optimal under the cost measure if and only if

m∑
i=1

∫ s∗i

0

xfi(x)dx≥
n∑

j=1

∫ s̃∗j

0

xf̃j(x)dx, (11)

or equivalently,

m∑
i=1

(
E (s∗i −Di)

+ −ws∗i
)
≤

n∑
j=1

(
E
(
s̃∗j − D̃j

)+

−ws̃∗j

)
, (12)

or

m∑
i=1

(
E (Di − s∗i )

+
+(1−w)s∗i

)
≤

n∑
j=1

(
E
(
D̃j − s∗j

)+

+(1−w)s̃∗j

)
. (13)

Unfortunately, none of (11), (12) or (13) is intuitive and simple enough. In addition, they all

depend on the knowledge of the optimal policy parameters. In the following, we present an example

in which the optimal base-stock levels can be explicitly derived, so condition (11) can be expressed

by the system parameters.
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Example 1. Assume m= n= 2, h= 1, and p= 5. Suppose the demands for the four kinds of

end products have independent uniform distributions: Dij ∼ U [0, uij], i, j = 1,2, where uij satisfy

u22 ≥ 3max{u12, u21} and min{u12, u21} ≥ 3u11. Under these conditions, the optimal base-stock

levels are: s∗i = (3ui1 + 5ui2)/6, s̃
∗
j = (3u1j + 5u2j)/6. With simple algebra we can show (11) is

equivalent to

(u21 −u12)

(
25+

3u11(u11 − 10)

u12u21

+
3(u12 +u21 − 10)

u22

)
≥ 0. (14)

If we further assume u11 > 10, then (14) can be simplified to u21 ≥ u12.

Note that in Example 1, the demands for different end products are assumed to be independent of

each other, which implies VAB =
∑

i,j V (Dij) = VBA, therefore Systems AB and BA are indifferent

under the variability measure (7). However, this is no longer true under the cost measure (6).

While the conditions in Example 1 involve all system parameters, we next show that when

demand is multivariate normal, the condition in Proposition 1 requires only partial demand param-

eters.

Corollary 1. Suppose the demands follow a multivariate normal distribution. Then (12) is

equivalent to

m∑
i=1

SD(Di)≤
n∑

j=1

SD(D̃j), or SDAB ≤ SDBA. (15)

Thus, in this special case, the result reduces to (10). (This is consistent with the classic single-item

inventory theory under normal demand; see, for example, p. 216 in Zipkin (2000)). In other words,

for multivariate normal demand, the idea of minimizing total variability proposed by Kapuscinski

and Tayur (1999) is equivalent to inventory cost minimization.

However, when demand is not multivariate normal, we do not have this equivalence. Below we

present a counterexample to demonstrate that a smaller total variability (measured by either the

total variance or the total standard deviation) could be accompanied by a higher inventory cost.

3.1.1. A Counterexample
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Example 2. Consider the same demand structure as in Lee and Tang (1998) with m =

n = 2. Suppose {Dij} are multinomially distributed with parameters (N ;θ11, θ12, θ21, θ22) =

(10; 0.33,0.27,0.24,0.16), where θij is the probability the customer will purchase AiBj. It can be

verified that V (D1) = 2.4, V (D2) = 2.4, hence VAB = 4.8 and SDAB = 3.0984. Also, V (D̃1) = 2.451,

V (D̃2) = 2.451, hence VBA = 4.902 and SDBA = 3.1311. Thus, in this example, we have VAB <VBA

and SDAB <SDBA. Therefore, whether we follow the measure of (7) or (10), System AB is optimal.

Indeed, if we further assume independent choice probabilities α and β as in Lee and Tang (1998),

then the above parameters imply α= 0.6 and β = 0.57. Thus (9) holds.

However, assuming h= 1 and p= 5, we obtain ΔC∗ = 4.7249− 4.5734> 0, so C∗
AB >C∗

BA. Thus,

under the cost measure, System BA is optimal. This shows the cost measure and total variability

measures are not equivalent.

3.2. Sufficient Condition

As shown above, in general, condition (11) is difficult to check because it includes the optimal

policy parameters. Also, it does not provide intuition on what kind of demand characteristics can

possibly lead to such a property. An exception is the multivariate normal demand case, for which

it is sufficient to check the standard deviations of the intermediate product demands. Inspired by

this special case, in this subsection, we aim to develop sufficient conditions that depend only on

demand characteristics, not on the optimal policy parameters.

The following notion play important roles in our analysis.

Definition 1 (Convex Order). For two random variables Z1 and Z2, Z1 ≤cx Z2 if and only

if E(f(Z1))≤E(f(Z2)) for any convex function f .

The convex order is quite common. Examples include many familiar demand distributions, see,

e.g., Table 1.1 of Müller and Stoyan (2002). The following facts will be useful:

Lemma 1 (Müller and Stoyan (2002)). (a) Z1 ≤cx Z2 implies E(Z1) = E(Z2) and V (Z1)≤

V (Z2). (b) Suppose both Z1 and Z2 are from one of the following families — Normal, Lognormal,

Beta, Gamma, Weibull and Uniform. If (i) E(Z1) =E(Z2) and (ii) V (Z1)≤ V (Z2), then Z1 ≤cx Z2.
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When the distributions of the two random variables fall into any the aforementioned families,

Lemma 1(b) indicates that convex order can be identified by simply checking their means and

variances.

Lemma 2 (Müller and Stoyan (2002)). Let F (·) and G(·) be the cumulative distributions of

Z1 and Z2, and f(·) and g(·) be the densities. If E(Z1) =E(Z2), then Z1 ≤cx Z2 provided any one

of the following conditions holds:

(a) g crosses f twice, first time from above, and the second time from below;

(b) G crosses F once from above.

Lemma 2 provides a sufficient condition to indicate convex ordering, which can be checked by

simply examining the number of crossings of the distributions or density functions.

In addition, the following easier-to-check orders imply the convex order: (i) mean preserving

spread order (≤mps); (ii) dangerous order (≤D) with equal means; (iii) dispersive order (≤disp) with

equal means (see Müller and Stoyan (2002) for details). Thus, all relevant results in our paper still

hold when the convex order is replaced by any of these stronger orders.

We begin with the special case when features A and B have the same number of choices.

Proposition 2. Assume M =N = {1, ...,m}. System AB is optimal if

Di ≤cx D̃i, i= 1, ...,m. (16)

Proposition 2 states that a feature should be sequenced first in production if each of its choice

has less variable demand in the sense of convex order than that of the other feature. In the sweater

context, for instance, this means that if we are more certain about the aggregate demands of

turtleneck and v-neck sweaters (i.e., the demand distributions are more concentrated around their

means) than the aggregate demands for red and blue sweaters, respectively, then style should

proceed color in production sequencing. Recall that we assume an arbitrary order for feature A’s

and feature B’s choices. As long as there exists a particular order for the choices of each of feature

A and feature B such that (16) holds, the proposition applies.
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Note that from Lemma 1 (a) condition (16) implies

V (Di)≤ V (D̃i), i= 1, ...,m. (17)

That is, the variance of the production volume of each intermediate product in System AB is lower

than that in System BA. Because (17) implies (7), the sufficient condition (16) is stronger than

the criteria of total variability. While (7) measures the total variance of the production volumes at

the feature level, (16) goes deeper into the choice level.

