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Highlights

• We develop two integrated frameworks for scheduling rolling stock and train unit shunting.

• We provide a comparison of several methods for solving the Track Allocation Problem.

• We give a counter example demonstrating the suboptimality of a previously proposed optimal
method.
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Integrating Rolling Stock Scheduling with Train Unit Shunting

Jørgen Haahra, Richard M. Lusbyb,∗

aOptivation, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
bDepartment of Management Engineering, Technical University of Denmark

Abstract

In this paper we consider integrating two important railway optimization problems, in particular
the Rolling Stock Scheduling Problem and the Train Unit Shunting Problem. We present two sim-
ilar branch-and-cut based approaches to solve this integrated problem and, in addition, provide a
comparison of different approaches to solve the so-called Track Assignment problem, a subcom-
ponent of the Train Unit Shunting problem. In this analysis we demonstrate, by way of a counter
example, the heuristic nature of a previously argued optimal approach. For the integrated problem
we analyze the performance of the proposed approaches on several real-life case studies provided
by DSB S-tog, a suburban train operator in the greater Copenhagen area. Computational results
confirm the necessity of the integrated approach; high quality solutions to the integrated problem
are obtained on instances where a conventional, sequential approach ends in infeasibility. Further-
more, for the considered instances, solutions are typically found within a few minutes, indicating
the applicability of the methodology to short-term planning.

Keywords: Transportation, Passenger Railway Optimization, Integer programming, Integration,
Rolling Stock, Shunting

1. Introduction

A passenger railway operator must exercise careful planning in order to make detailed schedules
for the day-to-day operations. A railway line plan stipulates the underlying structure of the
timetable, which must be operated by the fleet of rolling stock units and any required crew
members. Identifying a high quality solution for the railway operation has proven to be a difficult
and complex optimization problem. The current practice is to decompose the problem into smaller
subproblems and solve them sequentially. Two apparent drawbacks to this approach are the
degradation of overall solution quality and the infeasibility occurring due to poor decisions made
in previous stages; e.g. a timetable with a valid rolling stock schedule may be infeasible with
respect the required shunting movements. Finding feasible solutions, as opposed to optimal ones,
is even more important in a short-term (or real-time) setting, where the time to react is limited.
Integrating the planning problems remedies the need for iterating through infeasibility and the
generation of sub-optimal solutions. Due to the size and complexity of each of these problems, not
to mention the short reaction time available to find a solution, it is not surprising that there has
recently been an increased interest in computer aided decision support, or disruption management
tools that assist planners in recovery operations within the railway industry, see e.g. Kroon and
Huisman (2011). A study in the airline industry shows that integrating aircraft routing and crew
pairing not only results in cost reductions but also produces more robust solutions, compared to
those used in practice, see Weide et al. (2010).

In this work we consider integrating two important scheduling problems, in particular the
Rolling Stock Scheduling Problem (RSP) and the Train Unit Shunting Problem (TUSP). The
RSP involves allocating a fleet of rolling stock units to trips in such a way that the overall cost of
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operating the timetable is minimized. A trip is a timetabled train service connecting two stations.
Units, on the other hand, are individual vehicles that come in different types and which can be
arranged in different ways, giving so-called compositions, which can then be assigned to trains.
Units of the same type have the same physical characteristics. The allocation of units to trains
should ensure a sufficient number of seats for the passengers, but also respect several constraints
from an operational perspective. In order to cover the expected passenger demand as closely as
possible, the composition of trains can be modified throughout the planning horizon by coupling
and uncoupling units. Finding optimal or high quality rolling stock schedules is the focus of the
RSP. Often, the RSP focuses on the allocation of unit types only, and the assignment of specific
units is left until a later stage.

The TUSP, on the other hand, deals with the planning of shunting movements within railway
depots. A depot (or shunting yard) is an area where units not in service can be parked. It usually
consists of a number of parallel tracks and is often located close to a railway station. A shunting
movement refers to the process of driving a unit to (or from) a depot track from (or to) a platform
in the station. Given an initial inventory of unit types parked in the depot, this problem typically
involves first matching specific units in the depot to arriving and departing trains (for which only
the types required are usually specified). Simply put, an arriving train must be matched to a
specific (later) departure or be assigned to depot track permanently, and a departing train must
similarly be matched to an (earlier) arrival or an initially parked train. Once a matching has been
found, the units must be assigned to depot tracks in a such a way that the resulting shunting
movements can be performed in an efficient way. On which track and in which order to park idle
units, given a matching, is commonly referred to as the Track Assignment Problem (TAP). A
depot track has a finite capacity, and this limits the number of units that it can simultaneously
hold. Furthermore, a common characteristic of depot tracks is that they are only accessible to and
from one direction. In other words, they essentially function as last-in first-out (LIFO) stacks.

The RSP and TUSP are clearly interdependent; any rolling stock schedule induces activity at
the depots of a railway network. The conventional approach is to solve these problems sequentially,
with the RSP solved first. Such an approach can potentially lead to an infeasible TUSP. This is
more likely to occur in networks with scarce depot capacity. Infeasibilities in the TUSP typically
arise due to unavoidable ordering violations, i.e., two units cannot enter and exit the depot in the
order specified by the rolling stock schedule. This research is in collaboration with Copenhagen
Suburban Railway Operator (DSB S-tog), a suburban train operator in the greater Copenhagen
area. DSB S-tog operates a fleet of approximately 130 physical units (of two different types)
over a rail network, totalling 170km in length, that connects 85 stations. Approximately, 350,000
passengers use the network daily. Talks with DSB S-tog revealed that an optimized rolling stock
schedule is usually infeasible with respect to the induced shunting movements. Consequently,
manual repairs are needed in order to obtain a feasible solution to both the RSP and the TUSP.
This provides the necessary motivation for our research. We focus on solving the integrated
problem, which we term the Integrated Rolling Stock and Unit Shunting Problem (IRSUSP). To
the best of our knowledge, such an approach has not been previously attempted. We test the
performance of the developed algorithms on several real-life case studies provided by DSB S-tog.

In what follows we propose two similar branch-and-cut based approaches to solve the IRSUSP.
Two possibilities arise depending on what information is included in the RSP. The first approach
extends the Branch-and-Price (BAP) framework of Haahr et al. (2014) for the RSP. In particular,
we introduce a new routine to assess the feasibility of rolling stock schedules from a shunting
perspective at all depots. The model proposed in Haahr et al. (2014) only implicitly considers
depot capacity in the form of an aggregated constraint on the total length of track available. It
does not consider any ordering conflicts that could arise, nor if it is possible to park the units
when individual track capacities are considered. Haahr et al. (2014) allocate specific units to trips
and generate sequences of trips, or itineraries, for each unit in the fleet via a column generation
approach. From these individual unit itineraries it is possible to determine at which times each
unit enters, or exits, a given depot. Utilizing this information we extend the BAP method of Haahr
et al. (2014) to a Branch-and-Price-and-Cut (BAPC) approach. A feasible solution to the RSP is
only accepted if it is feasible with respect to all depots from a shunting perspective. Otherwise, we
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add a constraint to cut this solution away and generate a new rolling stock schedule. As specific
unit assignments are provided by the model for RSP, to determine the shunting feasibility of a
depot only a TAP needs to be solved. We refer to this variant as the Route First Method (RFM)
since the itineraries for all individual units are available before solving the shunting problem.

The second proposed approach extends a flow based Mixed Integer Program (MIP) inspired
by Fioole et al. (2006) for the RSP. As with the model Haahr et al. (2014), very little information
regarding depots is included in this formulation of the RSP. Furthermore, being a flow based
model, it only assigns unit types to timetabled service, and not specific units. As is the case with
the first approach, we introduce an additional routine to test the shunting feasibility of rolling
stock schedules. As the RSP formulation is anonymous from a unit perspective, this feasibility
check requires solving the full TUSP (i.e. both the matching and the TAP must be solved). If a
rolling stock schedule provides a feasible solution to the TUSP, it is retained, otherwise it is a cut
away through the addition of a constraint. We refer to this method as the Route Last Method
(RLM) since individual unit itineraries are implicitly found as part of the shunting problem.

In developing the two frameworks for the IRSUSP this paper makes several contributions
to the literature on the RSP and TUSP. First and foremost, the proposed solution methods
themselves are the biggest contribution. This has not been addressed previously, and this paper
highlights the necessity of such approaches in short term planning. Secondly, as the TAP is a
core component of the RFM, we present a comparison of different methodologies for solving this
problem. In particular, we compare two Branch-and-Cut (BAC) procedures for this, an extension
of the heuristic described in Freling et al. (2005), and an exact BAP approach. In doing so, we
highlight, using a counter example, the heuristic nature of the previously argued optimal column
generation procedure in Freling et al. (2005) for generating a lower bound. Finally, we also develop
a heuristic unit swapping routine that can be used to repair an infeasible solution to the TAP.

This paper is structured as follows. In Section 2 we provide a brief summary of the relevant
literature, where any differences to existing approaches are described. Section 3 introduces formal
descriptions of both the RSP and TUSP and provides mathematical formulations of each. In
Section 4 we introduce the BAC frameworks for solving the IRSUSP. This section also describes
existing approaches to solve the TAP. We extend some of these and correct an error in the proposed
column generation approach of of Freling et al. (2005). It is in this section where we also as propose
a heuristic to recover feasibility of an infeasible TAP instance. Computational results are provided
in Section 5. This includes a comparison of the methods to solve the TAP on artificial instances as
well as a performance assessment of the integrated frameworks and real-life case studies provided
by DSB S-tog. Finally, conclusions and future research directions are outlined in Section 6.

2. Literature

In this section we review relevant literature that addresses either the RSP or the TUSP. For
the RSP we include models and methods used for solving the tactical and short-term variants.
However, for the TUSP, to our knowledge there are no studies that address short-term planning.
The ordering restrictions inherent in the TUSP are not unique to passenger rail, nor trains for
that matter; we draw analogies with bus depot planning and freight rail car classification.

