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Abstract 

Consumer promotions are an important element of competitive dynamics in retail 

markets and make a significant difference in the retailer's profits. But no study has so far 

included all the elements that are required to meet retail business objectives. We extend the 

existing literatures by considering all the basic requirements for a promotional Decision 

Support System (DSS): reliance on operational (store-level) data only, the ability to predict 

sales as a function of prices and the inclusion of other promotional variables affecting the 

category. The new model delivers an optimizing promotional schedule at Stock-Keeping-Unit 

(SKU) level which maximizes multi-period category level profit under the constraints of 

business rules typically applied in practice. We first develop a high dimensional distributed 

lag demand model which integrates both cross-SKU competitive promotion information and 

cross-period promotional influences. We estimate the model by proposing a two stage sign 

constrained regularization approach to ensure realistic promotional parameters. Based on the 

demand model, we then build a nonlinear integer programming model to maximize the 

retailer's category profits over a planning horizon under constraints that model important 

business rules. The output of the model provides optimized prices, display and feature 

advertising planning together with sales and profit forecasts. Empirical tests over a number of 

stores and categories using supermarket data suggest that our model  generates accurate 

sales forecasts and increases category profits by approximately 17% and that including 

cross-item and cross-period effects is also valuable.  

 

Keywords: OR in marketing; promotion optimization; demand forecasting; fast-moving 

consumer goods retailing.  
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1. Introduction 

Grocery retailing is a highly competitive industry. Small improvements in operational 

decisions may change the competitive balance permitting the chain to survive and prosper. 

On average, a supermarket’s margin is about only 1% of net sales (Bolton, Shankar and 

Montoya, 2007; Chapados et al. 2014). Consumer promotions are an important element of 

competitive dynamics in retail markets with retailers using a myriad of promotional 

techniques to attract consumers. Given the widespread use of retail promotions and the 

magnitude of the dollars spent on them, promotions planning has the potential to make a 

significant difference in the retailer's profits.  

 

The promotions planning process is complex and challenging for retailers. First, the 

promotion of one product affects not only the demand for the focal product in the current 

promotion period; it may also affect the demand for the product in the periods that follow, or 

even the demand for other product in the same store. This means that a promotion could be 

profitable in terms of the focal product in the focal period, but at the cost of reducing the 

profits in the following periods or sacrificing profit arising from other products. The 

profitability of a promotional plan should therefore be carefully accounted for. Second, as the 

manufacturers often provide numerous temporal deals on certain product, determining the 

timing of the promotion is also critical to the solution (Tellis and Zufryden, 1995). Third, 

promotions are often constrained by a set of business rules specified by the store and/or 

product manufacturers. Example of business rules include prices chosen from a discrete set 

with a limit to the number of promotions allowed over the planning horizon time (Silva-Risso 

Bucklin and Morrison, 1999; Cohen et al., 2014). Finally, the problem is difficult because of 

its large scale (Levy et al., 2004; Huang, Fildes, and Soopramanien, 2014). A typical 

supermarket today is bigger than ever before, with many thousands of items leading to a large 

number of weekly promotion decisions that have to be made. 

 

We propose a two-step approach that allows Fast-Moving Consumer Goods (FMCG) 

retailers to address the dynamic and interactive implications of promotion decisions, generate 

accurate forecasts of sales and profit at store Stock-Keeping-Unit (SKU) level, and to make 

efficient promotion plans to maximize the product category’s long-term profitability. 

Specifically, we first use a high dimensional Autoregressive Distributed Lag (ADL) model to 
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capture each SKUs’ promotional interactive effects and cross periods promotional influences; 

this is estimated by a two-stage sign constrained regularization approach. Then in the second 

step, to optimize the promotion planning, we build a nonlinear integer programming model to 

maximize retailer whole category multi-period profitability under constraints that model 

important business rules.  

 

To gain evidence for the concept, we test our approach on 915 SKUs, from four 

categories in four retailing stores. The results of our experiments show that the proposed 

model fits the data well in terms of accurate demand forecasting, outperforming all other 

alternative models. In term of the cumulative profit obtained, the approach can increase 

profits by on average 16.7% compared to the actual implemented promotion schedule.  

 

The remainder of the paper is structured as follows. In section two, we review the related 

studies and address their limitations. In Sections three and four we discuss methodological 

issues. Section five describes the data, introduces the experimental design and presents the 

empirical results. Section six discusses the findings, offering conclusions as to promotional 

planning in practice and topics for further academic research. 

 

2.  A Review of Promotional Planning Models for Optimization 

2.1 Promotional effects 

Sales promotions are an important area of research in the field of marketing. It is well 

known that promotions often result in large sales effects for a promoted item. However, this 

does not mean that the sales increase is truly beneficial for a retailer. The sales increase for a 

promoted item could come from other items, or from other time periods because of 

stockpiling (van Heerde, Leeflang, and Wittink, 2002).  

 

Researchers have found that the majority of the promotional response stems from brand 

switching, the percentage of own-brand sales elasticity with respect to a particular promotion 

that is due to brand-switching elasticity is estimated at about 30%-45% in studies published 

after 2002 (e.g., Sun, Neslin, and Narasimhan, 2003; van Heerde, Gupta, and Wittink, 2003; 

van Heerde, Leeflang, and Wittink, 2004; Sun, 2005; Hübner, Kuhn & Kühn, 2016). Also it is 
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widely recognized that for certain products, promotions may have a promotion fatigue effect, 

i.e., consumers may buy additional units of a product during promotions for future 

consumption (stock piling behavior). Researchers have found that, on average, 10%-20% of 

the promotion bump is due to accelerating or “pulling forward” future purchases in the store 

(Mela et al. 1998, van Heerde et al. 2000, Mace and Neslin 2004, Ailawadi et al., 2007b).  

 

These findings show that a retailer may not benefit from promotion because of brand 

switching within the store, nor if the sales increase borrows from other time periods. Thus, a 

promotions optimizer developed for retailers should consider both promotional cross-item 

and cross-period effects to maximize the profitability of an entire category (or even the store) 

profit over a period of time rather than that of individual items in one period. If these 

operational issues are relaxed, the problem is greatly simplified but potentially leads to 

inferior results that are less practical. 

2.2 Promotion optimization 

A retailer’s optimal promotional decisions for items within a category of frequently 

purchased consumer nondurable product are complex and multifaceted. The retailer must 

determine the optimal prices of the various items in the product category and also how they 

vary with promotional activities such as feature advertisements and special displays 

(Vilcasssim and Chintagunta, 1995). According to the type of data required by the model, 

existing promotions optimization research studies can mainly be classified into two streams: 

optimization based on household panel data and optimization based on store data.  

