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Abstract

We present a new framework to investigate the profitability of trading the volatility spread,
the upward bias on implied volatility as an estimator of future realized volatility. The scheme
incorporates the first four option-implied moments in a growth-optimal payoff that is stati-
cally replicated using a portfolio of options. Removing the upward bias on implied volatility
worsens the likelihood score of risk neutral densities obtained from S&P500 index options
when they are used as forecasts of the underlying index return distribution. It also results
in negative expected capital growth when they are used in a volatility arbitrage scheme.
Our empirical finding is that the upward bias on implied volatility does not represent a long
term return premium, rather it is required to mitigate the large losses associated with tail
events when trading volatility in options markets.

Keywords: Finance, Volatility Spread, Variance Premium, Tail Risk, Growth Optimal
Portfolios

1. Introduction

An upward bias in option-implied volatility (IV) as an estimate of future realized volatil-
ity (RV) has been consistently documented by researchers in a range of options markets (see
e.g. Day and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993),
Jorion (1995), Bates (1996), Christensen and Prabhala (1998) and Jiang and Tian (2005)).
Dating back to Lamoureux and Lastrapes (1993), the upward bias on IV has traditionally
been measured using a regression-based approach. The regression-based test for bias is
usually of the form:

RV (t, τ) = a+ λIV (t, τ) + ǫ(t, τ), (I)

where, RV is the realized volatility of the underlying over the lifetime of the option from
time t to time τ and IV is the implied volatility for the option at time t. A test for a=0,
λ=1 is used to test for a bias on IV as an estimate of RV. In this article we use the second
moment of the risk neutral density implied by a full strip of options as our measure of IV and
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define the volatility spread as the difference between this value and the volatility realized
over the life of the option from time t to expiry, τ .

The upward bias on implied volatility is often described as a premium (see e.g. Carr and Wu
(2009)), and has been show to have an associated return premium in equity markets (see
Bali and Hovakimian (2009)). The spread has also been linked with uncertainty (Drechsler
(2013)) and has been widely used as an economic uncertainty measure (see e.g. Bloom
(2009), Bekaert et al. (2013) and Longstaff et al. (2007)).

Estimating the model in Equation I through ordinary least squares regression assumes
that the cost of the volatility forecast errors, ǫ(t, τ), is symmetrical and ignores the impact
of the higher moments of the return distribution, such as skewness and kurtosis. If these
assumptions were valid then a bias on implied volatility would represent a statistical arbi-
trage opportunity for an options trader. We test for a return premium associated with the
volatility spread in the S&P 500 options markets, over a period of 17.5 years and a data set
of over 2,150 option sets.

We use a new framework for investigating the economic importance of the volatility
spread. The framework allows the spread to be examined in terms of its contribution to
a full forecast density, including the first four moments of the risk neutral distribution.
This is a key aspect when investigating the spread because real-world volatility arbitrage
schemes have exposure to the higher moments of the underlying return distribution, and
this will be reflected in the price of volatility in options markets. Delta hedging schemes,
for example, have an exposure to non-zero excess skewness and kurtosis. So much so that
the disappearance of the market for single name variance swaps in 2008 is attributed to the
difficulty in accurately delta hedging the associated options (see Carr and Lee (2009)).

The proposed trading scheme offers a number of benefits over alternative volatility ar-
bitrage schemes such as delta hedging or butterfly spreads:

• The scheme uses a static replication portfolio to trade volatility. Unlike delta hedging
there are no continuous hedging trades and the bid/ask spread is only paid on one
transaction as options are held to expiry.

• The resulting option portfolio is the growth optimal portfolio1 given a forecast distri-
bution that is closer to the true underlying distribution than the market risk neutral
distribution is. Investing in this portfolio maximizes expected growth for a given in-
formational advantage. Other static portfolios, such as a butterfly spread, are not
growth optimal. If we view a butterfly spread as a portfolio of options, the portfolio
weights on a butterfly spread are arbitrarily selected and are not optimal.

• The scheme constructs risk neutral densities and optimal portfolios using options
across a range of strikes. This is consistent with the mostly widely observed mea-
sure of implied volatility in the marketplace, the VIX. It is shown in Jiang and Tian
(2005) that there is more information in an IV measure constructed over the full range
of strikes than in the IV of an at-the-money option. The implied volatility that we
test is a market representative measure of implied volatility. This avoids the need to
control for moneyness that is required when testing the volatility spread by hedging
single options as is done in Bakshi and Kapadia (2003).

1it can also be made optimal for a range of power law utility risk aversion levels.
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A key aspect of our analysis is that we trade the options that are themselves used to
estimate option implied volatility. Increased option prices lead to increased implied volatility.
Conversely, if there is selling pressure on options to avail of the spread trade, this would
reduce the option prices through increased supply and the implied volatility should decrease
and reduce the spread. The evidence from options markets is that the spread persists and
this mechanism is not occurring. In this article we analyze the spread trade to explain this
persistence and to determine if it is explained by a risk premium, whereby an excess return
is received as compensation for the non-diversifiable risk of trading the spread.

2. Materials and Methods

2.1. Option Data

Option data is sourced from the Option Metrics Ivy database. The period covered is
from January 1996 to May 2013. Up until November 2005 only monthly option expiries were
available for the S&P500. After this date bi-weekly option expiries were available, up until
June 2012, when weekly expiries then became available. The main spikes in volume can be
seen at weekly, monthly and quarterly time intervals, with monthly expiries dominating the
trading volume.
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Figure 1: Average volume of S&P 500 options contracts traded for each number of working days to expiry,
over the period January 1996 to May 2013. The time to expiry is calculated in working days from each
trade date, ti, to each expiry date, τi.
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Figure 1 shows the average volume traded against the number of work days between the
trade date and the expiry date of the option sets. This is calculated over all option sets in
the database. Volume spikes around option sets with between 19 and 21 working days to
expiry. We select our data set to include the most liquid option strips; all options within
a range of between 15 and 25 working days to expiry from January 1996 to May 2013 are
included.

A number of filters are applied to the data. Options with zero traded volume on a given
trade day are omitted if the Open Interest for the corresponding option is also zero. Options
for which no implied volatility was calculable in option metrics are removed 2. After filtering
there are 2,450 option strips remaining in the sample.

CBOE S&P500 option settlement prices are calculated using opening prices on the pre-
vious trading day to the expiry date. The time to expiry is taken as the time from closing at
3:30PM on the trade date to 8:30AM on the settlement date (the Friday before the expiry
date). Dividend and interest rates used are obtained from the Ivy DB, details of the calcu-
lation of these are given in the Ivy DB reference manual. Historical S&P500 index opening
and closing prices are obtained from Bloomberg.