Over the past few years several different models have been put forward for solving variants of
the RSP, both from a planning and a rescheduling perspective. An approach for determining the
minimum circulation of units required to operate a timetable is described by Schrijver (1993). A
more elaborate MIP model that can handle the combining and splitting of trains is proposed by
Fioole et al. (2006). This model forms the basis of Nielsen et al. (2012), where a rolling horizon
framework is developed for solving a rolling stock rescheduling problem. These three approaches
can all be classified as anonymous unit flow models. As such, one is unable to track individual unit
movements. As an alternative, Haahr et al. (2016) present a path based formulation for the same
problem and solve this using a BAP framework. Each path specifies an itinerary for a particular
unit type. Train compositions are handled by the master problem, making sure that composition
changes are feasible. Note that the model does not assign individual itineraries to specific units,
but sets of itineraries that are consistent with the number of unit types available at their specified
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initial locations. This methodology does therefore not deal with anonymous unit flows as in Fioole
et al. (2006) and is equally applicable at the tactical planning level. For a more extensive overview
of models and methods to reschedule rolling stock in real-time, the reader is referred to Cacchiani
et al. (2014).

Several studies concerning variants of the TUSP have been conducted. The problem of dis-
patching trams from a storage yard is addressed in Winter and Zimmermann (2000). To achieve
a departure order satisfying the scheduled demand, several shunting operations may be neces-
sary. The authors describe combinatorial optimization models as well as both exact and heuristic
approaches for solving the real time dispatch problem. Scheduling trams in the morning is also
the topic of Blasum et al. (1999). The authors prove the NP completeness for the problem of
finding an assignment of parked trams (of different types in stacks) to departure times without
any additional shunting movements. Di Stefano and Koči (2004) consider the shunting of units
in a railway depot. The authors primarily focus on depot track ordering restrictions and address
the complexity of several subproblems. The objective of all problems is to minimize the number
of tracks needed to park the units. Topics from graph theory including hypergraphs, permutation
graphs, and graph colouring are applied. Three heuristic approaches to train shunting in a work-
shop area are described in Jacobsen and Pisinger (2011), while Føns (2006) considers different
mathematical models and approaches for the TUSP. Both Føns (2006) and Jacobsen and Pisinger
(2011) consider cases arising at the Copenhagen suburban railway operator, DSB S-tog.

The problem of dispatching buses from a bus terminal is the focus of Gallo and Miele (2001).
Initially the problem is formulated using the Quadratic Assignment model approach of Winter and
Zimmermann (2000). In addition, the authors also describe a new model that takes into account
the fact that the buses can have different lengths. The resulting model is shown to be well suited
to decomposition, and hence the authors present a Lagrangian Decomposition based approach.
Real-life instances from the Florence Public Transportation Company are studied. It is concluded
that the algorithm can find good quality solutions to practical problems in reasonable time (within
two minutes). Other bus parking related research includes Hamdouni et al. (2006, 2007). The
study by Hamdouni et al. (2006) considers identifying robust parking solutions and argues that
one should generate solutions in which the bus lanes have at most two different types. Having
fewer types on a lane reduces the potential for ordering (or crossing) conflicts, possibly at the
expense of wasting parking capacity. The work of Hamdouni et al. (2007) introduces a Benders
Decomposition approach for minimizing bus type mismatches between arrival and departure pairs.
That is, in the problem considered it is possible to supply a bus of a different type to the one
requested, but at a cost. Having few distinct bus types on a given parking lane is also a priority.

In Freling et al. (2005) a model for the TUSP is defined; however, the described solution method
decomposes the problem into a matching problem and a TAP. The matching is solved first and
then used as input to the TAP. The authors propose a MIP model for the matching problem, while
the TAP is solved using a column generation approach. Computational experiments focus on two
case studies at station Zwolle in the Netherlands. It is not completely clear if a column generation
approach actually outperforms a MIP approach for the instances considered. Furthermore, we
argue, with counter example that the dominance criteria stated are not exact; i.e. they can
potentially remove the optimal solution.

A similar decomposition is also suggested in Lentink et al. (2006). However, two additional
steps focusing on the routing of the units from their arrival platforms to their designated depot
tracks are also included. Between the matching of arrivals with departures and the parking of the
units, an estimate on the cost of routing the units is calculated. These costs are then used when
assigning units to tracks. Upon parking the units, actual routes from the platform to the depot
tracks are obtained. A heuristic that sequentially routes the units is devised, and the complete
routing solution is improved using a 2-opt heuristic.

Haijema et al. (2006) propose a dynamic programming based heuristic for solving the TUSP. A
realistic test case from the railway station Zwolle in the Netherlands is used to test the developed
methodology. The test case considers a 24 hour period during which 45 units arrive and 55 units
depart. The depot has 19 tracks with a total length of 4000m. The simple heuristic is fast and
flexible and produces promising results; however, only a single instance from real-life is considered.
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The work of Kroon et al. (2008) extends the work in Freling et al. (2005) and presents a fully
integrated model for solving both the matching problem as well as the TAP. A large MIP model is
proposed that attempts to minimize the number of split compositions and the number of different
unit types simultaneously parked on the same depot track. The authors indicate how the model
can be strengthened through the addition of clique inequalities and also how to model more prac-
tical restrictions. For example, a discussion on how to deal with trains composed of several units
as well as how to model depot tracks that can be approached from both sides is included. The
concept of a virtual shunting track is introduced in order to help identify which tracks should be
heterogeneous and which tracks should be homogeneous from a unit type perspective. Computa-
tional experiments focus on two Dutch stations and consider up to 125 units of 12 different types
that need to be parked.

An advanced planning tool for shunting operations is described by van Wezel and Riezebos
(2011). Like almost all previous work on the TUSP, this approach first solves a matching problem
that determines how arriving units are matched to departing units. This is done via a network flow
algorithm. A k-shortest path algorithm is used to assign a track to each unit, while a modified
version of an undirected k-shortest path is used to route the units. Finally the approach also
assigns drivers to shunt operations.

Aside from passenger railway operators, ordering problems on storage tracks are highly preva-
lent in the freight rail industry. In order to reach their final destination freight rail cars are sorted
at so-called classification yards where incoming trains are sorted into blocks of rail cars that share
the same destination. The blocks are subsequently combined to form outbound trains. The order
in which to process inbound trains, which blocks to build, which track to assign a block, and how
to build outbound trains, are all decisions that need to be made. For a survey of shunting in the
freight rail industry, the reader is referred to e.g. Gatto et al. (2009) and Boysen et al. (2012).

To summarize, when solving the TUSP one first typically solves a matching problem before
solving a parking (and possibly a routing) problem. This stems from the fact that rolling stock
allocation is typically done using MIP models that generate anonymous unit routes. In what fol-
lows, we present and compare two approaches that integrate rolling stock scheduling and train unit
shunting. The RFM generates individual unit itineraries in the RSP and tests feasible solutions
to this problem for depot feasibility. The RLM, on the other hand, only assigns unit types in
the RSP. Feasible solutions to this problem must also be checked for depot feasibility. Unlike the
RFM, this check must be extended to include the assignment of individual units to compositions.

3. Problem Description

A sound understanding of both the RSP and the TUSP is required in order to grasp the details
of the integrated frameworks. In this section we therefore provide more formal descriptions of each
of these problems. Section 3.1 focuses on the RSP, while Section 3.2 introduces the TUSP. The
necessary notation is defined, and mathematical formulations of each problem are provided.

3.1. Rolling Stock Scheduling (RSP)

The RSP involves allocating a fleet of units, possibly of different types, to a set of timetabled
trips, T . Associated with any trip t ∈ T is a departure station, a departure time, an arrival
station, an arrival time, and the forecasted passenger demand. Furthermore, in our modelling
we assume that the two stations, which a trip connects, each have a depot. As such, a trip may
not necessarily connect adjacent stations. It is always possible to obtain a set of such trips from
an input timetable by merging trips that do not run between stations with depots until this is
achieved. Train compositions can only be changed at stations with a depot. The set of all depots
on the network is denoted by D, while the set of unit types in the fleet is given by U . Naturally, the
trips to which each unit can be assigned to, depend on the unit’s initial location, and potentially
also its type. The constant invud states how many units of type u ∈ U are initially available
at depot d ∈ D. The assignment of units to trips is constrained by the set of possible train
compositions, C. In other words, only certain combinations of unit types can be coupled together
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to form a train. In addition to the unit types it is comprised of, a composition also states where
in the corresponding sequence each of the types is placed. Changing the composition of a train on
consecutive trips is only possible if the layout of the station where the connection occurs permits
this. For example, at some stations it may only be possible to (un)couple units from the front of
the train, while at other stations it may only be possible to (un)couple units from the rear of the
train. Also, composition changes can occur even in the absence of (un)coupling units. A train
that turns on a platform is one such example; the train leaves in the direction it came from, and
the composition of units is reversed. A set of so-called connections, R, is usually introduced to
model this. Every element r ∈ R is a pair of trips (t, t′) ∈ (T × T ), where t′ is the successor trip
of trip t. A composition change can occur at the arrival station of trip t (the departing station
of trip t′). The constants coupuc,c′ and uncoupuc,c′ are used to denote the number of units (of type
u ∈ U) requiring shunting to and from the depot as a result of a change in composition from c ∈ C
to c′ ∈ C.
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Figure 1: An example of a RSP instance using a time and space diagram. Stations (with depots) are listed vertically.
some of these contain initial units with stated capacities. Arcs represent trips that run between two stations. The
number associated with each arc specifies the passenger demand. The colored paths illustrate the itineraries taken
by the available units

An example of an RSP is shown in Figure 1. All units end at the depots where they were
initially positioned. Furthermore, by (un)coupling units at key stations, the compositions of the
trains can be modified such that the passenger demand is satisfied. For example, a small and
large unit are coupled together at KH in order to satisfy the demand of 270. After performing two
trips the large unit is uncoupled at KH, where it is then coupled to the other small unit to better
match the demand on the KH-FS trip. Note that whenever a unit is not operating a trip it must
be parked on a depot track.