 

2.2.1 Promotion optimization based on household panel data 

Due to the availability of household panel data in 1980s, marketing researchers have 

used choice models extensively to study the effect of marketing mix variables on household 

brand choice behavior (e.g., Guadagni and Little, 1983; Gupta, 1988). In the 1990s, 

researchers began to explore how household scanner panel data could be used to determine 

optimal prices. For example, Vilcasssim and Chintagunta (1995) developed a static 

optimization model of the retailer's pricing strategy based on a response model of consumer 

store visits, category incidence and brand choice. Tellis and Zufryden. (1995) also developed 

a dynamic model that optimized both the timing and depth of price discounts along with a 

retailer's order quantity in response to consumer decisions on incidence, brand choice and 
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quantity over time.  

Any promotional cross-item effects can be naturally considered in the choice modeling 

framework. By estimating the promotional impacts on household stocking and brand loyalty, 

the long-term promotional influences can also be captured. Models based on panel data can 

also help to better understand how the promotions affect consumer brand switching behavior. 

Though appealing in theory, there are several barriers that limit the applications of promotion 

optimization approaches based on panel data. First, the availability of panel data is usually 

low for retailers. Adequate panel data are not collected in all markets and product categories 

and may have small sample sizes in many cases where they are collected. Second, even if 

relevant data are available; the problem of sample size and the sample bias still is a concern. 

Third, choice model cannot provide good forecasts of the aggregate product sales which is a 

basic requirement of a promotional Decision Support System (DSS) (Montgomery, 2005). So 

these optimization models based on panel data are useful in order to theoretically compare the 

results for different promotional policies (and derive managerial insights), but are difficult to 

apply in real promotional decision support system at store level. In fact, Kunz and Crone 

(2014) have argued that for meaningful applications store level EPOS data must be used.  

 

2.2.2 Promotion optimization based on store data 

Store data are far more likely to be used by managers for decisions about promotions 

because of their wide availability (Bucklin and Gupta, 1999). Researches on promotions 

optimization based on store data have a long history. Reibstein and Gatignon (1984) 

performed a pricing analysis based on an estimated double-log aggregate sales response 

function. They examined the issue of how a retailer should determine optimally the prices of 

the various sizes of eggs (extra-large, large, and medium, etc.). Blattberg and Neslin (1990) 

showed that a model of this type could also be used to determine whether to display an item 

or not, or whether to include an item in the feature advertisement or not. Mulhern and Leone 

(1991) went further seeking to evaluate the profitability of price discounts from a 

cross-category perspective and studying optimal retailer pricing and promotion policies. 

Though all of these researches considered the important issue of promotional cross-item 

effects, they implemented at single period static optimization, worked at brand level and 

failed to consider long-term promotional influences.  

 

In their Marketing Science practice price winner paper, Ailawadi et al. (2007a) presented 

a methodology which can quantify promotions impact on store profitability by considering 



~ 5 ~ 
 

brand switching, stockpiling and halo effects. But the purpose of their study was to quantify 

the net unit and profit impact of each promotion, not to optimize the specific promotion 

schedule (e.g., timing and price cutting depth), nor to provide a practical SKU level 

promotional DSS tool for retailers in contrast to the aims of this paper. They assumed that 

promoted items in a category have the same switching percentage and all types of promotion 

have the same impact. In contrast this paper distinguishes the heterogeneity of promotional 

elasticities among items, the asymmetric interactions, and the impact of different promotion 

types leading to a specific promotions schedule among the SKUs in category forecasts of 

SKU sales. 

 

In recent years, a number of researchers have focused on SKU level promotion 

optimization. For example, Natter et al. (2007) described a dynamic retail pricing 

decision-support system for an Austrian Do-It-Yourself (DIY) retailer. They considered 

cross-product promotion effect based on market basket analysis, but neglected the longer 

term promotional influences. Also their model aimed at item profit maximization instead of 

category/store profit maximization. Cohen et al. (2014) also introduced a promotions depth 

and timing optimization formulation and proposed a linear approximation to solve the 

problem efficiently while captures several important business requirements as constraints, but 

their model also looked for single-item profit maximization and failed to consider 

cross-product promotional effects. Ferreira, Lee and Simchi-Levi (2015) introduced a pricing 

decision support system for an online retailer. Their objective was category level single 

period profit maximization: this neglects dynamic promotional influences, and also they 

simplify the cross-product effects by considering only the impacts of category average price. 

In short, while there have been a number of studies that have been based on store level SKU 

data, no study has so far included all the elements that are required to meet retail business 

objectives.   

2.3 Contribution 

This research develops a SKU store level promotions planning optimization method 

based on store data. We extend the existing literatures by considering all the basic 

requirements for a promotional DSS (Montgomery, 2005; Kunz and Crone, 2014; Agrawal & 

Smith,2013): (i) reliance on operational (store-level) data only, (ii) the ability to predict sales 

as a function of prices and other input variables including feature and display advertising, (iii) 



~ 6 ~ 
 

the inclusion of the constraints arising from business rules typically applied in practice. These 

deliver an optimizing promotional schedule at SKU level which aims to maximize 

multi-period category level profit. In estimating this optimal promotions schedule we 

consider promotional cross-product effects, long-term promotional influences and seasonality. 

A number of these critical issues have typically been neglected in earlier studies focused on 

price-promotion optimization at SKU level, in particular forecast validation and comparison 

with other types of promotional forecasting models. Table 1 provides a summary of 

comparisons of this research with existing representative studies. It demonstrates this study to 

be the first that includes all the features necessary for an effective promotions DSS.  

 

Table 1  
The studies on retailing promotion optimization 

Paper Data 
Planning 

level 
Cross-product 

influences 
Cross-period 

influences 
Forecast 

validation 
Business 

Rules 
Mulhern & Leone(1991) Panel Brand Yes No No No 
Tellis &Zufryden (1995) Panel Brand Yes Yes No No 
Vilcassim & 
Chintagunta(1995) 

Panel Brand Yes No No No 

Ailawadi et al. (2007a) Store Category Yes Yes No No 

Natter et al.(2007) Store SKU Yes No No No 

Ferreira et al.(2015) Store SKU Yes No No No 
Cohen et al.(2014) Store SKU No Yes No Yes 
This study Store SKU Yes Yes Yes Yes 

3. Demand model 

The fundamental problem in the promotion optimization problem is to relate past price 

and promotional changes to sales. As we discussed in the previous section, at least three 

sources of promotional effect should be considered in the model: the promotional effect on 

the demand of focal SKU in current period, the effect on the demand of focal SKU in later 

periods, and the effect on the demand of other SKUs in the same category in the current 

period. We model all of these effects of promotion on demand with a high dimensional 

autoregressive distributed lag model.  