2.2. Risk Neutral Density (RND) Estimation

We require a risk neutral density for each strip of options in our data set, where a strip
of options consists of a set of closing put and call option prices with varying strikes and the
same expiry date in the range 15 to 25 business days from the date of the closing price quotes.
There is a large literature that describes many different techniques to extract the RND from
option prices (see e.g. Aı̈t-Sahalia and Lo (1998), Jackwerth (1999), Chernov and Ghysels
(2000) and Bondarenko (2003)). We employ a three step method to fit the RND:

1. As a first step we apply the approach described in Figlewski (2010) to obtain a non-
parametric RND. This method incorporates prior work by Shimko (1993) and the
seminal result in Breeden and Litzenberger (1978).

2. We then curve fit a Normal Inverse Gaussian (NIG) density to the non-parametric
density. Due to the flexibility of the NIG we find that the two densities are virtually
identical across our data set3. In Ghysels and Wang (2014) and in Eriksson et al.
(2009), the distribution was also shown to work extremely well in modeling RNDs and
in pricing options.

3. We use the parameters of the curve fit NIG density as a starting point in an optimiza-
tion to select the NIG inputs that return prices closest to the mid point of the bid/ask
for the set of options used to calculate the RND.4

In step 3, for each option strip we obtain a set of option prices under our candidate NIG

2See the Option Metrics Reference Guide for details on how they calculate implied volatility.
3We also tested the Pearson system of distributions but found that these could not fit the non-parametric

option implied RNDs as well as the NIG.
4We also tried the popular method of Bakshi et al. (2003) to obtain m, v, s and k analytically. The

average option pricing error using an NIG based on these parameters was much larger than that obtained
using our 3 stage method.
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distribution, Q:

CRNi(t, τ) = e−r(τ−t)

∫ ∞

−∞

q(x,m, v, s, k)max(0, x− ki)dx,

PRNi(t, τ) = e−r(τ−t)

∫ ∞

−∞

q(x,m, v, s, k)max(0, ki − x)dx,

where, t is the date of the closing option price quotes, τ is the expiry time of the option
set, ki is the strike price of option i and x is the underlying index level. These are standard
option pricing equations that calculate the option price as the expected future payoff of the
option (max(0, x−ki) for a call and max(0, ki−x) for a put) under the risk neutral density,
q(x,m, v, s, k), discounted to time t at a rate equal to the risk-free rate less the dividend
rate of the index (r = rf − d) 5.

The usual inputs to the NIG consist of a location parameter, µ; a tail heaviness pa-
rameter, α; an asymmetry parameter, β; and a scale parameter, δ. For the purposes of
our analysis, and to isolate the effect of the second moment, it is preferable to deal with
the distributional moments directly - mean, variance, skewness and kurtosis: m, v, s and
k. To do this we include a mapping from distributional moments to the NIG inputs in the
likelihood function (see Appendix). This allows us to deal directly with those moments in
a new likelihood function q(x,m, σ, s, k).

The optimizer varies the m,v, s and k inputs to return a set of option prices as close to
the market values as possible, where closeness is defined as a moneyness-weighted pricing
error, D:

D =

∑NC
i

|CRNi−CMi|mi

Cmi

NC
+

∑NP
i

|PRNi−PMi|mi

Pmi

NP
,

where: mi = ki

St
is the moneyness of the option struck at ki, Cmi(Pmi) is the midpoint

of the Bid and the Ask price for the Call (Put) struck at ki, and NC (NP) is the number
of out-of-the-money calls (puts) in the option strip. The metric, D, gives more weight to
pricing accuracy for the more liquid options with a moneyness close to one as these are the
options with the highest average trading volume. We filter out sets of options for which the
average moneyness-weighted distance from the Bid/Ask midpoint across the option strip,
D, is greater than half the Bid/Ask spread. From an initial set of 2,450 option sets this
leaves 2,154 for our analysis. An example RND obtained using the technique is illustrated
in Figure 2a.

2.3. Growth Optimal Options Portfolios

In this section we consider how to invest in options in an optimal manner when the
risk neutral density implied by option prices, q as obtained in Section 2.2, differs from
the objective distribution of the underlying index returns, p. The risk neutral density
includes both the market’s objective forecast of the distribution of the underlying and market
preferences that may favor payoffs in certain market states over payoffs in other states.

The difference in information implied by the difference between the forecast, p, and
the market implied distribution, q, implies a capital growth rate for an investor trading
against the market when their forecast distribution is closer to the true distribution of the
underlying returns. This growth rate was determined in Barron and Cover (1988), where

5the annualized dividend rate for the S&P 500 is obtained from Option Metrics database.
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Figure 2: An example trade using closing S&P 500 option prices on 30 April 2013 for options with expiry
on 31 May 2013. The risk neutral density is illustrated in (a) along with a density constructed using a
de-biased version of the risk neutral volatility in addition to the original risk neutral mean, skewness and
kurtosis. The growth optimal payoff function in (b) is the ratio of the two densities. The function is broadly
similar in shape to a butterfly spread, with a central peak sloping away on either side. The payoff of the
function on the settlement of the options is 1.004 representing a return of 0.4% on an investment of 1 unit.
This is just one of over 2,150 option sets that we evaluate in our empirical study of the volatility spread.

it is also shown in a footnote that the growth optimal payoff is given by investing in the
ratio of the two distributions: p

q
. This ratio is framed as an optimal derivative in Edelman

(2000). In this article we construct the payoff p
q
using static replication with a portfolio of

options taken from the same set of options used to estimate the risk neutral density.
Specifically, we consider the case where the risk neutral density implied by a set of option

prices has an upwardly biased volatility estimate. In this paper we create a forecast density
by adjusting the second moment of the risk neutral density to remove an upward bias. We
vary the λ values in Equation I to remove the upward bias and reconstruct a density with the
other three of the first four moments matching the risk neutral density versions. The result
is a distribution function with the same mean, skewness and kurtosis as the risk neutral
density but with a de-biased second moment. We correct the risk neutral density for the
volatility bias and test the unbiased volatility estimate in the presence of the other moments
of the distribution. The impact of the volatility spread can then be tested in the presence
of the risk neutral skewness and kurtosis as they are included by construction.