For multivariate normal demand, from Lemma 1, condition (16) is equivalent to E(Di) =E(D̃i)

and SD(Di)≤ SD(D̃i) for all i∈M , which is stronger than (15).

To relate to the sufficient conditions developed in the literature, let us consider multinomial

demand adopted by Lee and Tang (1998), Kapuscinski and Tayur (1999) and Jain and Paul (2001).

Assume m= n= 2, and the end product demands are multinomially distributed with parameters

(N ;θ11, θ12, θ21, θ22), where the market size N is random. Then a sufficient condition for ensuring

a lower total variance is given by (9), where the choice probabilities α and β satisfy

α= θ11 + θ12, β = θ11 + θ21. (18)

However, our sufficient condition requires D11 +D12 ≤cx D11 +D21, and D21 +D22 ≤cx D12 +D22.

These imply α= β. Thus, these two sets of sufficient conditions do not overlap.

A numerical example for Proposition 2 is given below.

Example 3. Consider multivariate normally distributed end product demands with m= n= 2.

Suppose {Dij} is distributed with mean vector μ= {50,60,60,70} and covariance matrix

Σ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −3 −1.5 0

−3 8 0 −1.5

−1.5 0 8 −3

0 −1.5 −3 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Assume h= 1 and p= 5. Then it is easy to verify that E(D1) = 110 =E(D̃1), E(D2) = 130 =E(D̃2),

and V ar(D1) = 8< 11 = V ar(D̃1), V ar(D2) = 8< 11 = V ar(D̃2). By the properties of multivariate
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normal distribution, Di and D̃j are normally distributed. Referring to Müller and Stoyan (2002),

when both densities of X and Y are normal with E(X) = E(Y ) and V ar(X) ≤ V ar(Y ), then

X ≤cx Y . Therefore, D1 ≤cx D̃1, D2 ≤cx D̃2 and Proposition 2 applies. Indeed it can be verified that

ΔC∗ = 8.4802− 9.9439< 0, i.e., feature A should be processed first.

Next, to gain more intuitive insights from Proposition 2, we examine the following three settings.

1. (Additive end-product demand) Suppose the end product demands all have the same mean

but different variabilities, and hence the different feature choices only affect the variabilities of the

end product demands. Further assume that the effect of feature A’s choice and that of feature B’s

choice are additive. Specifically, let

Dij = μ+ εi + ε̃j, (19)

where μ is a nonnegative constant, and εi and ε̃j, i, j ∈M , are random variables taking values in

the interval [−μ
2
, μ
2
] with zero mean and standard deviation σ. Here, εi (ε̃j) can be viewed as the

variability factor associated with the ith (jth) choice of feature A (B). Further assume εi and ε̃j

are independent of each other for any i and j, but εi (ε̃j) can be dependent across i (j). Then (16)

can be written as mμ+mεi +
∑m

j=1 ε̃j ≤cx mμ+
∑m

j=1 εj +mε̃i, which is equivalent to

mεi +
m∑
j=1

ε̃j ≤cx

m∑
j=1

εj +mε̃i. (20)

Note that (20) implies that

V

(
m∑
j=1

ε̃j

)
≤ V

(
m∑
j=1

εj

)
. (21)

Take m= 2, for instance, (21) reduces to

Cov(ε̃1, ε̃2)≤Cov(ε1, ε2). (22)

Therefore Proposition 2 also implies that the feature (in this case, feature A) with more positively

correlated (or less negatively correlated) choice factors should be processed first. This way, the

less positively correlated (or more negatively correlated) choices of the other feature (in this case,

feature B) at the end-product level help reduce the demand variability at the intermediate stage.
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This result remains true for general m. In the sweater context, the different choices of a feature

can be negatively correlated. For instance, if red is the color in fashion of the season, then typically

fewer consumers would purchase blue sweaters. On the other hand, the different choices of a feature

can also be positively correlated. For example, the sweaters are usually introduced and advertised

in collections. When one collection is welcomed by the consumers, the sales of different styles

(turtleneck and v-neck sweaters) in the collection are all boosted. Based on the extent of negative

or positive correlation, the feature with less negatively correlated (or more positively correlated)

choices should be given priority. Suppose the company’s historical data indicates that it is always

the case that one color choice is extremely popular while the other color very unpopular (the

popular color could vary from period to period), while the demands for turtleneck and v-neck styles

are either both high or both low, then the style feature should be processed first in order to utilize

the negative correlation of color choices in the aggregate intermediate demands.

2. (Multiplicative end-product demand) Again consider the case of same end product demand

mean. But assume alternatively that the effect of feature A’s choice and that of feature B’s choice

are multiplicative. Specifically, let

Dij = μ+ εiε̃j, (23)

where μ is a nonnegative constant, and εi and ε̃j, i, j ∈M , are random variables taking values in

the interval [−√
μ,

√
μ] with zero mean and standard deviation σ. Everything else is the same as in

the additive setting above. Then (16) can be written as mμ+
∑m

j=1 εiε̃j ≤cx mμ+
∑m

j=1 εj ε̃i, which

is equivalent to
m∑
j=1

εiε̃j ≤cx

m∑
j=1

εj ε̃i. (24)

Note that (24) implies (21). Thus Proposition 2 implies that, in this setting too, it is optimal to first

process the feature with more positively correlated (or less negatively correlated) choice factors.

3. (Mean-preserving intermediate product demand) Noting that mean-preserving spread order

implies convex order, we present an example below where the intermediate product demands in
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System AB and System BA actually satisfy mean-preserving spread order. Consider the following

end product demands with m= n= 2:

D11 = α1X +(1−α2)μX , D12 = (α2 −α1)μX ,

D21 = (α2 −α1)X, D22 = γ+
α1 −α2

β1 −β2

(β1μX −β2X),

with X being a nonnegative random variable, 0≤ αi, βi ≤ 1, γ > 0, μX ≡E(X) and assume that

α1 ≤ α2 and β1 ≤ β2.

Let Y = γ+ α1−α2
β1−β2

(μX −X). Note that μY ≡E(Y ) = γ. Then the intermediate products are:

D1 =D11 +D12 = α1X +(1−α1)μX , D̃1 =D11 +D21 = α2X +(1−α2)μX ,

D2 =D21 +D22 = β1Y +(1−β1)μY , D̃2 =D12 +D22 = β2Y +(1−β2)μY .

Therefore Di ≤mps D̃i, which further imply Di ≤cx D̃i, i= 1,2.

From the construction of the end product demands, we see that D12 is constant, D21 and D22 are

negatively correlated (due to the opposite signs of the coefficients of X), D11 and D21 are positively

correlated (with randomness both solely from X with positive coefficients). As a result, we obtain

consistent insights from the above three settings.

3.3. Generalization of Sufficient Condition

In this subsection we aim to extend the sufficient condition (16) to more general settings. Note

that (16) implicitly requires the means of the corresponding intermediate product demand pair (Di

and D̃i) to be equal. Our first endeavor is to allow the intermediate product means are unequal by

utilizing the following stochastic order:

Definition 2 (Dilation Order). For two random variables Z1 and Z2, Z1 ≤dil Z2 if and only

if Z1 −E(Z1)≤cx Z2 −E(Z2).