3.1 Autoregressive distributed lag model 

To capture the promotional impacts on demand, and building on its strong forecasting 

performance as demonstrated in Huang et al. (2014), Ma, Fildes and Huang, (2016), we 

model the demand of SKU j in category k in week t as an autoregressive distributed lag (ADL) 
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        (1) 

where  

ln (Ykjt) is the log sales of the focal product j in category k in week t; 

ηkj is the product j’s specific constant; 

, , , , ,, ,R
ki t ki t ki t ki t ki tP P D F   X  is a vector of promotional explanatory variables including 

the ratio of the regular price and the list price of the product i in category k in week t, an 

indicator variable for display (1 if product j is displayed, in week t; 0 otherwise), and an 

indicator variable for feature advertising (1 if product j is featured, in week t; 0 otherwise); 

 ln kjtY  is the log eight weeks moving average sales of the focal product j in category 

k in week t, which is employed here to capture any longer term trend; 

c
t lC  is the dummy variable for the cth calendar event at week t-l. When l=0, the dummy 

variable represents the week of the calendar event, and the week before the event if l=1; c 

take the values from 1 to 9 representing all the calendar events including Halloween, 

Thanksgiving, Christmas, New Year’s Day, President’s Day, Easter, Memorial Day, 4th of 

July, and Labour Day. 

The βkjl, l equals 0 or 1, is a coefficient vector of the promotion multiplier, the αkj is the 

multiplier for sale lag of product j in category k, δcj is the calendar multiplier for event c and 

the disturbance term is represented by εkjt.  

The ADL model described in Eq. (1) considers the entire cross promotional effects from 

other SKUs. To distinguish with other models in the paper, we hereafter call the model as 

ADL-CROSS model. 

 

Weekly sales of grocery products have markedly skewed distributions characterized by a 

few extremely high values resulting from deep price cuts (Rajum, 1995; Rinne and Geurts, 

1988). The logarithmic transformation of the dependent variable at least approximately 

normalized the distribution of the dependent variable. The lags included for both sales and 

explanatory variables can capture the longer term promotional effects, e.g., consumers may 

stockpile products during promotions, leading to reduced demand following the promotion. 

We empirically find that the proposed ADL-CROSS model can improve forecasting accuracy 
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by between 30% and 40% over the model without lags.  

The ADL-CROSS model (1) suffers from three problems we need to handle. First, the 

number of explanatory variables is close to or even larger than the sample size because of the 

inclusion of cross promotional explanatory variables from other SKUs in the category. 

Ordinary Least Squares is therefore not appropriate in this high-dimensional linear model. 

Second, with high dimensionality, important predictors can be highly correlated with some 

unimportant ones, and the maximum spurious correlation also grows with dimensionality 

(Fan and Lv, 2008). This results in the promotional explanatory variables from different 

SKUs being multicollinear which makes it difficult to distinguish their individual effects on 

the dependent variable. Third, SKU level sales data is much noisier than higher aggregation 

level (e.g., brand). The promotional effects, especially the cross SKU and cross period 

promotional effects are often too weak to measure, result in incorrect signs for the estimated 

promotional explanatory variables (Mullet, 1976). Incorrect signs may not be a big problem 

in forecasting applications, but they may be seriously misleading in applications which focus 

on promotions optimization. To deal with these problems, we propose a two-stage sign 

constrained regularization approach for the model’s estimation which is described as 

following. 

3.2 Sign constrained regularization 

We separate the estimation process into two stages. At the first stage, we estimate the 

model with only the focus SKU’s own promotional predictors as well as the calendar 

dummies by minimizing the following sign constrained L1 regularized least squares as 

follows: 

 

   
21 9 1

, 1 , 1 , 1
1 0 1 0 2

min ln( ) ln ln
T

j j c
kjt kj kj kj t kj kj t kjl kj t l kjcl t l

t l c l

Y Y Y C       
   

       
a

β X a  (2) 

subject to 0 0j
kj β (promotional impacts in current period) and 1 0j

kj β (promotional 

stocking effects). 
1
 and 

2
 denote the l1 and l2 norms respectively;

[ , , , , ]j j
kj kjl kjl kjcv kj   a β  is a coefficient vector including all the coefficients in the model to 

be minimized. λ is a nonnegative penalty parameter which determines the sparseness of a. 

Setting λ=0 will reverse the problem to sign constrained least squares. In this empirical study 

the optimal value of λ for each SKU is determined by a 20-fold cross-validation..  
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Assuming the data in time window [1, T] is used for model estimation, after the 

parameter estimation by the sign constrained L1 regularized least square in Eq.(2), we 

calculate the in-sample forecasts error ,1:ˆ kj Ty . At the second stage, we use the in-sample 

forecasts error ,1:ˆ kj Ty from the first stage as the dependent variable, and use the promotional 

variables from the other SKUs in the same category as the focal SKU as the explanatory 

variables and estimate the remainder of the parameters in Eq.(1) by the second sign 

constrained L1 regularized least square,  

2

, 1 , 1
1 1, 2

ˆmin ln
knT

j j
kjt ki ki t ki ki t

t i i j

y Y 
  

     
b

β X b             (3) 

subject to 0,j
ki i β , where [ , ]j j

ki kib β .  

 

Penalized L1 likelihood methods have been successfully developed over recent decades 

to cope with high dimensionality. Penalized L1 regression is called LASSO by Tibshirani 

(1996) in the ordinary regression setting and has received much attention due to its convexity 

and the sparsity of its parameter space solutions. There has been much work in recent years, 

applying and generalizing the LASSO and L1-like penalties to a variety of problems 

(Tibshirani, 2011). By regularizing with an L1 penalty, we can generate sparse models and 

therefore cope with high dimensionality as in model (1). Using the proposed two stage 

estimation strategy, we separate explanatory variables into two information sets: own 

promotional information and cross-promotional information. This can avoid the regularizing 

estimator selecting correlated products’ promotion variables instead of the focal SKU’s own 

predictor because of aforementioned spurious correlation. By restricting the signs of the 

promotion coefficients, we can guarantee economic consistency in the model as well as 

further help the regularizing estimator select appropriate predictor variables (Lan et al., 

2014).  