2.3.1. A Probabilistic Scoring Rule: Quantifying Capital Growth Opportunities

We now have two pricing densities for each option set, qi and pi, the difference between
the two being an adjustment to remove the volatility spread. To investigate the impact of
the premium we would now like to compare the two densities on expiry of the 2,154 option
sets in our sample. We adopt the following probabilistic scoring rule:

W =
∏

i

pi(x(τi))

qi(x(τi))
, (II)

where qi(x(τi)) is the likelihood score of the risk neutral density evaluated at the index
level at expiry time, τi, of the option set i, and pi(x(τi)) is the likelihood score of the de-biased
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volatility version of the risk neutral density. W, therefore, corresponds to a compounded
version of the ideal payoff from Barron and Cover (1988), where a value on the expected
capital growth rate, G, achievable with this ratio was given as:

G ≤D(p(x)||q(x)),

where the Kullback-Leibler distance, D, is defined as:

D(p(x)||q(x)) =
∫ r=∞

r=−∞

p(x) · log
(

p(x)

q(x)

)

dx.

D is the expected log of the likelihood ratio of the true distribution to the market implied
distribution, where the expectation is taken under the true distribution. It corresponds to
the maximum capital growth rate achievable by trading the true distribution against the
market implied distribution.

In this article we are interested in the financial value of the information that option-
implied volatility has an upward bias. We test whether this information can be exploited
for economic gain. W in Equation II, corresponds to the final compounded wealth after
2,154 trades when an investor starting with a unit investment invests in the growth-optimal
payoff to exploit their information that the implied volatility has an upward bias.

Maximizing the rule in Equation II is equivalent to selecting the NIG density parameters
through Maximum Likelihood Estimation (MLE), as the divisor is set by the market prices
and is a constant from the perspective of a trader. The fact that MLE is consistent with
maximizing log utility is a known result and is discussed in Johnstone (2011).

A similar rule is commonly applied in econometrics in likelihood ratio tests; a technique
used to select between nested models. We can consider a hypothesis test where the volatility
estimate is unadjusted versus where it has two components: the original market parameter
σiv and a second correction parameter that allows a scaling of the market-implied volatility:

H0 : v = σiv

H1 : vc = σiv − (1− λ)σiv

The models are nested and we can apply a likelihood ratio test to determine whether the
Null hypothesis of the adjusted model being superior in performance can be rejected. The
market model is a restricted version (λ = 1) of our adjusted model and we can apply Wilk’s
theorem, see Wilks (1938). This gives the distribution of the log of the likelihood ratio as
being χ2 with degree of freedom equal to the number of restrictions in the model (one).
This allows the calculation of p-values for the out-performance of our modified IV models
against the market RND (or vice versa) in addition to the calculation of an implied capital
growth rate from Equation II.

2.3.2. Incorporating Risk Aversion

Optimization based on the scoring rule outlined in the previous section is consistent with
maximizing log utility. In this section we extend the rule to incorporate a range of Constant
Relative Risk Aversion (CRRA) levels in a power law utility function:

U(w) =
1

1− γ
w1−γ (III)

U(w) is the utility an agent gets from having the wealth level, w. The level of risk aversion,
γ, determines an agent’s risk vs reward preferences. When γ = 1 the agent utility becomes a
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log function and the agent is only concerned with maximizing their expected capital growth.
An approach to introduce risk aversion to our scheme is given in Guasoni and Robertson
(2012), we can replace the original forecast, p, with a new forecast, pRA, given by:

pγ(x) =
p(x)γq(x)1−γ

∑

p(x)γq(x)1−γ
, (IV)

where pRA(x) is a new risk-adjusted density forecast that the agent trades against the
market implied distribution, q(x), incorporating their risk preferences as captured by the

constant of relative risk aversion,, γ. The resulting payoff pRA(x)
q(x) is the optimal payoff for

an investor with CRRA = γ. In order to test our findings across risk aversion levels we
modify our forecast densities, as per Equation IV, for each of five levels of risk aversion:
γ ∈ {1, 2, 3, 4, 5}. This results in a set of returns corresponding to the optimal investment
in the volatility spread trade for investors with each level of risk aversion. In each case we
analyze the effect on each investors utility of removing the upward bias on implied volatility
by varying the volatility scaling factor, λ. This results in a payoff function that is specific
to the level of volatility scaling and investors’ relative risk aversion:

Ψγ(λ) =

p(λ)γq1−γ

∑
p(λ)γq1−γ

q
(V)

The payoff function Ψ1(0.8) is illustrated in Figure 2b for an example option set. This
payoff is constructed as per Equation V, the payoff has a cost of $1. On expiry of the option
set the trader receives the value of the payoff evaluated at the level of the S&P 500 index
on the settlement date of the option set. A volatility arbitrageur gains if the index does not
move far from the index level at which the trade is entered.

2.4. Static Replication

The optimal payoff of the ratio of our de-biased RND to the original RND is not a traded
security. In order to invest in it we statically replicate the payoff using a portfolio of the
original options used to extract the RND. Our choice of the NIG distribution has a nice
property in this regard as the ratio of two NIG functions is twice-continuously differentiable.
It is shown in Bakshi and Madan (2000) that any twice-continuously differentiable function
can be spanned by a set of vanilla put and call options; the underlying and a zero coupon
bond. We find that we can replicate the payoffs very closely using the underlying options
alone. An example of an RND, the de-biased RND, the optimal payoff and the statically
replicated version of the payoff are given in Figures 2a, 2b and 4. The corresponding portfolio
constituents are given in Table 1. The statically replicated version of the payoff can be seen
to very closely match the target payoff.

3. Empirical Results

3.1. Unbiased Volatility Estimates

While we are primarily interested in testing the removal of the bias in Equation I, as it
is most commonly used measure in the literature, we also consider a number of competing
volatility forecasts to substitute for IV and to test in a density forecast against the mar-
ket RND. In each case we replace the implied volatility, σrn(t, τ), with candidates for the
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Table 1: A portfolio of call and put options that statically replicates the optimal volatility arbitrage payoff,
as given in Figure 4. For ease of presentation, the risk neutral cost of the target payoff is scaled up from $1
to $1,000. The net cost of the replication portfolio is $1,013.2. The theoretical price of $1,000 comes from
a risk neutral distribution constructed around the midpoint of the bidask spread, the real portfolio is net
long options and incurs some transaction costs due to the spread.

