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Highlights 

 A mixed method approach supports decision making for offshore wind farm installation. 

 An optimisation tool identifies the optimal sequencing of installation operations. 

 A simulation tool identifies robust start-dates with respect to seasonality. 

 A case study installation is investigated to demonstrate this mixed method approach. 
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Abstract 

With a typical investment in excess of £100 million for each project, the installation phase of 

offshore wind farms (OWFs) is an area where substantial cost-reductions can be achieved; however, 

to-date there have been relatively few studies exploring this. In this paper, we develop a mixed-

method framework which exploits the complementary strengths of two decision-support methods: 

discrete-event simulation and robust optimisation. The simulation component allows developers to 

estimate the impact of user-defined asset selections on the likely cost and duration of the full or 

partial completion of the installation process. The optimisation component provides developers with 

an installation schedule that is robust to changes in operation durations due to weather 

uncertainties. The combined framework provides a decision-support tool which enhances the 

individual capability of both models by feedback channels between the two, and provides a 

mechanism to address current OWF installation projects. The combined framework, verified and 

validated by external experts, was applied to an installation case study to illustrate the application of 

the combined approach. An installation schedule was identified which accounted for seasonal 

uncertainties and optimised the ordering of activities. 

Keywords: OR in Energy; mixed methods; action research; offshore wind farms; installation logistics 
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1. Introduction 

Offshore wind farms (OWFs) in Europe are progressing towards larger sites further offshore in 

deeper water, as typified by the UK round 3 sites which are to be developed over the coming years 

(Renewable UK 2014). These sites will typically consist of 100-400 turbines and will be located up to 

190 km from shore in water depths up to 55 m (Renewable UK 2014), and the installation of these 

sites will typically span several years.  Information on expected costs of installation is sparse for 

these larger sites but for existing smaller sites closer to shore, costs are typically upwards of £100 

million (Kaiser and Synder, 2010). In comparison with existing OWF, these new sites are typically 

increased distances from shore with larger turbines that lead to increased periods of installation 

spanning several years (Renewable UK 2014).  Improved management of installation logistics was 

identified as offering substantial cost-reductions to the lifetime cost of an OWF (Offshore Wind Cost 

Reduction Task Force 2012, European Wind Energy Technical Platform 2014). Deeper water on-site 

will add to the increases in operational durations, and will increase the complexity of the offshore 

operations and sensitivity to weather conditions in comparison with coastal installations. As these 

sites will be exposed to harsher weather conditions, the combination of more weather-sensitive 

installation operations carried out over a longer time period increases the uncertainty in predictions 

of cost and duration for the installation. One mechanism for achieving the desired cost-reductions is 

to pursue the most cost-effective logistical decisions, and these can be identified by improving the 

understanding of how cost and duration are affected by logistical decisions during the installation. 

Several studies present applications of decision support to OWF installations. Scholz-Reiter et al. 

(2010) and Ait-Alla et al. (2013) look at short-term vessel planning for the installation of an offshore 

wind farm. Mixed-integer linear programming models are employed to identify the optimal 

configuration of vessel schedules to minimise installation duration and cost, respectively. Weather 

data are represented in categorical states and supplied to the models as deterministic inputs. In 

Lutjen and Karimi (2012), a two-level discrete event simulation which couples a port inventory 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4 
 

control system with a reactive scheduling component is used to determine the effect that different 

levels of inventory have on the progress of the installation.  Appropriate vessel loads and operations 

are determined using forecast weather conditions with five categorical weather states considered. 

Each of these studies demonstrates the application of the respective decision support tools to small-

scale OWF installations, and in practice these tools would struggle to cope with the demands of a 

realistic OWF installation problem. Lange et al. (2012) present a simulation tool which models the 

construction of an OWF from the manufacturing of components through to final installation, 

providing a high-level view of the entire installation process. Key stages in the manufacture and 

supply network which could lead to bottlenecks can be identified; however, the wide scope of this 

tool necessitates a relatively simplistic model of the offshore installation operations. Stempinski et 

al. (2014) consider the scheduling of installation operations for tripods for turbine foundations. They 

present two simulation methods: one method utilises a probabilistic assessment of weather 

downtime to generate the schedule, the second method employs a discrete-event simulation with 

historical weather time-series. In each case weather limits for the offshore installation operation are 

obtained using a numerical simulation of this process. This tool considers the installation of a single 

category of asset using a single installation vessel, and it is unclear how this tool could handle the full 

complexity of an OWF installation schedule. 

In a more general context, decision support models have been developed for various other types of 

offshore installation projects. For example, Morandeau et al. (2012) present a tool designed to 

support installation operations for marine energy sites. This tool employs summary statistics to 

simulate the expected impact of weather on the installation, and the tool is applied to the 

installation of an array of 10 tidal turbines. Li et al. (2014) describe the application of an agent-based 

simulation model to evaluate scheduling decisions for the installation of an offshore oil and gas 

platform. Iyer and Grossman (1998) present a mixed-integer linear programming model for the 

planning and scheduling of offshore oil field facilities, including platform installations. Shyshou et al. 

(2010) employ a discrete-event simulation to model the impact of spot-rates and vessel allocations 
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on the total vessel hiring costs in a fleet-sizing problem arising in the scheduling of anchor-handling 

vessels supporting offshore oil and gas drilling operations. 

During the planning and assessment stage of an OWF project, a consortium of utilities, vessel 

operators, installers and original equipment manufacturers work collaboratively to identify an 

installation strategy that will minimise the cost and duration of the installation project.  An 

installation strategy will include decisions such as the selection and use of installation vessels, the 

selection and use of ports, and the scheduling of the installation operation, such as when to begin an 

installation project and when to begin certain tasks.  To do this, the consortium uses their individual 

expertise to identify potential bottlenecks, trade-off vessel characteristics and assess the impact of 

different decisions.  These decisions are typically taken after a mixture of qualitative and 

quantitative analysis and to date lack any form of rigour or evaluation.  

In order to address the challenges of larger installation projects and increasing uncertainties, two 

models have been developed in a collaborative project between industry experts and academics to 

support logistical decision making at the planning or bidding stage of an OWF installation. These 

models have been presented previously by the authors (Barlow et al. (2014c, 2015); Tezcaner Öztürk 

et al. (2016)).  Action research (Lewin, 1946) was the chosen methodology to ensure the models 

developed were grounded in the challenges facing the OWF developers. Action research is a 

research methodology whereby theory informs practice and practice helps to subsequently refine 

and develop more theoretical developments (Winter and Burroughs, 1989).  