3.3 Alternative demand models 

3.3.1 ADL-OWN model 
 

The ADL-OWN model represents the model using only the focal SKU’s own predictors 

without considering cross-SKU promotional effects (Gür Ali, & Yaman, 2013; Williams et 
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al.,2014；Lang et al., 2015). This is a simplified low dimension version of ADL-CROSS 

described in Eq.(1) by neglecting all the promotional information from other SKUs. By 

comparing the performance of ADL-OWN and ADL-CROSS, we can infer the value of 

cross-item promotional information in forecasting and promotions planning. 

 

3.3.2 Top-down with market share decomposition 
 

Let Ykt be the aggregate demand of category k at week t, and ktX be a vector of the 

promotional intensity indexes which are defined as the weighted average of the 

corresponding promotional variables, i.e., price, display and feature, across SKUs in the 

category. The weight is the weekly average sales in the calibration period. Then the demand 

at category level can also be modelled as an ADL model  

 

   
1 9 1

, 1 , 1 ,
0 1 0

ln( ) ln ln k c
kt k k k t k k t il k t l kcl t l kt

l c l

Y Y Y C       
  

      β X ,   (4) 

with calendar event dummy variables, Ct included as before. 

To decompose the aggregate category level demand to SKU level demand, we model the 

market share of SKU j in the category k with a market attraction model  

 

 
1

, 1 ,
0

exp lnkjt kj kj kj t kjl kj t l kjt
l
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
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where Akjt is the attraction of SKU j at time t, and Mkjt-1 is the market share of SKU j in 

category k at week t-1. The market share of SKU j at week t is equal to its attraction relative 

to the sum of all attractions, that is, 

1

k

kjt
kjt n

kjt
j

A
M

A





.                              (6) 

 

Market share attraction models have been seen as useful tools for analyzing competitive 

structures (Cooper and Nakanishi, 1988; Cooper, 1993). The models can be used to infer 

cross-effects of marketing-mix variables, but one can also learn about the effects of the focal 

promotional actions while conditioning on competitive reactions (Fox, 2003).To estimate the 

parameters in the model (5), we first select one SKU in the category as the benchmark, and 
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then we take the natural logarithm of the ratios between the market shares of the reminder 

SKUs and the benchmark. This results in a system of the (nk−1)-dimensional set of equations 

which is estimated by a seemingly unrelated regression (SUR) estimator (Zellner, 1962).  

 

3.3.3 Promotional index model 

Another model we considered is a SKU level promotional index model. Similar to the 

first model (1), again the demand of SKU j in sub-category k in week t is modeled with an 

autoregressive distributed lag (ADL) model, but in order to reduce the dimension of the 

explanatory variables, the promotional intensity indexes of the category are used as the 

predictors instead of SKU level high dimensional promotional variables 
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           (7) 

 

All the promotional intensity indexes are calculated by weighted averaging the corresponding 

promotion values (discount, display and feature) across SKUs in a category. The weight is the 

weekly average sales of the SKU. That is, the larger the market share a SKU occupies in a 

category, the larger the weight it has in the calculation of promotional intensities. The model 

is estimated by OLS with robust estimators in the presence of heteroscedasticity. While the 

merit of this approach is that it is less computationally complex and easier to implement, it 

may suffer from the problem of loss of promotional information. 

 
Table 2  

A comparative summary of the alternative demand models 

 ADL-OWN 
model 

ADL-CROSS 
model 

Top-down 
model 

Promotional 
index model 

Cross-item promotional effects No Yes Yes Yes 
Asymmetric interactions No Yes No No 
Heterogeneous impacts No Yes No No 
Sign constrained  No Yes No No 
 

In order to have a better understanding of the substantial differences of the presented 

demand models, we summarize the most important properties of them in Table 2. Except for 

ADL-OWN model, all other models consider cross-item promotional effects. But both 

Top-down model and promotional index model simplified the cross-item effects by 
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neglecting asymmetric interactions between two SKUs and heterogeneous impacts from one 

SKU on others.  

4. Optimization model 

 We consider the multi-periods promotion optimization problem for multiple SKUs in the 

same category. The objective is to maximize the total profits over some finite time horizons, 

whereas the decision variables are for each time period: whether and how to promote a SKU 

(display and feature advertising) and what price to set (i.e., the promotion depth).  

 

We suppress the category subscript k to reduce notational clutter in the following. Let Ωj 

be the discrete set of admissible prices for SKU j, then Gj=|Ωj| represents the number of 

possible prices. It is common for many retailers to choose prices that end in .90 or 0.99 (i.e. 

$1.90 or $2.99: Gedenk and Sattler, 1999; Kunz and Crone, 2014). Our formulation of the 

discrete price set can easily meet this requirement in reality. Let pjg represent the gth possible 

price in set Ωj, where g= 1,…,Gj. The first price in the set is regarded as the regular price and 

the others are regarded as price reductions. Define binary variables xjgt such that xjgt= 1 if 

SKU j is assigned price pjg at week t, and xjgt= 0 otherwise, for all j= 1,…, N where N is the 

total number of SKUs in the category. Also let Cj1 be the unit cost of the SKUj. Then the 

gross margin when selling one unit of SKU j is 

1
1

iG

jgt jg j
g

x p C


 . 

The uncertainty in our model is given by Yjt, a random variable representing the demand 

for SKU j at week t. Let ˆ
jtY be the expected demand for SKU j at week t which could be 

estimated with the proposed demand forecasting models described in Section 3. Define 

binary variables djt and fjt to be the display and feature advertising indicator for SKU j in 

week t. Define binary variable ljt to be the indicator for price tag changing, such that ljt=0, if 

xjgt= xjgt-1 for g  (that means the price is unchanged in period t), otherwise ljt=1; Let Cj2 be 

the unit cost of the display of the SKUj, Cj3 be the unit cost of the feature advertising of the 

SKUj, and Cj4 be the unit cost of changing the price tag of the SKUj. Then if there are N 

SKUs in the category and H periods for promotions planning, the total profits the store can 

obtain from the category in the promotions planning period is 
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1 2 3 4
1 1 1

ˆProfits : max
iGH N

jgt jg j jt j jt j jt j jt
t j g

x p C Y C d C f C l
  

  
     

   
     (8) 

The decision variables need to be set here are  , , 0,1jgt jt jtx d f all , , ,j g t , and the 

objective is the maximization of the category profit over H periods. In addition, we need 

ensure that each SKU is assigned exactly one price corresponding to one possible value of the 

sum of all prices, that is 

1

1 ,
iG

jgt
g

x j t


  .                          (9) 

