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Abstract  

Most of the maintenance policies in existing publications assume that no cost is incurred as long 

as the system can undertake missions while little consideration has been devoted to the operating 

cost during system operation. However, in practice, the operating cost increases while the system 

ages and degrades even if a system is in a functioning state. This paper proposes a maintenance 

policy for a degrading system with age- and state-dependent operating cost, which increases with 

system age and degradation levels. Under such a setting, a replacement model is first developed to 

investigate the optimal preventive replacement policy. The replacement model is then extended to 

a repair-replacement model, in which imperfect repair is assumed to restore the system to the 

operating condition. Particularly, the repair model with controllable and uncontrollable repair 

levels is considered separately. The paper proves that the optimal maintenance policy is actually a 

monotone control limit policy, where the optimal control limits decrease monotonically with 

system age. Finally, a numerical example along with sensitivity analysis is presented to illustrate 

the optimal maintenance policy. The proposed model implies a more conservative maintenance 

policy, compared with the traditional model without the age- and state-dependent operating cost. 

                                                           
1 Corresponding author. Email address: binliu9-c@my.cityu.edu.hk. Tel: (+852)51741281 
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1. Introduction 

    Conventionally, time-dependent maintenance policies are widely studied, for which failure data 

are needed to estimate the reliability. However, recently, with the increasing improvement of 

product reliability and shorter product life cycle, obtaining failure data within a specific 

experimental horizon is becoming more difficult, which impedes the application of traditional 

reliability analysis methods. On the other hand, degradation models have gained significant 

attention for highly reliable products. Actually, many physical failures in engineering can be traced 

to an underlying degradation process (Liu et al, 2016). Most systems experience a degradation 

process before failure and the degradation indicators can be measured over time.  

    With the fast development of sensing techniques, system states can now be monitored or 

inspected at a much lower cost, which facilitates to characterise the deteriorating process of the 

system by a continuous-time stochastic model (Lam & Banjevic, 2015). For a system subject to a 

continuous-time degradation process, condition-based maintenance (CBM) has shown its 

effectiveness and predominance in preventing unexpected failures. As CBM utilises the real-time 

information of system health, it is usually more effective in reducing operating cost than the 

traditional age-based or block-based maintenance policies (Wu & Ryan, 2010). The procedure of 

CBM usually consists of three steps: condition data acquisition, reliability or remaining lifetime 

estimation/prediction, and optimal CBM decision making (Jardine et al, 2006). The ultimate goal 

of CBM is to reduce the risk of catastrophic failure and meanwhile reduce operating costs by 

eliminating unnecessary maintenance actions.  
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With respect to CBM, a lot of research effort has been devoted to the prognostic models, in 

terms of characterising the physical deterioration (Flory et al, 2015). The degradation process can 

be classified according to the degradation states: discrete or continuous (Liu et al, 2014).  

For a system with discrete degradation states, Markov chain models are usually adopted to 

describe the deterioration process. The Markov chain models work well when the degradation 

states cannot be accurately detected. However, it suffers the disadvantage of arbitrary classification 

of the degradation states (Peng et al, 2013).  

    For a system with continuous degradation states, there has been a growing interest in stochastic-

process-based models. Notably among them are the Wiener process, Gamma process and inverse 

Gaussian process (Ye & Chen, 2014). The Wiener process has gained popularity owing to its 

excellent mathematical property and physical interpretation. In addition, the Wiener process is a 

non-monotone stochastic process and has the ability to characterise the degradation variations for 

some system behaviors (Guo et al, 2013). Applications of the Wiener process can be found in 

many engineering settings, such as LET lights, heating cables and gyroscopes (Whitmore & 

Schenkelberg, 1997; Ye et al 2012; Si et al, 2013). Often, degradation data collected from sensors 

may contain noise and therefore do not conform to a monotone fashion. In those circumstances, 

the Wiener process is appropriate for describing such non-monotone degradation processes.  

    In traditional CBM models, the optimal decisions are usually obtained by minimizing the long-

run cost rate for an infinite or a finite horizon. The cost items considered include the inspection, 

repair and replacement cost, and cost incurred by unexpected failures. It is assumed that during the 

operation period, no additional cost is incurred as long as the system stays in the functioning state, 

regardless of its degradation level. However, in reality, as the system/component degrades, its 
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performance would decrease as well, which results in increasing operating cost (Jeang, 1998; Hsu 

& Shu, 2010).  

    During system operation, the operating cost increases along with the degradation level, as shown 

in Fig 1. Generally, the age- and state-dependent operating cost can be modeled as a stochastic 

process, which depends on the degradation process. Decision-makers may have to take into 

account the two-dimensional degradation process when making maintenance policies. The 

operating cost may serve as a constraint on maintenance decision (for environmental issues) or an 

additional cost item (for economic concerns). However, little attention has been devoted to this 

important phenomenon in existing literature, which is further explained with the following two 

real-world examples.  