The notion of dilation order was introduced by Hickey (1986). The only application in the

inventory literature that we are aware of is Huang et al. (2015), who use this order to numerically

examine the impact of surge demand duration on sourcing strategies. The dilation order is location
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independent: if Z1 ≤dil Z2, we also have Z1 + c≤dil Z2 and Z1 ≤dil Z2 + c for any constant c. The

following orders also imply the dilation order: the dispersive (≤disp) and right spread (≤RS) orders

(Shaked and Shanthikumar (1994)), the location independent riskier order (≤lir, Fagiuoli et al.

(1999)), and mean residual life order (≤mrl) under certain conditions (Belzunce et al. (1997)).

Thus, the relevant results in this paper still hold when the dilation order is replaced by any of

these stronger orders.

Note that the dilation order is defined with the aid of convex order, although it does not require

the two random variables to have equal means. Therefore the easier-to-check techniques we provided

for convex order in §3.2 can be applied to check Z1−E(Z1)≤cx Z2−E(Z2), and hence to verify the

dilation order. In addition, Belzunce et al. (2005) develop a family of tests for the dilation order,

and thus provide a guidance for how to verify this order using empirical data.

The generalized sufficient condition is given by Proposition 3.

Proposition 3. Assume M =N = {1, ...,m}. System AB is optimal if

Di ≤dil D̃i, i= 1, ...,m. (25)

Note that then E(Di) =E(D̃i), (25) is equivalent to (16).

Thus, to ensure System AB to be optimal, E(Di) = E(D̃i) is not necessary, what we need

is that the centered variables Di − E(Di) and D̃i − E(D̃i) satisfy the convex order. Since the

centered variables are simply shifted by their means from the original variables (intermediate

product demands), the intuitions and insights we have obtained for (16) all carry over to (25). We

further illustrate Proposition 3 by revisiting Example 3 in the following example.

Example 4. Consider the numerical setting in Example 3. If we change the mean of D12 from

60 to 80, i.e., μ = {50,80,60,70}, then the intermediate product demand means are: E(D1) =

130, E(D̃1) = 110, E(D2) = 130 and E(D̃2) = 150. Consequently, we no longer have E(Di) =

E(D̃i), i= 1,2 as in Example 3. However, since the covariance matrix remains the same as before,

V ar(Di) < V ar(D̃i), i = 1,2 still hold. Therefore, by the same argument as in Example 3, we

have Di −E(Di)≤cx D̃i −E(D̃i), i= 1,2, so Proposition 3 applies. Indeed it can be verified that

ΔC∗ =−1.4637< 0, i.e., feature A should be processed first.
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So far our analysis covers the case of m = n. Our second endeavor in generalizing (16) is to

consider m �= n. For simplicity, we begin with the special case of n=m+1.

Proposition 4. Suppose that M = {1,2, ...,m},N = {1,2, ...,m+1}. System AB is optimal if

Di ≤cx D̃i, i= 1, ...,m− 1, and Dm ≤cx D̃m + D̃m+1. (26)

Note that in this proposition, when m �= n, we can no longer require the intermediate production

volume for each choice of feature A to be less variable than that of feature B. Take m = 2, for

example, we replace D2 ≤cx D̃2 with D2 ≤cx D̃2 + D̃3, which means the intermediate production

volume for the second choice of feature A is less variable (in the convex order sense) than the

combined intermediate production volumes of both the second and third choices of feature B.

Proposition 4 shows that feature A should be processed first if it has less variety and each choice

is less variable than feature B. In the following, we demonstrate that when feature A is less variable

but has more variety, e.g., m= 3, n= 2 with

D1 ≤cx D̃1, D2 +D3 ≤cx D̃2, (27)

System AB may not have lower cost.

Example 5. Suppose M = {1,2,3},N = {1,2}, and {Dij, i = 1,2,3, j = 1,2} are multivariate

normally distributed with mean vector μ= {50,130,60,80,70,90} and covariance matrix

Σ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −3 −1 0 −1 0

−3 8 0 −1 0 −1

−1 0 6 −3 −1 0

0 −1 −3 8 0 −3

−1 0 −1 0 7 −3

0 −1 0 −3 −3 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Assume h= 1 and p= 5. Then E(D1) = 180 =E(D̃1), E(D2+D3) = 300 =E(D̃2), and V (D1) = 8<

13 = V (D̃1), V (D2 +D3) = 9< 14 = V (D̃2). By the properties of multivariate normal distribution,
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Di, D̃j and D2 +D3 are normally distributed. By Müller and Stoyan (2002), we have (27). It is

easy to calculate that ΔC∗ = 12.9775− 11.0142> 0, i.e., feature B should be processed first.

Note that in Example 5, VAB = 25≤ 27 = VBA, hence System BA has a larger total variability in

the intermediate stage. But it is still optimal to process feature B first, which has one less choice

than feature A. This illustrates that an extra choice can have a larger impact on operating cost

than a larger variability.

For multivariate normal demand, from Lemma 1, condition (26) is equivalent to E(Di) =E(D̃i),

SD(Di) = SD(D̃i), i = 1, ...,m− 1, and E(Dm) = E(D̃m + D̃m+1), SD(Dm) = SD(D̃m + D̃m+1),

which implies (15).

In general, we can extend Proposition 4 to the general case when m �= n.

Proposition 5. Suppose M = {1,2, ...,m}, and N = {1,2, ..., n} with m < n. System AB is

optimal if there exist disjoint sets Ki, i= 1, ...,m such that (i)
m⋃
i=1

Ki ⊂N and (ii) Di ≤cx

∑
j∈Ki

D̃j.

Given feature A with less choices than feature B, and the demand for each choice of feature A being

less variable than the demand for some subset of feature B’s choices, Proposition 5 demonstrates

that priority of production should be assigned to feature A for sure.

4. Effects of Cost Parameters and Lead Times

So far we have restricted the cost parameters and lead times to be feature independent. In this

section we shall relax these conditions and examine its influence on operations reversal.

4.1. Different Cost Parameters in Stage 1

In this subsection, we allow the unit per-period holding cost and penalty cost at Stage 1 to vary

under different production sequences. Specifically, we denote the unit per-period holding cost and

penalty cost at Stage 1 for System AB and System BA as h1
AB, p

1
AB and h1

BA, p
1
BA, respectively.

Further define

R1
AB(x, y) = h1

AB(x− y)+ + p1AB(y−x)+,

and

R1
BA(x, y) = h1

BA(x− y)+ + p1BA(y−x)+.
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Therefore we have

ΔC∗ ≡C∗
AB −C∗

BA =
∑
i∈M

E(R1
AB(s

∗
i ,Di))−

∑
j∈N

E(R1
BA(s̃

∗
j , D̃j)). (28)

Define

γAB = h1
AB/p

1
AB, and γBA = h1

BA/p
1
BA.

Note that s∗i = F−1
Di

(
1

1+γAB

)
and s̃∗j = F−1

D̃j

(
1

1+γBA

)
. Due to the complexity in the convoluted

distribution of the intermdiate product demand, we make some simplification assumptions for

tractability. Assume that the end product demands are independent and identically distributed.