We also need to consider various important real-world business requirements that should 

be satisfied. First, at a certain week t, the number of products concurrently under price 

reductions, in display or feature advertising should be constrained. Too many or too few 

products with price reductions in the same week may counteract the promotional effects or 

damage the store’s price image. The positions for display or feature advertising are also 

limited resources for a retailing store. Let Lpt and Upt be the lower and upper bounds on the 

number of SKUs allowed to have a price reduction in the category in week t; Ldt and Udt be 

the lower and upper bounds on the number of SKUs allowed to be displayed in week t; and 

Lft and Uft be the lower and upper bounds on the number of SKUs allowed to have feature 

advertising in week t, then we set  

1 2

jGN

t jgt t
j g

Lp x Up t
 

   ; (SKUs in price reduction at t)     (10) 

1

N

t jt t
j

Ld d Ud t


   ; (SKUs in display at t)         (11) 

1

N

t jt t
j

Lf f Uf t


   ; (SKUs in feature advertising at t)       (12) 

 Second, the frequency of the promotions for a product over time should also be limited. 

To have too many periods for a product in promotion would change the price image in 

consumers’ mind. Let Mpi (Mdi, Mfi) be the maximum number of weeks SKUi is allowed to 

have a price reduction (in display, in feature advertising) in the planning horizon H, then we 

set 

1 2

jGT

jgt j
t g

x Mp j
 

  ;( periods in price reduction for SKU j)     (13) 
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1

T

jt j
t

f Mf j


  ;( periods in display for SKU j)          (14) 

1

T

jt j
t

d Md j


  ;( periods in feature advertising for SKU j)     (15) 

The proposed multi-periods promotion optimization model described in (8)-(15) is a 

nonlinear integer programming problem and is in general hard to solve with traditional 

analytical methods. Thus, we resorted to a Genetic algorithm to derive the levels of price 

reduction, display and feature advertising desired for each SKU that maximize the category 

profit in the planning horizon (Scrucca, 2013). Genetic algorithms (Goldberg, 1989) are 

simulation-based, parallel-search algorithms that have been used in econometrics (Dorsey 

and Mayer, 1995; Liang and Wong, 2001), marketing (Venkatesan and Kumar, 2004; 

Venkatesan, Krishnan, & Kumar, 2004) and operational research (Nissen, 1995) to obtain 

optimal solutions when the complexity of the optimization function tends to be intractable 

and multi-dimensional. This method is not susceptible to local minima and it asymptotically 

converges with probability one to a globally optimal configuration. This feature allows the 

system to explore different regions of the solution space to find the global optimum. The 

algorithm, programmed in R, is described in this paper’s supplementary material. 

5. Empirical applications 

5.1 Data 

The empirical data comes from the IRI dataset (Bronnenberg et al., 2008)2. The IRI 

dataset includes grocery and drug chain data from a sample of stores in 50 markets and 30 

categories, involving approximately 25%-30% of the consumer packaged goods sales in a 

grocery store. This is weekly data by SKU and includes information on sales, price, features 

and displays. Based on the objectives of this research, the store scanner data from four 

medium-sized grocery stores in Chicago have been selected as the empirical sample. We 

apply the proposed demand forecasting and promotions optimization models to four product 

categories: milk, beer, mayo and yogurt, 915 SKUs in total. The data includes the weekly 

units sold, prices, displays and features for 280 weeks. The first 200 weeks were used to 

obtain model parameter estimates and the last 80 weeks for the validation and policy 

comparison. A sample series for one of the SKU is plotted in Fig. 1 Low-movement SKUs or 
                                                             
2 All estimates and analyses in this paper based on Information Resources, Inc. data are by the author and not by 
Information Resources, Inc. 
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SKUs which may have been introduced or discontinued were excluded. Our criterion was that 

at least 80% of the weeks must have positive movement for the SKU. Kunz and Crone (2015) 

have shown the importance of including many SKUs in the optimization formulation. 

 

 
Fig.1. A sample series of SKU sales and promotions 

 
Table 3 presents descriptive statistics of the data sample. For each store and each product 

category, the means and medians of units sold per week and percentages of weeks concerning 

promotional activities, including price reductions (more than 5 percent), displays and features 

are presented. It is clear that price reduction is the most frequent type of promotion across all 

the categories. Feature advertising is also frequently used in some categories in some store, 

such as yogurt in store 1 and beer in store 4. Display is used less frequently except for beer in 

store 4.  

Table 3  
Description statistics of the data sample 

Store category Num of SKUs 
Mean (Median) 
units sold per 
week 

Percentages of weeks concerning 
promotional activities 
Discounts Displays Features 

1 

Milk 36 127.83(41) 0.17 0.00 0.09 
Beer 72 6.37 (4) 0.26 0.04 0.08 
Mayo 10 6.11(4) 0.18 0.04 0.05 
Yogurt 84 37.07(27) 0.33 0.00 0.14 

2 

Milk 59 166.51（102） 0.09 0.00 0.06 
Beer 140 9.97（6） 0.07 0.02 0.06 
Mayo 19 25.28（16） 0.08 0.02 0.04 
Yogurt 105 91.49（66） 0.17 0.01 0.10 

3 

Milk 47 198.60（56） 0.11 0.01 0.03 
Beer 10 8.47（5） 0.11 0.03 0.05 
Mayo 21 41.89（22） 0.13 0.04 0.02 
Yogurt 105 100.13（67） 0.20 0.05 0.07 

4 

Milk 40 63.67（23） 0.17 0.00 0.06 
Beer 98 12.92（8） 0.29 0.26 0.12 
Mayo 17 16.37（12） 0.21 0.03 0.08 
Yogurt 52 49.19（37） 0.26 0.02 0.08 
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5.2 Estimation and forecasting validation for the demand models 

We evaluate the forecasting performance of our models with ten rolling origins, which 

partially controls for any specific effects arising from a particular origin. Specifically, we 

estimate the model with a moving window of 200 weeks and then generate one week ahead 

forecasts for the next 8 weeks. We move the estimation window forward every eight weeks 

throughout the remaining sample period and re-estimate the model based on the updated data 

sets. The implement of the proposed two-stage sign constrained regularization approach is 

mainly based on R package GLMNET (Friedman, Hastie & Tibshirani, 2010). This is fully 

documented in the supplementary material to this article. 