 

Fig. 1 Plot of degradation level and operating cost evolvement 

    Modern vehicles are equipped with more and more sophisticated exhaust after-treatment 

facilities to satisfy increasingly stringent emissions limits. After a moderate mileage, vehicles may 

produce pollutant rates which largely exceed certification levels, despite of the on-board electronic 

control equipment. The increased pollutant rate is highly dependent on how the vehicle is used and 

maintained. With the traditional maintenance policy, an aged automobile is maintained only when 

Degradation level

O
p
e
ra

ti
n
g
 c

o
s
t

0



5 
 

it is failed (corrective maintenance) or is about to fail (preventive maintenance), while neither the 

side effect of increased energy consumption nor exhaust gas emission is considered.  

    Another example is the production system. In a production system, if a tool deteriorates over 

time, the quality of the produced products would decrease accordingly, which increases the rate of 

spoiled products (Xu & Cao, 2015). Traditional maintenance strategies focus on the tool itself, 

with little effort to the product quality as a result of tool aging and degradation. For a company, 

retaining high quality and efficiency is essential in today’s heavy competition. A more appropriate 

maintenance model is required to capture the operating cost due to aging and degradation.  

   From the above two examples, one can see that there is a need to take the side effects along with 

aging and degradation into consideration when making maintenance decisions. This paper aims to 

satisfy this need. It regards the side effects due to aging and degradation as the operating cost and 

then develops a condition-based maintenance policy for degrading systems with consideration of 

the age- and state-dependent operating cost. The age- and state-dependent operating cost occurs 

when the system is operating in a deteriorated state, even if the system is still functioning. In 

studies with respect to integrated preventive maintenance and quality control models, some 

researchers have considered the age- and state-dependent operating cost (Tagaras, 1988; Yeung et 

al., 2008; Xiang, 2013). Yes there exist two substantial differences between our model and the 

previous models. The existing models considered the operating cost associated with the system 

itself, while our model can describe the side effect of degradation process on the other systems or 

environments. In addition, the previous models use discrete Markov chains to characterize the 

evolution of system state, while we employ a continuous stochastic process.   

    The system is subject to a continuous-time degradation process. The Wiener process is used to 

characterise the evolution of the system states. By taking advantage of the independent increment 
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of the Wiener process, we model the CBM policy as a Markov decision process. The system is 

subject to periodic inspections. If the system has not failed at inspection, decision has to be selected 

among three maintenance actions: preventive replacement, repair and wait until the next inspection. 

The system is replaced when its degradation level exceeds a pre-specified threshold at inspection. 

The structural property of the optimal maintenance decision is investigated in depth and a 

monotone control limit policy is shown as the optimal strategy.  

The novelty of this paper lies in the facts  

 that the proposed maintenance model is able to capture the side effect due to system age 

and degradation, and 

 that decisions made based on this model not only consider the economic benefits, but also 

the environmental and societal benefits.  

    We therefore claim that this is the first paper that incorporates side effect of degradation process 

into maintenance policies, which can be applied in various real systems to gain economic and 

societal benefits. 

    The remainder of this paper is organised as follows. Section 2 presents the degradation process 

and replacement model, where the maintenance cost function is derived and the structural 

properties of the optimal maintenance decision are further investigated. Section 3 formulates a 

more detailed maintenance decision with repair and replacement. Section 4 gives a numerical 

example to illustrate the maintenance decision and the associated managerial insights. Finally, 

Section 5 concludes the paper and suggests future research. 

 

2. Degradation process and replacement model formulation 
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    In this section, we develop an optimal replacement policy for a system subjected to the Wiener 

degradation process. The replacement model serves as the foundation for more sophisticated 

maintenance policies, e.g., the repair-replacement policy introduced in the next section.  

2.1 Wiener degradation process     

    It is assumed that the system degrades according to the Wiener degradation process. The general 

form of the Wiener process is presented as  

( ) ( ) ( ) ( )dX t t dt t dB t                                                     (1) 

Taking integral of Eq (1), we have  

  0( ) ( ) ( )X t M t t x   
                                                      (2) 

where 0
( ) ( )

t

M t s ds   and 0
( ) ( ) ( )

t

t s dB s   .  

    Usually, the initial degradation level at installation is 0, 0 0x 
. Further, if the system is assumed 

to go through a stationary Wiener process, which implies that   and   are constant, the 

degradation process is expressed as  

0( ) ( )X t x t B t   
                                                   (3) 

Note that the Wiener process is not monotonously increasing in time t, but its expectation 
 ( )E X t

 

is linearly increasing in t, i.e., 
  0( )E X t x ut 

. The Wiener degradation process exhibits 

identical independent increment properties (Guo et al, 2013; Ye & Xie, 2015). For any time 

sequence 
 , 1,2,...it i 

, the random increments 1( ) ( )i iX t X t 
are independent and follows the 

normal distribution, 
    2

1 1 1( ) ( ) ,i i i i i iX t X t N t t t t     
. 
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    The system is assumed to be failed when its degradation level hits a specific threshold l , 

( )X t l . As the system state is fully revealed by the degradation level, we use the term “system 

state” and “degradation level” interchangeably in this paper.  