Puts Calls

Strike Weight Bid Price Ask Price Weight Bid Price Ask Price

1380 - - - 1.111 11.30 11.70
1390 - - - 0.309 13.60 14.00
1400 0.199 0.650 0.800 0.007 16.40 16.90
1410 -0.287 0.700 0.900 - - -
1420 0.014 20.00 20.30 - - -
1425 - - - 0.934 24.00 24.60
1430 - - - 0.583 29.00 29.60
1440 - - - 0.142 38.10 39.10
1450 - - - 1.799 41.70 42.70
1460 - - - 0.168 49.40 50.90
1470 - - - 0.053 58.10 59.50
1475 - - - 0 86.60 88.00
1480 - - - 0.023 193.60 194.80
1490 -0.841 0.950 1.15 1.353 183.70 185.00
1500 - - - 8.841 105.80 107.30
1510 - - - -0.033 52.50 53.60
1520 - - - -0.089 44.40 45.30
1525 - - - -0.057 36.80 37.60
1530 - - - -0.033 33.20 33.80
1540 - - - -0.366 29.70 30.30
1550 -0.001 1.10 1.30 -0.002 23.20 23.80
1560 -0.204 1.20 1.40 -8.705 17.50 17.90
1570 -0.056 1.25 1.50 -6.886 12.50 13.00
1575 0.447 1.50 1.70 - - -
1580 0.005 1.75 1.95 -8.064 8.50 8.90
1590 -0.048 2.00 2.25 -3.976 6.90 7.30
1600 0.094 2.35 2.60 0.090 5.40 5.90
1610 -0.188 2.50 2.80 0.594 3.30 3.70
1620 -0.400 2.75 3.00 - - -
1625 -6.81 3.20 3.50 5.195 2.00 2.30
1630 -0.547 3.80 4.10 3.860 1.20 1.45
1640 0.140 4.50 4.90 1.405 0.75 0.95
1650 0.100 5.40 5.80 0.239 0.60 0.80
1660 0.267 5.90 6.30 - - -
1670 0.184 6.40 6.90 - - -
1675 0.657 7.70 8.20 - - -
1680 0.504 9.30 9.80 1.924 0.50 0.70
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Figure 3: The result of static replication of the growth optimal payoff with a portfolio of options. The
portfolio is obtained using an optimizer that attempts to replicate the payoff as cheaply as possible trading
the full range of put and call options used to construct the original risk neutral density. The cost of the
portfolio is 1.013, reflecting the impact of the real bid ask spread on the theoretical price of 1.0 obtained
under the risk neutral density based on the mid-point of the option quotes. 6 The portfolio corresponding
to the replicated payoff is given in Table 1.

expected future volatility under the physical measure over the lifetime of the option set,
σFC(t, τ).

The IV can be represented as the expected volatility under the physical measure plus a
volatility spread:

σiv = EP [σ(t, τ)] + V S (VI)

This can be rearranged to represent the expected volatility under the physical measure as
the IV corrected for the volatility spread:

EP [σ(t, τ)] = σiv − V S (VII)

We have framed the analysis in these terms as we can then attribute an expected capital
growth rate directly to the volatility spread. It is the implied capital growth rate when
replacing σiv with EP [σ(t, τ)] in a density that is traded against the original RND.
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Table 2: Table indicating the average capital growth rate achieved per density forecast, by modifying the
Risk Neutral Density (RND) over 2,154 forecasts. The volatility, skewness and kurtosis of the resulting log
returns are also reported. The first 6 schemes replace the Implied Volatility (IV) with alternative volatility
forecasts. σ0.96IV is the optimal reduced IV forecast obtained by scaling IV by a factor of 0.96; σG11 is
the GARCH(1,1) forecast obtained by fitting a GARCH(1,1) model to the previous 1,000 daily returns and
forecasting ahead T days, where T is the time to option expiry. σT is historical volatility over the previous
T days. σ22; σ65 and σ252 are historical volatility estimates over the indicated number of working days.
The Zero Skew scheme replaces the option implied skew with zero, while holding all other moments at the
RND levels. The Zero Excess Kurtosis scheme replaces the option-implied kurtosis with 3.

Scheme µ(%) σ(%) Skewness Kurtosis

σ0.96IV 0.212 5.933 -8.367 173.629
σG11 -3.240 33.630 -4.550 50.632
σT -13.005 68.136 -4.794 50.133
σ22 -12.653 66.701 -6.245 93.166
σ65 -10.565 79.063 -20.396 681.077
σ252 -13.171 84.967 -18.891 600.411

Zero Skew -12.238 39.503 0.119 2.697
Zero Kurtosis 0.235 28.249 -6.534 81.121

3.1.1. Historical Volatility

In this section we test the historical volatility estimated over some commonly used time
periods: 22 trading days (monthly); 65 trading days (quarterly); 252 trading days (yearly)
and over (τ − t) trading days, where (τ − t) is the time to expiry of the option set. We use
the Quadratic Variation to measure realized daily variance over the previous Th days and
scale to match the time to expiry of the option set (τ − t):

σh(t, τ) =

√

√

√

√

i=Th
∑

i=1

r2i .
(τ − t)

Th

where:

riis the daily log return of the index.

The results can be seen in Table 2. The best performing historical volatility measure is
quarterly (σ65), but even this measure loses 10.6% on average per option set. The 252
day historical estimate performs very badly, losing 13.2% on average per option set. These
results show that simple historical volatility estimates cannot compete with option-implied
volatility when used in density forecasts.

3.1.2. GARCH(1,1)

In this section a GARCH(1,1) forecast is used in place of the option-implied volatility.
For each option set, the GARCH model is fit using the previous 1,000 daily returns prior to
the trade date and the resulting model is used to forecast the following T days, where T is
the time to expiry of the option set. The average cost of trading GARCH(1,1) against the
IV is 3.24% per forecast across the sample (see Table 2 and Figure 4).
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3.1.3. Reduced Implied Volatility

In this section we adopt a simple model for the implied volatility as an upwardly-biased
version of expected volatility under the physical measure. In order to obtain a forecast of
future realized volatility over T, the time to expiry of an option set, we scale the implied
volatility by a shrinkage factor, λ.

σr = λσiv + ǫt (VIII)

An ex-post linear regression, as per Equation VIII, over the whole sample results in a λ
value of 0.8. This value has the best score in the least squares sense as a point estimate
of volatility, but when considered in a complete density as a likelihood score it significantly
under-performs the original density using the unadjusted market-implied volatility.

A likelihood ratio test, as described in Section 2.3.1, of the two densities over the 2,154
option expiries, selects the market-implied density as the superior model with a p value of
1e-14. The likelihood score for the RND including the upward bias on implied volatility
beats an RND with the bias removed with strong statistical significance.