 
Fig.2. The average own-price elastics and cross-price elastics across 10 rolling periods 

 
 



~ 17 ~ 
 

  
Fig.3. The average own-effects and cross-effects of feature advertising 

 

Considering the large scale of total number of parameters we generated, we cannot report 

all the estimated parameters in detail. In Fig. 2, we depict the average own-price and 

cross-price elasticities across 10 rolling periods for the first category in store 4. These 

elasticities equal the negative of the coefficients in the model divided by average prices. In 

Fig.3, we depict the average own feature advertising effects and cross feature advertising 

effects. In Fig.2 and 3, both the horizontal and vertical labels are the ID of SKUs in the 

category (i.e., 40 SKUs in category 1, store 4). So the diagonal cells represent the own 

elasticities, and the others represent cross elasticities. The color legends in the figures show 

the direction and magnitude of the elasticity. Blue represents positive and red means negative, 

and the deeper the color means the bigger elasticity. Based on the Fig.2 and 3, store managers 

could empirically understand how the promotions on one SKU influence the sales of its own 

and others, which could be helpful in planning the weekly promotion schedule. For instance, 

from Fig.2 and 3, we learn that the price reduction of SKU-34 would decrease the sales of 

SKU-20, but no evidence in the data to show that the feature advertising of SKU-34 affects 
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the sales of SKU-20.  

 

The results show there is considerable heterogeneity for own-price elasticity among 

different SKUs, ranging from -2.9 to 0: also that the cross-price elasticity between pairs of 

SKUs is asymmetric. For example, SKU-34 is affected by the price reduction of SKU-20, but 

not vice versa. Fig.2 also shows the sparsity in the cross-price elastics among SKUs. On an 

average, an SKU’s price change may impact on the sales of just five other SKUs in the 

category.  

 

We use Mean Absolute Error (MAE), Mean Absolute Scaled Error (MASE) and Mean 

Percentage Error (MPE) to compare the forecasting performance of the candidate demand 

models. MAE is a traditional and popular scale-dependent error measures which is easy to 

calculate, easy to understand and widely applied. The Mean Absolute Scaled Error (MASE) 

which was proposed by Hyndman and Koehler (2006), can be considered as a “weighted” 

arithmetic mean of the MAE based on the variations of the sales data in the estimation period 

(Davydenko and Fildes, 2013). MPE is used to measure the forecasting error bias, potentially 

important in stocking decisions, and is defined here as the arithmetic mean of ratios of total 

error to total sales per SKU. 

 

In Table 4, we compare the forecasting accuracy for the various demand models 

introduced in section 3. In general, the ADL-CROSS model outperforms ADL-OWN as well 

as the two other alternative models across all the performance measures. The Promotional 

index model also performs pretty well: though it is not the best on average, it provides most 

accurate forecasts in 4 store categories, i.e. beer in stores 1 and 3, mayo in stores 2 and 4. The 

TOP-DOWN decomposition model generates the worst forecasts for most store categories, 

except for Mayo in store 3. For none of categories, does the ADL-OWN model provide the 

best forecasts. These results show that ADL-CROSS is superior over all other alternative 

models and integrating cross SKU promotional competitive information is potentially 

important in improving SKU demand forecasting accuracy. Overall, however, its forecasts are 

negatively biased. 



~ 19 ~ 
 

 

Table 4  
Forecasting validation for various demand models 

Store Category 
ADL-OWN model  ADL-CROSS model  TOP-DOWN model  Promotional index model 

MAE MASE MPE  MAE MASE MPE  MAE MASE MPE  MAE MASE MPE 

1 

Milk 9.720 1.018 -1.29  9.228  0.975 -1.08  10.531 1.052  0.12   9.415  0.997 -1.72 
Beer 2.209 0.811 -7.40  2.062  0.756 -1.72  2.053 0.753  0.01   2.067  0.756 -2.42 
Mayo 2.483 0.896 -7.49  2.349  0.842 0.47  2.281 0.834  -0.49  2.406  0.862 -2.60 
Yogurt 9.532 0.862 -4.81  8.943  0.802 -3.01  9.466 0.826  -4.23  9.186  0.826 -4.01 

2 

Milk 15.943 0.938 -2.26  15.682  0.914 -2.44  20.258 1.137  -1.56  15.901  0.933 -2.62 
Beer 3.285 0.814 -2.12  3.122  0.776 0.63  4.037 1.058  -6.52  3.150  0.779 -0.82 
Mayo 8.424 1.331 -20.99  6.342  0.785 -7.39  6.548 0.798  -2.35  6.237  0.800 -8.53 
Yogurt 22.154 0.696 -3.58  21.121  0.666 -0.25  22.768 0.744  1.05   22.033  0.685 -2.65 

3 

Milk 24.593 0.898 -4.50  24.186  0.868 -3.04  30.934 1.076  -4.80  25.318  0.920 -5.19 
Beer 2.516 0.765 -4.61  2.456  0.733 -1.36  2.674 0.791  -3.01  2.419  0.724 -2.37 
Mayo 10.453 0.920 -6.27  9.696  0.885 -2.74  8.859 0.901  -3.24  9.557  0.896 -5.59 
Yogurt 26.015 0.649 -5.97  25.179  0.633 -4.54  27.473 0.702  -3.32  25.318  0.920 -5.22 

4 

Milk 7.489 0.844 -3.26  7.325  0.809 -2.40  10.702 1.073  3.45   7.857  0.848 -0.94 
Beer 4.246 0.868 0.68   4.092  0.830 2.79  4.607 0.916  1.07   4.133  0.838 4.38 
Mayo 4.196 0.765 -3.33  3.976  0.722 -2.39  4.059 0.749  -3.09  3.946  0.715 -3.44 
Yogurt 14.893 0.757 -3.11  14.638  0.735 -1.25  14.992 0.791  -2.95  14.885  0.751 -2.76 

Average 10.509 0.865 -5.02  10.025  0.796 -1.86  11.390 0.888  -1.87  10.239  0.828 -2.91 
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5.3 Promotion optimization experiments 