 

2.2 Replacement model for system with operating cost 

    We consider the CBM policy in which periodic inspection is dedicated to monitor the 

degradation level of the system. We first consider the replacement model, where only preventive 

replacement is allowed to restore the system to a new state level. A sudden failure occurs when 

the degradation level exceeds the failure threshold l . Correspondingly, corrective replacement is 

carried out immediately to replace the failed system, with the corrective replacement cost fc
. 

During the operation horizon, inspection is implemented periodically. At each inspection time, if 

the degradation level does not exceed the failure threshold, decision has to be made whether or not 

to preventively replace the system or let it be until the next inspection. The decision is made based 

on the current degradation level at inspection. If the system is replaced preventively, a preventive 

replacement cost pc
 is incurred. If one decides to wait until the next inspection, inspection cost ic

 

is paid and the system runs the risk of sudden failure before the next inspection.  It is assumed that 

both preventive maintenance and corrective maintenance restore the system to the as-good-as-new 

state. Apparently, f pc c
, as fc

 includes additional cost due to sudden failures, such as 

production loss and even life hazards.  

    Apart from the aforementioned cost items, another important cost is the operating cost during 

system operation. The operating cost is incurred due to system degradation, which is used to 

represent the efficiency decrement or quality loss. The operating cost depends not only on system 

degradation level but also on system age. This is due to the fact that a more aged system is more 
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likely to exhibit less efficiency and produce products with lower quality, taking a production line 

for example.  

    The system is inspected at equally spaced discrete time epochs, 
 , 2 ,3 ...  

, where   is the 

time unit between two consecutive inspections. At the kth inspection epoch, denote the system 

state as kX
 and system age as k k 

, which is the time since the last maintenance action. At 

each inspection, when the degradation level is detected, the sequence
 , ; 1,2,...kk X k 

 constitutes 

the states of the sequential decision process. We follow the assumption of Elwany et al (2011): if 

the degradation level exceeds the failure threshold between inspections and then returns below the 

threshold at the next inspection, no failure is incurred.  

    The operating cost, ( )G  , is dependent on both the system age and the system state. We assume 

that the operating cost is incurred only after the system age exceeds specific threshold, ck 
, where 

ck
 is a constant. Apparently the operating cost ( , )G t x  exhibits the property that ( , )G t x  is non-

decreasing in system age t  and system state x . The degradation process of the system may 

influence the randomness of the operating cost in a complicated mechanism. Here, for simplicity, 

we assume the operating cost ( , )G t x  as a linear function of the degradation level. ( , )G t x  can be 

denoted as ( , ( )) ( ) ( )G t x t h t x t , where ( ) 0h t  , is a non-decreasing function of t. The assumption 

is reasonable in reality because the operating cost may increase rapidly for an aged or seriously 

degraded system. 

    Denote 
 , kW k X

 as the expected operating cost within one period transition from the kth 

inspection to the (k+1)th inspection. Given the system age and state 
( , )kk X

, 
 , kW k X

can be 

obtained as  
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 
( 1) ( 1)

0
, ( , ( )) ( ( )) ( , ( ))

k k

k
k k

W k X E G t x t dt f x t G t x t dxdt
 

 

    
    

                   (4) 

where ( ( ))f x t  is the probability density function (pdf) of system state at time t. 

Lemma 1. The expected operating cost within one period 
 , kW k X

 is non-decreasing in the 

inspection epoch k and the observed system state kX
. 

The proofs of the lemmas and theorems in this paper are provided in Appendix.  

    The incurred cost has a discounting factor 
re 

 during each inspection interval. Denote ( , )kV k X  

as the infinite-horizon minimal total discounted cost with the initial state
( , )kk X

. The optimality 

decision satisfies the Bellman equation,  

 



   

(0,0)

( , ) min (0,0) ,

, , ,

f k

k p

r r

k k k

c V X l

V k X c V

e U k X e W k X X l  

  



 


                               (5) 

where 
 1( , ) 1, | ( , )k k kU k X E V k X k X     is the expected cost-to-go at the (k+1)th inspection. 

Note that the inspection cost is treated as a separate cost item and not incorporated in Eq (5). The 

optimality equation follows the logic that (a) if the degradation level at the kth inspection exceeds 

the failure threshold l , which implies that the system is failed, then the system has to be replaced 

correctively; (b) if the system still functions, the decision maker can choose either to preventively 

replace the system or to let it be till the next inspection, depending on which is more cost-effective.  

 

2.3 structural properties of the replacement policy 

We are now in a position to investigate the structural properties of the maintenance policy, as 

the structural properties facilitate to develop computationally efficient algorithms. In particular, 

we focus on the control limit policy. A control limit policy implies that the system is kept operating 
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until the observed degradation level exceeds specific threshold (Benyamini & Yechiali, 1999). Fig. 

2 shows the maintenance procedure and the evolvement of system state under control limit policy.  

 

Fig. 2 Sketch of degradation process and maintenance actions 

Some essential properties are presented as follows. 

    Theorem 1. The value function, ( , )kV k X , is non-decreasing in the inspection time k and system 

state kX
. 