Barlow et al. (2014c, 2015) developed a simulation model which enables a detailed understanding of 

the cost and duration of an installation scenario to be obtained. This allows alternative logistical 

decisions to be evaluated and compared, so that a realistic understanding of good practice on a 

given OWF site can be developed and pursued. Tezcaner Öztürk et al. (2016) developed an 

optimisation model identifying installation schedules that are robust against weather uncertainties. 

The model provides a worst-case upper bound on the project duration determining an installation 
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schedule by assigning the task durations. Both models are capable of handling realistic large-scale 

installation projects. 

The contribution of this paper is to integrate these modelling approaches to yield a mixed-method 

framework and decision support tool that improves logistical decision-making at the planning stage 

of an OWF installation. This framework exploits the complementary strengths of each technique: the 

simulation model provides accurate scenario evaluations, enabling the most favourable time of the 

year to start operations to be identified, and the optimisation model identifies optimal task 

schedules that are robust to weather disruptions. Using the models in combination has provided 

OWF developers with a mechanism to obtain a realistic understanding of the impact of uncertain 

weather conditions, and to identify appropriate logistical installation decisions. The remainder of 

this paper is structured as follows: Section 2 introduces the OWF installation model used, Section 3 

introduces the simulation and optimisation models, and presents the mixed-method framework, 

Section 4 describes the application to a case study OWF installation, Section 5 describes the 

verification and validation steps undertaken by one of the industry collaborators, and Section 6 

concludes the research. 

2. Logical model of an offshore wind farm installation 

This paper employs the OWF installation model presented in Barlow et al. (2014c, 2015), and 

additional technical information on this model is provided in these references. The model considers 

the installation of the key offshore assets for generation and export: wind turbine generators 

(WTGs) and their subsea foundations, offshore substation platforms (OSPs) that collect and convert 

the generated power prior to transmission to shore, the subsea OSP foundations, the inter-array 

cables that connect the WTGs to the OSPs, and the export cables that carry the generated power 

from the OSP to shore. In the remainder of this paper we will refer to these collectively as the assets. 

Figure 1 shows part of the Sheringham Shoal OWF located off the South East coast of the UK, with 80 
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m tall 3.6 MW WTGs and two 1000 t OSPs. This OWF is smaller in scale and more coastal than the 

current phase of OWF developments, and had installation costs of approximately £1.1 bn. 

 

Figure 1: Wind turbines and offshore substation platforms at the Sheringham Shoal wind farm. 

©NHD-INFO/CC-BY-2.0 

This installation model was developed in collaboration with industry partners spanning multiple 

interviews, workshops and validation sessions. The model captures the operations required to install 

each asset and the relationships between these operations in terms of precedence and sequencing. 

The model is designed to support logistical decisions related to the installation vessels and the ports 

which these use. These decision include, but are not limited to: which ports should be used for the  

loading of each type of asset, whether or not aspects of a particular port should be developed (for 

example, increasing the capacity of the port or improving the crane facilities), the number of vessels 

which are used to install each type of asset, the specific vessels which are chosen to install each type 

of asset and the benefits of choosing one vessel over another, if a single vessel should be used to 

install more than one type of asset, whether installation vessels are self-supplying or supported by 

supply barges and the number of supply barges used, whether vessels should operate over winter 

months or not, and the scheduling of start-dates for every set of installation tasks.  
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A high-level overview of the installation model is shown in Figure 2. This figure shows the overall 

sequence in which operations are carried out during an installation project; for example, the 

installation of OSP foundations will start before and finish before the start and finish dates,  

 

Figure 2: High-level schematic of the offshore wind farm installation process (Barlow et al. 2014c) 

respectively, for the installation of OSP topsides. Operations are shown as subroutines to indicate 

that these consist of multiple operations. For example, the installation of OSP foundations will 

consist of a series of operations which must be completed on an OSP, and this series of operations 

must then be completed on each OSP. The operations carried out on a single OSP are carried out in 

series, whereas operations between different OSPs can be completed in parallel where there is 

sufficient resource for this (such as multiple installation vessels being available and suitable for use). 

A similar discussion can be presented for each subroutine. At each turbine location on-site, a turbine 

foundation is installed first, followed by laying of the inter-array cables with connection at the 
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foundation structures, followed by the installation of the WTG. Where there is sufficient resource, 

this sequence of operations at the turbine can be completed in parallel at different turbine locations. 

At each OSP location, the OSP foundations must be completed prior to connection with the export 

cables;  

 
 

(a) (b) 

Figure 3: Jack-up installation vessel (a) in transit in jacked-down position (©Ross/CC-BY-SA-2.0) and 

(b) on-site in jacked-up position (©Ian Simons/CC-BY-SA-2.0) 

however, it is possible that preparatory operations on the export cable paths will begin first due to 

the time required for these, and the OSP installation will then begin after a suitable time-lag. The 

OSP foundations are also installed prior to pull-in of the inter-array cables. With sufficient resource, 

this sequence of operations can be completed in parallel at different OSP locations.   

Each asset is considered from delivery to the port used to load the installation vessels until 

installation is complete. Multiple installation vessels can be used for the installation of each category 

of asset, and installation can be supported by supply barges for some assets. Operations are grouped 

practically, with groupings representative of the series of tasks which must be completed in the 

same weather window in practice. Tasks such as the installation of the WTG components, jacking 

operations, release of sea-fastenings and cranes, lowering and retrieval of pile templates and cable 

pull-ins and jointing works can each be included as appropriate. Following mobilisation, each 

installation vessel loads-out the number of WTGs to be carried and transits to site. The vessel 
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proceeds with installations until the cargo is empty, at which point it returns to port and reloads as 

appropriate. Specialised jack-up vessels are utilised for the installation of WTGs as shown in Figure 3; 

these vessels employ retractable legs which raise the vessel above the sea-surface and provide a 

stable platform to complete the installation operations. Additionally, the supporting operations for 

WTG installation are shown in Figure 4, which  

 

Figure 4: Flowchart depicting the scheduling of tasks during the installation of WTG 
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provides a high-level view of the model structure for the installation of WTGs. Operations displayed 

as sub-processes indicate that the operation is applied to all WTGs, and the sequencing shown in 

Figure 4 applies to a single WTG. Onshore assembly of turbines is carried out prior to loading onto an 

installation vessel, with the degree of assembly largely driven by the turbine manufacturers. The 

degree of onshore assembly will dictate the number and complexity of offshore operations, and any 

combinations of these onshore and offshore operations can be supported by the model. Once the 

WTG is installed a number of supporting operations are required prior to the activation of the 

turbine. Mechanical and electrical completion operations complete the installation, followed by 

commissioning of the WTG. Once commissioned, final testing and acceptance are carried out, after 

which the turbine can be activated and begin to generate power as required.  