The first MIP that we present is based on the one proposed by Fioole et al. (2006). This
forms the basis of the RLM and uses two families of binary variables. One set, xtc, is needed
to control the composition assignment to trips, while the other, zrc,c′ monitors the composition

changes. Formally, xtc has a value of one if composition c ∈ C is selected for trip t ∈ T , while
zrc,c′ is set to one if, at connection r ∈ R, the train changes from composition c ∈ C to c′ ∈ C.
The formulation is shown below. To ease its readabiltity we introduce a number of additional sets
and some shorthand notation. We denote the two trips associated with any connection r ∈ R
as source(r) ∈ T and target(r) ∈ T , respectively, where target(r) is the successor trip of
source(r). Furthermore, we use depot(t) ∈ D to indicate the depot associated with the arrival
station of trip t ∈ T . Finally, we introduce the set Rt ⊂ R which contains all connections at the
departure station of trip t ∈ T that occur prior to or at the departure time of trip t. A general
MIP formulation of the RSP can hence be stated as:

Minimize: F (x, z) (1)
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s.t.
∑

c∈C
xtc = 1 ∀t ∈ T (2)

xsource(r)c =
∑

c′∈C
zrc,c′ ∀r ∈ R, c ∈ C (3)

x
target(r)
c′ =

∑

c∈C
zrc,c′ ∀r ∈ R, c′ ∈ C (4)

0 ≤ invudepot(t) (5)

−
∑

c∈C

∑

c′∈C

∑

r∈Rt

coupuc,c′ · zrc,c′

+
∑

c∈C

∑

c′∈C

∑

r∈Rt

uncoupuc,c′ · zrc,c′ ∀u ∈ U , t ∈ T (6)

xtc ∈ {0, 1} ∀t ∈ T , c ∈ C (7)

zrc,c′ ∈ {0, 1} ∀r ∈ R, c ∈ C, c′ ∈ C (8)

A general objective function is given in (1). This depends on the compositions assigned to
the trips as well as any composition changes that must be performed. It is normally a weighted
sum of multiple objectives. These can include such factors as the number of trip cancellations if
it is impossible to service all trips, the operating cost, the shunting costs, the unmet passenger
demand, and the end-of-day balance deviations. Unmet passenger demand arises whenever the
composition assigned to a trip has fewer seats than the forecasted passenger demand on the trip.
In some cases it is desirable to end with a specified number of each unit type at each depot.
Any deviation from this specified balance is penalised. Constraints (2) ensure that every trip
is assigned one composition. Note, that the empty composition is included in C and represents
a cancellation. Any composition can be removed from consideration by fixing the x variables
to zero. For example, a short platform at a particular station may prevent large compositions
from being assigned. Constraints (3) and (4) link the set of binary variables. In order to enforce
certain transition rules, a number of the z variables can be removed from consideration by fixing
them to zero. For example, a station where units can only be (un)coupled from the rear of the
train has fewer possibilities than stations where it is also possible to (un)couple from both ends.
Constraints (6) ensure that inventory is always non-negative. Finally, the domains of the variables
are defined by (7)-(8). We note, that instead of fixing variables to zero, the corresponding variables
should be left out of the mathematical model altogether in the implementation.

When assigning rolling stock it is usually assumed that all depots have sufficient capacity for
the total number of shunting movements that must be performed in the resulting schedule. For
depots with scarce capacity, this may not necessarily be true. In such cases it is possible to append
constraints on aggregated depot capacity to the RSP formulation above. These constraints ensure,
on an aggregated level, that the total length of units parked in any depot at the same time is never
more than the total available track length of the depot. In reality depots consist of multiple parallel
tracks of different lengths. Solely respecting the aggregated length does not guarantee that units
under consideration can in fact be parked on the discrete set of tracks. Furthermore, this does not
rule out the possibility for ordering violations on the depot tracks when considering all tracks as
well as the exact timings of shunting movements into and out of depots.

Model (1)-(8) is essentially a flow based model; a solution to it states the how the different
unit types move through the network in operating the timetable. It does not, however, provide
individual itineraries for the specific units. An alternative formulation by Haahr et al. (2016)
models the RSP from this perspective. A path based formulation, which generates individual unit
itineraries, is developed and solved using column generation in which promising unit itineraries are
dynamically generated. The Haahr et al. (2014) model has been extended to include compositions
by Haahr et al. (2016) and is used in the RFM here. For each of the depots on the network it
assigns a certain number of itineraries corresponding to the units parked there. Recall that an
itinerary is a sequence of trips a given unit will perform and can be visualized as a “path” in a
time-space network of the form given in Figure 1. Given an initial inventory of invdu units in depot
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d ∈ D of type u ∈ U , the model must allocate exactly invdu itineraries (including the option of
not moving) for units of type u. The set of all possible unit type u ∈ U itineraries that originate
depot d ∈ D is denoted by Pud , while the full set of itineraries is hence P :=

⋃
u∈U,d∈D Pud . Binary

variables λp are introduced and govern the inclusion of path p ∈ P in the solution. Additional
parameters are needed to tie the itineraries to the composition variables of model (1)-(8). The
binary parameter αtp indicates whether itinerary p ∈ P operates trip t ∈ T , µuc indicates the
number of units of type u ∈ U required in train composition c ∈ C. The path based formulation
for the RSP can hence be stated as follows:

Minimize: F (λ, x, z) (9)

s.t. (2)− (4)
∑

d∈D

∑

p∈Pu
d

αtpλp =
∑

c∈C
µucx

t
c ∀u ∈ U , t ∈ T (10)

∑

p∈Pu
d

λp = invud ∀u ∈ U , d ∈ D (11)

(7)− (8)

λp ∈ {0, 1} ∀p ∈ P (12)

This formulation is noticeably similar to that of model (1)-(8). The objective function, given
in (9), has been modified to include the path variables, and two new types of constraints are
required. Constraint (10) ensures that the number of units assigned to each specific trip is consis-
tent with the number of units of each type in the chosen composition for a trip. Constraint (11)
restricts the number of paths for a specific unit type originating a depot to be exactly equal to the
inventory of that unit type available. These perform the role of Constraints (6) in model (1)-(8).
The binary nature of the λp variables is given by (12).

Formulations (1)-(8) and (9)-(12) both model the RSP. The latter, being a path based for-
mulation, allows unit specific requirements to be modelled, e.g. itinerary mileage. Depending on
which is used, the subsequent TUSP takes on a different form. In the path based formulation
units can be followed through the network. The variation stems from the fact that an itinerary
contains all information on when units enter and exit depots and what trips they perform. The
flow based formulation, on the hand, does not have such information.

3.2. The Train Unit Shunting Problem (TUSP)

The TUSP focuses on the movements in one depot and tries to coordinate them in a conflict
free manner. At the same time, it must ensure that depot track capacity is never violated when
parking units. An instance of the TUSP is thus characterized by a set of tracks, T , each of which
has a known length, and a set of required shunting movements E . The set E := Earr ∪ Edep is
partitioned into two subsets, where Earr contains all arriving movements and Edep contains all
departing movements. An arrival movement arises whenever a unit is uncoupled from a train and
driven to the depot, while a departure movement arises when a unit requires coupling to a train
and must leave the depot. Associated with any movement e ∈ E is information concerning the
time the movement occurs, denoted by time(e), and its unit type, denoted by type(e). Typically
the aim of the TUSP is to determine whether or not a given set of shunting movements induced by
a rolling stock schedule is feasible; however other objective functions are also possible. We argue
that in a short term planning, it is sufficient to detect feasibility of the depots as the majority of
the cost is incurred by the rolling stock schedule. Note, if feasible, depots can always be resolved
independently to achieve a “better” solution.

If a flow based model has been used to obtain the rolling stock schedule, all that is known at a
particular depot are the times when units of certain types arrive and depart. For a given arrival it
is not specified what trip the incoming unit type will perform next. In this case the TUSP includes
a matching problem; arriving movements must be paired with departing movements and assigned
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B: arrived at 8:00

120m

140m

A: arrived at 9:00 A: arrived at 10:00

40m 40m

100m

Figure 2: An example of the TUSP with three units of two distinct types and two tracks.

a physical unit. Once such a matching has been obtained, the tracks on which (and the order in
which) the corresponding units are to be parked can be determined. An instance of the TUSP is
feasible if there exists a feasible matching in which the corresponding units can be ordered feasibly
on the tracks.

As an example, consider a depot with two tracks. Each track can only be accessed from one
end. The first has length 100m, and the second has length 140m. Three arrivals are scheduled. A
unit of type A (of length 40m ) arrives at 9:00 and at 10:00. One unit of type B (of length 120m)
arrives at 8:00. Three departures are scheduled, a unit of type A must leave at times 12:00 and
16:00, while a unit of type B must leave at 20:00. Figure 2 depicts the depot at time 11:00. Due
to the track lengths, this is the only feasible ordering of the units on the tracks. The unit that
arrives at 10:00 must be matched to the departure at 12:00, otherwise the movements of the two
A units would be in conflict; the unit at the open end of the track would block the other.

In general, every arrival movement can be matched to one of possibly many departures, as long
as the unit type associated with the two movements is the same. We define the set of all possible
matchings at a depot to be:

M = {(ea, ed)|ea ∈ Earr ∧ ed ∈ Edep
∧ type(ea) = type(ed)

∧ time(ea) ≤ time(ed)}

An arrival and departure movement can be feasibly matched if and only if the unit type is
identical and the departure occurs after the arrival in time. Note that the set of matchings should in
practice be restricted further, e.g. by requiring a minimum separation time between the arrival and
departure. Initially parked units can be easily considered in the form of artificial arrival movements
that have occurred prior to the planning horizon under consideration. Additional information
concerning which tracks any initial units are parked on (and their) respective order is assumed
to be given. Similarly, artificial departure movements that correspond to a unit remaining at the
depot beyond the end of the planning horizon can also be used. As such we can assume without
loss of generality that |Earr| = |Edep|, each set possibly augmented with artificial movements. The
setMe ⊂M is assumed to contain all matchings that include movement e, and cmt indicates the
cost or unattractiveness of assigning matching m ∈ M to track t ∈ T . For convenience len(m),
am, and dm give the length of the unit associated with matching m ∈ M, the time of its arrival
movement, and the time of its departure movement.

The TUSP can be formulated as a binary integer program. Decision variables xmt can be used
to indicate whether or not matching m ∈ M is assigned to track t ∈ T . A value of one indicates
that the corresponding arrival and departure movements are matched, and, furthermore, that the
arriving unit is parked on track t at the depot until its departure time. Any two matchings for
which the corresponding movements cannot be assigned the same depot track due to an ordering
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violation (i.e. LIFO restrictions) are said to be in conflict. All such pairs are contained in the
set C. The length of track t ∈ T is denoted by Lt ∈ R. Finally, we define the set Ne ⊆ M.
This set contains all matchings that overlap (in time) with the arrival e. The full formulation can
now be stated as follows and is similar in structure to that which appears in Lentink et al. (2006)
and Kroon et al. (2008).