    Theorem 2. The optimal maintenance policy that minimises the value function, ( , )kV k X ,  is a 

monotone control limit policy. At decision epoch k, preventive replacement is performed when the 

observed degradation level exceeds the optimal value k . The sequence 
 , 1,2...k k 

 is non-

increasing in k.  

The property of the monotone control limit policy can be incorporated into the optimisation 

algorithm to reduce the computational burden. 
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    In this section, we consider the repair-replacement model, where repair is allowed to restore the 

system, in addition to replacement. Repair can be achieved by technical maintenance operations 

such as oiling and adding more lubricants (Zhang et al, 2015). It is assumed that the repair is 

imperfect, that repair restores the system to a state between as-good-as-new and as-bad-ad-old.  

     At inspection, if the system still functions, three maintenance actions can be implemented: 

preventive replacement, repair, or wait until next inspection. Fig. 3 shows how the system state 

evolves under the repair-replacement strategy. 

 

Fig. 3 Evolvement of system state under the repair-replacement model 

 

3.1 Maintenance decision with controllable repair levels 

    At the decision epoch k with system state x, one can choose to repair the system to a lower level

( , )y k x , where (0, ]y x .  y x  indicates that the system is left as it be. 0 y x   implies that the 

system is restored to a state between as-good-as-new and as-bad-as-old.  

    Denote the repair cost as ( , )C x y . Of course it satisfies ( , ) 0C x y  , for y x . We assume that 

the repair cost ( , )C x y  is increasing in x and decreasing in y, which implies that more resources 

have to be devoted to achieve more improvement of the system state (Özekici, 1995). If the system 
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has failed at inspection, then corrective replacement is carried out. The corrective replacement cost 

( , )fc C x y
, , 0x y  . The difference between repair and replacement (either preventive or 

corrective) is that repair can only restore the system state to a lower level, while replacement is 

able to restore both the system age and state to as-good-as-new condition. In addition, it is assumed 

that 
( , )pc C x y

, , 0x y  . This assumption is reasonable because preventive replacement is 

more effective than repair and therefore incurs higher cost. Otherwise, repair makes no sense.      

    Denote, again, ( , )kV k X  as the value function of the system starting with age k and state kX
. 

The Bellman equation is given as 


    

   

(0,0)

min (0,0) ,

( , )
inf ( , ) , , ,

, , ,

k

f k

p

r rk

k
y X

r r

k k k

c V X l

c V

V k X
C X y e U k y e W k y

e U k X e W k X X l

 

 

 



 

 





 
 


                    (6) 

    Eq (6) implies that (a) if the system has failed at inspection, then corrective replacement is 

implemented; (b) if the system is operating, three maintenance actions can be selected: preventive 

replacement, repair to the optimal level, or wait until the next inspection, depending on which 

gives the minimal cost.  

    Lemma 2. The value function, ( , )kV k X , is non-decreasing in the inspection epoch k and non-

decreasing in kX . 

    The proof of Lemma 2 is analogous to that of Theorem 1. The details are thus omitted. Lemma 

2 implies that the value function increases monotonically with the inspection epoch and system 

state; an increased inspection epoch and system state lead to higher maintenance cost. Based on 

Lemma 2, more results can be concluded, as shown in the following.  
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    Denote 
* ( )k ky X

 as the optimal decision at the kth inspection with the observed state kX
, which 

minimises the total expected discounted cost ( , )kV k X . More results can be obtained if restrictions 

are imposed on the repair cost ( , )C x y . 

    Theorem 3. Suppose ( , ) ( , ) ( , )C x y C x z C z y  , for all x z y  . (1) If the optimal decision 

at inspection is to repair the system, then 
* * *( ( )) ( )y y x y x

 for all 0x  . (2) If 

( , ) ( ) ( )C x y c y c x  , for 0 y x  , where ( )c   is a non-increasing cost, then 
*( )y x

 is non-

decreasing in x.  

    Theorem 3 implies that if repair is the optimal decision, then it is more preferable to repair the 

system directly to state w, rather than repair the system to an intermediate state z ( x z w  ) then 

to state w. If the repair cost can be expressed as the difference of the current value and value after 

repair, the optimal repair level increases with the observed system state. This property can be used 

to reduce computational complexity of a search algorithm. The search interval of the optimal repair 

level 
* ( )ky x

 can be reduced by comparing the observed system state.  

    If the repair cost is only related to the repaired state y and independent of the current state x, we 

can conclude that the optimal maintenance policy between repair and doing nothing is a monotone 

control-limit policy. 

    Corollary 1. Suppose ( , ) ( )C x y c y , for 0 y x  , the optimal decision between repair and to 

do nothing is a control limit policy.  

(1) At the kth inspection, there exists a critical value k , if the observed state k kX 
, then repair 

should be carried out. Otherwise, the system should be left as it is.  

(2) There exist a critical value 
*

kz
, the optimal repair level is 

* *( )k k ky X z
, for all k kl X  

. 