We first conduct a promotion optimization experiment on all 4 categories in 4 stores in a 

typical set of cost settings. In order to closely imitate a realistic application, we first estimate 

the ADL-CROSS model with the first 200 weeks data and then optimize the promotional 

schedule for the following 8 weeks planning horizon. These optimal promotional schedules 

are then used to produce an estimate of the sales and profits over the horizon. The dataset 

does not provide information on SKUs’ unit cost, label changing cost, nor the cost of display 

or feature advertising. In the following simulation optimization experiments, the gross margin 

is assumed as 20% of the price for each SKU over the planning horizon. We also arbitrarily 

set the cost of display as $20, the feature advertising as $20 per SKU per week, and the price 

retagging cost as $1. To avoid the extreme prices in the solution, the feasible price set for 

each SKU is obtained by extracting the unique prices at quantiles of 20%, 35% 50%, 65% 

and 80% from each SKU’s price history in the planning horizon. To keep the stores’ price 

image unchanged, we set the lower bound of the allowed number of SKUs in price discounts 

in the category, i.e., Lpt, as their historical mean of the category in the data (fifth column in 

the Table 3). The upper bounds for the number of SKUs discounted in a category, as well as 

the display and feature advertising in a given week in the category is set at their historical 

maximum value of the category in the data. Similarly, for each SKU, we assume the 

limitations for the frequency of price reduction, display and feature advertising across 

planning horizon are also the same as their historical maximum value in the data. For 

example, the maximal frequency of the display over the planning horizon is 

1

( / )
T

jt
t

Max d T j


 ，  in the data. We used such bounds in our simulative experiments to make 

a fair comparison between optimal promotion planning and real ones. These values are 

summarized in Table 5. The lower bound for display and features are all set as zero. 

 

The genetic algorithm proceeds by searching for the optimal level of price, display and 

feature advertising for each SKU that maximizes category profit in planning horizon. We set 

the parameters in the genetic algorithm as follows: population size = 1000, probability of 

crossover = .8, probability of mutation = .25, the number of best fitness individuals to survive 

at each generation is set as 5% and convergence criteria = 100 consecutive generations 

without any improvement in the best fitness value.  
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The comparative results from the actual and optimal promotion schedule are presented in 

Table 6. Under the experimental settings, when adopting the optimal schedule, we expect to 

obtain $26.91 profit from each SKU per week on average, while actual value is $22.75. This 

means that the optimal schedule is expected to increase profit by 18%, or $33,452 for a total 

of 915 SKUs over an 8 weeks planning period. The predicted profit (and sales) in Table 6 are 

generated by ADL-CROSS model using actual promotion schedule as the inputs. Both 

predictions of profit and sales for all the categories are very close to the actual values. On 

average, the optimal sales are expected to be a little higher than the actual sales, but the price 

is decreased by $0.06 on average, and less frequent displays and feature advertisings are 

recommended.  

 

      Table 5  
The upper bounds of promotions in the optimization experiments 

Store category 
Max Promotion Frequency over 

the planning horizon 
Max Promotion Density in each 

week 

Discounts Displays Features Discounts Displays Features 

1 

Milk 0.42 0 0.57 0.64 0 0.61 

Beer 0.59 0.19 0.33 0.57 0.17 0.25 

Mayo 0.54 0.3 0.25 0.7 0.2 0.7 

Yogurt 0.74 0 0.29 0.82 0 0.64 

2 

Milk 0.23 0.01 0.21 0.49 0.03 0.25 

Beer 0.43 0.31 0.45 0.17 0.1 0.14 

Mayo 0.25 0.11 0.18 0.42 0.16 0.26 

Yogurt 0.54 0.03 0.18 0.57 0.14 0.44 

3 

Milk 0.32 0.14 0.16 0.55 0.11 0.4 

Beer 0.44 0.12 0.13 0.5 0.4 0.4 

Mayo 0.34 0.49 0.1 0.43 0.19 0.14 

Yogurt 0.59 0.18 0.16 0.96 0.33 0.54 

4 

Milk 0.39 0.01 0.17 0.6 0.08 0.68 

Beer 0.75 0.85 0.51 0.49 0.44 0.32 

Mayo 0.51 0.18 0.26 0.59 0.24 0.76 

Yogurt 0.78 0.04 0.13 0.98 0.19 0.96 
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Table 6 
Results of simulative promotion optimization experiments 

Store Category 
Avg. profit  Avg. price  Avg. features & displays  Avg. sales 

Optimized Predicted Actual  Optimized Actual  Optimized Actual  Optimized Predicted Actual 

1 

Milk 60.47 51.70 52.59 
 

2.76 2.80  0.00 0.14  116.20 109.86  111.49 
Beer 7.90 4.47 3.42  7.83 7.96  0.02 0.10  5.38 4.72  4.28 
Mayo 2.46 1.44 1.51 

 
3.59 3.23  0.00 0.01  4.58 5.03  5.03 

Yogurt 6.10 2.10 3.16 
 

1.53 1.72  0.00 0.18  33.56 31.42  38.87 

2 

Milk 83.74 72.68 76.27  2.63 2.52  0.03 0.05  154.24 150.54  157.77 
Beer 17.24 14.72 14.55 

 
8.19 8.24  0.06 0.07  9.66 8.45  8.61 

Mayo 9.57 8.00 8.17  2.66 2.64  0.01 0.03  19.69 19.10  19.82 
Yogurt 12.70 9.70 11.28  1.26 1.16  0.02 0.13  75.06 83.02  92.11 

3 

Milk 132.58 118.87 114.26  3.05 2.99  0.05 0.03  201.73 185.13  176.13 
Beer 6.53 6.47 5.72 

 
6.70 6.78  0.00 0.03  5.33 5.48  4.84 

Mayo 16.88 14.43 13.05 
 

2.90 2.76  0.07 0.01  34.53 31.44  28.92 
Yogurt 17.44 14.40 14.63  1.41 1.35  0.05 0.08  109.10 110.00  110.62 

4 

Milk 23.40 22.06 23.29  2.81 2.88  0.02 0.04  53.65 47.98  50.28 
Beer 18.77 6.94 7.88  7.64 8.14  0.02 0.14  12.42 10.34  11.75 
Mayo 6.54 5.12 5.98 

 
2.80 3.14  0.00 0.04  14.60 11.83  13.38 

Yogurt 8.20 7.94 8.21  1.33 1.62  0.00 0.04  43.75 40.99  45.52 
Average 26.91 22.56 22.75 

 
3.69 3.75  0.02 0.07  55.84 53.46  54.96  
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No general conclusions as to the optimal pricing/ promotions strategies are possible as 

they depend critically not just on the relative elasticities but also on the marginal costs and 

profitability. To understand the impact of the cost settings on the optimal profit lifts over the 

actual value, we study the effect of each of these factors by varying them one at a time while 

the others are set to the same value as in the previous section. Specifically, in Fig.4, we vary 

the display and feature advertising cost, i.e., Cj2 and Cj3 in (8), from $0 to $30 per SKU per 

week, the price margin (1-Cj1/pjt) from 5 percent to 35 percent, and the price tag changing 

cost Cj4 from $ 1 to $3 per SKU per changing. Fig.4 leads to the following observations: 1) 

the improvements of the optimal profit over the actual profit are bigger when the display and 

feature advertising costs are higher; 2) the lifts of the optimal profit over the actual profit are 

smaller when the profit margin and label costs are higher; 3) the optimal profits are 

consistently higher over the actual profit in all the cost settings: the minimum profit lift is 

13.6%. We also test the worst situation by setting the display and feature advertising cost as 

$0, and setting the profit margin and retagging costs as 35% and $3 respectively: and we still 

get 10.6% profit lifts from the proposed optimization algorithm.  