The general structure of the model for each asset installation is similar to that shown in Figure 4, 

with the main differences arising in the modelling of the on-site offshore installation operations. 

Figure 2 indicates the support operations which are required with the installation of the other key 

assets. These include boulder clearance, pre-lay surveys and trenching of cable paths, post-lay cable 

burial, mechanical and electrical completion operations on OSPs, grouting of foundations and the 

commissioning of various assets. 

Each operation modelled is described in terms of the operational limits and the required duration to 

complete the operation. Factors such as contingency time required for each operation and random 

vessel failures can also be considered. A large number of operational decisions can be defined, which 

provide the flexibility to model many real-world installation scenarios. Pile-driven jacket foundations 

can be installed through a pre- or post-piling approach, each support operation for the cable laying 

can be included as required for a given set of site conditions, and various decisions dictate the use of 

supply barges where appropriate. There are typically up to two OSPs on a given wind farm, and 

these assets are substantially heavier than other assets installed above sea-level. As such, OSPS are 

typically installed using highly sought after and expensive vessels from the oil and gas industry 
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equipped with suitable cranes for lifting. Due to these factors, the installation of OSPs can follow a 

larger number of installation scenarios than is typical of other assets. For example, a single vessel 

may fully install each OSP in turn, or may partially complete the installation of each OSP, before 

returning to each OSP to complete the installation. Some of these decisions are investigated in 

Barlow et al. (2014b). 

 

3. Mixed-method offshore wind farm installation logistics framework 

As the problem was being structured, different methodologies to model the installation project were 

considered. Two models emerged as potential candidates for development; discrete event 

simulation and optimisation, however both have different strengths and weaknesses with regard to 

the scheduling of OWF installation logistics. A simulation model would be capable of providing a 

realistic assessment of the duration of installation operations subject to uncertain weather 

conditions; however, a large number of simulation runs (for example 1000 simulations) may be 

required to ensure that robust estimates on the durations can be obtained. The computing time to 

evaluate a single installation scenario could therefore be in the order of hours, and investigating 

many installation scenarios could become infeasible. 

Alternatively, an optimisation model could comfortably explore large decision-spaces to identify the 

optimal scheduling of operations; however, each operation duration is defined as a specific value 

within its range by a robust model. The result is that the assigned durations may not be 

representative of their actual durations, so that schedules may be insensitive to seasonality, and the 

benefits of operating during months with more favourable weather conditions cannot be exploited. 

Instead of developing a single model or two models in isolation, a mixed-methods approach was 

adopted where the complementary strengths of the simulation and optimisation models were 

combined (see Clausen et al. (2012) and Glover et al (1996) for examples of simulation and 
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optimisation mixed method approaches).  A simulation model was developed in order to explore the 

impact of starting operations at different months throughout the year. This would enable the 

seasonality of the weather conditions to be fully considered in an installation schedule, and with a 

relatively focused decision problem computing times would not be overly restrictive. An 

optimisation model was developed to identify the optimal scheduling of operations from this 

starting-point, with full exploration of the potential start-times for each set of operations possible; a 

task that would be infeasible using the simulation model alone.  The output of the optimisation 

model would then be used by the simulation model to model the overall uncertainty and cost of the 

installation project using a more detailed weather model.  Both models were developed in Matlab, 

and run off an Excel interface for user inputs. The remainder of this section describes the two 

models.  

3.1. Offshore wind farm installation logistics simulation model  

The simulation model employs a synthetic weather time-series model to provide a realistic 

estimation of how the installation operations will progress. A fuller description of the weather model 

employed here is provided in Dinwoodie and McMillan (2014), in which the weather model is used 

to analyse the effectiveness of maintenance operations for an OWF; however, the model is 

summarised here for clarity. Synthetic weather time-series are generated from statistical analysis of 

hindcast (historical) weather data sets. The method used here to generate synthetic weather time-

series is a correlated autoregression model. Autoregression identifies the underlying trends as a 

data-set changes over time, and exploits these trends to predict future behaviour of the data-set. An 

autoregression model expresses a given data-point as a linear combination of the previous data-

points. The general form of an autoregressive model of data-set   at time-step   is 

      ∑            
 
       , (1) 
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where   is the mean of the data-set,    is a random variation influencing the  th data-point,    is a 

multiplicative factor acting on the  th data-point before   , and   is the order of the model. The 

extent of the dependency of a data-point on previous data-points is controlled by the model order   

and the multiplicative factors        
 

; these define how far back in time has an influence on the 

current data-point and the extent of this influence. The existing hindcast data-set is analysed to 

define the extent of the dependency on previous data-points such that the closest fit to the existing 

data-set is produced. Future data-points are then generated iteratively using the same dependency 

relationships. 

The weather properties included here are significant wave height and wind speed. As discussed in 

Dinwoodie and McMillan (2014), wind and wave time series require pre-processing such that the 

mean and variance are stationary and the data approximates a normal distribution prior to the 

application of autoregressive modelling. Equation (1) can then be applied to the transformed wind 

and wave time-series to generate synthetic hourly weather series. Correlations between the wind 

and wave data can be incorporated by correlating the random variations,   , at each time-step 

across both time-series. 

The variability of the historical data-set influences the degree of uncertainty surrounding the 

accuracy of predicted conditions. Consistently stable weather conditions can be predicted with a 

relatively high level of certainty, whereas the accuracy for a prediction of highly transient weather 

conditions is more uncertain.  Each synthetic weather series generated through the autoregression 

model is one prediction of future weather conditions at a particular location, and by taking many 

predictions an accurate representation of the uncertainty associated with the predictions can be 

obtained. The weather model is coupled with the logical installation model described in Section 2 in 

the framework of a discrete-event simulation model. Discrete-event simulation is a widely used OR 

technique for the analysis of complex systems. Recent examples of applications of discrete-event 

simulation to dynamic systems in a renewable energy context include: managing electric vehicle 
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charging (Palensky et al. 2013, Darabi and Ferdowsi 2013), design and analysis of wood pellet supply 

chains (Mobini et al. 2013), design and analysis of the supply chain for biocrude production (Eksioglu 

et al. 2013), evaluation and management of smart grids (Al-Agtash 2013, Brown and Khan 2013), 

scheduling and control of distribution circuits with photo-voltaic generators (Jung et al. 2015), and 

operation and maintenance of OWFs (Endrerud and Liyanage 2014, Dinwoodie and McMillan 2014). 