Minimize:
∑

m∈M

∑

t∈T
cmtxmt (13)

∑

t∈T

∑

m∈Me

xmt = 1 ∀e ∈ Earr, (14)

∑

t∈T

∑

m∈Me

xmt = 1 ∀e ∈ Edep, (15)

∑

m∈Ne

len(m) · xmt ≤ Lt e ∈ Earr, t ∈ T, (16)

xm1t + xm2t ≤ 1 ∀(m1,m2) ∈ C, t ∈ T, (17)

xmt ∈ {0, 1} ∀m ∈M, t ∈ T, (18)

The objective (13) is to minimize the overall cost of the found solution. For illustrative purposes
we have defined the problem to have an objective function here, despite the fact we regard it as a
feasibility problem in this paper. Constraints (14) and (15) require that every arrival and departure
movement are selected in exactly one matching. Every movement must be covered exactly once.
Constraint set (16) guarantees that the track capacity is never violated by ensuring that the
capacity is respected on each track whenever an arriving movement occurs. Constraints (17)
stipulate ordering restrictions; a pairwise packing constraint is included for any two conflicting
movements. Variable domains are given by (18). Note that constraints (17) can be strengthened
by identifying stronger clique inequalities. Typically this set of constraints can be problematic as
the formulation can become prohibitively large if there are many conflicts.

When the rolling stock schedule also states individual unit itineraries, as is the case with
model (9)-(12), the TUSP reduces to the TAP. This is because all matchings are specified in the
schedule and all that remains is to order the units in a non-conflicting way on the depot tracks
while respecting track capacity. Thus constraints (14) or (15) can be omitted and replaced by a
set of constraints that ensure all of the prespecified matchings are assigned to tracks. We denote
this set of matchings as M∗ ⊂M. The sets Ne and C are adjusted accordingly, where N ∗e ⊆M∗
and C∗ contains only conflicts relevant to the chosen matching. In addition, we introduce decision
variables ym ≥ 0 to account for infeasibility. The variable states the portion of matching m ∈M∗
that cannot be assigned to any track. It is penalized with a large cost, M , in the objective function.
For completeness we state the full model here.

Minimize:
∑

m∈M∗

∑

t∈T
cmtxmt +M

∑

m∈M∗
ym (19)

∑

t∈T
xmt + ym = 1 ∀m ∈M∗, (20)

∑

m∈N∗e

len(m) · xmt ≤ Lt e ∈ Earr, t ∈ T, (21)

xm1t + xm2t ≤ 1 ∀(m1,m2) ∈ C, t ∈ T, (22)

xmt ∈ {0, 1} ∀m ∈M∗, t ∈ T, (23)

ym ≥ 0 ∀m ∈M∗. (24)

The objective, (19) minimizes the cost of the track assignment and penalties incurred for
not covering a matching (effectively not parking a unit). Constraints (20) ensure each matching is

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

assigned a track or left uncovered, while constraints (21) and (22) are equivalent to their respective
counterparts in model (13)-(18). Variable domains are specified by (23) and (24).

We have described two possible formulations for the RSP and shown that each yields a slightly
different version of the TUSP. In the coming section we discuss various aspects of the integrated
frameworks. In the RFM we effectively combine formulations (9)-(12) and (19)-(24), while in the
RLM we combine formulations (1)-(8) and (13)–(18). The TAP and TUSP essentially function as
subproblems in the respective approach, generating constraints to cut away rolling stock schedules
that are infeasible from a shunting perspective. In this development we also try to identify the
most effective way to solve the TAP problem and report the results of this study.

4. Solution Approach

This section focuses on different aspects concerning the proposed solution approaches. We
begin in Section 4.1 by providing an overview of the two BAC based approaches for solving the
IRSUSP. Furthermore, given its importance to one of the two methods, and as various approaches
have been proposed in the literature to solve it, we specifically consider solution methods for the
TAP in more detail in Section 4.2. Being a sub-component of a larger framework, it is essential
that we identify the most efficient way to solve this. Finally, in Section 4.3 we introduce a heuristic
which attempts to obtain a feasible solution to an infeasible instance of the TAP through swapping
the departure movements of matchings.

4.1. Integrated Approaches for the IRSUSP

In developing the integrated frameworks for the IRSUSP we make use of known methods for
solving the two different formulations of the RSP outlined in Section 3. The flow based formulation,
which is central to the RLM, is solved using a Branch-and-Bound (BAB) approach, while the
path-based formulation, part of the RFM, is solved using the BAP procedure outlined in Haahr
et al. (2016). To ensure rolling stock schedules which are feasible from a shunting perspective are
obtained, we augment both formulations with additional constraints that cut away solutions that
would otherwise give rise to infeasible shunting movements at depots. As a rolling stock schedule
indicates where train composition changes take place, any given rolling stock schedule can be
prohibited by explicitly adding a constraint that prevents some composition changes appearing.
The constraint can be improved by constraining only the composition changes giving rise to the
infeasible depot. It can be further improved by limiting the composition changes to the minimal
set that are infeasible. Using the same notation as Section 3, all rolling stock schedules infeasible
with respect to shunting movements could be removed by adding the following set of constraints:

∑

(t,c)∈φ
xtc ≤ |φ| − 1 ∀φ ∈ Ψ, (25)

where Ψ is a full list of all feasible solutions to the RSP that are infeasible from a shunting
perspective. Each element in φ ∈ Ψ is list of (trip, composition) pairs. As a depot infeasible rolling
stock schedule is associated with a specific depot, a stronger cut is obtained by only specifying
trip compositions for all trips that either enter or leave the infeasible depot. We note that the
cut is still not strong as similar rolling stock solutions are not necessarily covered by the same
constraint; e.g., the cut for one depot infeasible solution does not prohibit a very similar solution
where one of the arriving unit types is shifted to arrive a little earlier or later.

There can be a potentially large number of depot infeasible solutions to the RSP. Consequently,
the number of constraints that comprise (25) can be very large. Enumerating all such constraints
is impractical. Furthermore, identifying all of them in advance is even more cumbersome. We
therefore propose extending the two solution approaches for the RSP with a dynamic cutting
routine, where constraints (25) are initially removed from the formulation. On finding a feasible
rolling stock schedule in BAB tree we test the feasibility of the induced shunting movements. If
any depot is infeasible, we add a cut of the form (25) and continue the optimization. On the other
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hand, if the rolling stock schedule is shunting feasible, a solution to the IRSUSP has been found.
Recall that we treat the TUSP as a feasibility problem. That is, the cost of the IRSUSP comes
from the rolling stock schedule and no cost stems from the TUSP

BAC is a well known technique for efficiently solving large scale MIPs, see e.g. Desrosiers and
Lübbecke (2010). This approach combines the addition of cutting planes within a BAB framework.
More specifically, whenever the relaxation of a node in the branch-and-bound tree is solved to
optimality, so-called separation routines are performed. Each separation routine attempts to
identify valid inequalities, i.e. constraints that are not part of the original formulation, but which
are violated by the node’s fractional solution. By adding such valid inequalities one hopes to
improve the bound by removing infeasible fractional solutions that would otherwise be branched
on. The valid inequalities produce a tighter relaxation and often a less fractional solution.

In addition to generating valid inequalities from the problem’s full constraint set it is also
possible to remove a set of problem constraints, thus obtaining a relaxation, and run a separation
routine that identifies any violated, relaxed constraints. This can be particularly useful if there is
a large set of constraints, many of which are unlikely to be binding in an optimal solution. See e.g.
the application of BAC algorithms to the traveling salesman problem and its variants Padberg et al.
(1987), where the exponential number of sub tour elimination constraints can be more efficiently
handled via a separation routine. This is the approach we adopt here. We initially remove all
constraints (25) and then check for any violated ones whenever an integral solution to the RSP
is found. In this way we circumvent the problem of bloating the rolling stock formulations with
redundant constraints as any necessary ones are dynamically generated.

The purpose of the separation routine is the same for the RFM and the RLM; however, the
form of the separation routine is slightly different due to the information available in the rolling
stock schedules each approach provides. In both cases, however, all depots must be assessed (inde-
pendently) when testing the feasibility of any induced shunting movements. That is, on finding a
feasible rolling stock schedule, the separation routine sequentially iterates through all depots and
solves a TUSP. If an infeasible depot is encountered, the separation routine terminates and returns
a violated constraint (25). The current node of the BAB tree for the RSP is then reoptimized. Due
to the absence of unit itineraries in Model (1)-(8), for the RLM the full TUSP (Model (13)-(18))
must be solved. For this a commercial MIP solver is used. For the RFM, however, only the TAP
(Model (19)-(24)) is needed in the separation routine. In order to strengthen the cuts obtained, if
an infeasible depot is encountered in the separation routine, we attempt to find the smallest set
of shunting movements that create the infeasibility, thereby making the cut more general and not
specific to one or a few solutions.

To determine this minimal set of movements, we propose an iterative approach. On detecting
infeasibility, the TUSP is reduced in size so that it only contains the first i movements. Naturally, if
the first i movements are infeasible from a shunting perspective, then no extended set of movements
can remedy this. If this reduced set is feasible, its size is incremented by one (to include the next
movement) and resolved. This process terminates when infeasibility is detected.

Note that for the RFM there may exist many different combinations of unit itineraries that yield
the same train composition assignment for the train trips. Hence, if a particular TAP is infeasible
with a given set of unit itineraries, it does not necessarily mean that the given composition
assignment is infeasible. Since enumerating the entire set of unit itineraries for a given composition
assignment is intractable, we also include the possibility of swapping units when infeasibility occurs.
Swapping units effectively changes unit itineraries without modifying the train compositions. This
heuristic approach is a tool for achieving feasibility and is described in detail in Section 4.3.
Consequently, in the absence of an optimal method for swapping units, Constraint (25) for the
RFM may actually cut away a feasible composition assignment for the integrated problem. With
a heuristic swapping routine, the RFM is therefore heuristic. Although not considered here, if unit
specific constraints must be respected, the swapping method can only swap units if the unit-specific
constraints are satisfied.