(3) The sequence 
 , 1,2,...k k 

 is decreasing in k. 
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3.2 Maintenance decision with uncontrollable repair levels 

    In the previous analyses, the repair level is assumed to be controllable in the sense that the 

decision maker can determine to what level the system state can be restored to. However, in many 

cases, especially for complex systems, the repair level may be uncontrollable. Maintenance crew 

may try to repair the degraded system as much as possible; yet to which level the system state is 

restored depends on the degraded state before repair. The repair cost rec
 is assumed to be constant, 

independent of the system state. The system state after repair ( )y x  satisfies the following 

properties: (1) 0 ( )y x x  ; (2) '( ) 0y x  , for all (0, )x l . The first property implies that the 

repair is imperfect. The second property indicates that the restored system state increases with the 

current state. In the literature, a great number of models have been established to describe the 

repair effect (Pham & Wang, 1996), among which, the virtual-age reduction model is widely used 

(Doyen & Gaudoin, 2004). Similar to the virtual-age reduction model, we establish a repair model 

where the system state after repair is proportional to the current state. Simply, we have

( ) (1 )y x x  , where   is a constant parameter, denoting the repair effect, (0,1)  . The 

optimal decision starting with the state 
( , )kk X

 is given as   



   

   

(0,0)

min (0,0) ,
( , )

, , ,

, , ,

f k

p

k r r

re

r r

k k k

c V X l

c V
V k X

c e U k y e W k y

e U k X e W k X X l

 

 

 

 

 



 

 


                        (7) 

Lemma 3. The optimal decision between repair and preventive replacement is a control-limit 

type. At the kth inspection, there exists a critical value k , if k kX 
, then preventive replacement 

is preferred; otherwise, repair should be carried out. 
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    Denote 
   ( ) , ,r r

k x e U k x e W k x    
, if 

( )k x
 is convex, it can be concluded that the 

optimal maintenance policy is of control-limit type. 

    Theorem 4. Suppose 
( )k x

 is a convex function, the optimal decision among preventive 

replacement, repair or to do nothing is a control-limit policy. At the kth inspection, the optimal 

decision k  is  
Preventive replacement,

Repair,

Do nothing,

k k

k k k k

k k

if l X

if X

if X



  



 


  
   

where k  and k are two critical values. In addition, the sequence 
 , 1,2,...k k 

and 

 , 1,2,...k k 
are non-increasing in k. 

    Given the monotone property of the maintenance policy, the optimal policy can be obtained by 

many of the existing methods, e.g., value iteration algorithm and policy iteration algorithm 

(Puterman, 2014). Here, we adopt the monotone policy iteration to take advantage of the 

established structural properties. To make the solution feasible, we follow the existing practice to 

discretise the continuous state into finite intervals and use a time horizon long enough to 

approximate the infinite horizon. In particular, we define maxk 
 as the maximum allowable system 

age for some integers maxk  
. maxk

 is set large enough so that the system will fail before maxk 
 

almost certainly.  If the system survives beyond maxk 
, a preventive replacement is carried out to 

restore the system. In addition, the continuous degradation process is discretised so as to reduce 

the state space of the sequential decision process. Details of the monotone policy iteration are 

omitted in this paper, as one can refer to Elwany et al (2011). 
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4. Numerical example  

   In this section, a diesel vehicle is presented to illustrate the maintenance policy. During service, 

the engine of the diesel vehicle is assumed to follow a Wiener degradation process with the drift 

coefficient 1   and diffusion coefficient 1  . With the increase of usage and mileage, the 

engine may consume more diesels and produce more exhaust gas, which is modeled as the age- 

and state-dependent operating cost. Failures occur when the degradation level exceeds the failure 

threshold 6l  . The system is subject to periodic inspection, with the inspection interval 1   and 

the inspection cost 
0.05ic 

. At the kth inspection epoch, if the system functions but its 

degradation level exceeds the control limit threshold, preventive replacement is carried out with 

cost 
4pc 

. If the system has already failed, then corrective replacement is performed with cost 

10fc 
. The incurred cost is discounted with the discounting factor 0.02r  . The total discounted 

inspection cost is calculated separately as 

0

exp( ) 2.52
1 exp( )

i
i i

k

c
U c rk

r








   
 


                                         (8) 

 

4.1 The age- and state-dependent operating cost     

 In the operation horizon, operating cost is incurred due to system aging and degradation. At the 

early stage of service, the engine may produce pollutant gas within certification levels. After 

running ck 
 years, where ck

 is a pre-specified integer, the engine may no longer retain the 

pollutant rate and emit exhaust gas deviating from the standard level. The pollutant rate increases 

with age and degradation level of the engine. However, for an in-service vehicle, exact evaluation 

of exhaust gas emission and engine degradation is difficult to perform since many parameters may 
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play a role (Pillot et al, 2014). Hence, we use a simple model to characterise the operating cost as 

a function of system age and degradation level. The operating cost of the system at age t and 

degradation level x is denoted as 

( )

0,
( , )

,c

c

t k

c

t k
G t x

e x t k
 



 


 

                                                      (9) 

where   and   are known parameters, scaling the effect of age and degradation level on the 

operating cost.  