The discrete-event simulation model is a multi-threaded implementation, where each thread can 

operate in parallel to other threads subject to specific logical constraints. The threads represent each 

installation vessel, supply barge and support operation, and the constraints in each case are defined 

by the logical installation model. Each thread maintains a clock which records the time transpired 

since the global start of the installation project. The state of the model represents the current clock 

for each thread, the current progress of the installation for each WTG, OSP, and cable, the location 

of each vessel and barge (in-port or on-site), and the current number of assets carried by each vessel 

and barge. Events are characterised as pre-installation support operations, in-port installation vessel 

or barge operations, on-site installation vessel or barge operations, and post-installation support 

operations, and each event results in some change to the state of the model. The first stage of the 

simulation completes all pre-installation support operations for all assets, as these can be grouped 

according to asset-type and each group is then completed independently. The main loop of the 

simulation maintains a priority queue of the threads associated with installation vessels and barges, 

where the level of priority is determined from the time of the thread clock and the satisfaction of 

various constraints to ensure the logical structure of the installation model is adhered to.  

Furthermore, priority is given to earlier operations in the sequence displayed in Figure 2 and 

installation vessels are prioritised over supply barges, in order to reduce the computational burden 

of processing constraint violations. The selection of each thread within the main simulation loop 

triggers a sequence of events, with the particular sequence dependent on the selected vessel or 

barge and the associated type of asset, its current location and current cargo. Upon the completion 
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of events characterised as on-site operations, a sequence of post-installation operations are 

triggered, dependent on the type of asset in question. 

For a given installation scenario, the simulation model estimates the progress of the installation 

under each synthetic realisation of weather conditions through the discrete-event simulation model. 

Metrics such as task durations, costs, progression and delays can be recorded for each simulation, 

and the value recorded in each case will be dependent on the sensitivity of the metric to the 

weather conditions and to the severity of weather conditions in the particular synthetic time series. 

Repeating this process builds an uncertainty distribution for each metric, and by doing this across 

many synthetic weather series an accurate representation of the expected impact of the uncertain 

weather conditions is obtained. Figure 6 from the case study in Section 4 provides a typical example 

of the uncertainty distributions for a particular metric; the metric in this case is the duration of use 

for the WTG installation vessels, and each box-plot in Figure 6 shows the uncertainty distribution for 

this metric for a particular start-date of operations. 

The number of simulations used will therefore have a substantial impact on the accuracy of the 

uncertainty distribution for each metric, and should be chosen to be sufficiently large so that an 

acceptable level of accuracy is obtained. The process for ensuring the accuracy of the uncertainty 

distribution for a given metric is discussed further in Barlow et al. (2014c). For example, for the case 

study investigations presented in Section 4.1 the number of simulations is set to 1000.  

In addition to historical weather data covering a suitable time-period, the simulation model requires 

input data on the various vessels utilised during the installation. In particular, the capability of each 

vessel to perform its designated tasks is required, including the operational weather and daylight 

limitations for each task and the associated durations, which may be uncertain. Additional 

information on the size and location of the site and all ports used is required. The nature of the 

model enables a detailed breakdown of the simulated installation scenario to be produced, with 

costs, durations, operational and weather delays, and progress/rate of operations each provided at a 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17 
 

site-level as well as per category of asset. Standard industry measures such as the 50th percentile and 

the 90th percentile can be recorded for each output; however, these outputs are recorded for every 

simulation so that a more complete understanding of the variation of each output is also provided. 

This simulation model can therefore be utilised to explore the impact of a wide variety of logistical 

decisions on the OWF installation. Considerations such as the number of vessels or barges used for 

each type of asset installation, the operational capability of the vessels and barges, the impact of the 

ports selected for use, and the scheduling of the various stages to the installation, can each be 

explored in detail and validated. Section 4 demonstrates the application of this model to the 

scheduling of multiple operations, and the model has been employed previously to explore the 

impact on the installation duration and costs of: the operational characteristics of the installation 

vessels (Barlow et al. 2014a), the use of the installation vessels and the selected installation strategy 

(Barlow et al. 2014b), the size and composition of the installation vessel fleet (Barlow et al. 2014c), 

and technological and operational advances to the installation process (Barlow et al. 2015). 

3.2 Offshore wind farm installation logistics optimisation model  

Developing a schedule for the installation operations of an OWF will identify crucial aspects of the 

installation, including the expected progress of the installation, when critical operations are 

expected to start, when vessels are required, and when the installation of each type of asset begins.  

Key logistical installation decisions can then be supported, for example organising the delivery of 

assets to ports, determining the vessel hiring dates and durations, and estimating the time interval 

to hire crew for support installation operations. To correctly inform these decisions, the planned 

baseline schedule should accurately represent the actual (observed) schedule. The installation of 

large-scale OWFs is a long term process, during which many disruptions to the planned baseline 

schedule can be expected. For example, the task durations may be longer or shorter depending on 

the weather conditions and crew capability, assets may arrive at port later than expected, or vessels 
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may become unavailable due to breakdowns, leading to delays in the tasks assigned to that vessel. A 

realistic baseline schedule must therefore account for these unexpected disruptions.  

There are many studies that incorporate uncertainty in creating baseline schedules based on 

optimisation techniques; see Herroelen and Leus (2005) for a comprehensive survey. In this study, 

we employ robust optimisation techniques to find the estimated task start times which minimise the 

total project duration, subject to uncertain task durations. The resulting baseline schedule provides 

an upper bound on the total project duration. To create this baseline schedule, we first determine 

which tasks are assigned to each vessel, followed by the resulting durations and precedence 

relations between the tasks. Our solution approach is thus composed of two stages: the first stage is 

the initialization stage for the robust baseline schedule, in which we assign to each vessel the tasks 

required to complete the installation; the second stage finds the robust baseline schedule solving an 

optimisation model. The details of the first and second stages are explained in Sections 3.2.1 and 

3.2.2, respectively. 