On the other hand, as the routing of units is performed last, in the absence of unit specific
constraints, the RLM is an exact procedure. An infeasible TUSP instance for one of the depots
indicates the composition assignment could never be feasible for the integrated problem. The RLM
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can also be extended to include unit specific requirements. The routing step of the algorithm would
have to be modified such that itineraries that a feasible with respect to the unit specific constraints
are satisfied. This may not be possible. As such, in this case, before cutting away a composition
assignment, all feasible solutions to the TUSP instances would need to be considered. Iterating
over these solutions is a trivial, but perhaps a time consuming task.

Both variants of the approach therefore have strengths and weaknesses. Without modeling unit-
specific constraints, the RLM has an advantage. However, when modeling unit-specific constraints,
it is less clear which variant is better for solving the TUSP.

4.2. Solving The Track Allocation Problem

In this section we introduce three different approaches for modelling and solving the TAP. A
comparison of these approaches is provided in Section 6. Note that we do not claim to be the first
to propose these; all have been suggested before. We do, however, make some new extensions as
well as correct a flaw in one of them. The first two approaches, discussed in Section 4.2.1, are BAC
procedures applied to Model (19)–(24). The third approach, discussed in Section 4.2.2, applies
column generation to a reformulation of Model (19)–(24). The approaches have been suggested
by, among others, Freling et al. (2005).

4.2.1. Branch-and-Cut

The first BAC procedure is the simplest and involves directly solving Model (19)–(24) with a
commercial solver, e.g. Cplex. The solver is permitted to use its default settings, which includes the
generation of any valid cuts it can identify. We refer to this approach as BAC1. Explicitly including
the large number of pairwise incompatibility constraints, (22), can result in a prohibitively large
formulation as there are potentially many of these for large problem instances. Furthermore, the
vast majority of these are likely to be redundant. An alternative approach therefore is to initially
remove constraints (22) and dynamically add only violated ones as necessary. We refer to this
approach as BAC2. It is essentially the same as BAC1 with the exception that constraints (22)
are removed from the formulation and dynamically separated during the Cplex BAB solve. That
is, whenever we have obtained the solution to a given node of the BAB tree, we analyse its solution
for any LIFO violations to confirm/disprove the feasibility of the current solution. If a violated
constraint (22) is found, it is added, and the problem is resolved. Note that if a LIFO violation
is found for a pair matchings, we add a constraint (22) for each track in the depot to ensure that
the conflict doesn’t simply move to one of the other compatible tracks. In this approach we cut
on both fractional and integer solutions. As we are considering a relaxation of Model (19)–(24),
integer solutions to this problem may not necessarily satisfy constraints (22). Such solutions are
cut away when introducing the violated constraints.

4.2.2. A Column Generation Model

Column generation is an efficient method for solving large scale linear programs and can, via
a BAP algorithm be adapted to solve large scale MIPs, see e.g. Desrosiers et al. (2005); Barnhart
et al. (1998). The method is typically used when it is computationally intractable to enumerate all
possible variables a priori. To apply column generation, the problem is decomposed into a master
problem and one or more independent subproblems. The master problem usually only contains a
subset of its possible variables (often being referred to as the restricted master problem), while the
subproblem is an optimization problem that implicitly considers all non-basic variables omitted
from the master problem and attempts to identify promising candidates (i.e. non-basic master
variables with favourable reduced cost) using the optimal dual solution to the master problem.
Column generation is thus an iterative procedure between the master and subproblem(s) and only
terminates when the subproblems cannot identify any improving variable for the master problem.

Freling et al. (2005) were the first to propose a column generation procedure for the TAP.
An exact procedure is used to solve the models Linear Programming (LP) relaxation, and this
is combined with a heuristic branching routine to provide an integer solution. The proposed
model identifies so-called track assignments for the depot tracks. A track assignment for a given
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track t ∈ T simply refers to a set of matchings that can be feasibly assigned to track t. That
is, the movements associate with the matchings are conflict-free and respect the track’s capacity.
This formulation is obtained by applying Dantzig-Wolfe Decomposition to Model (19)–(24), where
constraints (21), (22), and (23) are placed in the subproblem and thereby implicitly satisfied in
the construction of the variables. We denote the set of all track assignments for t ∈ T as Pt
and introduce a new set of binary variables xtp that govern the selection of a particular track
assignment p ∈ Pt for track t ∈ T . A cost ctp is associated with each such variable and indicates
the unattractiveness of the assignment; this cost is just the sum of the costs of assigning each
of the matchings contained in the track assignment. Finally, the binary parameter amp indicates
whether matching m ∈M∗ is included in track assignment p ∈ Pt or not. The full formulation is
given below.

Minimize:
∑

t∈T

∑

p∈Pt

ctpxtp +M
∑

m∈M∗
ym (26)

∑

p∈Pt

xtp = 1 ∀t ∈ T , (27)

∑

t∈T

∑

p∈Pt

ampxtp + ym = 1 ∀m ∈M∗, (28)

xtp ∈ {0, 1} ∀t ∈ T , p ∈ Pt, (29)

ym ≥ 0 ∀m ∈M∗. (30)

The objective function (26) is identical in structure to (13); however, the aim is to find a
minimum cost selection of track assignments. Constraints (27) ensure that each track is assigned
exactly one of its possible track assignments (including the null assignment, i.e. a track assignment
containing no matchings), while Constraints (28) enforce the restriction that each matching must
be present in exactly one of the track assignments, or left uncovered. Variable domains are stated
by (29) and (30). This formulation has a constant row dimension (it is independent of the number
of conflicting matchings), but can have an exponential number of variables. For large problems
there can be many possible track assignments. Thus, column generation can be used to dynamically
generate only those variables that have the potential to improve the objective function.

To apply column generation to Model (26)–(30) the integer requirement on the x variables
is replaced with x ≥ 0, and the set of possible track assignments is reduced to a smaller set
P∗ ⊂ ⋃

t∈T Pt. All that is assumed from this initial set is that it permits a feasible solution to the
resulting formulation. A subproblem can then be identified for each track (of distinct length), and
its role is to identify promising track assignments for the corresponding track using an optimal dual
solution to the master problem. For completeness, we denote the dual values on constraints (27)
and (28) in this relaxation as πt and µm, respectively. In this way the many track assignment
variables that would otherwise assume a non-basic status in the optimal linear programming are
purposely omitted from explicit consideration. As described in Freling et al. (2005), the problem
of generating the track assignments for a given track can be modelled as a Resource Constrainted
Shortest Path (RCSP) problem. We provide a brief overview of this in the following section.

4.2.3. Resource Constrained Shortest Path

RCSP problems typically arise in the application of column generation to vehicle routing and
crew rostering problems. They involve finding a shortest path between two nodes of a graph while
adhering to a number of resource constraints, which limit the set of feasible paths. A feasible path
in the graph corresponds to a solution of the subproblem. Freling et al. (2005) model the track
assignment generation using an acyclic graph G = (V,A). The authors show that the methodology
is applicable to free tracks (i.e. tracks that are open from both ends); however, we describe it in the
context of LIFO tracks as this is the only type of depot track in DSB S-tog’s network. In addition
to a source node, O and sink node D, the node set contains a pair of nodes for each matching
m ∈M∗. The first indicates that the matching is assigned to the track, while the second indicates
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it is not. Each such pair of nodes comprises a layer, and these layers are sorted in increasing
time of the arrival movements. Associated with each layer is hence a time-stamp corresponding
to the time of the relevant matching’s arrival movement. Arcs are used to connect the nodes of
one layer with nodes of the subsequent layer and indicate assignment choices. The source node,
O, is connected to nodes in the first layer, while the nodes of the last layer are connected to the
sink node, D. Figure 3 gives an example of such a graph, obtained from a TAP instance with six
matchings. Nodes that correspond to unassigned matchings are marked with (′). There is a cost
an all arcs entering a node that corresponds to assigning a matching that indicates reduced cost
contribution of the assignment; i.e. it is the matching’s assignment cost cmt adjusted by the dual
value for the matching constraint it covers, µm. The dual contribution of πt must be applied to
any track assignment for track t. For convenience, it can be included on all arcs which connect
the source node with nodes of the first matching. The rectangles in the figure illustrate the layers.

O

1

1′

2

2′

3

3′

4

4′

5

5′

6

6′

D
c 1t
− µ

1
− π

t

−π
t

c2t − µ2 c3t − µ3 c4t − µ4 c5t − µ5 c6t − µ6

c 2
t
−
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c 3
t
−
µ 3

c 4
t
−
µ 4

c 5
t
−
µ 5

c 6
t
−
µ 6

Figure 3: An example subproblem network with six matchings. There are two nodes for every matching, indicating
whether the matching is assigned to the track or not.

Enumerating all paths between O and D provides the set of all subsets of matchings. Due to
the resource constraints, however, not all subsets are feasible. Some subsets might violate track
capacity or contain conflicting movements. The aim of the subproblem is to find the best set of
feasible matchings given dual vectors π and µ. RCSP problems are typically solved using a label
setting algorithm, in which the nodes of the graph are processed in topological order. A label
is associated with a given node v and contains information, in terms of resource levels, about a
unique partial path to v from O. When processing node v new labels are generated by extending
the set of labels associated with node v to each of node v’s successor nodes. Each new label
reflects the label from which it is generated, updated with any changes to resource levels that have
occurred in traversing the arc. Dominance strategies are used to restrict the number the partial
paths extended from a given node by removing labels that would ultimately lead to inferior paths.
Figure 3 also shows two examples of partial paths, given by the dashed and bold lines. The solid
line indicates a partial track assignment that includes matchings 1 and 2, while the dashed line
corresponds to a partial track assignment which includes matchings 3 and 4. We refer the reader
to Irnich and Desaulniers (2005) and Irnich (2008) for more details on solving RCSPs.