We test the performance of a range of volatility forecasts σFC = λσiv with λ values in
the range [0.8, 1.2]. The results are given in Table 3. The optimal value over the whole
sample is λ = 0.96. This results in an average expected growth rate of 21 bps per option
set. We select the reduced IV (σFC = 0.96σRN ) as the best performing volatility forecast
measure for our remaining analysis.

3.1.4. Skewness and Kurtosis

In this section we use our framework to perform an analysis on the contribution of the
option-implied skewness and kurtosis to the RND. The zero skew scheme holds the mean,
variance and kurtosis at their original risk neutral values and sets skewness to zero. The high
cost of ignoring skew is evidenced with an average return of -12.2% per forecast. The zero
excess kurtosis scheme holds the mean, variance and skewness at their original risk neutral
values and sets excess kurtosis to zero (kurtosis to 3). This results in a small positive return
of 0.23% per forecast. The results of the two schemes can be seen in Table 2 and in Figure
4. The results demonstrate the relative importance of skewness in financial markets.

3.2. Return Analysis

In this section we use the reduced IV from Section 3.1.3 as our best de-biased volatility
estimate.

3.2.1. Controlling for Risk Aversion

We estimate the returns to trading a reduced IV scheme across a range of volatility
scaling parameters, λ, and for a range of levels of risk aversion γ ∈ {1, 2, 3, 4, 5}, where risk
aversion is incorporated as described in Section 2.3.2.

The results are given in Table 3. The Certainty Equivalent, CEQ, for each λ and γ
is calculated in a standard fashion as the w value in Equation III that results in the same
utility, U(w), as the average utility over the 2,154 returns for each scheme. The best certainty
equivalent is obtained with the same λ value for each level of risk aversion, λ = 0.96. The
maximum expected capital growth for the scheme is obtained with this setting and γ = 1.
This is the growth-optimal risk aversion level corresponding to log utility. Even in the
growth-optimal case the average capital growth rate per forecast over the sample is just 21
bps, an amount unlikely to overcome realistic transaction costs.
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Figure 4: The resulting log of wealth over 2,154 option sets where a modified RND is traded against the
original RND. The σ0.96IV scheme adjusts the RND, replacing the implied volatility σiv with a scaled value
of 0.96σiv . The σG11 scheme replaces the IV with the output forecast of a GARCH(1,1) model that is
parametrized using the previous 1,000 daily returns of the index and used to forecast T days ahead, where
T is the number of days to expiry of the option set. The Zero Skew scheme replaces the option-implied
skewness value with 0. The Zero Excess Kurtosis scheme replaces the option-implied kurtosis with a value
of 3.

The optimal scaling factor, λ = 0.96, is consistent across all levels of risk aversion
tested. In our implementation risk aversion is added by moving the resulting forecast density
closer to the market forecast density in the transformation given in Equation IV. In the
presence of this transformation the optimal parameter choice is the log optimal one. This
empirical finding supports the use of maximum likelihood in financial modeling in spite of its
equivalence to maximizing log utility, as the optimal parameter for other risk aversion levels
match the maximum likelihood parameter. It suggests that a two stage approach of first
optimizing parameters through maximizing likelihood followed by incorporating risk aversion
in a second investment stage is optimal for investors with power law utility functions.

3.2.2. Asymmetrical Losses

In this section we examine whether the returns to a volatility arbitrage scheme are
symmetrical in the volatility spread, V S = IV −RV . Are the losses when realized volatility,
RV, spikes higher than implied volatility, IV, offset by the gains when IV overestimates RV
by the same amount?
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Table 3: Table showing the mean return (µ) and Certainty Equivalent (CEQ) for an investor with capital
of 100 when trading a scaled factor of implied volatility in a density against the market RND, in a sample
of 2,154 option sets from January 1996 to May 2013. The optimal scaling factor, λ, on the option-implied
volatility is a factor of 0.96. The table shows that the result is consistent across risk aversion levels.

λ γ = 1 γ = 2 γ = 3 γ = 4 γ = 5

µ(%) CEQ µ(%) CEQ µ(%) CEQ µ(%) CEQ µ(%) CEQ

0.80 -3.70 96.37 -0.60 55.68 -0.09 31.50 0.06 31.61 0.11 35.28
0.82 -2.66 97.38 -0.34 81.44 0.02 61.26 0.11 56.50 0.14 57.26
0.84 -1.80 98.21 -0.13 92.92 0.10 85.36 0.15 81.64 0.16 80.64
0.86 -1.12 98.89 0.02 97.20 0.15 95.33 0.17 94.35 0.16 94.00
0.88 -0.60 99.41 0.13 98.87 0.18 98.47 0.17 98.33 0.16 98.32
0.90 -0.21 99.79 0.19 99.59 0.19 99.51 0.17 99.50 0.15 99.52
0.92 0.04 100.04 0.21 99.92 0.18 99.89 0.15 99.88 0.13 99.89
0.94 0.18 100.18 0.20 100.07 0.15 100.03 0.12 100.01 0.10 100.01
0.95 0.21 100.21 0.18 100.10 0.13 100.06 0.11 100.04 0.09 100.03
0.96∗ 0.21 100.21∗ 0.16 100.11∗ 0.11 100.07∗ 0.09 100.05∗ 0.07 100.04∗

0.97 0.19 100.19 0.13 100.10 0.09 100.07 0.07 100.05 0.06 100.04
0.98 0.15 100.15 0.09 100.08 0.06 100.05 0.05 100.04 0.04 100.03
0.99 0.09 100.09 0.05 100.04 0.03 100.03 0.02 100.02 0.02 100.02
1.00 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00
1.01 -0.10 99.90 -0.05 99.95 -0.034 99.96 -0.03 99.97 -0.02 99.98
1.02 -0.23 99.77 -0.11 99.88 -0.070 99.92 -0.05 99.94 -0.04 99.95
1.03 -0.37 99.63 -0.17 99.81 -0.11 99.88 -0.08 99.91 -0.06 99.93
1.04 -0.52 99.48 -0.23 99.74 -0.15 99.83 -0.11 99.87 -0.08 99.90
1.05 -0.70 99.31 -0.30 99.66 -0.19 99.77 -0.14 99.83 -0.11 99.87
1.06 -0.89 99.12 -0.37 99.57 -0.23 99.72 -0.17 99.79 -0.13 99.83
1.07 -1.09 98.92 -0.45 99.48 -0.27 99.66 -0.20 99.75 -0.15 99.80
1.08 -1.30 98.71 -0.52 99.38 -0.32 99.60 -0.23 99.70 -0.18 99.76
1.09 -1.53 98.48 -0.60 99.28 -0.36 99.53 -0.26 99.65 -0.20 99.72
1.10 -1.77 98.24 -0.68 99.17 -0.41 99.46 -0.29 99.60 -0.22 99.69
1.11 -2.03 97.99 -0.77 99.07 -0.46 99.40 -0.32 99.55 -0.25 99.65
1.12 -2.29 97.74 -0.85 98.95 -0.51 99.33 -0.36 99.50 -0.27 99.61

Table 4: Demonstration of the asymmetry in correlation between the returns from trading the volatility
spread and the volatility spread itself, VS, across a range of scaling factors on the Implied Volatility, λ. The
ρ+ and ρ− values are defined as: ρ+ = corr(rt|V S>0, V S|V S>0), ρ

− = corr(rt|V S<0, V S|V S<0). The P
Value of the difference is calculated using the using the Fisher transform (see Fisher (1915)). The value
of λ = 0.81 corresponds to the least squares estimate, the value of λ = 0.96 corresponds to the maximum
likelihood estimate.