Consider the case of m= n. Then the intermediate product demands Di and D̃j all have the same

distribution, i.e., Di,Dj ∼D0, where D0 is a random variable with the common distribution. Hence,

s∗i and s∗j are independent of i and j. With these assumptions, we obtain

Proposition 6. Assume that Dij are independent and identically distributed, and that M =

N = {1, ...,m}. System AB is optimal if and only if the following condition holds:

η

(
γABE

(
F−1

D0

(
1

1+ γAB

)
−D0

)+

+E

(
D0 −F−1

D0

(
1

1+ γAB

))+
)

≤ γBAE

(
F−1

D0

(
1

1+ γBA

)
−D0

)+

+E

(
D0 −F−1

D0

(
1

1+ γBA

))+

, (29)

where η= p1AB/p
1
BA.

When the end demands are normally distributed, the sufficient and necessary condition can be

further simplified as in the following corollary.

Corollary 2. Assume that Dij are independent and identically distributed, and that M =N =

{1, ...,m}. Further assume that D0 is normally distributed with parameter (μ0, σ0). Let Z denote

a standard normal random variable with distribution function Φ, and z∗AB =Φ−1
(

1
1+γAB

)
, z∗BA =

Φ−1
(

1
1+γBA

)
. Then System AB is optimal if and only if

η
(
γABE

(
(z∗AB −Z)

+
)
+E

(
(Z − z∗AB)

+
))

≤ γBAE
(
(z∗BA −Z)

+
)
+E

(
(Z − z∗BA)

+
)
. (30)
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Proposition 6 provides the sufficient and necessary condition that the holding costs and penalty

costs of both systems in Stage 1 need to satisfy for System AB to be optimal. The condition is

complex and not intuitive. In the next proposition, we show that if System AB’s cost parameters

are lower than those for System BA, then System AB is indeed optimal.

Proposition 7. Assume that Dij are independent and identically distributed, and that M =

N = {1, ...,m}. System AB is optimal if h1
AB ≤ h1

BA and p1AB ≤ p1BA.

Note that when γAB = γBA, the condition (29) given by Proposition 6 becomes η ≤ 1, which also

imply h1
AB ≤ h1

BA and p1AB ≤ p1BA.

When end product demands are not independent and identically distributed, and the choices of

features A and B are different, the relationship between cost parameters and the optimal produc-

tion sequence become even more complex. The multiple factors involved are convoluted and quite

difficult to be analyzed. Alternatively, we present numerical examples to demonstrate that, with

same cost parameters, the optimal sequence could vary with demand structures.

Example 6. Consider the demand structure as in Lee and Tang (1998) with m =

n = 2. Suppose {Dij} are multinomially distributed with parameters (N ;θ11, θ12, θ21, θ22) =

(10; 0.33,0.27,0.24,0.16), where θij is the probability the customer will purchase AiBj. Assume

hAB = 1, pAB = 5, and hBA = 1.1, pBA = 5.1. It can be verified that ΔC∗ = 4.5734− 5.0196< 0, so

C∗
AB <C∗

BA, i.e., System AB is optimal.

If we vary the demand parameters to be (N ;θ11, θ12, θ21, θ22) = (10; 0.2,0.4,0.1,0.3). It can be

verified that ΔC∗ = 4.7249− 4.6025> 0, so C∗
AB >C∗

BA, i.e., System BA is optimal.

Example 7. Consider the demand structure as in Lee and Tang (1998) with m = 2, n =

3. Suppose {Dij} are multinomially distributed with parameters (N ;θ11, θ12, θ13, θ21, θ22, θ23) =

(10; 0.3,0.3,0.2,0.1,0.05,0.05), where θij is the probability the customer will purchase AiBj.

Assume hAB = 2, pAB = 6, and hBA = 1, pBA = 5. It can be verified that ΔC∗ = 6.1469−6.7794< 0,

so C∗
AB <C∗

BA, i.e., System AB is optimal.
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If we change the demand parameters to be (N ;θ11, θ12, θ13, θ21, θ22, θ23) =

(10; 0.2,0.1,0.1,0.1,0.2,0.3). It can be verified that ΔC∗ = 7.6382−6.9299> 0, so C∗
AB >C∗

BA, i.e.,

System BA is optimal.

4.2. Different Production Lead Times for Features A and B

In this subsection, we return to the original model with identical cost parameters for the two

systems, and relax the assumption that the production lead times of both features to be one. In

other words, we allow the lead times of adding feature A and feature B to be greater than one. Let

LA and LB to be the lead time for adding features A and B, respectively. Assume that these lead

times do not depend on the sequence of production.

For stages 1 and 2, we define the relevant inventory variables first. As we have assumed in §2.1

that the production system has no capacity constraints and no backlog is allowed, the inventory on

order is equivalent to inventory in transit. For intermediate product Ai, at time t, IAi
(t) denotes the

on hand inventory level, STAi
(t) is the shortage, INAi(t) denotes the net inventory level (on hand

inventory minus shortage), ITAi
(t) is the inventory in transit to stage 1, ITPAi

(t) is the inventory

in transit position (inventory in transit plus net inventory). The variables for intermediate product

Bj and end product AiBj are similarly defined. All notations are summarized in Table 2. The

detailed expressions and derivations for these variables can be found in Appendix C.

Assume general holding and penalty costs hi and pi with i= 0,1,2, corresponding to stages 0, 1

and 2, irrespective of processing sequence. We obtain the long run average cost of system AB as

follows.

CAB(s,S)

= E

(
h0

∑
i∈M

ITAi
(t,1)

)
+E

(
h1

(∑
i∈M

IAi
(t,1)+

∑
i∈M,j∈N

ITAiBj
(t,2)

)
+ p1

∑
i∈M

STAi
(t,1)

)

+E

(
h2

∑
i∈M,j∈N

IAiBj
(t,2)+ p2

∑
i∈M,j∈N

STAiBj
(t,2)

)

= h0E

(∑
i∈M

Di(LA)

)
+h1E

(∑
i∈M

(si −Di(LA))
+
+

∑
i∈M,j∈N

Dij(LB)

)

+p1E

(∑
i∈M

(Di(LA)− si)
+

)
+E

(
h2

∑
i∈M,j∈N

(Sij −Dij(LB))
+
+ p2

∑
i∈M,j∈N

(Dij(LB)−Sij)
+

)
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Stage 1 Stage 2

System AB/System BA

Lead time LA LB

On hand inventory IAi
(t,1)/IBj

(t,1) IAiBj
(t,2)

Shortage STAi
(t,1)/STBj

(t,1) STAiBj
(t,2)

Net inventory INAi
(t,1)/INBj

(t,1) INAiBj
(t,2)

Inventory in transit ITAi
(t,1)/ITBj

(t,1) ITAiBj
(t,2)

Inventory in transit position ITPAi
(t,1)/ITPBj

(t,1) ITPAiBj
(t,2)

Table 2 Inventory Notations for the Two Stages in System AB

Following a similar process, we can define notations and derive the long run average cost for

system BA.