Freling et al. (2005) claim that three resources must be monitored when generating track
assignments. These are: the cost (or total reduced cost contribution) of the partial path, the
remaining length of the track, and the earliest departure time included in the partial track
assignment that has not yet occurred. Track length must be monitored to avoid generating track
assignments that violate the track’s capacity, while the earliest departure time must be updated to
avoid extending the partial track assignment with conflicting matchings. Updating these resource
levels is relatively straightforward. Below we give an example of this between nodes two layers.
Given in the extension step is a partial path pu, containing a set of matchings Mpu , and an arc
(u, v) ∈ A with cost ρuv. The cost, cpv , remaining length, lpv , and earliest departure time, δpv ,
of the resulting partial path pv are calculated as follows. Here mv states the matching associated
with node v ∈ V , and the set D ⊆ Mpu which all matchings whose departure movement occurs
on the interval. [amu

, amv
]. How to extend the partial path depends on whether node v ∈ V

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A [ 8:00-16:00 ] B [ 9:00-12:00 ]

100m 100m

230m

remaining: 30m

C [ 9:00-13:00 ] D [ 10:00-13:00 ]

110m 100m

230m

remaining: 20m

150m

F [ 14:00-17:00 ]

Figure 4: Example of two partial track assignments. The boxes represent units of individual lengths and parking
durations. Both track assignments do not include matching E, leaving them in the same state (node in the graph),
thus making it possible to check for dominance. The lower track assignment should not be dominated because the
upper track assignment cannot include matching F in contrast to the lower one. If matching F has a negative cost,
then a feasible and better track assignment is wrongly pruned.

corresponds to assigning the associate matching or not. Set V contains all nodes that indicate the
corresponding matching is assigned, while V ′ contains the nodes that indicate the matching is not
assigned.

cpv = cpu + ρuv

δpv =

{
dmv v ∈ V

min
m∈Mpu\D

dm v ∈ V ′

lpv =





lpu + len(mv)−
∑

m∈D
len(m), v ∈ V

lpu −
∑

m∈D
len(m) v ∈ V ′

an extension is assumed to be feasible if lpv ≥ 0 and, in the case v ∈ V ′, δpv ≤ minm∈Mpu\D dm.
From a dominance perspective, Freling et al. (2005) argue that given two partial paths at a given
node, one dominates the other if it is “better” in all resources. In this case better means having
a lower cost, greater remaining track length, and earlier departure time. We show that this is not
necessarily true in the following section.

4.2.4. Dominance Rule Counter Example

By way of a counter example we demonstrate that the dominance procedure stated in Freling
et al. (2005) is inherently heuristic. While the authors do acknowledge that their full solution
algorithm is heuristic, the reason is claimed to be due to their heuristic branching strategy –
as columns are only generated at the root node – and not their variable generation procedure.
In fact, the paper argues that the column generation procedure applied to the LP relaxation
of Model (26)–(30) produces a lower bound for Model (26)–(30). This is incorrect. Using the
prescribed dominance procedure, we show the algorithm may fail to optimally solve a subproblem
by incorrectly removing non-dominated labels. Our counter example is given in Figures 4 and 5.
Figure 4 gives a schematic view of the situation, while Figure 5 shows the graphical structure of
the subproblem in this case

In the example a 230 meter track and a set of six matchings {A, B, C, D, E, F } are considered.
The arrival movement of each matching is assumed to appear in the listed order. Let us assume
that the costs of assigning the matchings (track assignment cost - associated dual value) are {-
2, -2, -1, -2, 10, -10 }. Two partial paths to node E′ are depicted in Figure 5. The solid line
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corresponds to a partial path (track assignment), p1, in which matchings A and B are included,
while the dashed line corresponds to a partial path, p2, in which matchings C and D are included.
If we assume that the arrival movement of matching E occurs at 10:30 and its departure movement
occurs at 18:00, the label for the first path would contain resource levels (-4, 30, 12:00), while the
label for the second path would have resource levels (-3, 20, 13:00). In each case the cost of the path
is the accumulated cost of assigning the respective matchings to the track, the remaining length
is the total track length adjusted by the combined length of the physical units in the matchings,
and the earliest departure time is the departure time of the outmost unit on the track. If we apply
the dominance procedure of Freling et al. (2005), then the label associated with path p2 would be
dominated by the label for path p1 as it has a higher cost, less remaining track length, and a later
earliest departure time. However, doing so actually removes the optimal solution {C,D,F}, which
has cost -13.

O

A

A′

B

B′

C

C′

D

D′

E

E′

F

F′

D

-2

0

0

0 0 0

-2 -2

-1

Figure 5: Dominance counter example: The dashed partial path corresponds to assigning movements C and D to
the track, while the solid partial path corresponds to assigning movements A and B.

The reason why this occurs is because parking on tracks is only a temporary resource con-
sumption; a unit will claim the track capacity for a specified interval of time only. Therefore, it
is incorrect to assume that one partial track assignment has more available future capacity than
another by simply comparing the times of the next departures in each partial assignment. We
illustrate this with another figure, Figure 6. To assess the capacity of a depot track over time,
we can partition the time horizon (from the time of the first arrival movement to the time of
the last departure movement) into a set of smaller intervals of time, T . The end points of such
intervals correspond to points in time when the track utilization can change, namely when arrival
or departure movements occur. Between such events the track utilization remains constant. Fig-
ure 6 considers the track utilization for partial paths p1 and p2 and indicates the remaining track
capacity by time interval, where |T | = 9. If we consider interval [10:30-12:00) (the time between
the arrival movement of matching E and the departure movement of matching B) we see that
p1 has more available track capacity; however, if we look at future intervals, this is not the case.
In particular, in interval [14:00-16:00), when the arrival movement of matching F occurs, more
capacity is available on p2. Future capacity thus depends on the time of all departure movements
for the matchings in a partial track assignment, not just the next to leave. In our results in Sec-
tion 5 we report cases where the method of Freling et al. (2005) obtains suboptimal solutions. As
expected, the simpler non-optimal dominance does result in faster solution times.

To produce an optimal column generation procedure we thefore revise the dominance criteria
specified Freling et al. (2005). In addition to the cost, remaining length, and earliest departure
time (the last two assist in extension feasibility), we introduce a remaining length for each time
interval t ∈ T . Such resources are updated similarly to the remaining length; when assigning
a matching it consumes track capacity for all intervals the corresponding unit is in the depot.
When the unit leaves it releases capacity for future time intervals. Given two labels at a node,
one dominates another if it is better in cost and has at least as much capacity in all future time
intervals. Clearly, p2 would not be dominated by this approach.
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Figure 6: A comparison of track utilization by time period for the example given in Figure 4

4.2.5. Constraint Branching

The column generation procedure by Freling et al. (2005) is combined with a heuristic branching
strategy to produce an integer solution. In particular, a MIP problem is solved using the columns
obtained during the convergence of the root node solve of the BAB tree. In this section we propose
an application of constraint branching to ensure optimality of the column generation procedure
described in Section 4.2.2 (with the revised dominance). The constraint branching technique,
developed by Ryan and Foster (1981), is a well known method for solving set partitioning problems.
The authors observe that in an optimal, but fractional solution there must exist two constraints
(say c1 and c2) such that

∑
j∈J(c1,c2) xj < 1, where J(c1, c2) defines the set of variables that

cover (or contribute to) both constraints c1 and c2. Two branches are then created by ensuring
that either

∑
j∈J(c1,c2) xj ≥ 1 (the one branch), or

∑
j∈J(c1,c2) xj ≤ 1 (the zero branch). On

the one branch both constraints must be covered by the same variable, while in the zero branch,
they must be covered by different variables. For the TAP, we branch on track and matching
pairs. In other words, on the one branch, a matching is assigned to a specific track, while on
the zero branch it is prohibited from being assigned to a given track. In an optimal, fractional
solution the track and matching pair with the closest fractional coverage to 0.5 is selected to
branch on. When branching, all variables that are in the master problem and which do not satisfy
the imposed branches are removed, and the subproblems are modified to ensure they return track
assignments consistent with the imposed branches. One advantage of this constraint branching
approach is that minimal changes to the subproblems are required. Except for removing columns
the master problem remains unchanged. When branching, we adopt a depth first strategy in
which we successively enforce one branches. For set partitioning problems we do not expect the
optimality gap to be large; the approach should therefore quickly find an incumbent of high quality.

4.3. Unit Swapping

Feasibility of the TAP is unlikely to be a problem if the number of depot tracks is sufficiently
large; however, for DSB S-tog, depot capacity is a scarce commodity. If an instance of the TAP is
infeasible, instead of cutting the solution to the RSP away, feasibility can possible be restored by
swapping the departure movements of two conflicting matchings. This approach would, however,
relax the fixed matching assumption in the TAP. Swapping can only be done if the units associated
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with the conflicting matchings are considered interchangeable, i.e., they must be of the same type
and the must also be compatible with respect to any unit specific constraints. With the absence of
unit specific constraints, such as maintenance, all units of the same type are interchangeable. At
railway operators, such as DSB S-tog, maintenance checks on units are issued at certain times and
itineraries are allocated to units whilst adhering to this. Thus, swapping units is not considered a
general remedy to correct for feasibility. Note that in this work, we do not take unit maintenance
requirements into account; we assume this is done in a post-processing phase.

To swap departure movements of two matchings, we propose a heuristic that iterates over the
set of unassigned matchings, U and, for each u ∈ U , identifies a set of swap possibilities Su by
considering the track assignments of each of the assigned matchings. In particular we look at the
matchings present in the depot when the arrival movement of u occurs as well as the future arrival
movements of other matchings that will happen. An attempt is then made to swap the departure
movement of u with either a unit at the front of a stack, or with one of the next ones to arrive.

An example of a swap is given in Figure 7. This example contains three matchings: A, B,
and C. The respective units are all of the same type and the arrival and departure time of each
unit is given on the matching. Given these times, and assuming the depot only has one track
(with its open end to the right), it is not possible to assign all matchings; unit associated with
matching C would block that associated with matching A. On this example the heuristic would
work as follows. The solution with the two matchings would be retained and matching C would
be placed in set U . The heuristic then considers each track of the depot and attempts to swap
the time of the departure movement of C with the matchings assigned to the depot track under
consideration. The arrival movement of C occurs at 8:00. The only unit on the track at this time
is that associated with matching A. A check is then made to see if swapping the departure times of
the two matchings reduces the infeasibility (i.e. effectively results in an extra unit being parked).
This involves checking to see that the remaining matchings assigned to the track are still feasible.
If they are, this results in a swapping possibility which, if performed in isolation, would increase
the number of parked units by one. In this simple example, there is only one assigned matching
and the swap results in feasibility. Updated matchings A′ and C′ are indicated in the figure. For
more complicated situations, there might be more than one unassigned matching. In such cases
several iterations might be needed, where at any given iteration the heuristic considers making at
most one swap per track.