3.2.1 Asset-vessel assignment algorithm 

We develop an asset-vessel assignment algorithm to decide which tasks are performed by each 

vessel, given the vessel and asset configuration of the OWF. The planner selects the vessels to be 

used to install each type of asset, and the installation order of the assets in each case. The algorithm 

then assigns assets to the appropriate vessels based on the asset installation order.  With all assets 

assigned, we structure the complete set of tasks to be performed by each vessel.  

Consider, for example, an OWF with 100 turbines and two installation vessels with capacities of four 

turbines each. The first asset to be installed is assigned to the vessel which can complete this 

installation at the earliest time. We then update that vessel’s expected installation finish time to 

account for all tasks required to install the first asset. The second asset to be installed is now 

assigned to the vessel which can complete this installation at the earliest time. Continuing in this 
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fashion until all assets are assigned to vessels, we structure all tasks performed by each vessel, the 

precedence relations between tasks, and the task durations. In this example, the first three tasks are 

mobilisation, loading of four turbines, and transiting to site. The mobilisation task precedes the 

loading task, consisting of four turbines being loaded, which precedes the transiting task.  

The steps of the asset-vessel assignment algorithm are given below.   

Step 1. Find assets that are not yet assigned to any vessel. 

Step 2. Find the expected time to complete installation of the next asset for each vessel, considering 

all tasks that have been assigned in each case. 

Step 3. Assign the next asset to be installed to the vessel that has the shortest installation finish 

time. If all assets are assigned to a vessel, terminate the algorithm. Otherwise go to Step 2.  

The detailed calculations for the installation finish times are given in Tezcaner Öztürk et al. (2016).  

3.2.2 Generating a robust schedule 

The second stage of our approach generates the baseline schedule for all tasks of the installation by 

utilizing robust optimisation methods. In their seminal paper, Bertsimas and Sim (2004) developed a 

robust model allowing a subset of constants, which are subject to uncertainty, change their values 

within an interval defined by minimum and maximum values. In a project scheduling context, 

Minoux (2009) solves program evaluation and review technique (PERT) scheduling problem with a 

two-stage robust linear programming model based on the approach developed by Bertsimas and Sim 

(2004). They consider only precedence relations between tasks as constraints. Our method is also 

based on Bertsimas and Sim (2004) approach, but we consider a more general case. For the OWF 

installation problem, we schedule a large number of tasks subject to three constraint sets: 

precedence relations, task ready times, and task deadlines. A precedence relation constraint is 

included if one task should be finished before another task can begin. An example is the installation 
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task of a turbine that can start only if the asset is transported to the site, the installation vessel is 

present at the installation site and is idle, and the inter-array cable(s) for that turbine is (are) 

installed. These make three predecessor tasks for the installation task of this turbine. We should 

note that, in the meantime, installation of other turbines can be ongoing, and their installations do 

not affect the installation of other turbines. If some vessels begin operating after the start date of 

the project, or some operations cannot start before a specific date, we set ready times for the tasks 

of these vessels and operations. The ready times are conceptually different than the precedence 

relations between tasks, such that they determine the start time of the first task of a vessel. The 

ready times are user-defined parameters and they depend on the contracts for the vessels and ports 

rather than the progress of the installation operations.   

A developer may commit to begin generation before the whole installation finishes, which is 

commonly agreed as a percentage of generating capacity available from an export generation date. 

We refer to these export generation dates as task deadlines. The model decides on the start times of 

the tasks to minimise the total duration of the installation project, subject to all constraints.  

The mathematical programming model we develop has two levels. The inner level aims to find an 

overall schedule that minimises the total project duration with deterministic task durations. The 

outer level determines the sensitivity of the project duration to variations in durations of different 

tasks, and thus identifies which task variations have the greatest impact on the project duration. We 

combine both levels in a single mathematical programming model and solve them simultaneously.  

Let   denote the set of tasks,       be the set of tasks with deadlines, and      be the set of 

tasks with ready times. We introduce two dummy tasks to the task set: initial task 0 and the final 

task  . Let the set    include all tasks pairs       for which task     precedes task          

denote the deadline of task           denote the ready time of task       and    denote the 

duration of task      We include all tasks without an immediate predecessor to    and if they do 

not have ready times, we set their ready times to 0. We add        to    for tasks       and       
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to    for tasks     that do not have any successor task. We assume    [             ]  where 

       is the nominal value (under no deviation) and                     , with        defining the 

range of duration values for task  . The model decides on the start times      of each task    and 

minimises   , i.e., the start time of the final task.       is a parameter representing the maximum 

number of tasks whose duration can deviate within their interval, and    denotes the extent to 

which the duration of task   deviates.  

  

Maximise                 Minimise       

∑                                                   ,       (2) 

                                                    (3) 

                                                         (4) 

                     (5) 

The inner model finds an optimal schedule for a set of tasks by setting the task start times, the 

decision variables    for    , that minimise the total duration of the project. The task durations are 

taken as                     Constraint (2) ensures that if task   precedes task    task   cannot 

start before task   is completed. If task   has a deadline, constraint (3) ensures that task   should be 

completed before its deadline. Similarly, if task   has a ready time, constraint (4) ensures that task   

cannot start before its ready time. Since task 0 is the initial task and all other tasks are preceded by 

it, setting the start time of this task greater than zero is enough in constraint (5). The outer model 

finds the maximum total duration of the project if   task durations are assumed to take values 

within their interval. The outer model decides on the values of        to obtain the highest 

possible increment in the total duration of the project. We remark that intermediate task 

completions are not necessarily estimated for their individual worst case scenarios in such a 

schedule, as only the total project duration is evaluated for its worst case, however, such completion 

times still provide an estimate to the user. The two models can be combined in a single-stage 
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optimisation model by dualising the inner model. Since the   ’s are parameters to the inner model 

but decision variables for the overall model, we have the multiplication of two decision variables in 

the objective function of the combined model; the    variables and the dual variables corresponding 

to constraints (2) and (3). We linearize the resulting nonlinear model using additional binary 

variables. The details of these steps can be seen in (Tezcaner Öztürk et al., 2016). The final linear 

model has as many binary variables as the number of immediate precedences between tasks, and 

this does not increase the computational burden of the model; installation projects with thousands 

of tasks can be solved in a few minutes.     