λ ρ+ ρ− |ρ+ − ρ−| P Value

0.810 -0.017 0.294 0.311∗∗∗ (< 0.000)
0.850 -0.015 0.324 0.339∗∗∗ (< 0.000)
0.900 -0.004 0.401 0.405∗∗∗ (< 0.000)
0.960 -0.005 0.369 0.374∗∗∗ (< 0.000)
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To test this we calculate the correlation of scheme returns to the volatility spread when
the spread is positive:

ρ+ = corr(rt|V S>0, V S|V S>0) (IX)

and when the volatility spread is negative:

ρ− = corr(rt|V S<0, V S|V S<0) (X)

Results are given in Table 4. We test across a range of λ values and across a range of risk
aversion levels, γ. In all cases there is a large difference in correlations when the spread is
negative versus when it is positive. The uPside of the volatility arbitrage is small relative
to the large losses that can occur when the spread is negative. For each ρ+/ρ− pair in
Table 4 we use the Fisher transform (see Fisher (1915)) to obtain confidence intervals on
the correlation estimates and to obtain a p value on their difference. In all cases p values of
zero are obtained indicating statistical significance in the difference between the two values.

The source of the asymmetry is illustrated in Figures 5 & 6. Figure 5 shows that the
returns to the statistical arbitrage scheme are not linear in volatility spread. When the
market index does not move a reduced volatility forecast beats the market implied forecast
and vice versa, however the shape of the likelihood ratio plane is curved. The statistical
performance (and the implied economic performance) are not linear in the spread between
the implied volatility and the forecast volatility. Figure 6 illustrates the area in the realized
return space that the index needs to hit for the statistical arbitrage scheme to be profitable.
It is a narrow flat region with quite low returns and the steepness of the drop off in return
increases with decreasing λ (labeled as Implied-Volatility Scaling Factor in the plot).

3.2.3. Variation in Return Dependence on the Volatility Spread and Jump Risk

In this section we test the dependence of the returns of the trading scheme on the spread
itself and on jump risk fears as proxied by the risk neutral skewness and kurtosis (this is
a commonly used substitution, see e.g. Bakshi and Kapadia (2003)). We run the following
regression, to test the change in the exposures as captured by the β values with variation
of the volatility scaling parameter λ:

rt = α+ β1(IV −RV ) + β2SKEWRND + β3KURRND + ǫt (XI)

The results of the regression are given in Table 5, and presented graphically in Figure
7. The exposure of the trade returns to the volatility spread are strongly significant and
positive across all values of λ. This is as expected as the scheme is constructed to trade the
spread.

The variation in exposure to the higher moments of the RND is also clear in the results.
The exposure to the risk neutral kurtosis can be seen to vary in λ, decreasing as λ approaches
1.0, but is only statistically significant for small λ values close to the least squares λ estimate
of 0.8. The exposure to the risk neutral skewness can also be seen to vary in λ, and is
statistically significant for λ values below 0.92.

Overall, decreasing λ from 1.0 increases the exposure to the volatility spread (IV-RV), the
option-implied skewness and the option-implied kurtosis. Alternatively, adding an upward
bias to IV decreases the exposure to each compared to the exposure of a trading scheme
based on the unbiased least square estimate of implied volatility (0.8*IV). These results
confirm empirically the theoretical results in Bakshi and Madan (2006), where the variance
premium is associated with jump fears proxied by the higher moments of the RND.
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Figure 5: Plot of the Log Likelihood Ratio consisting of the Normal Inverse Gaussian (NIG) likelihood for
the forecast volatility over the NIG likelihood for the implied volatility. An index return of zero is used
to evaluate the ratio over different implied and forecast volatility pairs. This is the ideal return for our
volatility arbitrage scheme. When the forecast is lower than implied the ratio is positive as the likelihood of
a zero return is higher under a lower volatility forecast, and vice versa. The ratio is not linear in volatility
as can be seen by the the steepness of the changes in the log ratio at the extremities of the plot. Mean,
skewness and kurtosis values for both the forecast and the market implied likelihoods are set to the same
median values, those implied for options in the data set with 30 days to expiry.
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Figure 6: Plot of the Log Likelihood Ratio consisting of the Normal Inverse Gaussian (NIG) likelihood for
the forecast volatility over the NIG likelihood for the implied volatility, where the forecast volatility is a
scaled version of the market-implied volatility. Market-implied volatility is held constant at the median
value for options with 30 days to expiry and the index return is allowed to vary in the range [-40% +40%].
The profitable region for a forecast based on reduced implied volatility is indicated in the graphic. It can
be seen that, as the scaling factor is reducing toward 0.5, the slope of the drop off of the log likelihood ratio
outside of the profitable regions increases. This captures the increasing costs of being wrong when taking a
more extreme view on the volatility relative to the market implied volatility.
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Figure 7: Beta coefficients in a linear regression of the scheme returns:
rt = α+ β1(IV −RV ) + β2SKEWRND + β3KURRND + ǫt
As the scaling factor, λ, on implied volatility approaches one the exposure to option-implied skewness can
be seen to reduce. The upward bias in option implied volatility is reducing the exposure to losses when the
Risk Neutral Density includes jump fears as surrogated by the option-implied skewness and kurtosis.
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Table 5: Beta coefficients in a linear regression of the scheme returns:
rt = α+ β1(IV −RV ) + β2SKEWRND + β3KURRND + ǫt
As the scaling factor, λ, on implied volatility approaches one the exposure to option-implied skewness can
be seen to reduce. The upward bias in option implied volatility is reducing the exposure to losses when the
Risk Neutral Density includes jump fears as surrogated by the option-implied skewness and kurtosis.