7:00 16:00 12:00 15:00 8:00 17:00

7:00 17:00 8:00 16:00 12:00 15:00

Infeasible

Feasible

A B C

A' C' B

Figure 7: An example of a swap

Essentially the heuristic is given an infeasible solution to the TAP, containing one or more
unassigned matchings. It then attempts to obtain feasibility by re-matching some of the depar-
ture movements; the aim being to make the minimal number of changes to achieve feasibility.
The heuristic method is outlined in Algorithm 1. The algorithm terminates when no unassigned
matchings exist, no swapping possibilities remain, or an upper limit on iterations is reached. Swap
possibilities are ranked such that a matching with fewest swap possibilities is considered first. The
algorithm’s sequential nature makes it inherently heuristic.

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1 Unit Swapping Heuristic

1: procedure UnitSwap(sol)
2: iterations← 0
3: stop← false

4: while unassignedMatchings(sol) > 0 and stop=false and iterations < limit do
5: U ← getUnassignedMatchings(sol);
6: S ← ∅
7: for u ∈ U do
8: for t ∈ T do
9: S ← S⋃ createSwapPossibilities(sol, t, u))

10: if |S| > 0 then
11: rankSwaps(S)
12: sol← performSwaps(S)
13: else
14: stop← true

15: iterations = iterations+ 1

5. Computational Results

Two computational studies are presented in this section. The first, described in Section 5.1,
is dedicated to the TAP, while the second, described in Section 5.2 looks at the performance of
the integrated approaches on real-life instances from DSB S-tog. All tests have been performed
on a dedicated Intel(R) Xeon(R) CPU X5550 @ 2.67GHz with 24 gigabytes of main memory
running Ubuntu Linux 14.04. The commercial solvers Gurobi 6.0 and Cplex 12.6 have been used
to experiment with solving the MIP and LP relaxations.

5.1. TAP Benchmark

In order to determine the best way of solving the TAP, we benchmark the approaches, described
in Section 4, on a test set of 11 artificial problem instances. We compare four different solution
methods described. These include the two BAC approaches (BAC1 and BAC2) and two versions
of the column generation procedure. The first, BAP , is the proposed exact procedure (using our
revised dominance strategy and constraint branching). The second, FEL, is almost the same
as Freling et al. (2005); however, we extend it with the constraint branching procedure outlined
in Section 4.2.5. A preliminary study of the available problem instances for DSB S-tog shows that
the realistic instances are quickly solved by all methods. They have not been included for this
reason. The artificial problem instances constitute a more difficult set of instances that vary in,
among other things, the level of infeasibility, the number of matchings, the number of available
depot tracks, and the number of unit types. Table 1 summarizes the problem instances. Note that
the instances have been purposely created with infeasibilities and that these are in line with the
size of the problems DSB S-tog faces. In general these instances have few unit types and consider
the maximum number of matchings that could be encountered in the worst case for DSB S-tog.

The results are given in Table 2. An upper bound of 10 minutes is enforced on the solution
time. We note, that the objective value here is equal to the number of unassigned matchings
in the problem instance. The results show that the BAC1 outperforms the other methods in
general. No added value is observed in dynamically separating Constraints (22). Infeasibility is
expected for these instances as they have been constructed with this in mind. As such, a subset
of Constraints (22) must be active in any optimal solution. The generation of these cuts depends
on the order in which the integer solutions are found. Given the hardness of the instances, it
is understandable that BAC1 performs better; it has full knowledge of the problem structure,
while BAC2 iteratively cuts away infeasible integer solutions in a potentially very large BAB tree.
Omitting Constraints (22) initially in the BAC2 procedure means we are effectively solving a
relaxation and the separation routine is needed to ensure we get a feasible solution to Model (19)–
Model (24). The FEL approach is slightly faster than the exact BAP approach, however, it also
provides suboptimal solutions. As discussed in Section 4.2.4, this is due to the heuristic nature
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Instance |M|∗ |T | Lmax Horizon (s) Types Unit Lengths

data0 66 6 300.0 17113 2 [35,70]
data1 69 6 500.0 17785 2 [35,70]
data2 62 5 850.0 21103 2 [42,84]
data3 75 5 850.0 24837 3 [30,60,90]
data4 72 5 700.0 21602 2 [42,84]
data5 59 5 740.0 21602 3 [30,60,90]
data6 79 5 800.0 25202 2 [35,70]
data7 79 6 790.0 25202 3 [35,50,75]
data8 78 7 900.0 24897 1 [42]
data9 101 8 1000.0 24964 2 [42,84]
data10 109 8 400.0 28529 2 [42,84]

Table 1: The artificial problem instances. The columns show the instance name, the number of matchings, the
number of depot tracks, the length of the longest track (denoted by Lmax), the planning horizon, the number of
unit types, and the unit type lengths.

of the dominance rule presented by Freling et al. (2005). We conclude that, for the instances
considered, the BAC1 approach is the best solution method. This may not necessarily be true for
larger problem instances as this MIP formulation, which explicitly contains all conflict constraints,
is unlikely to scale well. From a scalability perspective the BAP and BAC2 methods, which
dynamically generate interesting components of their respective formulations, would be preferable.

BAP Framework BAC1 BAC2 FEL
Instance Z∗root Z∗ cols n l t (s) t (s) t (s) % Zroot Z t (s)

data0 8.00 8 1030 37 18 1.33 3.21 * 12.50 13.25 11 1.30
data1 6.00 6 1317 41 20 1.74 0.36 * 16.67 11.68 7 1.43
data2 7.00 7 727 13 6 0.75 0.12 5.05 0.00 10.12 8 0.41
data3 8.00 8 1181 23 11 1.71 0.11 7.63 0.00 13.03 10 2.38
data4 11.00 11 834 25 12 1.05 0.14 * 9.09 14.79 14 1.17
data5 4.00 4 754 29 14 0.98 0.05 1.09 0.00 7.81 8 0.43
data6 11.00 11 841 17 8 1.18 1.99 * 36.36 17.53 14 0.58
data7 8.00 8 1740 41 20 2.18 1.76 * 12.50 9.66 9 1.83
data8 1.00 1 3236 99 49 4.86 0.05 0.36 0.00 4.00 1 3.78
data9 3.00 3 5125 87 43 17.33 0.42 * 66.67 5.65 3 6.78
data10 0.00 0 2413 147 73 6.14 0.23 1.29 0.00 0.00 0 5.17

Table 2: The TAP benchmark results. The first column identifies the instance, while columns two to seven report
statistics on the proposed optimal column generation procedure (i.e. the revised dominance strategy is combined
with a constraint branching approach). Z∗

root reports the optimal LP objective value, while Z∗ gives the objective
value of the optimal integer solution. In addition, we report the number of columns generated (cols), the number
of nodes in the BAP tree (n), the deepest level of same tree (l) and the time needed to solve the instance (t) in
seconds. For the two BAC approaches the columns show the time taken to solve the problem and, for BAC2, the
gap from optimality at termination. For the FEL approach, we give the root node objective value (not necessarily
optimal), the objective value of the integer solution obtained, and the time taken.

Finally, we benchmark the swapping heuristic. The results are summarized in Table 3. We
compare the BAP approach with BAC1. In almost all cases feasibility through swapping can be
achieved, and the heuristic nature is seen by the fact that the two approaches can yield different
results. The heuristic does not optimize the number of swaps; such a “re-matching” problem could
also be performed via a MIP, if running times are fast enough. The integration of the matching
and parking in the general TUSP is thus motivated by the considered problem instances.
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Figure 8: DSB S-tog network
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BAP Framework BAC1

Instance Z∗ Z Swaps t (s) Z Swaps t (s)

data0 8 0 12 7 0 19 3
data1 6 0 10 20 0 11 4
data2 7 0 11 6 0 16 1
data3 8 0 12 15 3 15 3
data4 11 1 21 126 1 16 5
data5 4 0 4 3 0 5 0.2
data6 11 0 22 19 1 18 16
data7 8 1 16 145 0 18 44
data8 1 0 1 9 0 1 0.1
data9 3 0 4 42 0 4 1

Table 3: The unit swapping results. For each approach the columns report the new objective (Z), the number of
swaps, and the time taken. For any instance, up to 30 swapping iterations are allowed.

Name Stops Trips Trips* Weekday Lines

Mon 28 017 4 468 868 Monday A,B,Bx,C,E,F&H
Fri 28 719 4 558 886 Friday A,B,Bx,C,E,F&H
Sat 20 474 1 916 590 Saturday A,B,C&F
Sun 19 919 1 871 574 Sunday A,B,C&F

Table 4: Four timetables operated by DSB S-tog. The columns respectively show the instance names, total number
of stops, total number of trips, total number of non-reducible trips (Trips*), weekday, and finally the lines that are
running.

5.2. The IRSUSP Benchmark

In this Section we perform tests on both BAC integrated frameworks, RFM and RLM, described
in Section 4.1. Recall that they are identical in structure but differ in how the RSP is solved, and
this difference results in a slightly different separation for determining cuts. The real-life problem
instances are provided by DSB S-tog. An overview of the network is given in Figure 8. DSB S-tog
operates a weekly schedule that consists of four daily distinct timetables. The main difference
between the timetables is in the number of train trips operated; on the weekends there is typically
a reduced number of total services. It is also normal to have additional night trip services on
Fridays and Saturdays. The instances are summarized in Table 4. The table reports among other
things the number of trips and the number of irreducible trips. Some stations do not have depots
and thus do not permit (un)coupling activities. The irreducible set is obtained from the full set
of trips by aggregating trips between stations where the train’s composition cannot change. The
“Lines” column simply states which of DSB S-tog’s lines are operating.