CBA(̃s, S̃)

= E

(∑
j∈N

h0(ITBj
(t,1)

)
+E

(
h1

(∑
j∈N

IBj
(t,1)+

∑
i∈M,j∈N

ITAiBj
(t,2)

)
+ p1

∑
j∈N

STBj
(t,1)

)

+E

(
h2

∑
i∈M,j∈N

IAiBj
(t,2)+ p2

∑
i∈M,j∈N

STAiBj
(t,2)

)

= h0E

(∑
j∈N

D̃j(LB)

)
+h1E

(∑
j∈N

(
s̃j − D̃j(LB)

)+

+
∑

i∈M,j∈N

Dij(LA)

)

+p1E

(∑
j∈N

(
D̃j(LB)− s̃j

)+
)
+E

(
h2

∑
i∈M,j∈N

(
S̃ij −Dij(LA)

)+

+ p2
∑

i∈M,j∈N

(
Dij(LA)− S̃ij

)+
)

When LA =LB = 1, it is easy to verify that, CAB(s,S) and CBA(̃s, S̃) reduce to (2) and (3).

For general LA and LB, as in Section 4.1, we again assume that the end product demands are

independent and identically distributed, i.e., Dij ∼D for i∈M and j ∈N . Then Dij(LA)∼D(LA),

Dij(LB)∼D(LB), Di(LA)∼D(nLA), and D̃j(LB)∼D(mLB), where D(L) denotes the cumulative

demand during a lead time L (or the lead time demand) given the single-period demand D.

The long-run average system costs then become:

CAB(s,S)
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= h0mE (D(nLA))+h1mnE(D(LB))+
∑
i∈M

E
(
h1 (si −D(nLA))

+
+ p1 (D(nLA)− si)

+
)

+
∑

i∈M,j∈N

E
(
h2 (Sij −D(LB))

+
+ p2 (D(LB)−Sij)

+
)
,

and

CBA(̃s, S̃)

= h0nE (D(mLB))+h1mnE(D(LA))+
∑
j∈N

E
(
h1

(
(s̃j −D(mLB))

+
)
+ p1 (D(mLB)− s̃j)

+
)

+
∑

i∈M,j∈N

E

(
h2

(
S̃ij −D(LA)

)+

+ p2
(
D(LA)− S̃ij

)+
)

Then it is easy to derive that s∗i = F−1
D(nLA) (w

1), s̃∗j = F−1
D(mLB) (w

1), S∗
ij = F−1

D(LB) (w
2), and S̃∗

ij =

F−1
D(LA) (w

2), where w1 ≡ p1

h1+p1
and w2 ≡ p2

h2+p2
.

By using the above notations, it is easy to derive that,

ΔC∗ ≡C∗
AB −C∗

BA = mnE(D)(LB −LA)(h
1 −h0)

+ mE
(
R1

(
F−1

D(nLA)(w
1),D(nLA)

))
+mnE

(
R2

(
F−1

D(LB)(w
2),D(LB)

))
−nE

(
R1

(
F−1

D(mLB)(w
1),D(mLB)

))
−mnE

(
R2

(
F−1

D(LA)(w
2),D(LA)

))
.

(31)

When features A and B have the same number of choices but require different lead times to

process, we can obtain a sufficient and necessary condition for System AB to be optimal.

Proposition 8. Assume M = N = {1, ...,m} and Dij are independent and identically dis-

tributed. If LA >LB, then the sequence AB is optimal if and only if

ΔhΔL ≥ 1

mE(D)
E(ΔR(LA)−ΔR(LB)), (32)

where Δh ≡ h1 − h0, ΔL ≡ LA − LB, and ΔR(L) ≡ R1
(
F−1

D(mL)(w
1),D(mL)

)
−

mR2
(
F−1

D(L)(w
2),D(L)

)
.

Proposition 8 demonstrates that, the feature with the longer production lead time should be

processed earlier only if it can lead to sufficient pipeline inventory cost reduction. On the other
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hand, when E(ΔR(LA)−ΔR(LB))≤ 0, then (32) is automatically satisfied, and the feature with

the longer production lead time should always be prioritized. In the sweater context, knitting is

typically more time-consuming than dyeing. By knitting first and then dyeing, cost is lower since

the pipeline inventory spends more time at the earlier stage (in the form of bleached yarns before

knitting completes) than at the later stage (in the form of knitted yarns before dyeing completes).

When the end demands are further assumed to be normally distributed, the sufficient and nec-

essary condition provided in Proposition 8 can be simplified as follows.

Corollary 3. Assume that Dij are independent and identically distributed, and that M =N =

{1, ...,m}, and that LA >LB. Further assume that D is normally distributed with parameter (μ,σ).

Let Z denote a standard normal random variable with distribution function Φ, and zi =Φ−1 (wi),

i= 1,2. Then (32) is equivalent to

Δh
√
m(

√
LA +

√
LB)

μ

σ
≥ E

(
h1(z1 −Z)+ + p1(Z − z1)+ −√

m
(
h2(z2 −Z)+ + p2(Z − z2)+

))
.

(33)

In practice, we often have h1 < h2 and p1 < p2 due to value adding along the supply chain. Fur-

thermore, h2 and p2 are multiplied by
√
m in (33). So the right hand side of (33) is negative in

most cases, making (33) hold trivially, i.e., it is optimal to process feature A first. In addition, note

that the left hand side of (33) increases in m while the right hand side decreases in m. Therefore,

Corollary 3 also indicates that, under normal demand, with a larger number of feature choices (m),

it is more advantageous to process feature A first. Another interesting observation is that with

normally distributed demand, as long as LA >LB, the sufficient condition to guarantee feature A’s

priority is independent of the absolute value of LA−LB, but instead depend on the summation of

the square roots of the lead times.

Next we present a result for the case when features A and B have the same lead time (could be

larger than one), but have different number of choices.

Proposition 9. Assume that Dij are independent and identically distributed. If LA =LB =L,

and n= km with k ∈Z
+, then it is optimal to process feature A first.
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Proposition 9 states an intuitive result that given everything else being equal, the feature with

fewer choices should be given priority. This is because by postponing the larger differentiation

(processing the feature with more choices), the benefit of pooling is maximally utilized.

When end product demands are not independent and identically distributed, the analysis of the

lead time effect becomes less tractable. The following numerical examples demonstrate that, with

same lead times and cost parameters, the optimal sequence could vary with demand structures.

Further analysis is left for future research.

Example 8. Suppose M = {1,2},N = {1,2,3}, and {Dij, i = 1,2, j = 1,2,3} are multivariate

normally distributed with mean vector μ= {4,10,7,8,6,8} and covariance matrix

Σ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 −5 −4 9 −1 0

−5 11 −4 −1 10 −1

−4 −4 9 −3 −1 9

9 −1 −3 8 −4 −3

−1 10 −1 −4 8 −4

0 −1 9 −3 −4 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Assume that h0 = 0.5, h1 = 1, h2 = 2, p1 = 5, p2 = 10, LA = 1, LB = 2. It can be verified that

ΔC∗ = 147.67− 149.09< 0, i.e., feature A should be processed first.

