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Order picking with multiple pickers and due dates –
Simultaneous solution of order batching, batch assignment

and sequencing, and picker routing problems

A. Scholz, D. Schubert, G. Wäscher

Abstract

Inmanual picker-to-parts order picking systems of the kind considered in this article, human operators
(order pickers) walk or ride through the warehouse, retrieving items from their storage location in
order to satisfy a given demand specified by customer orders. Each customer order is characterized
by a certain due date until which all requested items included in the order are to be retrieved and
brought to the depot. For the actual picking process, customer orders may be grouped (batched)
into more substantial picking orders (batches). The items of a picking order are then collected on a
picker tour through the warehouse. Thus, the picking process of each customer order in the batch is
only completed when the picker returns to the depot after the last item of the batch has been picked.
Whether and to which extend due dates are violated (tardiness) depends on how the customer orders
are batched, how the batches are assigned to order pickers, how the assigned batches are sequenced
and how the pickers are routed through the warehouse. Existing literature has only treated special
aspects of this problem (i.e. the batching problem or the routing problem) so far. In this paper, for
the first time, an approach is proposed which considers all aspects simultaneously. A mathematical
model of the problem is introduced that allows for solving small problem instances in reasonable
computing times. For larger instances, a variable neighborhood descent (VND) algorithm is presented
which includes various neighborhood structures regarding the batching and sequencing problem.
Furthermore, two sophisticated routing algorithms are integrated into the VND algorithm. By means
of numerical experiments, it is shown that this algorithm provides solutions of excellent quality.
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2 Order picking with multiple pickers and due dates

1 Introduction
Order picking is a function which is critical for managing and operating distribution warehouses
efficiently. It deals with the retrieval of items requested by external or internal customers (Petersen
& Schmenner, 1999; Wäscher, 2004). In picker-to-parts systems, which are referred to in this paper,
human operators (order pickers) walk or ride through the warehouse and collect the requested items
from the different storage locations (Wäscher, 2004).

The items specified by a customer order usually have to be provided by a certain due date (Henn &
Schmid, 2013). Negligence of due dates may delay subsequent shipment and/or production processes,
and, as a consequence, results in an unacceptable customer satisfaction and high costs. Whether or to
what extend due dates of a set of customer orders (wave) can bemet is dependent on (1) how the customer
orders are grouped into picking orders (Order Batching Problem), (2) how the picking orders are assigned
to and sequenced by the order pickers (Batch Assignment and Sequencing Problem), and (3) how each
order picker is routed in order to collect the items of each picking order (Picker Routing Problem).
These problems are closely interrelated and, thus, should be solved simultaneously in order to provide
solutions which comply with the given due dates in the best possible way. Literature dealing with solution
approaches which explicitly take into account these problems simultaneously is almost non-existing. To
the best of our knowledge, Chen et al. (2015) represent the only exception. Their approach is related
to a problem environment more specific than the one considered in this paper. Furthermore, computing
times become a critical issue and the numerical experiments demonstrate that this approach can only be
applied to very small problem instances.

Consequently, in this paper we present a new, more competitive approach to what is called hereafter
the Joint Order Batching, Assignment, Sequencing and Routing Problem (JOBASRP) and which
includes an integrative view of the problems sketched above. We propose a mathematical programming
formulation to this problem whose size increases polynomially with the number of customer orders. This
model provides insights into the problem, but is only appropriate for solving small problem instances.
Therefore, we also introduce a heuristic solution approach, namely a variable neighborhood descent
algorithm, which incorporates neighborhood structures regarding the batching and the sequencing
problem proposed in an earlier paper by Henn (2015). The arising routing problems are solved by
means of the combined heuristic, which constructs routes of good quality within fractions of a second
(Roodbergen & de Koster, 2001b). Furthermore, in order to improve the routes, the Lin-Kernighan-
Helsgaun heuristic (Helsgaun, 2000) is applied to very promising solutions. By means of numerical
experiments, it is shown that this approach leads to high-quality solutions within reasonable computing
times even for large problem instances.

The remainder of this paper is organized as follows: In section 2, we give a precise statement of
the JOBASRP. Section 3 comprises a literature review regarding the batching, the joint batching and
sequencing, the routing, and the joint batching, sequencing and routing problem. For the latter problem,
a new mathematical model formulation is presented in Section 4. Section 5 contains the description of
the variable neighborhood descent algorithm including the generation of an initial solution, the different
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neighborhood structures and the integration of the routing algorithms. In Section 6, the numerical
experiments are presented which have been carried out in order to evaluate the algorithm. It is explained
how the problem classes have been chosen, and the results from the experiments are discussed. The
paper concludes with an outlook on further research.

2 Problem description
In the following, a warehousewith amanual, low-level picker-to-parts order picking system is considered
from which a given set of items has to be retrieved. In low-level picker-to-parts systems, the items are
stored on pallets or in bins directly accessible to the order pickers (Henn et al., 2012). The storage
locations of the items typically constitute a block layout (Roodbergen, 2001) composed of so-called
picking aisles and cross aisles. The picking aisles run parallel to each other and include storage locations
arranged on both sides of each picking aisle. Cross aisles do not contain any storage locations, but enable
order pickers to enter or exit a picking aisle. Furthermore, the cross aisles divide the picking area into
several blocks and the picking aisles into subaisles. A block is formed by the picking area located between
two adjacent cross aisles. The corresponding part of a picking aisle is denoted as a subaisle. Thus, a
warehouse withm picking aisles and q+1 cross aisles includes q blocks and q ·m subaisles. Additionally,
the warehouse contains a depot where the order pickers enter the picking area and return to in order to
deposit the picked items. In Fig. 1, an example of a picking area with two blocks and five picking aisles
is depicted. A two block layout is characterized by three cross aisles, namely the front, middle and rear
cross aisle, where the front and the rear cross aisles represent the cross aisles nearest to and farthest
away from the depot, respectively. The middle cross aisle separates the two blocks from each other. The
storage locations are represented by rectangles, while the black rectangles symbolize the locations of
requested items (pick locations).

Fig. 1: Two-block layout
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In order to retrieve the requested items, several order pickers operate in the picking area. Each order
picker is equipped with a picking device, e.g. a cart or a roll cage, enabling him to perform a tour through
the warehouse on which several items are picked before he returns to the depot. The maximum number
of stops on a tour is dependent on the capacity of the picking device and the capacity requirements of
the respective items to be picked. On his tour the order picker is guided by a so-called pick list. The
list represents a batch and identifies the storage locations and the quantities of the items which are to be
retrieved on the same tour. A batch may include requested items of several customer orders. However,
splitting of customer orders is not allowed since it would result in an unacceptable sorting effort. The
pick list also contains information on the sequence according to which the picker is meant to visit the
respective pick locations.

The time an order picker spends retrieving all items of a batch (batch processing time) can be divided
into (Tompkins et al., 2010):

• the setup time, i.e. the time needed for preparing a tour,

• the search time, i.e. the time required at each pick location for identifying the correct item,

• the pick time, i.e. the time for physically retrieving the items from their storage locations, and

• the travel time, i.e. the time spent for traveling from the depot to the first pick location, between
the pick locations and back, and from the last pick location back to the depot.

Processing of a batch is started when the corresponding order picker to whom the batch has been assigned
leaves the depot. This point in time is addressed as the batch start time, while the batch completion time
denotes the point in time when the picker returns to the depot after having retrieved all items included in
the batch. The start time (likewise: the completion time) of a customer order is defined as the start time
(completion time) of the batch in which the order is included.

In practice, customer orders have to be completed by certain due dates (Henn & Schmid, 2013). In
distribution warehouses, complying with the due dates is pivotal in order to guarantee the scheduled
departure of trucks delivering the items to external customers (Gademann et al., 2001). We, therefore,
evaluate the quality of a solution by means of the tardiness of the customer orders (Elsayed et al., 1993).
The tardiness of a customer order is defined as the (nonnegative) difference between the completion time
of the order and its due date (Henn & Schmid, 2013). The sum of the tardiness of all customer orders
(total tardiness) specifies to which extent due dates are violated. A total tardiness of 0means that the due
dates of all customer orders are met in the respective solution.