 
Fig. 4. Sensitivity analyses of cost factors on profit lifts 
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In order to check robustness, we have tested the approach by estimating the model and 

optimizing the promotional schedule in a rolling fashion. Specifically, we use 200 weeks as a 

rolling window to estimate the model parameters, and then optimize the following 8 weeks’ 

promotional schedules. The rolling window is kept updated and moved forward for every 8 

weeks. This rolling process is implemented for five times to simulate a realistic promotion 

schedule process for the last 40 weeks of the data. All the costs and boundaries needed in the 

model are set at the same level as in the first optimization experiment. Fig.5 reports the 

results. For all the five planning horizons, we get similar results to that for the first 

optimization planning horizon. The optimal profits are consistently larger than the actual 

profits. The profit lifts are in between 12% to 21% and the average profit lifts is 16.7%.  

 
Fig.5. The robustness checks with rolling planning optimization 

 

Another interesting question to explore is the benefits of including cross SKU 

promotional effects, compared to only considering own promotional effects: how much 

profits would possibly be lost？To simulate this situation, we repeat the first promotions 

optimization experiments as described, but using the ADL-OWN model and its parameters as 

the demand model in the optimization instead of ADL-CROSS. After obtaining the optimal 
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cross SKU promotional effects, we expect to lose the profit $5451 on 915 SKUs over 8 

weeks planning horizon, or 16.3 percent of the total profit lifts expected to be obtained. 

Similarly, there is a question as to the benefits of considering cross-period effects. For each 

SKU in the sample, we estimate a Log Linear Model which is similar with the ADL-CROSS 

but exclude all its dynamic components (promotion lags,  ln kjtY and  , 1ln ki tY  in Eq.(1). 

After obtaining the optimal promotion schedule by using the Log Linear Model as the 

demand model, we input the schedule into the ADL-CROSS again, using ADL-CROSS to 

generate predicted profits which are also reported in Table 7. By neglecting cross period 

promotional effects, we expect to lose profits of $5237 in total, about 15.6 percent of the total 

profit lifts obtained. These indicate that integrating both cross-item effects and cross-period 

effects are important in a promotions optimization DSS. 

 

Table 7  
The value of the cross-item and cross-period promotional 
effects 

Store Category 

Profit lose by 
neglecting 
cross-item 
effects ($) 

Profit lose by 
neglecting 
cross-period 
effects ($) 

1 

Milk 258.8 231.5 

Beer 458.7 159.0 

Mayo 4.8 8.0 

Yogurt 34.4 11.1 

2 

Milk 192.8 377.3 

Beer 1724.7 2255.7 

Mayo 61.8 43.1 

Yogurt 219.6 400.7 

3 

Milk 616.6 750.6 

Beer 4.0 10.2 

Mayo 230.0 127.1 

Yogurt 411.1 438.1 

4 

Milk 150.4 123.7 

Beer 849.3 242.4 

Mayo 41.5 9.2 

Yogurt 192.7 49.1 

Total 5451.0 5236.7 
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6. Discussion and conclusion 

We have proposed a dynamic promotions planning model at SKU level that gives the 

optimal timing of promotions and depth of retail discounts under the constraints arising from 

imposing important business rules. Those decisions include when, for how long, and, in the 

case of temporary price reductions, how deep to run promotional events. We link the demand 

model that captures both the promotional cross-product effects and cross-period influences to 

an optimization module that uses the Genetic algorithm to search for the set of decisions over 

the planning horizon that maximizes category profit. A unique aspect of our framework is that 

it considers all the basic requirements for a promotion DSS. 

 

As we have argued, this is the first paper which aims at retail store long term category 

level profit maximization by collaboratively promotions planning at SKU level. We provide 

retailers with a practicable SKU level promotion DSS tool which is capable of providing 

accurate sales forecasting and optimal promotions schedule simultaneously. Our substantive 

applications demonstrate that by integrating both cross-product and cross-period promotion 

influences we can significantly improve forecasting accuracy over the model that considers 

only cross-period influences. The optimal promotion schedules are expected to increase 

profits by 16.7% over the actual implemented on average. We can obtain on average 16.3 % 

more profit over the model that considers only own promotional influences, or 15.6% over 

the model that neglects promotional cross period influences. The results have proved to be 

robust across various cost parameterizations. From these we can conclude that both 

cross-item and cross-period promotional information are valuable in SKU level sales 

forecasting and promotions planning, and retailers could achieve greater profit by aiming at 

whole category multi-periods profit maximization instead of at individual item short period 

gains. 

 

The research has certain limitations which would benefit from further analysis. While the 

data set is well established, extending the modelling to more stores and other data sets of 

different types (e.g. D-I-Y to compare with Natter et al. 2007) would help practitioners 

resolve questions of relevance to their own problem areas. Further research questions include 

extending our general model to include other realistic aspects that may reflect actual retailer 

discounting practices. For example, by considering order and stock cost. We can also fix 

some of SKU's price while optimizing others if the deal is launched by a manufacturer. 
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Another extension of our model is to integrate cross-category promotions effects to optimize 

store level profit. The practical limitations of our overall model are few. The optimization 

model is flexible enough to be applicable in any situation, as long as valid demand forecasts 

can be obtained. The demand models proposed in this paper require enough historical data 

and relatively stable assortment. For new SKUs, or SKUs with short sales history, the 

proposed demand models will not be immediately applicable. Some variations of the model 

are needed for dealing with these situations. For example, the demand of new SKU could be 

evaluated by reference to analogous SKUs with similar attributes (flavor, package, color, 

ingredients, etc.). There are also computational issues where the intensive use of the genetic 

algorithm to solve the optimization problem in practical applications is overly time 

consuming – the replacement heuristic algorithm could be further developed to speed up the 

optimization process. Finally, there is the fascinating problem of introducing just such a DSS 

into a retail chain and changing its promotional practices. 
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