The overall problem finds a robust schedule for   deviating tasks satisfying constraints (1)-(4), and an 

OWF planner can decide on the percentage of tasks that may vary from their nominal values.   can 

be obtained by multiplying the percentage of deviating tasks with the total number of tasks, and   

can take any positive value. If      the model reduces to a deterministic LP: there is no need to 

solve the robust model as            in the outer model, and it is sufficient to solve the inner 

model by setting the duration of each task   to         If more than two schedules have the same 

project duration, we select the schedule with the least cost, as detailed in Tezcaner Öztürk et al. 

(2016). We make a remark regarding the range of task durations: The minimum value can be seen as 

the shortest duration with perfect weather conditions and crew capability, while the maximum value 

being the longest duration when the weather conditions do not permit the task to start immediately.  

Finally, we also make a technical remark that, unlike the models presented in Bertsimas and Sim 

(2004) and Minoux (2009), our model does not necessarily generate extreme case solutions with all 

   variables but one set to either 0 or 1, as it incorporates deadlines. 

The model generates a robust schedule for a percentage of tasks deviating from their nominal 

durations, while satisfying the precedence, ready time, and deadline constraints. Solving only the 

inner model to obtain a schedule by setting the durations of the tasks to their expected values could 

potentially result in suboptimal or infeasible schedules when deviations are present. By contrast, the 
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advantage of this robust schedule is that the project duration proposed by the model is guaranteed 

to be greater than or equal to the actual duration of a project with a given percentage of deviating 

tasks. Moreover, if the tasks with deviation are different to those proposed by the model, the 

schedule still remains feasible. Optimal project durations will be naturally increasing while the value 

of   increases. 

The input for the optimisation model is taken through an Excel Interface, and the optimisation 

model is prepared to be solved by one of the following optimisation software packages: CPLEX, FICO 

Xpress, or MATLAB. The results of the model (the Gantt chart for the operations of the vessels, the 

total project duration and cost) are then reported in the same Excel sheet. Given that there are five 

distinct high-level vessel operations, followed by five support operations at each WTG, in addition to 

various vessel operations (such as transiting between port and site), the total number of tasks are 

around a few thousands for large OWFs. Presenting the Gantt chart for an OWF with hundreds of 

assets would not be practical and would provide little clarification to the reader, however, we 

present an example Gantt chart in Figure 5 for the installation of 10 turbines using two installation 

vessels. Some tasks are  

 

Figure 5: An example Gantt chart for operations of two vessels for the installation of 10 turbines  

grouped to provide a better understanding of the schedule. The vessels have different performances 

and thus their task durations vary, but both finalize their tasks by day 27.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

WTG Installation Vessel 1

Mobilisation

Preparation

Installation of WTG group 1

Transit back

Demobilisation

WTG Installation Vessel 2 

Mobilisation

Preparation

Installation of WTG group 2

Transit back

Demobilisation

Days 
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We also developed a rolling horizon algorithm to optimise the scheduling of the remaining tasks to 

finalise installation. This algorithm can be used throughout the installation process, when the OWF 

planner sees substantial deviations from the baseline schedule, and there is a need to find new 

estimates for project completion time, activation dates for vessels, etc., or when new vessel options 

arise. The algorithm uses the two steps (asset-vessel assignment algorithm and generating a robust 

schedule) as we use in creating the baseline schedule, this time separating the planning horizon into 

two: fixed period and planning period. Fixed period spans the duration of the tasks that are already 

assigned to the vessels, and we allocate the remaining tasks to the vessels during their planning 

periods. The details of this algorithm can be seen in Tezcaner Öztürk et al. (2016). In creating a 

robust baseline schedule, our aim is to provide a worst-case bound on the project duration; and the 

respective project cost and estimates for vessel/operation activation dates. The companies require 

estimates on these such that the arrangements for the installation project should be done before 

the installation starts. For example, some of the vessels need to be reserved in advance with high 

costs of lease as there is a competitive demand from various industries such as oil and gas, and 

hence changing such decisions often can be very costly. Although it is possible that the progress of 

the project is not going in line with the initial plan, the rolling horizon algorithm is capable of 

generating new schedules at different points in time, and to suggest updated bounds on the project 

duration, and updated vessel/operation activation dates.   

4. Case study: supporting decision making throughout an offshore wind farm installation  

To demonstrate the capability of the simulation and optimisation model discussed in Section 3, a 

case study of an offshore wind farm installation is investigated. This case study was developed in 

collaboration with industry partners and is designed to give a general representation of the next 

phase of OWF installations in Europe. The input parameter values were provided by the industry 

partners based on their combined experience from previous OWF installation projects; however, 

these inputs are entirely generic and do not correspond to any specific OWF installation.  
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The site studied here is shown in Figure 6 and consists of 120 WTGs with 6 MW generating capacity 

and 2 OSPs connected through 127 inter-array cables. Each OSP has two parallel export cables, each 

consisting of four offshore sections and a single nearshore section. The site is located in the North 

Sea 80 Nautical Miles (NM) off the East coast of the UK with an average water depth of 50 m. 

To populate the weather model discussed in Section 3, high-quality time-series weather data is 

required. For the purposes of this study weather data from the FINO1 weather research station is 

used, which is located in the North Sea 50 km off the coast of Germany (Bundesministerium fuer 

Umwelt 2012). While the conditions recorded at FINO1 may differ from a particular site off the coast 

of the UK, this data enables the capability of the simulation and optimisation models to be 

demonstrated with realistic weather data. 

Sections 4.1 and 4.2, respectively, present the application of the simulation and optimisation 

components of the holistic scheduling approach presented in Section 3 to the case study OWF. For 

the sake of brevity the analysis is restricted to the installation of the 120 WTGs of the case study. 

Two identical high-performance WTG installation vessels are utilised, which are capable of installing 

turbines up to wind speeds of 10 m/s and transiting at 12 knots with a full load up to significant 

wave  
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Figure 6: Layout of the case study offshore wind farm site 

heights of 2 m. The installation operations are shown in Figure 4, with support operations consisting 

of mechanical and electrical completion, commissioning, testing and acceptance. 

4.1 Scheduling installation operations with consideration of seasonality 

For the investigations below, 1,000 simulations are performed for each start-date considered, with 

1,000 simulations found to provide an acceptable level of statistical accuracy; further information on 

this process can be found in Barlow et al. (2014c). 