One key aspect of the problem is whether an initial position (on the depot tracks) is given
for the units in inventory, or whether this can be determined by the solver. This essentially
highlights the difference between tactical level planning and operational planning. For the former
it is usually possible to determine the initial positions of the units in the network (i.e. on which
depot track and in which order); however, this is not usually the case on an operational level when
a schedule is being executed and the initial positions of the units is fixed. We therefore perform
two sets of experiments, one where initial positions for the units can be decided by the solver and
one where they are fixed. We expect the need for integration to be more pronounced when the
initial positions are fixed. When the initial positions can be decided there is significantly more
flexibility. If depot capacity is satisfied on an aggregated level in the RSP, it is unlikely that
TUSP will be infeasible. This is confirmed by the results in Table 5; no infeasible solutions to the
RSP are encountered when checking for depot feasibility when the initial positions of the units
are not fixed. Note that for both formulations of the RSP the objective balances penalties for
seat-shortages, driven mileage, end-of-day balance deviations, and (un)couplings. In particular,
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the penalty for a lack of seats is 0.5 per seat; the cost for driving one kilometer is set to 0.1; a
depot imbalance incurs a penalty of 10000 per missing unit; and the cost of (un)coupling is set to
1000. These settings were determined in collaboration with DSB S-tog.

The results demonstrate that the proposed methodologies are acceptable for tactical planning
purposes.

RFM RLM

Instance Objective Time (s) #Cuts Time (s) #Cuts

Fri 731,589.5 53.46 0 14.27 0
Mon 717,371.1 363.33 0 13.87 0
Sat 418,791.8 5.72 0 6.73 0
Sun 411,940.2 5.92 0 6.51 0

Table 5: Summary of benchmarks performed on all instances without enforcing any particular initial positions. The
columns respectively show the instance name, runtime, number of depot cuts generated and the objective value.

Table 5 indicates that on a tactical level all optimal rolling stock schedules are feasible. The
integrated loop therefore seems unnecessary as no cuts are generated in either BAC framework.
A possible reason for this could be as follows. At the start of the planning horizon, most units
exit the depots and at the end of the planning horizon all units enter the depots. In between
only a few units enter and exit the depots as a result of the need for rush-hour patterns. With
the absence of an initial ordering, the model is always able to reorder the units such that they
can initially leave the depot (aggregated depot capacity is enforced in the RSPs). Handling the
rush-hour patterns is not difficult since the depots are far from being at capacity during these
periods. Further experiments were performed with varying penalties for (un)coupling units, in
effect encouraging more shunting movements; however, these, more artificial problem instances,
were unable to generate depot activity that resulted in infeasibility. Weekend days appear to be
easier to solve than weekdays. This is expected due to the reduced number of units in service.

In an operational planning context, the train dispatchers do not have the luxury of deciding
the initial positions of the units. All unit positions must be adhered to; units are fixed to certain
initial locations. In the following we benchmark different, randomly generated initial positions for
the units. At DSB S-tog only two unit types exist, but most depots contain at least three tracks.
In effect a random order is not expected to be very limiting. A total of ten random initial parkings
are generated for every instance and solved using both solution methods. The averaged results of
this are given in Tables 6 and 7. Table 6 summarizes the results when an optimality tolerance of
1% is acceptable, while Table 7 indicates what happens when optimality is required. We note here
that for one Saturday instance no feasible solution was found with the RFM and that we enforce
a time limit of two hours when trying to solve the instances to optimality.

Several important observations can be made from the results in Tables 6 and 7. The first
is that both approaches are able to, in most cases quickly find solutions of good quality. A 1%
gap is usually acceptable in a practical setting. Furthermore, the increase in objective value,
compared to the case in which no shunting feasibility is considered, is at most 0.95%. It is also
apparent that the RLM is, in general, faster than the RFM at obtaining solutions within 1% of
optimality and that the two approaches struggle on different instances. For the RFM, the BAP
algorithm employed to solve the rolling stock problem is more computationally intensive, so may
struggle on harder rolling stock instances, while the TUSP is a more difficult problem to solve
when considering shunting feasibility. Monday appears to be more difficult from a rolling stock
perspective, while Saturday seems to give rise to the hardest TUSP problems.

Looking at Table 7, the difference between the two methods is even more pronounced. With
the exception of the Saturday instances, the RLM is able to solve all instances to optimality within
the two hour limit. Two of the Saturday instances give rise to two very difficult TUSP instances.
As a consequence, one of the Saturday instances terminates with no solution after two hours, while
the other terminates with an optimality gap of 0.17%. The most difficult TUSP instances appear
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Runtime (s)

Method Instance Total Depot Cuts ∆

RFM Fri 65.64 3.68 7.40 0.93%
Mon 2015.43 31.56 101.20 0.95%
Sat 96.84 25.36 121.20 0.63%
Sun 9.08 1.48 5.80 0.49%

RLM Fri 31.70 18.28 2.60 0.52%
Mon 17.54 3.20 1.80 0.63%
Sat 168.96 41.00 37.11 1.02%
Sun 8.60 0.81 2.40 0.56%

Table 6: Summary of benchmark performed on all instances where the initial unit positions in the depots must
be respected and an optimality gap of 1% is enforced. The columns respectively give the method, instance name,
the total runtime, the time spent in the depot separation routine, the number of depot cuts generated, and finally
the maximum percentage increase in the objective value relative to the values in Table 5 (∆). Columns “Total”,
“Depot”, and “Cuts” are averages over at most ten different runs.

Runtime (s)

Method Instance OPT NR TO Total Depot Cuts ∆

RFM Fri 6 0 4 2923.81 117.42 552.90 0.30%
Mon 5 0 5 4168.88 118.57 629.30 0.85%
Sat 2 0 8 5859.51 400.30 6564.60 0.45%
Sun 10 0 0 50.21 13.54 37.30 0.35%

RLM Fri 10 0 0 40.60 24.38 6.80 0.22%
Mon 10 0 0 28.40 7.11 3.20 0.43%
Sat 8 1 1 1522.08 950.99 893.40 0.39%
Sun 10 0 0 13.55 3.64 17.40 0.35%

Table 7: Summary of benchmark performed on all instances where the initial unit positions in the depots must be
respected and optimality is required. In addition to the data in Table 6, we also report the number of instances
solved to optimality (OPT), the number of instances for which no feasible solution was obtained (NR), the number
of instances that time out (TO). Again, Columns “Total”, “Depot”, and “Cuts” are averages over at most ten
different runs.

to be those that are almost feasible (or almost infeasible). Detecting infeasibility (or feasibility) in
such cases can be extremely challenging. For the instance that times out without a solution, the
MIP based approach for solving a single instance of the TUSP ultimately generates a large BAB
tree with hundreds of thousands of unexplored nodes when the two hour time limit is reached. A
better method for solving the TUSP would drastically improve the performance of the RLM. As
a comparison, the RFM, with the exception of the Sunday instances, struggles and times out on
many more instances. Consequently, the percentage increase in objective value is higher for the
solutions in this case. The results do confirm that detecting feasibility/infeasibility of the depots
with respect to the shunting movements is noticeably easier (per solve) with the RFM; however,
this comes at the expense of a more computationally expensive algorithm for solving the RSP.
For the RFM, the separation routine only makes up for between 3-25% of the total runtime on
average, while for the RLM, this portion can be as high as 65% on average. For the cases that
require most runtime with the RLM, the majority of runtime is spent in the separation routine.

Compared to the previous results in Table 5, the increase in objective is relatively small, in the
region of 0.10–0.50% at most for the considered instances. This conclusion is based on the RLM
only, as almost all of the instances are solved to optimality with this approach. We thereby know
that this is precisely the increase in objective value expected in the worst case. The results do
confirm the need for integration in this context; feasibility of the induced shunting movements is
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not guaranteed without the separation routine. In the experiments a very large number of rolling
stock schedules were identified in the BAB search trees. In some cases, in excess of 10,000 rolling
stock schedules were considered), with the majority of these being infeasible. Finally, we note
that swapping units (Section 4.3) is generally not necessary in order to get feasible solutions for
the RFM and that the RFM, despite being heuristic in the absence of an exact swapping method,
does not appear to compromise optimality for the considered instances, obtaining solutions with
the same objective value as the RLM where such a comparison is possible.

6. Conclusions

In this paper we consider the problem of integrating rolling stock scheduling with train unit
shunting, a problem which, to our knowledge has not been previously addressed. We have pro-
posed two BAC procedures for solving this. Essentially the only difference between them is the
formulation used to solve the RSP. This gives rise to different separation routines. For the RFM
the separation routine is shown to entail solving the TAP. For this we also present a short compu-
tational study of different solution methods and, in doing so, highlight an error in the previously
proposed column generation procedure of Freling et al. (2005). The results suggest that a solv-
ing a MIP formulation of the TAP without any decomposition, outperforms column generation
approaches. However, given larger problem instances, it is unknown which method scales better.
The results also show that, for the considered instances, dynamically separating violated LIFO
constraints bears no advantage.

Computational results for the two proposed integrated frameworks highlight the need for inte-
gration on an operational planning level, where the problem is more constrained due to the initial
positions of the units. We have demonstrated that in such situations the traditional approach of
sequentially solving the RSP and then the TUSP can result in infeasibility. The integrated frame-
works consider multiple rolling stock schedules, finding the best one from a shunting perspective.
Our results show that the resulting objective is only slightly increased when integrating the prob-
lems compared to solving the RSP (ignoring the depot problem). We have also shown that both
the RFM and the RLM are capable of quickly finding good solutions and that, if optimality is
required, the RLM is superior. The results also indicate that if the integrated frameworks are
allowed to determine initial unit positions, as would be the case on a tactical planning level, then
integration of the two problems seems unnecessary. This logically makes sense. As long as the
capacity of the depot is respected (which can be achieved in the RSP), it is almost always possible
to reorder the units such that conflicting movements can be avoided.

In future work, it would be interesting to investigate different extensions of the RSP or the
TUSP. Previous work in the literature includes some modelling choices with respect to shunting
movements for entire train compositions as opposed to individual units. This addition has been
omitted in this work and seems like an obvious choice for future research. Another interesting
direction for future research includes train routing at the station and in the depots. Such consider-
ations could be modeled in the separation routine presented in the proposed frameworks. Finally,
maintenance constraints seem like an obvious extension which possibly motivates the RFM in
preference to the RLM.
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