If we reset the demand parameters to be μ= {5,10,6,8,7,9} and covariance matrix

Σ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 −3 4 −1 0

−4 8 −1 −1 5 −1

−3 −1 6 −3 −1 4

4 −1 −3 8 −2 −3

−1 5 −1 −2 7 −3

0 −1 4 −3 −3 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be verified that ΔC∗ = 154.66− 145.22> 0, i.e., feature B should be processed first.
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5. Conclusions

Summary of Results and Contributions

In this paper we revisited the operations reversal problem inspired by industrial practice and studied

by several authors previously. The focus is on the effect of demand uncertainty arising from multiple

products. While the previous studies use the objective of the total variability of production volumes,

we examine the same problem with the objective of the long-run average inventory cost. We find

that reducing total variability, measured either by total variance or total standard deviation, does

not necessarily imply inventory cost reduction under our measure, although the two objectives

are related in certain cases. Unlike the conditions in the previous works that focus on product

feature level, we look into the choice level of each feature. By leveraging stochastic orders criterions

at the individual choice level, we provide a set of sufficient conditions under which operations

reversal yields cost reduction. Specifically, we utilize the convex order and the dilation order to

obtain sufficient conditions that cover scenarios of intermediate product demands in the original

system and in the reversed system with both equal and unequal means. Several analytical and

numerical examples illustrate the key determinants of cost improvement under operations reversal.

These include aggregate variance at the choice level of each feature, the number of choices for each

feature, and demand correlations. As an extension, we also examine the effects of varying cost

parameters under different production sequences and the effect of general lead times for product

features. Again, we adopt the cost measure and provide conditions on when operations reversal is

optimal.

A Roadmap for Implementation

In practice, the companies usually keep historical records of the demands for end products. In the

sweater context, the accurate sales data from past seasons is available with the aid of point of

sale (POS) information. By leveraging on these data, there are in general two ways to verify the

conditions we have obtained in this paper. The first way is to obtain the demand distributions

of both end and intermediate products through parametric distribution fitting (see for example,
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Sheskin (2003)), and then to work on the known distributions. The second way is to directly verify

the relevant stochastic orders using the empirical data (see Belzunce et al. (2005) and Mosler and

Scarsini (2012)). We refer to the aforementioned literatures for details of data manipulations.

Acknowledgments

The authors would like to thank Hau Lee and Paul Zipkin for their helpful comments on an earlier draft

of this paper. They are also grateful to the editor and the reviewers for their constructive comments. This

research was supported in part by the Hong Kong Research Grants Council under Grant 640808 and the

Chinese Natural Science Foundation under Grant No. 71390331.

References

Bard, Jonathan F, Thomas A Feo. 1989. Note-operations sequencing in discrete parts manufacturing. Man-

agement science 35(2) 249–255.

Belzunce, F, Franco Pellerey, JM Ruiz, Moshe Shaked. 1997. The dilation order, the dispersion order, and

orderings of residual lives. Statistics & probability letters 33(3) 263–275.

Belzunce, F, JF Pinar, JM Ruiz. 2005. On testing the dilation order and hnbue alternatives. Annals of the

Institute of Statistical Mathematics 57(4) 803–815.

Clark, Andrew J., Herbert Scarf. 1960. Optimal Policies for a Multi-Echelon Inventory Problem. Management

Science 6(4) 475–490.

Corbett, Charles J, Kumar Rajaram. 2006. A generalization of the inventory pooling effect to nonnormal

dependent demand. Manufacturing & Service Operations Management 8(4) 351–358.

Fagiuoli, Enrico, Franco Pellerey, Moshe Shaked. 1999. A characterization of the dilation order and its

applications. Statistical papers 40(4) 393–406.

Federgruen, Awi, Min Wang. 2013. Monotonicity properties of a class of stochastic inventory systems. Annals

of Operations Research 208(1) 155–186.

Gerchak, Yigal, Qi-Ming He. 2003. On the relation between the benefits of risk pooling and the variability

of demand. IIE transactions 35(11) 1027–1031.

Gerchak, Yigal, David Mossman. 1992. On the Effect of Demand Randomness on Inventories and Costs.

Operations Research 40(4) 804–807.



32

Gupta, Diwakar, William L. Cooper. 2005. Stochastic Comparisons in Production Yield Management. Oper-

ations Research 53(2) 377–384.

Harvard Business School. 1986. Benetton(A) and (B). Harvard Teaching Case (9-685-014).

Hickey, Raymond J. 1986. Concepts of dispersion in distributions: a comparative note. Journal of Applied

Probability 914–921.

Huang, Lu, Jing-Sheng Song, Jordan D Tong. 2015. Supply chain planning for random demand surges:

Reactive capacity and safety stock. Available at SSRN 2622510, to appear in Manufacturing & Service

Operations Management .

Iyer, Ananth V, Apurva Jain. 2003. The Logistics Impact of a Mixture of Order-streams in a Manufacturer-

retailer System. Management Science 49(7) 890–906.

Jain, Nikhil, Anand Paul. 2001. A generalized model of operations reversal for fashion goods. Management

Science 47(4) 595–600.
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Appendix A (Proofs of the Propositions and Corollaries)

Proof of Proposition 1. Firstly, notice that
∑m

i=1Di =
∑

i∈M,j∈N Dij =
∑n

j=1 D̃j, so

E (
∑m

i=1Di) = E
(∑n

j=1 D̃j

)
. Secondly, the optimal solution to the minimization problem

miny E (h(y−Z)+ + p(Z − y)+), where Z is a random variable with distribution function FZ(x)

and inverse distribution function F−1
Z , is y∗ = F−1

Z ( p
h+p

). Now we can derive

E(R(s∗i ,Di)) =E(h(s∗i −Di)
+ + p(Di − s∗i )

+)

= h

∫ s∗i

0

(s∗i −x)fi(x)dx+ p

∫ ∞

s∗i
(x− s∗i )fi(x)dx

= h

(
s∗iFi(s

∗
i )−

∫ s∗i

0

xfi(x)dx

)
+ p

(∫ ∞

s∗i
xfi(x)dx− s∗i (1−Fi(s

∗
i ))

)

= (h+ p)s∗iFi(s
∗
i )− ps∗i −h

∫ s∗i

0

xfi(x)dx+ p

∫ ∞

s∗i
xfi(x)dx

= (h+ p)s∗i
p

h+ p
− ps∗i + pE(Di)− (h+ p)

∫ s∗i

0

xfi(x)dx

= pE(Di)− (h+ p)

∫ s∗i

0

xfi(x)dx.

Similarly, we can derive E(R(s̃∗j , D̃j)) = pE(D̃j)− (h+ p)
∫ s̃∗j
0

xf̃j(x)dx. Therefore,

CAB(s
∗;S∗)−CBA(̃s

∗;S∗)

=
∑
i∈M

E(R(s∗i ,Di))−
∑
j∈N

E(R(s̃∗j , D̃j))

=
∑
i∈M

(
pE(Di)− (h+ p)

∫ s∗i

0

xfi(x)dx

)
−
∑
j∈N

(
pE(D̃j)− (h+ p)

∫ s̃∗j

0

xf̃j(x)dx

)

= p

(∑
i∈M

E(Di)−
∑
j∈N

E(D̃j)

)
+(h+ p)

(∑
j∈N

∫ s̃∗j

0

xf̃j(x)dx−
∑
i∈M

∫ s∗i

0

xfi(x)dx

)

= (h+ p)

(∑
j∈N

∫ s̃∗j

0

xf̃j(x)dx−
∑
i∈M

∫ s∗i

0

xfi(x)dx

)
.