For the sake of brevity, the starting date for the WTG installation is considered here in terms of the 

impact on the duration of vessel operations. The cost per day for the WTG installation vessels can be 

expected to be substantially more expensive than costs for the installation technicians required to 

complete the WTG support operations. Minimising the duration of the WTG vessel operations is 

therefore a reasonable approach; however, in practice a more sophisticated investigation could be 

performed, as is discussed in Section 4.3. Figure 7 shows the variation in the combined duration of 

both installation vessels, as the vessel mobilisation dates are varied from an original date of 1st May 

over the course of one year. All preceding operations are assumed to be completed at times such 

that these will not delay the installation vessel operations. It is evident from Figure 7 that 

appropriate  
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Figure 7: The impact on the combined duration of both WTG installation vessels, as the vessel start-

date is varied over the course of one year 

selection of the start-date for installation vessel operations has a substantial impact on the resulting 

operation durations. A start-date in March produces the shortest vessel durations on average, with a 

combined total for both installation vessels of approximately 440 days. In contrast, a start-date in 

August produces the longest vessel durations on average, at approximately 570 days for both vessels 

combined. A single WTG installation vessel therefore operates for between approximately 7.5-9.5 

months of the year. The duration is minimised by fully exploiting the summer months and more 

favourable weather conditions, and by minimising the exposure to the winter months and delays 

resulting from harsher weather conditions.  

4.2 Scheduling installation operations with optimal staggering of operations 

The case study is now solved using the robust optimisation model to obtain an understanding of how 

the tasks progress overall and to suggest activation dates for the support operations to the WTG 

installation. The base-case activation date for the installation vessels is 243 days after the start-date 

of the installation to allow for the delivery and onshore assembly of the WTGs. If different types of 
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assets are to be installed, the optimisation model suggests activation dates for each vessel, which 

would be useful for planning vessel-hire contracts.      

We apply the optimisation model for different percentages of deviating tasks, with findings shown in 

Table 1, where durations are adjusted relative to the start-date of the installation vessels. We recall 

that the robustness parameter   is obtained by multiplying the percentage of deviating tasks with 

the total number of tasks. The last five columns of Table 1 show the estimated activation dates for 

each support installation operation under the worst case scenario for total project duration. The 

results are obtained using CPLEX solver.  

Table 1: Project Duration, Project Cost, and Activation Dates for Different Percentage of Deviating 

Tasks 

Percentage of 
Deviating Tasks 

Total Project 
Duration 

(days) 

Total Project 
Cost (k£) 

Activation Dates (Days After Start Date of Installation 
Vessels) 

 

Mechanical 
Completion 

Electrical 
Completion 

Commiss- 
ioning 

Testing 
Accept-

ance 

5% 555.28 111,665.34 156.04 156.68 157.32 234.96 235.28 
10% 731.50 140,829.44 332.26 332.90 333.54 411.18 411.50 
25% 949.54 182,152.81 539.87 540.51 543.98 605.33 605.65 
50% 949.54 184,575.30 535.24 538.70 539.35 614.13 615.41 

 

The total project duration is determined by the series of consecutive tasks that form the longest 

path, which is referred to as the critical path. The optimisation model sets the duration of the tasks 

on the critical path to their upper bounds and finds the longest possible project duration. For 

different percentages of deviating tasks, the resulting project duration will be the same if the 

number of tasks on the critical path is less than the number of deviating tasks. As more task 

durations are allowed to deviate from their nominal values, both project duration and project cost 

increase as expected; however, the resulting schedules become more robust to changes in the task 

durations, which is particularly crucial when weather conditions are volatile.    

Before we discuss results regarding varying percentages of deviating tasks, we make a technical 

remark on the use of the robustness parameter  : this parameter can be seen as a bound on the 
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sum of percentage deviations of all individual tasks. For example, if we set 10% of tasks to deviate 

for a system with 20 tasks (hence setting    ) a feasible solution can have any combination of 

deviations for individual tasks (the variables   ) as long as their sum is bounded by 2. This could 

therefore be achieved by 2 tasks deviating to their maximum possible duration while the remaining 

18 tasks take their minimum duration values with no deviation (hence ∑   1+1≤2), or by each of 

the 20 tasks having a deviation of 0.1 to their maximum possible duration (hence ∑   20x0.1≤2). 

We note that when we search the critical path in a robust network setting, the optimal solutions 

naturally tend to the extreme cases where deviations are equal to either one or zero, as indicated 

with the first solution to the numerical example above for the case of 20 tasks and    .  Although 

this observation is noted for models such as those presented in Bertsimas and Sim (2004) and 

Minoux (2009), we remark that our model does not necessarily generate such extreme case 

solutions, as it incorporates deadlines. 

If 5% of the tasks are assumed to deviate from their nominal durations, the estimated time to start 

support operations is approximately 156 days after the installation start-date. This estimation might 

be valid for an installation project that spans mostly spring-summer months; where the tasks do not 

deviate much due to weather conditions. As the percentage of deviating tasks increases to 50%, the 

suggested activation dates increase to approximately 535 days after the installation start-date. This 

estimation, on the contrary, refers to a project that spans mostly winter months, and the task 

durations show considerable variability. The increase in the activation dates results from the 

increase to the critical paths from longer vessel operation durations. We also remark that this 

represents a relatively extreme case, resulting in half of the tasks hitting their longest expected 

durations. The activation dates of electrical completion and commissioning are marginally delayed 

from the mechanical completion start-date; however, there is a gap between the activation dates of 

commissioning and testing operations for all percentages of deviating tasks. Acting in conservative 

fashion, the optimisation model finds the latest start for all the support operations, guaranteeing 

that there is no delay from waiting for a preceding support operation to finalise. The assumed 
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duration of testing is much shorter than the commissioning operation, leading to this gap between 

their activation times.  

Determining the percentage of deviating tasks usually requires expert judgement to decide on the 

weather conditions for the total installation duration. The installation generally spans a few years 

(the installation of 120 turbines takes 2-3 years as given in Table 1), and it is generally not 

straightforward to determine the variability of task durations. OWF developers need to test different 

  values based on their expert judgements and evaluate the schedules generated. If the installation 

is mostly carried out during summer months, a lower percentage of deviating tasks will be more 

representative of the installation. If the installation spans primarily winter months, the percentage 

of deviating tasks might be set to a larger value.  