λ α IV −RV SKEWRND KURRND

0.800 −3.698∗∗∗ 4.557∗∗∗ 8.192∗∗ 6.335∗

(0.000) (0.000) (0.015) (0.059)
0.820 −2.656∗∗∗ 4.121∗∗∗ 6.583∗∗ 4.949∗

(0.001) (0.000) (0.021) (0.082)
0.840 −1.803∗∗∗ 3.677∗∗∗ 5.200∗∗ 3.781

(0.010) (0.000) (0.029) (0.112)
0.860 −1.121∗ 3.226∗∗∗ 4.022∗∗ 2.810

(0.052) (0.000) (0.041) (0.153)
0.880 -0.596 2.769∗∗∗ 3.032∗ 2.018

(0.202) (0.000) (0.057) (0.205)
0.900 -0.213 2.309∗∗∗ 2.210∗ 1.385

(0.563) (0.000) (0.079) (0.270)
0.920 0.042 1.847∗∗∗ 1.537 0.894

(0.881) (0.000) (0.107) (0.348)
0.940 0.180 1.384∗∗∗ 0.995 0.526

(0.366) (0.000) (0.143) (0.439)
0.960 0.212∗ 0.921∗∗∗ 0.569 0.264

(0.093) (0.000) (0.188) (0.540)
0.980 0.149∗∗ 0.460∗∗∗ 0.242 0.094

(0.013) (0.000) (0.241) (0.650)
1.020 −0.227∗∗∗ −0.457∗∗∗ -0.169 -0.029

(0.000) (0.000) (0.373) (0.880)
1.040 −0.524∗∗∗ −0.910∗∗∗ -0.275 -0.003

(0.000) (0.000) (0.450) (0.994)
1.060 −0.885∗∗∗ −1.358∗∗∗ -0.328 0.068

(0.000) (0.000) (0.532) (0.897)
1.080 −1.304∗∗∗ −1.803∗∗∗ -0.337 0.177

(0.000) (0.000) (0.619) (0.794)
1.100 −1.774∗∗∗ −2.242∗∗∗ -0.307 0.316

(0.000) (0.000) (0.707) (0.699)
1.140 −2.851∗∗∗ −3.103∗∗∗ -0.156 0.666

(0.000) (0.000) (0.885) (0.534)
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4. Controlled Experiment

In this section we use the the two factor stochastic volatility and jump model of Bates
(see Bates (1991)) in a controlled experiment to replicate the approach in the empirical
section of the paper in a defined model framework. The model includes a jump-diffusive
data generating process for the underlying returns with a clearly specified pricing kernel and
associated prices for diffusive market risk, diffusive stochastic-volatility risk, and asset-value
jump risk. The model is given by:

dF/F = (µ− λtk̄ + cv1V1t + cv2V2t)dt+
√

V1tdZ1 +
√

V2tdZ2 + kdq,

dVit = (αi − βiVit) dt+ σvi

√

VitdZvi, i = 1, 2,

Cov(dZi, dZvi) = ρidt, i = 1, 2,

Cov(dZ1, dZ2) = Cov(dZv1, dZv2) = 0,

where, Zi and Zvi, i=1, 2, are Wiener processes with the correlation structure specified
above, λt = λ0 + λ1V1t + λ2V2t is the instantaneous conditional jump frequency, k is the
random percentage jump conditional on a jump occurring, with time-invariant lognormal
distribution ln(1+k) ∼ N [ln(1+k)− 1

2δ
2, δ2] and q is a Poisson counter with instantaneous

intensity λt : Prob(dq = 1) = λtdt.
Under the model skewness can be generated through jumps and also through the cor-

relation of volatility and returns. In Bates (1991), Bates parameterizes the model to S&P
500 option prices over the period 1988 -2003. The resulting parameter values give rise to an
interpretation of the two volatility factors V1t and V2t:

• V1t is a ‘volatility-and-skewness’ factor that heavily affects implicit skewness and lep-
tokurtosis at all maturities through two channels: its almost total determination of
the instantaneous risk-neutral jump frequency λt , and an assessed strong ‘volatility
feedback’ channel that predicts a strong tendency for jump and non-jump risk to rise
whenever the market falls.

• V2t by contrast primarily affects implicit variances, with relatively little impact upon
higher cumulants.

Under the model the volatility risk premia are defined as:

φvi ≡ −Cov(dVit, dJw/Jw)/dt = ξiVit ≡ (β∗
i − βi)Vit (XII)

where Jw is the marginal utility of nominal wealth for the representative investor, and
the ξi’s are free ‘risk premium’ parameters estimated by the divergence between the β∗

i

parameters inferred from option prices and the βi parameters from time series analysis.
We analyze the payoff Ψγ(λ) under the Bates model to provide more clarity on our

empirical results under a defined model framework. We perform the volatility scaling for
different λ values by varying the βi parameters in the model. This links the analysis directly
to an adjustment of the variance premia under the definition of variance risk premia in the
model (as per Equation XII).

4.1. Experimental Framework

We parameterize the Bates 2 factor model to the risk neutral density that resulted in
one of the worst payoffs for a volatility arbitrageur in our empirical analysis. The RND
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corresponds to an option set trading on the 12th of September 2008 with expiry on October
18th 2008. The period covers the fall out around the Lehman bankruptcy and the return
on the S&P500 index over that timeframe was a fall of over 28%, placing the return very
much in the left tail of the risk neutral distribution.

As a first step we parameterize the Bates model to the actual RND obtained in Section
2.2. A Matlab toolbox was generously provided (see Fusari (2015)) to generate arbitrage-free
option prices corresponding to a set of parameters for the Bates model. A genetic algorithm
optimization program is used to select the 15 input parameters for the Bates model to fit the
risk neutral density implied by the corresponding set of option prices to the target density
7. The RND for each candidate set of option prices is obtained in the same way as described
in Section 2.2.

The starting point for the optimization is the set of constrained parameters (SVJDC) in
Table 2 of Bates (1991). We show that, by varying the volatility risk premia in Equation
XII alone, it is possible to get the reduced volatility version of the RND and a corresponding
payoff, Ψγ(λ), both closely matching their equivalents, obtained in the empirical section.
The NIG parameters and the matching Bates parameters are reported in Table 6.

We apply the same procedure to obtain two alternative forecast densities with reduced
variance premia. The starting point for these optimizations is the 15 parameters selected by
the GA for the unmodified RND. Two new optimizations are run but this time only the two
βi parameters are optimized and the remaining parameters are held at the original RND
values. The first optimization varies the βi to implement the least squares estimate of the
scaling factor, λ = 0.8. The second uses the optimal value used in the empirical section,
λ = 0.96.

The two payoffs, Ψ1(0.8) and Ψ1(0.96), are then evaluated at expiry of the option set
at the realized index return level of -28%. The density functions are illustrated in Figure
8 and the corresponding parameters are listed in Table 6. The losses incurred can be seen
to be significantly increased by completely removing the variance premium (Ψ1(0.8) = 0.36
Vs. Ψ1(0.96) = 0.64).

4.2. Discussion of results

Our results are consistent with a volatility spread being added to density forecasts to
mitigate the cost of tail events. A possible explanation for this is the scenario whereby a
trader is uncertain of the true parameters of their density forecasting model (such as the
Bates model above). There is a large array of candidate option pricing models (see e.g.
Fabozzi et al. (2016), Fusai et al. (2016), Bao et al. (2012), Date and Islyaev (2015), Kou
(2002)) that a trader could use and they each require calibration. A trader is faced with
Knightian uncertainty (see Knight (1921)) as to whether they have A. selected the correct
model or B. correctly calibrated that model. A fuzzy logic approach to pricing options under
uncertainty is used in Yoshida (2003).

A definition of uncertainty commonly used in the economic literature (see e.g. Jurado et al.
(2015)) is of the form:

Uy
t (h) =

√

E [(yt+h − E [yt+h])2|It] (XIII)

The uncertainty about a h-step ahead forecast of a variable or parameter, y, is given by the
expected standard deviation of the forecast error of that variable, where the expectation is
calculated using information available at the forecast time, It.

7The fitness function used was −
∑

|
pbates(x)
pNIG(x)

− 1|
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Figure 8: This figure illustrates how the Ψγ(λ) analysis in the empirical section can be replicated under
the Bates 2-factor stochastic volatility and jump model through varying the βi parameters associated with
variance premia in the model.
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Table 6: Parameters for the Bates 2 factor model resulting from a genetic algorithm curve-fitting the RND
obtained from a set of arbitrage-free prices generated under the model to the RND for a set of options traded
on the 12th of September 2008 with expiry on the 18th of October 2008. The process was repeated for three
densities, the original RND and two reduced variance versions (λ = 0.8, 0.96). The variance was reduced by
adjusting the βi parameters of the Bates model, these are associated with risk premia in the model. The
resulting payoffs evaluated at expiry (Ψ1(1.0),Ψ1(0.8),Ψ1(0.96)) closely match the payoffs obtained using
the NIG in the empirical analysis and highlight that adding an upward bias to volatility significantly reduces
the cost of a tail event (from a loss of 64% of capital to a loss of 36% of capital).

Parameter Volatility Scaling Factor

λ = 1.0 λ = 0.8 λ = 0.96

Bates 2-Factor Stochastic Vol. Params

α1 0.003 - -
β∗

1 0.068 5.43 2.154
σv1 0.594 - -
ρ1 -0.968 - -
α2 0.229 - -
β∗

2 3.887 17.333 9.908
σv2 0.542 - -
ρ2 -0.99 - -

Bates 2-Factor Jump Params

λ0 0.000 - -
λ1 2.741 - -
λ2 0.000 - -
k∗ -0.069 - -
δ 0.075 - -

NIG Params

mean -0.002 - -
volatility 0.079 0.063 0.076
skewness -0.974 -
kurtosis 4.8 -

Volatility Arbitrage Payoff

Ψ1(λ) 1.0 0.36 0.64
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Our results are consistent with traders being uncertain of their estimated parameters,
in particular those pertaining to the tail of the forecast distribution. This is Knightian
uncertainty – uncertainty about the forecasting model itself as opposed to the expected
level of variation in the forecast error of the variable output by the model.

As tail events are rare, we might expect the estimation of the related tail parameters to
be subject to a higher degree of uncertainty, Uy

t (h). Trading the volatility spread leaves an
agent exposed to errors in the tails of their forecast distribution. We have shown empirically
that removing the upward bias on the second moment of the risk neutral density increases
exposure to tail events and results in larger capital losses. Using the Bates model we show
that our volatility scaling approach can be interpreted as a trader adjusting their variance
premium through the model’s βi parameters. Our association of the spread with the cost of
uncertain tail events is consistent with findings in Gruber et al. (2015), where the variance
premia at short horizons of one month are almost completely explained by a time-varying
premium for pure jump variance risk.

5. Conclusions

We present a new framework to trade the volatility spread resulting from the upward
bias on option implied volatility as an estimator of future realized volatility. The scheme
is constructed to be optimal for investors with power law utility and can be tailored to
individual risk aversion levels. A portfolio of options is used to statically replicate a growth
optimal payoff that trades a distribution with an unbiased second moment against the
market-implied distribution.

The framework allows us to examine the implications of removing the volatility spread in
a trading scheme that incorporates the impact of the higher moments of both the underlying
return distribution and of the market risk neutral distribution. We find that removing the
upward bias on forecast volatility is a negative expected growth strategy when trading
against the market implied risk neutral density. The losses due to low probability tail
events are more costly when an unbiased volatility forecast density is traded against the
market implied density. The cost of these events over the data sample is not recouped by
gains through exploiting the upward bias on implied volatility over the same period.

Our results are consistent with the volatility spread being added to mitigate the cost of
unpredictable tail events. The process of volatility arbitrage moves probability density from
the tails of a forecast density into the centre and this increases losses when tail events occur.
We find that, despite its upward bias, the market pricing of implied volatility is efficient to
the extent that trading the upward bias does not generate a long term return premium over
the period of our study.
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Appendix A. The Normal Inverse Gaussian Density

f(x, α, β, µ, δ) =
( δ∗α

π
) exp δ

√

α2 − β2

√
δ2 + x̄2K1(1, (α

√
δ2 + x̄2)) exp(β ∗ (x− µ))

,

where:

K1(ν, z) = a modified bessel function of the second kind,

µ = a location parameter,

β = an asymmetry parameter,

δ = a scale parameter,

α = a tail heaviness parameter.

A distribution’s mean (m), variance (σ), skew (s) and kurtosis (k) values map to the
NIG α, β, µ and δ parameters as follows:

α =

√

3k − 4s2 − 9

σ2(k − 5/3s2 − 3)2
,

β =
s

σ(k − 5
3s

2 − 3)
,

µ = m− 3s
σ

3k − 4s2 − 9
,

δ = 3
3

2

√

σ2(k − 5/3s2 − 3)

3k − 4s2 − 9
.
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