Hence
∑m

i=1

∫ s∗i
0

xfi(x)dx ≥ ∑n

j=1

∫ s̃∗j
0

xf̃j(x)dx is equivalent with CAB(s
∗;S∗) − CBA(̃s

∗;S∗) ≤ 0.

We can thus conclude that if and only if
∑m

i=1

∫ s∗i
0

xfi(x)dx≥∑n

j=1

∫ s̃∗j
0

xf̃j(x)dx, it is optimal to

process feature A first. �
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Proof of Corollary 1 Let Z denote a standard normal random variable with distribution func-

tion Φ, and z∗ = Φ−1(w). Then s∗i = F−1
i (w) = E(Di) + SD(Di)z

∗, and s̃∗j = F̃−1
j (w) = E(D̃j) +

SD(D̃j)z
∗. By substituting into (12), we have

m∑
i=1

(
E (E(Di)+SD(Di)z

∗ −Di)
+ −w (E(Di)+SD(Di)z

∗)
)

≤
n∑

j=1

(
E
(
E(D̃j)+SD(D̃j)z

∗ − D̃j

)+

−w
(
E(D̃j)+SD(D̃j)z

∗
))

,

which is equivalent to

m∑
i=1

(
SD(Di)E

(
z∗ − Di −E(Di)

SD(Di)

)+
)
−

m∑
i=1

(w (E(Di)+SD(Di)z
∗))

≤
n∑

j=1

⎛
⎝SD(D̃j)E

(
z∗ − D̃j −E(D̃j)

SD(D̃j)

)+
⎞
⎠−

n∑
j=1

(
w
(
E(D̃j)+SD(D̃j)z

∗
))

,

which can be further simplified as

(
E(z∗ −Z)+ −wz∗

)( m∑
i=1

SD(Di)−
n∑

j=1

SD(D̃j)

)
≤w

(
m∑
i=1

E(Di)−
n∑

j=1

E(D̃j)

)
,

The right hand side is equal to zero, and note that

E(z∗ −Z)+ −wz∗ =
∫ z∗

−∞
(z∗ −x)φ(x)dx− z∗w

=

∫ z∗

−∞
z∗φ(x)dx−

∫ z∗

−∞
xφ(x)dx− z∗w

= z∗Φ(z∗)−
∫ z∗

−∞
xφ(x)dx− z∗w

=−
∫ z∗

−∞
xφ(x)dx≥ 0

Therefore the necessary and sufficient condition now becomes

m∑
i=1

SD(Di)−
n∑

j=1

SD(D̃j)≤ 0. �

Proof of Proposition 2 Since Di ≤cx D̃i for i ∈ M , by the definition of convex order,

E (R(x,Di)) ≤ E
(
R(x, D̃i)

)
for any i ∈ M and any value of x. Hence,

∑
i∈M E (R (s̃i,Di)) ≤∑

i∈M E
(
R
(
s̃i, D̃i

))
. For any set of {s̃, S̃},

CAB (̃s; S̃)−CBA(̃s; S̃) =
∑
i∈M

E (R (s̃i,Di))−
∑
i∈M

E
(
R
(
s̃i, D̃i

))
≤ 0.
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That is, CAB (̃s; S̃) ≤ CBA(̃s; S̃) for any set of {s̃, S̃}. Therefore, CAB(s
∗;S∗) ≤ CAB (̃s

∗;S∗) ≤

CBA(̃s
∗;S∗). It is optimal to process feature A first. �

Proof of Proposition 3 Since Di ≤dil D̃i for i ∈ M , by the definition of dilation order, Di −

E(Di) ≤cx D̃i − E(D̃i), which further implies Di ≤cx D̃i + E(Di)− E(D̃i) (the composition of a

convex function and an increasing convex function is still convex). Since R(x, y) is convex in y for

given x, by the definition of convex order, we have

E (R (x,Di))≤E
(
R
(
x, D̃i +E(Di)−E(D̃i)

))

for any i∈M and any value of x.

Note that R(x, y) =R(x+ z, y+ z) for any z, hence we have

R
(
x, D̃i

)
=R

(
x+E(Di)−E(D̃i), D̃i +E(Di)−E(D̃i)

)
.

Therefore,

CAB(s
∗;S∗)−CBA(̃s

∗; S̃∗)

=
∑
i∈M

E (R (s∗i ,Di))−
∑
j∈M

E
(
R
(
s̃∗j , D̃j

))

≤
∑
i∈M

E
(
R
(
s̃∗i +E(Di)−E(D̃i),Di

))
−
∑
i∈M

E
(
R
(
s̃∗i , D̃i

))

≤
∑
i∈M

E
(
R
(
s̃∗i +E(Di)−E(D̃i), D̃i +E(Di)−E(D̃i)

))
−
∑
i∈M

E
(
R
(
s̃∗i , D̃i

))

=
∑
i∈M

E
(
R
(
s̃∗i +E(Di)−E(D̃i), D̃i +E(Di)−E(D̃i)

))

−
∑
i∈M

E
(
R
(
s̃∗i +E(Di)−E(D̃i), D̃i +E(Di)−E(D̃i)

))
= 0,

where the first inequality is due to the optimality of s∗i .

It is optimal to process feature A first. �
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Proof of Proposition 4 Since Di ≤cx D̃i, i= 1, ...,m−1, and Dm ≤cx D̃m+D̃m+1, then for any

given set of {s̃, S̃},
m−1∑
i=1

E (R (s̃i,Di))+E (R (s̃m + s̃m+1,Dm))

≤
m−1∑
i=1

E
(
R
(
s̃i, D̃i

))
+E

(
R
(
s̃m + s̃m+1, D̃m + D̃m+1

))

≤
m−1∑
i=1

E
(
R
(
s̃i, D̃i

))
+E

(
R
(
s̃m, D̃m

))
+E

(
R
(
s̃m+1, D̃m+1

))

=
m+1∑
j=1

E
(
R
(
s̃j, D̃j

))
,

where the second inequality above is due to the pooling effect, which can be proved easily as follows.

To show that E(R(s1 + s2,D1 +D2))≤E(R(s1,D1)) +E(R(s2,D2)) for any s1, s2 and random

variables D1,D2. By definition,

E(R(s1 + s2,D1 +D2)) = E
(
h(s1 + s2 −D1 −D2)

+ + p(D1 +D2 − s1 − s2)
+
)

= E
(
h(s1 −D1 + s2 −D2)

+ + p(D1 − s1 +D2 − s2)
+
)

= E
(
2h (0.5(s1 −D1)+ 0.5(s2 −D2))

+
+2p(0.5(D1 − s1)+ 0.5(D2 − s2))

+
)

≤ E
(
h(s1 −D1)

+ +h(s2 −D2)
+ + p(D1 − s1)

+ + p(D2 − s2)
+
)

= E(R(s1,D1))+E(R(s2,D2)),

where the inequality is due to convex property of the function f(x) = x+.

Hence, for any given set of {s̃, S̃},

CAB(s̃1, ..., s̃m−1, s̃m + s̃m+1; S̃)−CBA(̃s; S̃) =

m−1∑
i=1

E (R (s̃i,Di))+E (R (s̃m + s̃m+1,Dm))−
m+1∑
j=1

E
(
R
(
s̃j, D̃j

))
≤ 0.