4.3 Discussion 

Sections 4.1 and 4.2 illustrated the mixed-method scheduling approach presented in Section 3. This 

approach is one method of hybridising these models; however, there are various alternatives which 

could be explored. As indicated in Section 4.1, an alternative application is to give a more 

sophisticated consideration of the impact of varying the start-date. The optimisation model could be 

applied as a preliminary step to identify the optimal scheduling of the different sets of operations, as 

demonstrated in Section 4.2. This would provide a schedule which is optimal with respect to the 

average yearly weather conditions. The simulation model could then be used to explore this 

schedule of operations, and to investigate perturbations to the yearly average optimal schedule as 

the start-date is varied throughout the year. This would provide an optimal schedule for each month 

of the year. However, the approach presented in Section 4.1 was thought to provide a more concise 

and straightforward demonstration of these models.  

An alternative hybridisation would be to use the simulation model to identify the tasks which are 

most susceptible to weather delays, or equivalently most susceptible to deviations from their 
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nominal value. This information could be used to explicitly define the deviating tasks in the 

optimisation analysis, rather than using the deviation percentage defined through   and automating 

the selection of the deviating tasks. This additional information would provide an analysis which is 

more representative of the progress that would actually be observed in a real installation 

application. 

The above investigations focus on the duration of operations, however, in reality this is only one 

factor for an OWF developer, and the date from which power can be generated and exported to the 

onshore grid would also be taken into consideration. Each of these factors has an economic impact 

on the viability of the OWF, and a balance between low installation costs (through low durations of 

vessel use) and early generation (through completing operations as quickly as possible) must be 

achieved. 

5. Verification, Validation and Application 

The models were developed to be used to inform installation strategies for upcoming OWFs by the 

industry partners involved in their development.  Upon completion, the models were subjected to 

verification and validation by those within the project team and external experts.  Due to the limited 

number of OWFs that have been installed and the lack of reliable data to benchmark the model 

output to, industry partners agreed that a pragmatic approach to validation was required.  Phillips 

(1984) defines a requisite model as one such that “its form and content are sufficient to solve the 

problem”. Three different activities were carried out to verify and validate the model.  

First, the model code was subjected to external verification from a mathematical software 

consultancy to review and interrogate the implementation of the logistical model and the logical 

structure of the code. They confirmed that the code was an accurate representation of the logical 

structure agreed by the industry collaborators. Second, the model was benchmarked against an 

industry-standard tool developed by a leading marine consultancy firm. Where differences where 
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identified, these were discussed with industry experts. In particular, the weather model employed 

here provides improved accuracy in uncertainty quantification for durations and costs. Furthermore, 

the framework developed here enables flexible and reactive assignment of tasks when multiple 

vessels install the same asset, which is more representative of task assignment in practice.  Finally, 

engineers within the two industry organisations explored multiple case studies to ensure that the 

model was fit for purpose. This included ensuring that the output was adequate to support the 

decisions necessary and that the output could be interrogated sufficiently to identify the cost and 

uncertainty drivers within the installation process. Based on these verification and validation steps, 

the models have now been adopted by industry partners to inform installation strategy 

development.  

This framework is currently being used by SSE Renewables (one of our collaborating industry 

partners) to support decision making for the logistical planning of the Beatrice OWF installation 

project, a 600 MW wind farm located off the North-East coast of the UK which is scheduled for 

installation over 2017-2019. The framework has been fundamental to the decision-making process 

since the earliest stages of installation planning, and has enabled each stage of the installation to be 

interrogated. The capability to perform a detailed analysis, comparison and optimisation of 

alternative options to a variety of decisions has enabled in-depth exploration of these decisions, and 

the iterative development of the installation plan as decisions are fine-tuned, pursued or 

abandoned.  

SSE Renewables estimate that the use of this framework has delivered a saving of approximately 

14% (tens of millions of GBP) of the installation costs, compared with initial cost estimates. These 

savings have been brought about by improving the efficiency of the installation operations, primarily 

with respect to the installation of the turbine foundations, the inter-array cables and the OSPs. The 

framework presented here facilitated improvements by providing a mechanism to quantitatively 

analyse and optimise aspects of the installation, such as vessel selection and scheduling.  An 
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indicative example of this is applying the tools to investigate the efficiency of the available jacket 

installation techniques and how these can be deployed across the site. For each scenario considered, 

the most efficient scheduling approach for the jacket installation vessels and all follow-on operations 

is identified and compared, enabling informed decisions to be made. The same process is then 

applied to explore the available options for the pile installation, and for each subsequent installation 

operation. 

6. Conclusions 

The next phase of offshore wind farms (OWFs) to be developed in Europe in the coming years will 

typically consist of hundreds of turbines, and will be located further from shore in deeper water than 

has previously been encountered (Renewable UK 2014). The installation of these sites will typically 

span several years and cost upwards of £100 million (Kaiser and Synder, 2010). Limited industry 

experience on projects of these scales and location characteristics motivates the need for decision-

making support for developers, to ensure that operations are planned as efficiently as possible and 

that the vast installation costs are streamlined where possible.  

This paper describes the integration of a pair of complementary decision support models for the 

installation of an OWF. Both models can be applied at the planning and bidding stages of an 

installation, with each model supporting specific aspects of installation scheduling. An OWF 

installation case study is investigated to demonstrate the potential capability of this integrated 

framework to provide decision support to an OWF developer planning an installation campaign. The 

scope is restricted here to the installation of the wind turbines for brevity; however, a similar 

approach to that outlined here could be applied to the installation of all OWF assets. The framework 

presented here could be adapted to model a variety of processes where operations are subject to 

uncertain weather conditions, including tasks during the operation and maintenance or 

decommissioning (removal of an asset from active status, including deconstruction of the structure) 

phases of an OWF, or similar tasks related to other forms of renewable energy such as wave or tidal. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

34 
 

Future developments of this mixed methods framework will explore more efficient interfacing 

between the simulation and optimisation components. Section 4.3 highlights an approach which 

would make explicit use of the simulation model to define the required robustness of the 

optimisation solution. This approach could be utilised even further by restructuring the optimisation 

model to handle specific ranges of task durations which are defined by the simulation model for a 

particular operation in a given timeframe. To utilise the simulation model in this way may require 

development of a meta-model for the simulation model, such that the many duration outputs can be 

generated in a tractable timescale within the optimisation run.  The resulting model would implicitly 

combine the detailed weather sensitivity of the simulation model with the superior scheduling 

ability of the optimisation model, thus provide a powerful decision-support tool for OWF developers.  
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