The Joint Order Batching, Assignment, Sequencing and Picker Routing Problem (JOBASRP) can now
be stated as follows: Let a non-empty set of customer orders be given, each of which including certain
items with known storage locations to be removed from the warehouse. Furthermore, each order is
characterized by a due date until which all requested items of the order should be retrieved and brought
forward to the depot. For this purpose, a given number of order pickers is available. Then, the following
questions have to be answered (simultaneously) in such a way that the total tardiness is minimized:

• How should the set of customer orders be grouped into picking orders? (Order Batching Problem)
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• How and in which sequence should the set of picking orders be assigned to the order pickers?
(Batch Assignment and Sequencing Problem)

• For each picking order, in which sequence should the respective pick locations be visited? (Picker
Routing Problem)

In the following, wewill assume awarehousewithwide aisles which enables the order pickers to overtake
each other. This assumption has also been made by Chen et al. (2015) and Henn (2015) and allows for
neglecting cases in which the processing time of a batch is increased by waiting times which may arise
if order pickers simultaneously work in the same picking aisle. Even without considering such picker
blocking aspects, the JOBASRP formulated above is known to be NP-hard (Chen et al., 2015).

3 Literature Review
Although the above-mentioned subproblems of the JOBASRP arise simultaneously, joint solution
approaches have rarely been addressed in the literature so far. Instead, the subproblems are dealt
with independent of each other in most approaches. This first subproblem is the Order Batching
Problem (OBP) which can be stated as follows (Wäscher, 2004): Given the article storage locations, the
routing strategy to be used, and the capacity of the picking device, how can the set of customer orders
be grouped into picking orders such that the total lengths of all tours required to retrieve the items is
minimized?

Since the OBP is known to be NP-hard if the number of orders per batch is greater than two (Gademann
& van de Velde, 2005), only few exact solution approaches exist to the OBP. These approaches are
based on integer programming, while Gademann & van de Velde (2005) and Muter & Öncan (2015)
used a branch-and-price algorithm to solve OBPs with an arbitrary routing strategy, and Bozer & Kile
(2008) and Öncan (2015) developed model formulations for certain routing strategies, respectively.
For the heuristic solution of the OBP, many approaches have been proposed. Among constructive
algorithms, priority rule-based (Gibson & Sharp, 1992), seed (Elsayed, 1981) and savings (Clarke &
Wright, 1964) algorithms are the most prominent ones. Apart from these constructive approaches,
several metaheuristics have been designed for the OBP which result in high-quality solutions within a
reasonable amount of computing time. For a very detailed review of solution approaches to the OBP we
refer to de Koster et al. (2007) and Henn et al. (2012).

The Batch Assignment and Sequencing Problem (BASP) is characterized by the fact that for each
customer order due dates are given which have to be met in the best possible way, while each customer
order has already been assigned to a certain batch. Solutions are evaluated by the total tardiness of
all orders. The BASP can then be stated as follows: How should the batches be assigned to a limited
number of pickers and, for each picker, how should the batches be sequenced such that the total tardiness
is minimized?

The special case of the BASP in which each batch includes either only one customer order or customer
orders with the same due date is equivalent to the Parallel Machine Scheduling Problem with the
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objective of minimizing the total tardiness. In this problem, a set of jobs (here: batches) have to be
assigned to machines (here: order pickers) and put in a sequence in such a way that the total tardiness of
all jobs is minimized (Pinedo, 2016). We refer to Koulamas (1994) for a review of solution approaches
to the Parallel Machine Scheduling Problem.

To the best of our knowledge, no solution approach exists to the BASP when the batches consist of
customer orders with different due dates. However, a variety of algorithms has been proposed for the
Joint Order Batching, Assignment and Sequencing Problem (JOBASP) which deals with the following
questions (Henn, 2015): How should a given set of customer orders be grouped into batches, how should
the batches be assigned to a limited number of pickers and how, for each picker, should the batches be
sequenced such that the total tardiness is minimized?

Elsayed et al. (1993) considered the JOBASP with a single order picker in an automated storage and
retrieval system (AS/RS). The proposed algorithm aims at a minimization of the total earliness and
tardiness and can be divided into three steps. First, a priority value is assigned to each customer order
dependent on its due date and the processing time required. Customer orders are then sequenced in a
non-descending order according to their priority values. If a swap of two adjacent orders would result in
an improved solution, the sequence will be changed accordingly. In step 2, batches are created. For each
customer order, it is checked whether a combination with another order would improve the solution. If
this is the case, the respective orders will be grouped into a batch. Finally, in the third step, the start time
is determined for each batch.

Elsayed & Lee (1996) designed a solution approach to the JOBASP with a single picker in an AS/RS
which aims at a minimization of the total tardiness. An initial solution is constructed by sorting the orders
according to their due dates and scheduling them according to the position in the sorted list. Each order
is processed on a separate tour. In order to improve the solution, orders are grouped into batches in the
following way. First, a seed order is determined by means of the nearest schedule rule and assigned to
an empty batch. Customer orders in the sequence are then added to the batch if this does not increase
the total tardiness and does not violate the capacity constraint. When no further orders can be added, the
next order in the sequence will serve as a seed order.

Henn & Schmid (2013) dealt with the same problem type but considered a manual order picking
system. They proposed an iterated local search and an attribute-based hill climber algorithm. The
authors compared the solution quality of their approaches to the quality of solutions constructed by the
earliest due date rule in which customer orders are batched and sequenced according to their due dates.
Henn & Schmid (2013) considered problem instances with up to 80 customer orders in their numerical
experiments and demonstrated that the total tardiness can be reduced by 45% on average. The maximum
computing time of the iterated local search and the attribute-based hill climber algorithm amounted to
10 minutes.

Henn (2015) extended the analysis to the case of multiple pickers. He proposed a variable neighborhood
descent (VND) and a variable neighborhood search (VNS) approach to the JOBASP. As a benchmark,
he modified the earliest due date rule in such a way that a batch is assigned to the picker which currently
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possesses the smallest total processing time. Problem instances with up to 200 customer orders have been
included in the numerical experiments. The total tardiness obtained by using the modified earliest due
date rule could be reduced by 41% (VNS) and 39% (VND) on average. Application of the VNS algorithm
requires up to 25 minutes of computing time, while the VND approach terminates after a maximum of
30 seconds.

The Picker Routing Problem (PRP) represents the third subproblem of the JOBASRP and can be stated as
follows (Ratliff & Rosenthal, 1983; Scholz et al., 2016): Given a set of items to be picked from known
storage locations, in which sequence should the locations be visited such that the total length of the
corresponding picker tour is minimized? The PRP is a special case of thewell-knownTraveling Salesman
Problem (TSP). However, with respect to the special structure of the arrangement of the storage locations
in a warehouse, more specific solution approaches to the PRP have been suggested in the literature.

For the PRP in a single-block Ratliff & Rosenthal (1983) provided an efficient exact solution approach
which was extended by Roodbergen & de Koster (2001a) to the case of a two-block layout. However,
it can be seen that this algorithm is far more complex, and they stated that it would be very difficult to
further extend their algorithm to deal with warehouses with more than two blocks. An exact solution
approach to the PRP in warehouses with an arbitrary number of blocks has been presented by Scholz et
al. (2016). Based on an observation of Burkard et al. (1998), the authors interpreted the PRP as a Steiner
TSP and provided a specific graph for the representation of the problem. Application of a TSP-based
model formulation resulted in a mathematical model to the PRP whose size is independent of the number
of pick locations.

However, in practice, for the routing of order pickers usually simple strategies are applied which can be
considered as heuristic solution approaches to the PRP. This is due to the fact that optimal tours appear
to be complex and difficult to memorize for the order pickers. The S-shape, the return and the largest
gap strategies are the simplest routing strategies (de Koster et al., 2007; Gu et al., 2007). The S-shape
strategy is the most frequently used routing scheme in practice (Roodbergen, 2001). When applying
this strategy, the order picker traverses each subaisle completely which contains at least one requested
item. An exception may occur in the last subaisle of the block which is visited. Here, the picker may
return after retrieving all items in this subaisle. A more sophisticated strategy, the so-called combined
strategy (Roodbergen & de Koster, 2001b), combines elements of the S-shape and the return strategy.
For each picking aisle to be visited, by means of dynamic programming it is determined whether the
aisle is traversed or whether it is entered and left via the same cross aisle.

The solution quality of the routing strategies is strongly dependent on the problem data (number of
subaisles, number of pick locations) and tours generated by these strategies may be far from optimal
(Roodbergen, 2001). Theys et al. (2010) have shown that the tour length can be reduced by up to 48%
by applying the Lin-Kernighan-Helsgaun heuristic (Helsgaun, 2000) instead of using the simple S-shape
strategy. Furthermore, the advantage of simplicity diminishes when more complex warehouse layouts
are considered as the routing strategies may also lead to quite confusing tours (Roodbergen, 2001).
Therefore, in recent years, the integration of the PRP into other problems, in particular into the OBP, has
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become more popular which gives rise to the Joint Order Batching and Picker Routing Problem (Scholz
& Wäscher, 2015): Given a set of customer orders, each of which requiring certain items with known
storage locations to be retrieved, how should the customer orders be grouped into picking orders and,
for each picking order, in which sequence should the pick locations be visited such that the length of all
tours is minimized?

Kulak et al. (2012) provided a mixed-integer programming formulation based on formulations for the
Bin Packing and the Traveling Salesman Problem. Furthermore, they introduced a tabu search algorithm
for the OBP and integrated two TSP heuristics in order to solve the arising PRPs. Another approach to
this problem was presented by Grosse et al. (2014) who designed a simulated annealing algorithm for the
batching problem and combined it with four different routing heuristics which were also used to create
initial batches. Scholz & Wäscher (2015) proposed an iterated local search approach for the OBP and
integrated both an exact and several heuristic approaches to the PRP. They demonstrated that – by taking
the routing problem into account instead of using a fixed routing strategy – the total tour length can be
decreased by up to 25% without increasing computing times.

As a consequence of a reduced total tour length also the total travel time that the order pickers have
to spend in the warehouse for collecting the requested items will be reduced, resulting in shorter batch
processing times which are pivotal for meeting due dates. As a preliminary conclusion from the review
of the existing literature on order picking, it can thus be stated that a joint consideration of the JOBASP
and the PRP would provide an excellent starting point for an improved planning of picking operations.
However, only very few solution approaches to the JOBASRP exist.

Tsai et al. (2008) proposed a genetic algorithm for the JOBASRP. Besides the total tardiness, they also
minimize the total earliness as well as the total tour length. Unlike in the approaches discussed before,
splitting of customer orders is allowed. Due to this specific property, this approach is not considered any
further.

Chen et al. (2015) also dealt with a special case of the JOBASRP as it has been defined in the previous
section. The number of pickers is limited to one in their approach implying that the assignment problem
does not have to be taken into account. The authors designed a genetic algorithm for the JOBASP
and solved the arising PRPs by means of an ant colony approach. In the genetic algorithm, however,
the batching and the sequencing problem are considered separately which results in many unfeasible
solutions with respect to the capacity constraint of the picking device. Furthermore, the ant algorithm
consumes far more computing time than problem-specific approaches to the PRP. Thus, it is not
surprising the author stated that computing times are a critical issue. In their numerical experiments,
only very small problem instances with up to 8 orders have been considered. Computing times have not
been reported.

We conclude that no approach to the JOBASRP is available which can deal with larger problem instances
within a reasonable amount of computing time. Furthermore, the case of multiple order pickers working
simultaneously is rarely taken into account.
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4 Model formulation
Henn (2015) introduced a mathematical model for the JOBASP which can be adapted to the JOBASRP.
For this model, all feasible batches have to be generated in advance, where the number of feasible
batches increases exponentially with the number of customer orders. For each feasible batch, the
minimum processing time has then to be calculated, which means that the arising PRPs have to be
solved to optimality. Thus, providing the problem data would consume a large amount of computing
time. Furthermore, since the number of variables in the model depends on the number of feasible batches,
even for small instances it may not be possible to generate the model due to memory restrictions.

Chen et al. (2015) also considered all feasible batches for their model, resulting in a similar magnitude of
variables. Besides, some constraints of the model are nonlinear, making it even more difficult to solve.

We decided to choose a modeling approach in which the batches are not generated in advance in order
to keep the number of variables at a reasonable level. The model formulation can be divided into two
parts: The first part is related to the Joint Order Batching and Picker Routing Problem which means that
the customer orders are grouped into batches and the corresponding tours are constructed. With respect
to the specific structure of tours in an order picking warehouse, we interpret the routing problem as a
Steiner TSP. The graph of Fig. 2 illustrates this interpretation and will be used as the basis for our model.

Fig. 2: Illustration of a Steiner TSP

The black vertices represent the location of the depot and the pick locations. These vertices have to
be included in the tour. The white vertices (Steiner points) depict the intersections of picking aisles
and cross aisles. They can be visited, but must not necessarily be visited. As can be taken from the
figure, the maximum degree of a vertex is equal to four. Therefore, this Steiner TSP-based graph contains
significantly fewer arcs than a standard TSP graph would include. In the model formulation, we consider
a directed graph which means that each edge is replaced by two reverse arcs.
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The second part of the model formulation deals with the Batch Sequencing Problem in which the
constructed batches are assigned to a picker and arranged in a certain sequence. The sequence consists
of as many positions as batches have been assigned to the picker. The picker starts processing the batch
assigned to the first position and, after having returned to the depot, the batch in the next position is
dealt with etc. This procedure provides the completion time for each batch and the completion times
of all customer orders included in the batch, from which the tardiness of each customer order can be
determined.

Before presenting the model formulation, we introduce the corresponding sets, parameters and variables.

Sets
P : set of order pickers
K: set of positions (for each order picker) where a batch can be scheduled

(
K =

{
1, . . . , K

})
H: set of tours which can be performed
N : set of customer orders
V : set of vertices in the graph representing the warehouse
R: set of vertices representing a pick location and the location of the depot
A: set of arcs in the graph representing the warehouse

Parameters
C: capacity of the picking device
βs: setup time per batch
βp: pick and search time per item
βt: travel time per length unit
cn: number of requested items of order n ∈ N

dn: due date of order n ∈ N

αnr: constant for indicating whether vertex r ∈ R represents a storage location of a requested item of
order n ∈ N (αnr = 1) or not (αnr = 0)

wa: distance to be covered when using arc a ∈ A

M : sufficiently large number
(
e.g.M = K ·

(
βs + βt ·

∑
a∈A

wa

)
+ βp ·

∑
n∈N

cn

)
Variables
τn: tardiness of order n ∈ N

ũh: processing time of tour h ∈ H

upk: processing time of the tour assigned to position k ∈ K of picker p ∈ P

vpk: completion time of the tour assigned to position k ∈ K of picker p ∈ P

xpkh: variable for indicating whether tour h ∈ H is assigned to position k ∈ K of picker p ∈ P

(xpkh = 1) or not (xpkh = 0)
ynh: variable for indicating whether order n ∈ N is assigned to tour h ∈ H (ynh = 1) or not (ynh = 0)
zah: variable for indicating whether arc a ∈ A is included in tour h ∈ H (zah = 1) or not (zah = 0)
fah: number of units of the commodity passing arc a ∈ A on tour h ∈ H
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The JOBASRP can then be formulated as follows.

min
∑
n∈N

τn (1)

∑
h∈H

xpkh ≤ 1 ∀p ∈ P, k ∈ K (2)

∑
p∈P

∑
k∈K

xpkh = 1 ∀h ∈ H (3)

∑
h∈H

ynh = 1 ∀n ∈ N (4)

∑
n∈N

cn · ynh ≤ C ∀h ∈ H (5)

∑
a∈δ−0

zah ≥ 1 ∀h ∈ H (6)

∑
a∈δ−r

zah ≥ αnr · ynh ∀h ∈ H, n ∈ N, r ∈ R\{0} (7)

∑
a∈δ−v

zah =
∑
a∈δ+v

zah ∀h ∈ H, v ∈ V (8)

∑
a∈δ+r

fah −
∑
a∈δ−r

fah = αnr · ynh ∀h ∈ H, n ∈ N, r ∈ R\{0} (9)

∑
a∈δ+v

fah −
∑
a∈δ−v

fah = 0 ∀h ∈ H, v ∈ V \R (10)

fah ≤ C · zah ∀a ∈ A, h ∈ H (11)

βs + βp ·
∑
n∈N

cn · ynh + βt ·
∑
a∈A

wa · zah ≤ ũh ∀h ∈ H (12)

ũh −M · (1− xpkh) ≤ upk ∀p ∈ P, k ∈ K, h ∈ H (13)

up1 ≤ vp1 ∀p ∈ P (14)

upk + vp,k−1 ≤ vpk ∀p ∈ P, k ∈ K\{1} (15)

vpk − dn −M · (2− xpkh − ynh) ≤ tn ∀n ∈ N, p ∈ P, k ∈ K, h ∈ H (16)

xpkh, ynh, zah ∈ {0, 1} ∀a ∈ A, n ∈ N, p ∈ P, k ∈ K, h ∈ H (17)

τn, ũh, upk, vpk, fah ≥ 0 ∀a ∈ A, n ∈ N, p ∈ P, k ∈ K, h ∈ H (18)

The objective function (1) minimizes the total tardiness. Constraints (2) ensure that at most one tour is
assigned to each position of each picker, while (3) guarantee that each tour is performed. Each customer
order has to be processed on exactly one tour which is obtained by meeting restrictions (4). The capacity
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of the picking device is taken into account by satisfying (5). Constraints (6) to (11) represent the routing
constraints. First, constraints (6) ensure that the depot is left on each tour. Here, δ+v (δ−v ) denotes the
set of arcs to which vertex v is an end (start) vertex. Vertex "0" represents the location of the depot.
Constraints (7) guarantee that each pick location is visited which corresponds to a requested item of a
customer order included in the respective tour. Restrictions (8) are the degree constraints. The following
three types of constraints represent subtour elimination constraints. These constraints are related to the
single-commodity flow constraints introduced by Letchford et al. (2013). Subtours are excluded by
ensuring that the picker starts his tour with a certain number of units of a commodity and delivers one
unit to each vertex to be visited. In this way, the vertices are enumerated according to their appearance
in the tour. In constraints (12), the processing time is determined for each tour, which is composed of
the setup time, the time for searching and picking the items, and the travel time. The processing time of
the tour assigned to a certain position of a certain picker is determined in (13), while constraints (14)
and (15) calculate the corresponding completion times. Finally, constraints (16) compute the tardiness
for each order. The variable domains are defined in (17) and (18).

The mathematical model includes linear constraints only. Furthermore, both the number of variables and
the number of constraints increase polynomially with the problem size, which is a major advantage of
this model in comparison to the formulations of Chen et al. (2015) and Henn (2015). However, our model
formulation is not suitable for solving large problem instances as well, which provides the reason why
we have developed a variable neighborhood descent approach to the JOBASRP.

5 Variable neighborhood descent

5.1 Overview

Variable neighborhood descent (VND) was introduced in Hansen & Mladenović (2001). The general
principle of VND consists in exploring the solution space of the problem by means of a sequence of
neighborhood structuresN1, . . . ,NL. It is started with an incumbent solution s∗ and the best neighbor s
(in terms of the objective function value) of N1 (s

∗) is determined. If s represents a better solution
than s∗, then s becomes the new incumbent solution and the first neighborhood structure N1 (s

∗) is
considered again. Otherwise, the exploration of the solution space continues with the next neighborhood.
The algorithm terminates if no improvement can be found in the last neighborhood structure NL (s

∗),
i.e. a local optimum is found with respect to all neighborhood structures.

In our VND approach, a solution s is a solution to the JOBASP, i.e. it includes information about how
the orders are grouped into batches and in which sequence the batches are to be processed by the pickers.
Based on this solution, different PRPs have to be solved in order to determine the corresponding objective
function values. Since a very large number of PRPs arise during the solution process, we decided to solve
them by applying the combined heuristic. This heuristic was particularly designed for warehouses with
multiple blocks and outperforms the frequently used S-shape heuristic by far in terms of solution quality
(Roodbergen & de Koster, 2001b). The corresponding objective function value is denoted by fComb (s).
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In contrast to the standard VND procedure, we do not directly return to N1 after an improvement has
been found. Instead, before doing so, we determine a local optimum regarding the current neighborhood
structure. The objective function value, the total tardiness, is strongly dependent on the processing times
of the batches. In order to reduce processing times, each time when a local optimum has been found, the
arising PRPs are solved by means of the Lin-Kernighan-Helsgaun (LKH) heuristic. Applied to the PRP,
this heuristic results in very short tours (Theys et al., 2010) and, as a consequence, in shorter processing
times. However, since the computational effort is much higher than the effort for the application of the
combined heuristic, it is not possible to use the LKH heuristic for evaluating all solutions to be considered
in the exploration of the neighborhood structures. Due to this fact, we try to ensure that the LKH heuristic
is only applied to very promising solutions. Therefore, we decided to determine a local optimum before
returning toN1. fLKH (s) denotes the total tardiness of a solution swhose corresponding PRPs have been
solved by means of the LKH heuristic. A general pseudocode of our VND approach is depicted below,
while the generation of the initial solution as well as the different neighborhood structures will be dealt
with in the next subsections.

Algorithm 1 Variable neighborhood descent algorithm for the JOBASRP

Input: problem data, number of neighborhood structures L

Output: solution s∗ to the JOBASRP and corresponding total tardiness fLKH (s∗)

generate initial solution s;
s∗ := s; l := 1;
while l ≤ L do

s := s∗;
s' := arg min {fComb (s̃) | s̃ ∈ Nl (s)};
while fComb (s') < fComb (s) do

s := s';
s' := arg min {fComb (s̃) | s̃ ∈ Nl (s)};

endwhile
if fLKH (s) < fLKH (s∗) then

s∗ := s;
l := 1;

else
l := l + 1;

endif
endwhile

5.2 Initial solution

For generating an initial solution, two constructive approaches are first applied, providing one solution
each. The solution with the smaller objective function value is then taken as the initial solution for the
VND. The first constructive approach is based on the earliest start date rule (ESDR) and was also used
by Henn (2015). It is a priority rule-based algorithm in which orders are assigned successively to the
batches and the positions of the pickers. A detailed pseudocode of this algorithm is depicted below.
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Algorithm 2 ESDR-based algorithm

Input: set of orders N with due dates dn and number of requested items cn (n ∈ N), set of pickers P , capacity
of the picking device C

Output: solution s∗ to the JOBASRP and corresponding total tardiness fComb (s
∗)

U := N ;
for p ∈ P do

kp := 1; Bpkp := ∅; Cp := 0; vp := 0;

endfor
while U ̸= ∅ do

n∗ = arg min {dn | n ∈ U};
for p ∈ P do

if Cp + cn∗ ≤ C then
ṽp := vp + uComb

(
Bpkp ∪ {n∗}

)
;

else
ṽp := vp + uComb ({n∗});

endif
endfor
p∗ := arg min {ṽp | p ∈ P};
U := U \ {n∗}; vp∗ := ṽp∗ ;
if Cp∗ + cn∗ ≤ C then

Bp∗kp∗ := Bp∗kp∗ ∪ {n∗}; Cp∗ := Cp∗ + cn∗ ;
else

kp∗ := kp∗ + 1; Bp∗kp := {n∗}; Cp∗ := cn∗ ;

endif
endwhile

In the pseudocode, U denotes the set of orders not yet assigned to a picker, kp is the sequence position
of picker p to which the next batch can be assigned and Bpkp represents the set of orders included in the
batch assigned to position kp of picker p. Cp and vp denote the number of items contained in the batch
under consideration for picker p as well as its completion time, while uComb calculates the processing time
of the current batch by means of the combined heuristic. At the beginning of the algorithm, all orders are
unassigned. The orders are then assigned successively to certain batches, starting with the unassigned
order n∗ with the smallest due date. For each order picker p, the completion time ṽp is determined that
would follow from an assignment of n∗ to the picker. The assignment consists of an addition of n∗ to
batch Bpkp if the capacity constraint of the picking device is not violated; otherwise, the assignment
includes the opening of a new batch containing n∗. The algorithm terminates when all orders have been
assigned to batches and positions.

In order to meet the due dates andminimize the total tardiness, the orders are sorted according to their due
dates and then assigned successively. The composition of the batches is not considered any further. This is
a proper approach as long as the due dates are loose. However, in the case of tight due dates, it is of prime
importance to construct batches and tours which allow for short processing times. We, therefore, propose
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another constructive approach taking into account the processing times resulting from the construction of
the batches. This approach can be perceived as a seed algorithm. Seed algorithms have been frequently
applied to the OBP and consist of two steps. First, a seed order is chosen by means of a seed selection
rule and assigned to a new batch. According to an order addition rule, orders are then added to this batch.
As for the seed selection, we chose an order which is not yet assigned to a batch and has the closest due
date. Dependent on the savings in terms of total tardiness, which result from adding an order to this batch
instead of processing it separately, other orders are assigned to the batch. A detailed pseudocode of this
algorithm can be seen below.

Algorithm 3 Seed algorithm

Input: set of orders N with due dates dn and number of requested items cn (n ∈ N), set of pickers P , capacity
of the picking device C

Output: solution s∗ to the JOBASRP and corresponding total tardiness fComb (s
∗)

U := N ; //step 1
for p ∈ P do

kp := 1; vp := 0;

endfor
while U ̸= ∅ do

n∗ := arg min {dn | n ∈ U};
for p ∈ P do

ṽp := vp + uComb ({n∗});

endfor
p∗ := arg min {ṽp | p ∈ P};
U := U \ {n∗}; vp∗ := ṽp∗ ; kp∗ := kp∗ + 1; Bp∗kp := {n∗};

endwhile
U := N ; i := 1; //step 2
while U ̸= ∅ do

n∗ := arg min {dn | n ∈ U}; B̃i := {n∗}; C̃ := cn∗ ; U := U \ {n∗};
while max

{
savin | n ∈ U : C̃ + cn ≤ C

}
> 0 do

n∗ := arg max
{
savin | n ∈ U : C̃ + cn ≤ C

}
;

B̃i := Bi ∪ {n∗}; C̃ := C̃ + cn; U := U \ {n∗};
endwhile
i := i+ 1; C̃ := 0;

endwhile
for p ∈ P do //step 3

kp := 1;

endfor
for j := 1 to i do

(p∗, k∗) := arg min
{
fp,k
Comb | p ∈ P, k ∈ {1, . . . kp}

}
;

Bp∗,k∗+1 := Bp∗,k∗ ; ...; Bp∗,kp+1 := Bp∗,kp ; Bp∗,k∗ := B̃i; kp∗ := kp∗ + 1;

endfor
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In the first step, each order is assigned to a separate batch. Starting with the batch that includes the order
with the smallest due date, the batches are successively added to the picker p who currently possesses
the shortest completion time ṽp. In the second step, batches are merged in order to reduce the processing
times as well as the total tardiness. The order with the smallest due date represents the seed order and
forms batch B̃1. Based on the solution generated in step 1, for each unassigned ordern ∈ U , savings savin
are determined which are defined as the reduction of the total tardiness obtained by merging the batch of
order n and the batch i of the seed order. Of the potential pairs of batches which could be merged without
violating the capacity constraint of the picking device, two batches are actually merged for which the
savings are maximal. Then, the savings are updated and another order may be added to the batch. This
is done until no further positive savings can be realized. While at least one order exists not considered
in step 2, i. e. while U ̸= ∅, the next seed order is determined based on the due dates and a new batch is
opened to which orders are to be added. Thus, step 2 provides a solution in which the processing times
and the total tardiness are explicitly taken into account. In the last step, the batches in this solution are
reassigned to the position of the pickers. This is done consecutively starting with batch B̃1. Each batch
is inserted into the position k of picker p minimizing the total tardiness f p,k

Comb of all batches which have
been inserted up to this point. In analogy to the ESDR-based algorithm, the combined heuristic is used
to determine the processing time of a batch.

Since the seed algorithm also considers the composition of the batches instead of just basing the
construction of a solution on the information about the due dates, it can be expected to lead to better
results in the case of tight due dates. By selecting the best solution of the ESDR-based algorithm and
the seed algorithm, we aim to generate a good initial solution that enables the VND to proceed faster to
a local optimum.

5.3 Neighborhood structures

As mentioned before, a solution to the JOBASRP includes information about the composition of the
batches and their assignment to the positions of the pickers. The arising routing problems are only solved
in order to determine the resulting objective function value. Thus, the neighborhood structures considered
in our VND can be divided into two categories, namely structures related to the sequencing problem and
structures related to the batching problem.

Neighborhood structures related to the sequencing problem only deal with the assignment of the batches
to the pickers' positions. The composition of the batches remains unchanged. Thus, complete batches
are considered instead of single customer orders. Since the number of batches is usually much smaller
than the number of customer orders, these neighborhoods can be explored in reasonable computing time.
Therefore, these neighborhoods are used at the beginning of the VND algorithm. As proposed by Henn
(2015), we use one sequencing related neighborhood structure N1.

Regarding N1, the neighborhood of a solution s is composed of all solutions which can be obtained
by exchanging two batches b1 and b2 from s. Only exchanges between different pickers are taken into
consideration. Batch b1 is moved to the position of b2 and vice versa. The positions of the remaining
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batches are not changed (see Fig. 3).

Fig. 3: Example of neighborhood structure N1

In N2, we consider complete batches, too. However, not only the way how batches are sequenced is
changed but also how they are composed of orders. This neighborhood structure is meant to break up a
complete batch and reassign the orders to other batches. Furthermore, the batch sequence is optimized. A
neighbor regardingN2 is obtained as follows: In a first step, a batch is removed from the solution s. In a
second step, the remaining sequence is optimized. First, for each batch, it is checked whether the solution
can be improved by moving this batch to a position of another picker. The move which provides the
largest improvement is carried out. This procedure is repeated until no further improvement is possible.
Movements regarding N1 are then applied as long as the solution can be improved. Subsequent to this
improvement step, the orders contained in the removed batch are considered successively in the order of
non-descending due dates. Each order may either be inserted in an existing batch or forms a new batch.
The option resulting in the smallest total tardiness is realized. An example of a move regarding N2 is
depicted in Fig. 4.

Fig. 4: Example of neighborhood structure N2

Neighborhood structures N3 to N6 are straightforward structures to the batching problem. By means of
these structures, the composition of the batches is changed. Either an order is moved from one batch
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to another batch (shift) or two orders contained in different batches are exchanged (swap). These
structures can define movements on the same picker as well as operations including two pickers.
Combination of these characteristics (swap or shift and one picker or two pickers) gives rise to four
different neighborhood structures which have been used in the following sequence:

N3: an order is moved from one batch to another batch assigned to the same picker;
N4: an order is moved from one batch to another batch assigned to another picker;
N5: two orders are exchanged which are included in different batches assigned to the same picker;
N6: two orders are exchanged which are included in different batches assigned to different pickers.

We note that only neighbors are considered which represent feasible solutions, i.e. which do not violate
the capacity constraint of the picking device. If an order cannot be added to a batch, this order is assigned
to a new batch, where the position of the new batch is chosen in such a way that the total tardiness is
minimized.

6 Numerical Experiments

6.1 Setup

The performance of the VND is evaluated in a series of numerical experiments. Except for the number of
order pickers available, the problem definition of Chen et al. (2015) is identical with the one considered
in this paper. Unfortunately, the problem instances from their experiments were not available. We thus
generated instanceswith the same characteristics and noticed that all instances can be solved to optimality
within a few seconds by means of the model formulation proposed in Section 4. We, therefore, decided
to not use these instances for the evaluation of the solution quality of our VND. Instead, we adapted the
numerical experiments of Henn (2015) who dealt with very large instances for the JOBSP.

In our experiments, we consider a warehouse with 10 picking aisles. The number of blocks q is varied
between 1 and 3, resulting in 10, 20 or 30 subaisles. Each subaisle contains 50 storage locations (25 on
each side of the subaisle). The depot is located in front of the leftmost picking aisle, and the distance
between the depot and the leftmost picking aisle amounts to 1.5 length units (LU). For entering or leaving
a subaisle, the order picker has to cover a distance of 1 LU. This is also the distance between two adjacent
storage locations of a subaisle. The distance between two adjacent picking aisles amounts to 5 LU.

For the assignment of articles to storage locations, a class-based storage assignment policy is applied, i.e.
articles with high demand frequencies are assigned to storage locations near the depot. We use the same
approach as Henn (2015), who divided the articles into three classes A, B and C, whereupon class A
includes 10% of all articles with the highest demand frequency, representing up to 52% of the total
demand; class B contains 30% of all articles responsible for 36% of the demand. The remaining articles,
assigned to class C, are characterized by rather low demand frequencies. Within each class, articles are
randomly assigned to the storage locations of the corresponding subaisles. The determination of the
subaisles is based on the distance to the depot. Class A articles are assigned to storage locations in a
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subaisle representing 10% of all subaisles with the shortest distance to the depot. The subaisles which
belong to 60% of all subaisles farthest from the depot include class C articles.

The number of customer orders is fixed to 100 and 200, whereupon the number of items contained in an
order is uniformly distributed over the set {5, 6, . . . , 25}. Each order should be completed before a certain
due date. The due dates are generated based on the processing time ũn (n ∈ N) of the orders, the number
of available order pickers pmax and the so-calledmodified traffic congestion rate (MTCR) γ describing the
tightness of the due dates (Elsayed & Lee, 1996). The interval fromwhich due dates are randomly chosen

is determined as follows:
[
min {ũn | n ∈ N} ,

(
2 · (1− γ) ·

∑
n∈N

ũn +min {ũn | n ∈ N}
)
/pmax

]
. As

can be seen, the tightness of the due dates is dependent on the processing time ũn of an order n, while
the processing time is determined by the sequence according to which the corresponding items are to
be retrieved, which is the main reason why we do not use the same instances as Henn (2015). They
applied the simple S-shape and largest gap strategies for the determination of the processing times. Since
we integrate the routing problem into our approach, we generate much shorter tours. This results in
considerable shorter batch processing times, which is why an application of our approach to the instances
of Henn (2015) results in a total tardiness of 0 for most instances. Therefore, we decided to use the LKH
heuristic for the determination of the processing times ũn (n ∈ N) instead, which is more appropriate
as the LKH heuristic is also applied within our VND algorithm. The MTCR γ has been fixed to 0.6, 0.7
and 0.8 as done by Henn (2015).

In our experiments, 2, 3 or 5 pickers are available for processing the orders. The capacityC of the picking
device is measured in the maximum number of items which can be picked on a tour and set to 45 or 75.
The time a picker needs for performing a tour is composed of the setup time, the search and pick time, and
the travel time (see Section 2). Here, the setup time amounts to 3 minutes, while searching and picking
an item requires 20 seconds, and the order picker moves 20 LU per minute.

Combination of the above-mentioned parameter values results in 108 problem classes. For each problem
class, 30 instances have been generated, i.e. 3240 problem instances have been solved in total. The
experiments have been carried out on a desktop PC with a 3.4 GHz Pentium processor and 8 GB RAM.
The solution approach has been encoded in C++ using Microsoft Visual Studio 2015.

6.2 Results

6.2.1 Evaluation of the initial solution

Pretests have shown that the amount of computing time required for applying the VND is strongly
dependent on the quality of the initial solution. Starting with a low quality solution, a large number
of iterations has to be carried out until a local optimum is found. Henn (2015) used the ESDR-based
algorithm in order to generate an initial solution. However, this rule may result in very poor solutions
since the orders are grouped into batches without considering the resulting processing times. Therefore,
we proposed a seed algorithm in which both the due dates of the orders and the tour length of the
corresponding batches are taken into consideration.
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The computing times of both approaches are below one second if the combined heuristic is used for
determining the processing times of the respective tours. Since such computing times can be neglected,
both approaches are applied and the solution with the smaller total tardiness is used as the initial solution.
The impact on the quality of the initial solution is depicted in Tables 1 and 2.

Table 1: Evaluation of the initial solution for 100 orders
2 pickers 3 pickers 5 pickers

C γ q
ESDR Initial ESDR Initial ESDR Initial
tar tar imp tar tar imp tar tar imp

45 0.6 1 130 130 0.0 112 112 0.0 89 89 0.0
45 0.6 2 70 70 0.0 165 158 3.7 128 128 0.0
45 0.6 3 235 220 6.3 347 283 18.4 517 516 0.2
45 0.7 1 1831 1017 44.4 1451 1102 24.0 1209 986 18.4
45 0.7 2 2479 1345 45.8 2245 1708 23.9 1483 1280 13.7
45 0.7 3 5347 2715 49.2 3908 2435 37.7 2808 2147 23.5
45 0.8 1 8117 4988 38.6 6181 3996 35.4 4729 3294 30.3
45 0.8 2 10468 6522 37.7 7203 4734 34.3 6692 4502 32.7
45 0.8 3 14434 8968 37.9 10246 6677 34.8 3857 2694 30.2
75 0.6 1 62 62 0.0 85 85 0.0 116 116 0.0
75 0.6 2 63 63 0.0 99 99 0.0 130 130 0.0
75 0.6 3 91 91 0.0 154 154 0.0 270 270 0.0
75 0.7 1 141 141 0.0 166 166 0.0 268 268 0.0
75 0.7 2 181 181 0.0 340 340 0.0 312 312 0.0
75 0.7 3 431 431 0.0 489 489 0.0 686 686 0.0
75 0.8 1 2793 2473 11.5 2556 2399 6.1 2397 2250 6.1
75 0.8 2 3872 3407 12.0 2968 2742 7.6 3726 3134 15.9
75 0.8 3 6477 5120 21.0 5055 4289 15.1 1926 1778 7.7

average 3179 2108 16.9 2432 1776 13.4 1741 1366 9.9

In Tables 1 and 2, for the problem classes with 100 and 200 orders, the quality of the initial solutions (in
terms of the average total tardiness (tar) in minutes) is depicted which is obtained after the application of
the ESDR-based algorithm and after the additional application of the seed algorithm. The improvement
(imp) amounts to zero, if the additional application of the seed algorithm has no impact on the quality of
the initial solutions. In these cases, solutions constructed by means of the ESDR-based algorithm always
lead to a smaller total tardiness for the instances of the corresponding problem class. In fact, this is the
case for instances with a very small MTCR (γ = 0.6) and with a medium MTCR (γ = 0.7) and a large
capacity of the picking device (C = 75). These instances are characterized by quite loose due dates
which can be met easily. (Note that the generation of the due dates is independent of the capacity of the
picking device and due dates can be satisfied easier when the capacity is large since the total processing
time of all orders decreases.) If the due dates are not tight, minimizing the processing times gets much
less important since the due dates of most orders can be met by processing the orders in the sequence
of non-descending due dates. This is exactly what the ESDR-based algorithm guarantees, which is the
reason why the application of this rule leads to rather good solutions in these cases.

With an increasing MTCR, the due dates get tighter and harder to meet, resulting in a dramatic



A. Scholz, D. Schubert, G. Wäscher 21

Table 2: Evaluation of the initial solution for 200 orders
2 pickers 3 pickers 5 pickers

C γ q
ESDR Initial ESDR Initial ESDR Initial
tar tar imp tar tar imp tar tar imp

45 0.6 1 158 158 0.0 181 180 0.7 180 180 0.0
45 0.6 2 130 130 0.0 115 115 0.0 270 270 0.0
45 0.6 3 753 604 19.8 345 345 0.0 419 419 0.0
45 0.7 1 6436 2755 57.2 5127 3551 30.7 3187 2784 12.7
45 0.7 2 8150 3461 57.5 5564 4212 24.3 3625 3307 8.8
45 0.7 3 18697 6972 62.7 12763 7692 39.7 9461 6865 27.4
45 0.8 1 33890 19487 42.5 22982 14169 38.3 14632 9494 35.1
45 0.8 2 41291 24360 41.0 26747 16759 37.3 17909 11872 33.7
45 0.8 3 56178 32847 41.5 39085 23840 39.0 24405 15708 35.6
75 0.6 1 70 70 0.0 85 85 0.0 136 136 0.0
75 0.6 2 70 70 0.0 97 97 0.0 164 164 0.0
75 0.6 3 95 95 0.0 158 158 0.0 267 267 0.0
75 0.7 1 177 177 0.0 190 190 0.0 267 267 0.0
75 0.7 2 375 375 0.0 235 235 0.0 286 286 0.0
75 0.7 3 478 478 0.0 618 618 0.0 755 755 0.0
75 0.8 1 11039 8705 21.1 7982 7454 6.6 5785 5526 4.5
75 0.8 2 14669 11758 19.8 9334 8852 5.2 7471 7011 6.2
75 0.8 3 22468 16607 26.1 16942 13767 18.7 11703 9974 14.8

average 11951 7173 21.6 8253 5684 13.4 5607 4183 9.9

increase of the average total tardiness. In the case of very tight due dates, it is not sufficient to find
a reasonable sequence according to which the orders are processed. Instead, minimizing the processing
times gets pivotal. Since the processing times are not taken into consideration, solutions obtained by
means of the ESDR-based algorithm are expected to be of very poor quality. The results from the
numerical experiments confirm this expectation and demonstrate that the seed algorithm outperforms
the ESDR-based algorithm by far when a high MTCR is assumed. By means of the seed algorithm,
the average total tardiness can be decreased by up to 62.7% (200 orders, 2 pickers, C = 45, γ = 0.7,
q = 3). As expected, the savings obtained by application of the seed algorithm tend to get larger with
a decreasing capacity of the picking device or an increasing MTCR. For problem classes with a small
capacity (C = 45) and a large MTCR (γ = 0.8), the reduction of the average total tardiness ranges
between 30.2% (100 orders, 5 pickers, q = 3) and 42.5% (200 orders, 2 pickers, q = 1). Furthermore, it
should be noted that the improvements get smaller with an increasing number of order pickers available.
This can be deduced to the fact that dealing with the sequencing problem gets more important when a
larger number of pickers, i.e. more possibilities of assigning orders, have to be taken into account.

Summing up, it can be stated that the application of two constructive approaches leads to significant
improvements with respect to the total tardiness of all customer orders. On average, across all problem
classes the total tardiness can be reduced by 14.2% without a noticeable increase of the computing time
required for generating an initial solution.
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6.2.2 Impact of the neighborhood structures

When designing a VND, another very important issue refers to the choice of the neighborhood structures
and the sequence according to which they are used within the algorithm. The VND approach proposed by
Henn (2015) performed quite well for the JOBSP. The author suggested utilization of the batch-related
neighborhood structure N1 and the order-related structures N3 to N6. We also use these structures and
the corresponding sequence. Furthermore, we introduce a new neighborhood structureN2 in order to be
able to break up a complete batch and reinsert the orders into other batches. The impact of the moves
applied according to the neighborhood structures is depicted in Table 3.

Table 3: Impact of the neighborhood structures for the case of five pickers and 200 orders

C γ N1 N2 N3 N4 N5 N6

45 0.6 25.9 37.8 6.0 11.6 0.9 17.8
45 0.7 42.9 5.8 28.3 8.7 6.3 8.1
45 0.8 33.4 2.1 7.0 9.5 35.1 12.9
75 0.6 3.9 76.0 4.1 6.4 0.2 9.3
75 0.7 12.9 36.8 8.6 18.2 0.9 22.5
75 0.8 26.2 11.1 22.4 12.9 14.8 12.6
average 24.2 28.3 12.7 11.2 9.7 13.9

For problem classes with 5 order pickers and 200 customer orders, Table 3 includes information about
the average proportion [in %] of the improvement obtained within the local search phases according to
the neighborhood structure Nl (l ∈ {1, . . . , 6}). For example, the entry 25.9 (C = 45, γ = 0.6, l = 1)
means that 25.9% of the total improvement obtained by the VND can be attributed to the local search
phases which run in the first neighborhood structure N1. The average proportion of the improvement
ranges from 9.7% (N5) to 28.3% (N2). Therefore, it can be concluded that all neighborhood structures
should be integrated into the algorithm.

The batch-related neighborhood structure N1 is responsible for 24.2% of the total improvement. It
can be observed that the impact of this structure is much higher than the impact of the order-related
neighborhood structures N3 to N6, whose proportion of the improvement amounts to approximately
10%, respectively. This can be traced back to the fact that the batch-related neighborhood structure
is the first structure of the sequence and applied much more often than the order-related structures.
Nevertheless, the impact of structures N3 to N6 should not be underestimated as improvements found
in the corresponding local search phases may allow the algorithm to further improve the solution by
continuing with N1 and N2.

The newly proposed neighborhood structure N2 shows the largest proportion (28.3%) of the total
improvement, although it is sequenced after N1. The proportion strongly fluctuates ranging from 2.1%
(C = 45, γ = 0.8) to 76.0% (C = 75, γ = 0.6). The reason can be found in the generation of the
initial solution. As shown in the previous subsection, the ESDR-based algorithm leads to good solutions
for loose due dates which are easy to meet (instances with a low MTCR γ or a medium MTCR and
a large capacity C), while it is outperformed by the seed algorithm when the due dates get tight. A
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move according to N2 is defined by breaking up a complete batch and reassigning the orders to other
batches. If the initial solution is constructed by means of the seed algorithm, these moves will usually
not lead to improvements since the orders are already grouped into batches in a reasonable manner
which also takes into account the processing times. This is not true for solutions generated by applying
the ESDR-based algorithm. In this approach, batches are constructed considering the due dates of the
orders only, which is the reason why the impact ofN1 (which simply changes the position of batches) is
quite small. However, by means of moves according toN2, the batching can be optimized regarding the
processing times resulting in massive improvements with respect to the total tardiness of all customer
orders.

6.2.3 VND: Considerations regarding the solution quality and the computing time

In order to evaluate the performance of the VND approach, the algorithm is compared to two other
solution approaches with respect to the total tardiness obtained. As a first benchmark, solutions provided
by the ESDR-based algorithm in combination with the S-shape routing strategy are considered. The
ESDR-based algorithm is a very straightforward approach to solve the JOBASRP and has also been
used by Henn (2015). Since the solution quality of both the ESDR-based algorithm and the S-shape
strategy is strongly dependent on the characteristics of the problem instance, we also use the initial
solution of the VND in combination with the LKH heuristic as benchmark. The corresponding results
from the experiments are presented in Tables 4 and 5.

In Tables 4 and 5, the average total tardiness (tar) in minutes is depicted for the ESDR-based algorithm
combined with S-shape routing (ESDR), the initial solution after the application of the LKH heuristic
(Initial) and the complete variable neighborhood descent algorithm (VND) for problem classes with 100
and 200 orders, respectively. Furthermore, the average improvements [in %] are presented compared to
the solution provided by the ESDR-based algorithm (imp1) and the initial solution of the VND (imp2).

When comparing solutions obtained by the ESDR-based algorithm with VND solutions, significant
improvements regarding the total tardiness of all customers can be observed. On average, the reduction
of the total tardiness ranges from 51.5% (200 orders, 2 pickers, C = 75, γ = 0.6, q = 1) to 95.2% (200
orders, 3 pickers,C = 45, γ = 0.7, q = 2). The number of pickers does not seem to have a strong impact
on the amount of improvement as the average reduction is between 69.2% and 71.2% for 100 customer
orders and ranges from 73.5% to 74.8% for 200 orders. However, the impact of the other factors under
investigation, namely the number of orders, the capacity C of the picking device, the MTCR γ as well
as the number of blocks q does not seem to be negligible.

The more orders have to be assigned to batches, the larger the number of solutions gets, since more
combinations of orders exist which can be grouped into a batch. In the ESDR-based algorithm, orders
are sequentially assigned to batches not taking advantage of the larger number of possibilities. In contrast
to this, the VND considers muchmoremoves according to the neighborhood structuresN3 toN6. Thus, it
is not surprising that the amount of improvement increases with an increasing number of customer orders.
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An increasing capacity of the picking device leads to a reductionwith respect to the relative improvement.
A larger capacity leads to tours containing more pick locations. Since the S-shape strategy is known to
perform quite well if the number of pick locations is large in comparison to the number of subaisles
(Roodbergen, 2001), the difference between the S-shape strategy and the LKH heuristic in terms of
solution quality is quite small in these cases, resulting in less space for improvement. The reverse line
of argumentation holds for the impact of an increase in the number of blocks as more blocks result in
more subaisles, leading to a smaller number of pick locations per subaisle. Thus, the solution quality of
the S-shape policy deteriorates and the amount of the improvement obtained by applying the VND (into
which two more sophisticated routing algorithms are integrated) increases. The MTCR determines how
tight the due dates are. A largerMTCR leads to tighter due dates which tend to increase the total tardiness
of solutions to the corresponding problem instance. Apart from problem classes with an MTCR γ = 0.8

and a capacity C = 45, the amount of improvement increases with an increasing MTCR. This can be
explained by the fact that the solution quality of the ESDR-based algorithm deteriorates when the due
dates get tighter (see Section 6.2.1). If the MTCR is low or medium (γ ∈ {0.6, 0.7}), the VND leads to
solutions with an average total tardiness of up to 1815 minutes (200 orders, 2 pickers, C = 45, γ = 0.7,
q = 3), i.e. the average tardiness of an order amounts to 9 minutes. For instances from these problem
classes, the VND provides many solutions with a total tardiness which is zero or close to zero, resulting
in improvements of 100% (regardless of the absolute amount of improvement). Thus, conclusions have
to be drawn carefully for instances with a small MTCR. If the MTCR is large (γ = 0.8), the average total
tardiness significantly increases. Finding solutions with a low total tardiness gets even harder when the
capacity is small (C = 45) since the total processing times of the orders increases. Therefore, the amount
of the relative improvement decreases when very difficult instances are considered. Nevertheless, it can
be seen that the VND manages to massively reduce the total tardiness as an absolute improvement of up
to 45479 minutes (200 orders, 2 pickers, C = 45, γ = 0.8, q = 3) is achieved, which corresponds to a
decrease of the tardiness by approximately 4 hours per order.

In order to investigate the performance of theVND,we also compare the solutions to the initial solution in
combination with the LKH heuristic which represents a much stronger benchmark than the ESDR-based
algorithm combined with the simple S-shape strategy. It can be observed that the VND manages to
reduce the total tardiness by between 19.3% (100 orders, 2 pickers, C = 45, γ = 0.8, q = 3) and
84.2% (200 orders, 3 pickers, C = 45, γ = 0.7, q = 2). On average, across all problem classes, the
improvement amounts to 44.2%, which demonstrates that the application of the VND is pivotal for the
generation of high-quality solutions. Three main factors can be identified which have an impact on the
amount of the improvement obtained. First, as observed in the comparison to the ESDR-based algorithm,
a larger number of orders allows for more space of improvement. Second, the amount of improvement
tends to decrease with an increasing number of blocks. Third, the combination of the MTCR γ and
the capacity C has a great impact. While the largest improvements can be obtained for γ = 0.7 and
C = 45, the smallest reductions are observed for γ = 0.8 and C = 45. This can be explained by the
way how the initial solution is generated. The combination γ = 0.8 and C = 45 results in instances
with very tight due dates which are very difficult to meet. In this case, the seed algorithm leads to very
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good solutions and, therefore, is chosen for the construction of initial solutions. Due to the high quality
of these solutions, only small improvements can be obtained by application of the VND. In contrast, the
combination γ = 0.7 and C = 45 leads to due dates not tight enough for the seed algorithm but too
tight for the ESDR-based algorithm. Thus, the quality of the initial solution is quite poor and the VND
manages to significantly reduce the total tardiness.

Apart from the solution quality, the VND is evaluated with respect to the computing times required. Henn
(2015) proposed solution approaches to the JOBSP using very simple routing strategies and reported
computing times of up to 25 minutes for problem instances with 200 orders. It can be expected that
our solution approach requires a higher computational effort as we integrated more complex routing
algorithms. Furthermore, Henn (2015) considered a single-block layout only. Especially when the
capacity is large and the simple S-shape strategy is used, many batches will result in the same tours as all
picking aisles will be traversed. Due to this characteristic, the problem is reduced to a sequencing problem
and their solution approaches will terminate much faster as there is less room for improvement. This is
not true for our setup since we also consider more complex layouts. Furthermore, tours constructed by
the LKH heuristic are dependent on the certain pick locations instead of the picking aisles to be visited
only as it is the case for the S-shape strategy.

In our numerical experiments, it can be seen that the computing times are dependent on the number of
customer orders as well as on how difficult the due dates are to be met. Of course, a larger number of
orders significantly increases the computing times as it allows for much more possible moves regarding
the neighborhood structures. For problem classes with 100 orders, the computing times are not a critical
issue as they range from 1 to 11 minutes. When 200 orders are considered, however, up to 1 hour is
required for solving a single instance. The largest computing times can be observed for problems with
a large MTCR (γ = 0.8) and a small capacity (C = 45), which can be explained by the fact that these
instances are characterized by very tight due dates. In practical applications, such high computing times
may be a critical issue, which is why we investigated to which extent the solution quality decreases if less
computing time is spent. Since the highest computing times arise in instances with 200 orders, 5 pickers,
C = 45, γ = 0.8 and q = 1, we depicted the development of the solution quality over time for these
instances in Fig. 5.

Fig. 5: Development of the solution quality over time
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The VND starts with an initial solution in which the combined heuristic is used in order to determine the
processing times of the batches. The computing time for constructing this solution is negligible. Then,
the LKH heuristic is applied, significantly reducing the processing times and improving the objective
function value. On average, application of the LKH heuristic to all batches only requires 12 seconds
of computing time for instances from this problem class. The remaining improvement is obtained by
the moves corresponding to the different neighborhood structures. As can be seen in Fig. 5, the largest
proportion of the improvement is realized within the first 30% of the computing time. After investing
40% of the time, which corresponds to 24 minutes, the total tardiness is 10% above the tardiness of the
best solution found after the VND terminates. However, it can be observed that the VND manages to
steadily improve the solution until the end of the solution process, i.e. reducing the computing time will
definitely result in a larger total tardiness.

If computing times are a critical issue and the solution process has to be speeded up, the removal ofN6

would be a straightforward way as this neighborhood structure requires the highest computational effort.
Considering instances from the problem class defined above, a removal of N6 would save 44% of the
total computing time, while the average total tardiness would increase by 6.4%. Thus, we conclude that
the VND can be adjusted, if necessary, in such a way that solutions with a reasonable quality can be
found within an acceptable amount of computing time.

7 Conclusion
In this article, we considered the Joint Order Batching, Sequencing and Routing Problem which
is rarely addressed in the literature, although it is pivotal for an efficient organization of manual
order picking systems. We proposed a new mathematical model formulation. In contrast to existing
formulations, the size of the model increases polynomially with the number of customer orders,
which allows for solving small instances to optimality within a reasonable amount of computing time.
Furthermore, we designed a variable neighborhood descent approach able to deal with very large
problems. In order to reach the local optimum quite fast and speed up the solution process, a new
heuristic for the construction of an initial solution is developed which outperforms the earliest start date
rule-based algorithm by far when the due dates are very tight.

By means of numerical experiments, the solution quality of the variable neighborhood descent algorithm
is evaluated. First, the initial solution is compared to solutions obtained by applying the earliest start date
rule-based algorithm, which represents a common approach to generate a solution and was also used by
Henn (2015). It is demonstrated that our initial solution leads to a reduction of the total tardiness by
up to 63%. In a second step, we show that all neighborhood structures are important in order to obtain
high quality solutions. The largest proportion of the total improvement is achieved by moves regarding
a newly designed neighborhood structure which breaks up complete batches and reassigns the orders
to other batches. Finally, the variable neighborhood descent algorithm is compared to two constructive
approaches with respect to the solution quality. Combining the earliest start date rule-based algorithm
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with the simple S-shape strategy represents a very straightforward way to solve the problem. However, it
is pointed out that the solution quality of this approach is very poor as the variable neighborhood descent
manages to improve the objective function value of these solutions by up to 95%, which means a massive
reduction of the total tardiness.

We dealt with the joint batching, sequencing and routing problem in warehouses with wide aisles which
allow order pickers for overtaking each other. Further research could concentrate on picker blocking
aspects arising in narrow-aisle warehouses, where subaisles may be blocked when two pickers are
moving in opposite directions or traffic jams may occur when several pickers have to visit the same
storage location at the same time. When taking blocking aspects into account, tours of different pickers
cannot be independently determined anymore, making the problem much more difficult to deal with.
From a practical point of view, the online variant of the joint batching, sequencing and routing problem
would also be a very interesting topic as customer orders arrive during the day and are not known in
advance, which requires for very fast solution approaches in order to be able to recalculate each time a
certain number of new orders has arrived.
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