    According to operating cost formulation, the cumulative operating cost between k  and 1k   is 

denoted as  

1 1 ( )( )
( , ) ( , ) ( )

k k
c

k k

r t k

kQ k X G t x dt e x t dt
 

 

 


   
  

, for k ck 
                            (10) 

    The expected operating cost within the interval 1( , )k k   is given as  
 

    

1

1

( )

( )

( , ) ( , ) ( )
k

c

k

k
c

k

t k

k k

t k

k k k

W k X E Q k X E e x t dt

E e X t B t dt


 




 





    









  
  

     
  




 ,   for k ck 

          (11) 

 

4.2 Optimal replacement policy and sensitivity analysis 

The associated parameters are set as 
4ck 

, 0.2   and 0.05  . We plot the survival 

probability of the degradation process in Fig. 4. As can be observed from Fig 4, when the system 

ages is older than 10, the system will fail with the probability of 0.9. In addition, the system will 

fail with the probability of 0.99 if it is aged over 15.  
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Fig. 4 Survival probability of degradation process 

Fig. 5 plots the optimal maintenance policies with operating cost. It is clearly shown that the 

optimal maintenance policy is a monotone control limit policy, where the control limit shows a 

decreasing trend in system age. Whereas no operating cost is incorporated, as shown between age 

0 and 4, the optimal maintenance policy is reduced to a constant control limit policy. This is due 

to the fact that the system degrades according to a homogeneous stochastic process and the system 

state increases independently after inspection. Compared with CBM policy where no age- and 

state-dependent operating cost is considered, the result shows a more conservative replacement 

threshold. 
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Fig. 5 Optimal control limit policies with operating cost 

To investigate the effectiveness of the monotone control limit policy, we compare the monotone 

control limit policy with the traditional constant control limit policy. Fig. 6 shows how the total 

discounted cost varies under different preventive replacement thresholds. When the control limit 

is set as 3.85, the total discounted cost reaches its minimum 52.62. By comparison, the minimum 

total discount cost under monotone control limit policy is 48.45.  

 

 

Fig. 6 Cost variation of constant control limit policy 
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    We are interested in finding how the optimal control limit policy changes against various cost 

parameters. Sensitivity analysis is therefore conducted to investigate this relationship, as presented 

in Fig. 7 and Fig. 8. When the preventive replacement cost pc
 becomes closer to the corrective 

replacement cost fc
, the optimal control limit policy is more tolerant to system failure. In other 

words, the optimal maintenance policy is less conservative. As shown in Fig. 7, with the increase 

of preventive replacement cost, the optimal control limit k  shows an increasing trend. The result 

is quite straightforward. It is less attractive to preventively replace the system when the preventive 

replacement cost increases. On the other hand, an increased corrective replacement cost fc
 results 

in a more conservative control limit policy, as shown in Fig. 8. As can be observed from Fig. 7 

and Fig. 8, the influence of different fc
 is not so significant as that of pc

. This can be explained 

as that the optimal control limits are far from the failure threshold and sudden failure occurs 

infrequently. Therefore, the corrective replacement cost fc
 has less influence on the optimal 

control limits.  

 

Fig. 7 Sensitivity analysis for pc
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Fig. 8 Sensitivity analysis for fc
 

 

5. Conclusion  

    This paper develops a condition-based maintenance policy for systems with age- and state-

dependent operating cost. The system is subject to a continuous degradation process, characterised 

by a Wiener process with linear drift. The operating cost occurs during system operation, which 

increases with system age and the degradation level. Two models capable of arriving at 

maintenance decisions are developed. One is the replacement model and the other is the repair-

replacement model. The structural properties of the optimal decision are investigated in depth. For 

the replacement model, this paper show that the optimal decision is actually a monotone control 

limit policy. For the repair-replacement model, it shows that, under mild assumptions of the repair 

cost, the optimal decision among preventive replacement, repair and doing nothing is also a 

monotone control limit policy. A numerical example is presented to illustrate the optimal 

maintenance decisions.  

    The proposed model can be applied in various systems. For example, in a power grid, the 

resistance of electric wire increases with the age and degradation level of power line, which 
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consumes more energy when transmitting electricity. The energy loss due to age and degradation 

can be modeled as the age- and state- dependent operating cost, and the proposed maintenance 

model can be used to capture the energy loss during power transmission. 

Future extensions of this study can be conducted with respect to a non-stationary degradation 

process. The Wiener process with linear drift is only available to a limited number of systems, 

which fails to describe a complicated degradation process. Extension to a more general class of 

degradation process will remedy this disadvantage. Additionally, in the current work, we assume 

that inspection can fully reveal the underlying degradation level, which may be relaxed by 

considering imperfect inspection. In the imperfect inspection framework, the maintenance decision 

can be formulated as a partially observable Markov decision process. 

 

Acknowledgement 

    The work was completed while the first author was visiting Shaomin at University of Kent and 

we appreciate the support from City University of Hong Kong and University of Kent that made 

this possible. The work described in this paper was partially supported by a theme-based project 

grant (T32-101/15-R) of University Grants Council, and a Key Project (71532008) supported by 

National Natural Science Foundation of China. 

 

Appendix  

1. Proof of Lemma 1. 

Proof. According to Eq. (4), we have 
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 
( 1)

0

( 1)

0

( 1) ( 1)

, ( ( )) ( , ( ))

( ( )) ( ) ( )

( ) ( )

k

k
k

k

k

k k

k
k k

W k X f x t G t x t dxdt

f x t h t x t dxdt

X h t dt th t dt









 

 


 

 

 





 

 

 

                                      (A1) 

Define 0
( ) ( )

t

H t h u du  , so that '( ) ( ) 0H t h t   and ''( ) '( ) 0H t h t  . As ( ) 0h t  , it can be 

easily observed that 
 , kW k X

 is increasing in kX
. To prove that 

 , kW k X
 is non-decreasing in 

k, we only need to prove that 

( 1)

( )
k

k
h t dt







  and 

( 1)

( )
k

k
th t dt







  are non-decreasing in k.  

Let 

( 1)

( ) ( )
k

k
k h t dt







    and 

( 1)

( ) ( )
k

k
k th t dt







   . We have  

     

( ) ( 1) ( )

( 2) 2 ( 1)

k k k

H k H k H k  

    

    
 

As '( ) ( ) 0H t h t   and ''( ) '( ) 0H t h t  , ( )H t is a convex function in t. The Jensen’s inequality 

(Boyd & Vandenberghe, 2004) states that  

 1 2 1 2( ) (1 ) ( ) (1 )f x f x f x x       
 

for any convex function ( )f   and (0,1) . With the above inequality, we can readily obtain that  

     ( ) ( 2) 2 ( 1) 0k H k H k H k        
   (A2) 

Let ( ) ( )q t t h t  . Clearly ( )q t  is increasing in t and 0
( )

t

q u du  is a convex function in t. Likewise, 

we can have  

( ) ( 1) ( ) 0k k k           (A3) 

Combining Eq. (A2) and Eq. (A3), we have 
 , kW k X

 is non-decreasing in k, which completes 

the proof.  
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2. Proof of Theorem 1. 

    Proof. We prove the theorem by mathematical induction. Denote 
( , )n

kV k X
 as the value 

function at the nth iteration of value iteration policy. At 0n  , we set 
0 ( , )kV k X

=0, which is a 

constant. Assume that the theorem holds for the nth iteration, i.e., 
( , )n

kV k X
 is non-decreasing in 

k and non-decreasing in kX
. Then according to Eq (5), we have 



   

1

(0,0)

( , ) min (0,0) ,

, , ,

n

f k

n n

k p

r n r

k k k

c V X l

V k X c V

e U k X e W k X X l 



 

  



 


   

    Lemma 1 shows that 
 , kW k X

 is non-decreasing in k and kX
. As 

( , )n

kV k X
 is non-decreasing 

in k and non-decreasing in kX
, its expectation, 

 ,n

kU k X
, holds this property as well. Because 

the terms of the right-hand side are non-decreasing in k and non-decreasing in kX
, 

1( , )n

kV k X

 is 

also non-decreasing in k and kX
, which completes the proof.  

 

3. Proof of Theorem 2. 

     Proof. Preventive maintenance is optimal when 
   (0,0) , ,r r

p k kc V e U k X e W k X    
. The 

left-side is a constant. Based on Theorem 1, 
   , ,r r

k ke U k X e W k X  
 is non-decreasing in kX

. 

Thus for any k kX 
, the inequality holds, which implies the monotone control limit policy. On 

the other hand, the term on the right-hand side is non-decreasing in k. Therefore, for the inspection 

epoch k, there exists an optimal replacement age 
k , such that for any 

k k
, the optimal decision 

is to preventively replace the system, which indicates that k  is non-increasing in k.  
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4. Proof of Theorem 3. 

    Proof. (1) As repair is the optimal decision at the kth inspection, we have 

   * * *( , ) ( , ) , ,r rV k x C x y e U k y e W k y    
. If 

*( )y x x
, then obviously. 

If 
*( )y x z x 

, we need to prove that 
*( )y z z

. Suppose not, then 
*( )y z w z 

. Then we have  

   ( , ) ( , ) , ,r rV k x C x z e U k z e W k z    
 < 

   ( , ) , ,r rC x w e U k w e W k w   
       (B1) 

    This inequality holds because 
*( )y x z

 is the optimal repair level, which restores the system 

to state w  and incurs more cost.  In addition, we have  
   

       

( , ) ( , ) , , ( , )

( , ) , , , ,

r r

r r r r

V k w C z w e U k w e W k w V k z

C z z e U k z e W k z e U k z e W k z

 

   

 

   

   

    
               (B2) 

    This inequality holds because repairing the system to state 
*( )y z w

 is more cost-effective than 

to do nothing until the next inspection, according to the assumption . Combining Eq 

(B1) and Eq (B2), we have 

       ( , ) , , , , ( , ) ( , )r r r rC z w e U k z e W k z e U k w e W k w C x w C x z           
       (B3) 

so that we have ( , ) ( , ) ( , )C z w C x z C x w  , which is contradictory to the assumption 

. Hence, it can be concluded that , and .  

   (2) To prove this result, we need to show that 
* *( ) ( )y x u y x 

, for any 0u  . Consider the 

case that repair is the optimal decision at inspection. We can have      

    

    

( , ) inf ( ) ( ) , ,

inf ( ) ( ) , , ,

min
inf ( ) ( ) , ,

r r

y x u

r r

y x

r r

x y x u

V k x u c y c x u e U k y e W k y

c y c x u e U k y e W k y

c y c x u e U k y e W k y

 

 

 

 

 

 



 

  

     

    
 

  
    

   

If
*( )y x u x 

, then  

* * *( ( )) ( )y y x y x

*( )y z w z 

( , ) ( , ) ( , )C x y C x z C z y  *( )y z z * * *( ( )) ( )y y x y x
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    ( , ) inf ( ) , , ( )r r

y x
V k x u c y e U k y e W k y c x u  


     

 

In addition, we have 

    ( , ) inf ( ) , , ( )r r

y x
V k x c y e U k y e W k y c x  


   

 

Combine the above two expressions, it can be readily obtained that 
* *( ) ( )y x u y x 

, for 

*( )y x u x 
.  

If 
*( )x y x u x u   

, then obviously, 
* *( ) ( )y x u y x 

, as 
* *( ) ( )y x u x y x  

. Therefore, 

*( )y x
 is non-decreasing in x, for all 0 y x  .  

 

5. Proof of Corollary 1. 

    Proof.  (1) If preventive replacement is not a preferable option, we can have  
    

   

min inf ( ) , , ,
( , )

, ,

k

r r

y X
k

r r

k k

c y e U k y e W k y
V k X

e U k X e W k X

 

 

 



 


 

 
 
                             (C1) 

    inf ( ) , ,
k

r r

y X
c y e U k y e W k y  


 

 is non-increasing in kX
 because the interval 

(0, )kX

becomes wider, which relaxes the constraints of y. On the other hand, 

   , ,r r

k ke U k X e W k X  
 is increasing in kX

, as shown in Theorem 1. Thus, the minimum of 

the two functions has to satisfy 
    

   

inf ( ) , , ,
( , )

, , ,

k

r r

k k
y X

k
r r

k k k k

c y e U k y e W k y if X
V k X

e U k X e W k X if X

 

 





 



 

   


 
               (C2) 

where 
         inf 0 : inf ( ) , , , ,

k

r r r r

k k k k
y X

X c y e U k y e W k y e U k X e W k X       


     

, 

denotes the earliest time when repair is implemented.  
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    (2) If k kX 
, we can easily have 

*

k ky X
, implying that no repair is carried out if k kX 

. 

On the other hand, if k kX 
, then 

    ( , ) inf ( ) , ,
k

r r

k
y X

V k X c y e U k y e W k y  


  

 according 

to Eq (C2). Because 
    inf ( ) , ,

k

r r

y X
c y e U k y e W k y  


 

 is decreasing in 
[ , )k kX  

 while 

( , )kV k X
 is increasing in kX

, the only way they are equal is that 
( , )kV k X

is a constant; 
( , )kV k X

=
( , )kV k 

 for all 
[ , )k kX  

. Therefore, we can conclude if 
* *( )k ky z 

, then 
* *( )k k ky X z

, for 

all 
[ , )k kX  

. 

    (3) The proof is analogous to Theorem 2. The details are not shown here to avoid repetition.  

 

6. Proof of Lemma 3 

    Proof. According to the assumption, the restored system state y increases with the current state 

kX
. Meanwhile, both 

 ,U k y
 and 

 ,W k y
 are non-decreasing in y. Therefore, it can be 

concluded that 
 , ( )kU k y X

 and 
 , ( )kW k y X

 are non-decreasing in kX
. On the other hand, 

(0,0)pc V
 is independent of kX

. Thus, there exists a critical value k , such that

   ( ) , , (0,0)r r

k pC X e U k y e W k y c V     
, for k kX 

.  

 

    7. Proof of Theorem 4. 

     Proof. Lemma 3 shows that preventive replacement is preferred over repair for k kX 
. Next, 

we need to prove that repair is preferred over doing nothing for k k kX  
. Let 

 ( ) ( ) ( )k re k kx c y x x    
. We have 

' ( ) ' ( ) '( ) ' ( )k k kx y y x x   
. According to the 

assumption that 
( )k x

is a convex function, 
' ( )k x

 increases in x. As the repaired system state
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y x , we can have 
' ( ) 0k x 

, which implies that 
( )k x

 decreases in x . Because 

(0) 0k rec  
, and

( ) 0k x 
, for x  . Hence, we can conclude that there exists a critical 

value k , repair is preferred over doing nothing for k k kX  
. As all the right-hand items of 

Eq (8) increase with k, we can conclude that the sequence 
 , 1,2,...k k 

and 
 , 1,2,...k k 

are 

non-increasing in k.  
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