That is, CAB(s̃1, ..., s̃m−1, s̃m + s̃m+1; S̃) is less than or equal to CBA(̃s; S̃) for any given set of

{s̃, S̃}. Note that S∗ = S̃∗, therefore CAB(s
∗;S∗)≤CAB(s̃

∗
1, ..., s̃

∗
m−1, s̃

∗
m+ s̃∗m+1; S̃

∗)≤CBA(̃s
∗; S̃∗). It

is optimal to process feature A first. �
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Proof of Proposition 5 Since Di ≤cx

∑
j∈Ki

D̃j, by the definition of R(x, y), for any given set of

{s̃, S̃},
m∑
i=1

E

(
R

(∑
j∈Ki

s̃j,Di

))
≤

m∑
i=1

E

(
R

(∑
j∈Ki

s̃j,
∑
j∈Ki

D̃j

))

≤
m∑
i=1

∑
j∈Ki

E
(
R
(
s̃j, D̃j

))

≤
n∑

j=1

E
(
R
(
s̃j, D̃j

))
,

where the second inequality is due to the pooling effect which we have shown in the proof of

Proposition 4.

Now we can derive, for any given set of {s̃, S̃},

CAB

(∑
j∈Ki

s̃j, i∈M ; S̃

)
−CBA

(
s̃; S̃

)

=
m∑
i=1

E

(
R

(∑
j∈Ki

s̃j,Di

))
−

n∑
j=1

E
(
R
(
s̃j, D̃j

))
≤ 0.

Hence, CAB

(∑
j∈Ki

s̃j, i∈M ; S̃
)
≤CBA

(
s̃, S̃

)
for any given set of {s̃, S̃}. Therefore,

CAB (s∗;S∗)≤CAB

(∑
j∈Ki

s̃∗j , i∈M ; S̃∗
)
≤CBA

(
s̃∗; S̃∗

)
.

It is optimal to process feature A first. �

Proof of Proposition 6 It is easy to check that ΔC∗ ≤ 0 is equivalent to

γABp
1
ABE

(
F−1

D0

(
1

1+ γAB

)
−D0

)+

+ p1ABE

(
D0 −F−1

D0

(
1

1+ γAB

))+

≤ γBAp
1
BAE

(
F−1

D0

(
1

1+ γBA

)
−D0

)+

+ p1BAE

(
D0 −F−1

D0

(
1

1+ γBA

))+

.

�

Proof of Corollary 2 The if and only if condition (29) given by Proposition 6 becomes

η
(
γABE (μ0 +σ0z

∗
AB −D0)

+
+E (D0 −μ0 −σ0z

∗
AB)

+
)

≤ γBAE (μ0 +σ0z
∗
BA −D0)

+
+E (D0 −μ0 −σ0z

∗
BA)

+
,
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which can be shown to be equivalent to

η
(
γABE

(
(z∗AB −Z)

+
)
+E

(
(Z − z∗AB)

+
))

≤ γBAE
(
(z∗BA −Z)

+
)
+E

(
(Z − z∗BA)

+
)
.

�

Proof of Proposition 7 By definition, E(R1
AB(s,D0))≤E(R1

BA(s,D0)) for any s. Therefore we

have

ΔC∗ =C∗
AB −C∗

BA =
∑
i∈M

E(R1
AB(s

∗
i ,D0))−

∑
j∈N

E(R1
BA(s̃

∗
j ,D0))

=
∑
i∈M

E(R1
AB(s

∗
i ,D0))−

∑
i∈M

E(R1
AB(s̃

∗
i ,D0))

+
∑
j∈M

E(R1
AB(s̃

∗
j ,D0))−

∑
j∈N

E(R1
BA(s̃

∗
j ,D0))≤ 0.

So it is optimal to process feature A first. �

Proof of Proposition 8 When m= n, by (31), ΔC∗ ≤ 0 is equivalent to

mE(D)(LB −LA)(h
1 −h0)+E

(
R1

(
F−1

D(mLA)(w
1),D(mLA)

))
+mE

(
R2

(
F−1

D(LB)(w
2),D(LB)

))
−E

(
R1

(
F−1

D(mLB)(w
1),D(mLB)

))
−mE

(
R2

(
F−1

D(LA)(w
2),D(LA)

))
≤ 0.

With elementary transformations and noting that LA > LB, the desired result can be obtained

immediately. �

Proof of Corollary 3 Since Dij are independent and identically distributed and D is normally

distributed with parameter (μ,σ), D(mL) is normally distributed with parameter (mLμ,
√
mLσ)

for any positive integer m. Then we have F−1
D(mL)(w

1) =mLμ+
√
mLσz1 and F−1

D(L)(w
2) = Lμ+

√
Lσz2. Therefore it is easy to verify that

ΔR(L) = R1
(
F−1

D(mL)(w
1),D(mL)

)
−mR2

(
F−1

D(L)(w
2),D(L)

)
=

√
mLσ

(
h1(z1 −Z)+ + p1(Z − z1)+

)−m
√
Lσ

(
h2(z2 −Z)+ + p2(Z − z2)+

)
=

√
mLσ

(
h1(z1 −Z)+ + p1(Z − z1)+ −√

m
(
h2(z2 −Z)+ + p2(Z − z2)+

))
,

which implies,

ΔR(LA)−ΔR(LB)

= (
√

LA −
√
LB)

√
mσ

(
h1(z1 −Z)+ + p1(Z − z1)+ −√

m
(
h2(z2 −Z)+ + p2(Z − z2)+

))
.
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Therefore (32) is equivalent to

ΔhΔL ≥ σ√
mμ

(
√
LA −

√
LB)E

(
h1(z1 −Z)+ + p1(Z − z1)+ −√

m
(
h2(z2 −Z)+ + p2(Z − z2)+

))
,

or

Δh(
√
LA +

√
LB)

√
mμ

σ
≥ E

(
h1(z1 −Z)+ + p1(Z − z1)+ −√

m
(
h2(z2 −Z)+ + p2(Z − z2)+

))
.

�

Proof of Proposition 9 By equation (31), we have

ΔC∗ = mE
(
R1

(
F−1

D(nL)(w
1),D(nL)

))
−nE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
. (34)

To show ΔC∗ ≤ 0, which is trivial for k= 1. We show the inequality for k≥ 2 by induction on k.

When k= 2,

ΔC∗ = mE
(
R1

(
F−1

D(2mL)(w
1),D(2mL)

))
− 2mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
≤ mE

(
R1

(
2F−1

D(mL)(w
1),D(2mL)

))
− 2mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
≤ 2mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
− 2mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
= 0.

Suppose it holds for k≤N , to show it also holds for k=N +1.

ΔC∗ = mE
(
R1

(
F−1

D((N+1)mL)(w
1),D((N +1)mL)

))
− (N +1)mE

(
R1 (s̃∗(mL),D(mL))

)
≤ mE

(
R1

(
F−1

D(mL)(w
1)+F−1

D(NmL)(w
1),D((N +1)mL)

))
−(N +1)mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
≤ mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
+mE

(
R1

(
F−1

D(NmL)(w
1),D(NmL)

))
−(N +1)mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
≤ mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
+NmE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
−(N +1)mE

(
R1

(
F−1

D(mL)(w
1),D(mL)

))
= 0,

where the last inequality is due to the induction assumption. Therefore it is optimal to process

feature A first. �


