

Edinburgh Research Explorer

A branch-and-price algorithm for the aperiodic multi-period
service scheduling problem

Citation for published version:
Fernandez, E, Kalcsics, J & Nunez-del-Toro, C 2017, 'A branch-and-price algorithm for the aperiodic multi-
period service scheduling problem', European Journal of Operational Research, vol. 263, no. 3, pp. 805-
814. https://doi.org/10.1016/j.ejor.2017.06.008

Digital Object Identifier (DOI):
10.1016/j.ejor.2017.06.008

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
European Journal of Operational Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1016/j.ejor.2017.06.008
https://doi.org/10.1016/j.ejor.2017.06.008
https://www.research.ed.ac.uk/en/publications/f010adb5-973a-4150-bcf0-864135f71050

A branch-and-price algorithm for the aperiodic multi-period service
scheduling problem

Elena Fernándeza, Jörg Kalcsicsb, Cristina Núñez-del-Toroa,∗

aStatistics and Operations Research Department, Universitat Politècnica de Catalunya, Barcelona, Spain
bSchool of Mathematics, University of Edinburgh, Edinburgh, United Kingdom

Abstract

This paper considers the multi-period service scheduling problem with an aperiodic service policy.

In this problem, a set of customers who periodically require service over a finite time horizon is

given. To satisfy the service demands, a set of operators is given, each with a fixed capacity in terms

of the number of customers that can be served per period. With an aperiodic policy, customers

may be served before the period were the service would be due. Two criteria are jointly considered

in this problem: the total number of operators, and the total number of ahead-of-time periods.

The task is to determine the service periods for each customer in such a way that the service

requests of the customers are fulfilled and both criteria are minimized. A new integer programming

formulation is proposed, which outperforms an existing formulation. Since the computational effort

required to obtain solutions considerably increases with the size of the instances, we also present

a reformulation suitable for column generation, which is then integrated within a branch-and-price

algorithm. Computational experiments highlight the efficiency of this algorithm for the larger

instances.

Keywords: combinatorial optimization, multi-period problems, service scheduling, column

generation, branch-and-price

1. Introduction

In this paper we propose new and more efficient formulations and solution methods for the Ape-

riodic Multi-Period Service Scheduling Problem (A-MSSP), which was recently introduced in [13].

In the MSSP there is a set of customers who periodically require service over a finite time horizon.

∗Corresponding author
Email address: cristina.nunez@upc.edu (Cristina Núñez-del-Toro)

Preprint submitted to EJOR June 13, 2017

To satisfy the service demands, a set of operators is given, each with a fixed capacity in terms of the

number of customers an operator can serve per period. The task is to determine for each customer

the periods in which he will be visited by an operator, called service periods, such that the service

requests of the customers are fulfilled and the total number of operators used over the time horizon

is minimal. The set of all service periods of all customers produce a calendar for MSSP. In the

aperiodic version of the problem, the time between two consecutive services to a customer is not

fixed in advance and can be of different length. The requirement in this case is that the maximum

time between two consecutive service visits to the same customer never exceeds a given length,

which is referred to as his service interval. Thus, it is permitted to visit a customer before the end

of his service interval. If a service takes place before the end of the customer service interval, this

is referred to as an early service or early visit. In case of an early service, the number of periods

between the period where the early service occurs and the end of the customer service interval is

referred to as the earliness of the visit. The earliness of a calendar for the A-MSSP is the total

earliness of all visits scheduled in the calendar. We assume that all time periods have the same

length and that all customers have been serviced just before the start of the planning horizon.

In the A-MSSP two criteria are jointly considered for minimization: the total number of oper-

ators, and the earliness of the calendar.

The A-MSSP appears as a core component in many practical applications from very diverse fields.

An application in logistics refers to the collection or delivery of commodities, raw materials, or

waste in which customers either produce or consume these items at a given rate per period and

they can only store a certain amount at their location. The task is to determine in which periods

to service each customer such that the storage limitations at the customers are fulfilled and as

few tours as possible are needed. This problem occurs, for example, in the context of collection

and recycling of waste electrical and electronic equipment, [13]. Another application appearsin the

scheduling of preventive inspections of technical equipment, like production machines or airplanes.

For this problem, the goal is to determine a maintenance schedule while minimizing costs, [1, 2, 8].

Similar problems arise in machine replacement, where regular schedules minimizing the variability

between consecutive service periods have to be determined. In [10] the same objective is considered

in the context of waste collection for rooms in a health care facility. Closely related is the windows

scheduling problem in which transmissions of information pages have to be scheduled on broadcast-

2

ing channels [3, 4]. Also related are replenishment problems in vendor managed inventory systems

with direct deliveries [6]. In these problems, each retailer faces a constant demand, the inventory

is replenished from a central distribution center and a vehicle can just visit one retailer per period.

In [21] ahead of time service visits are allowed. Other related problems arise in task scheduling and

periodic assignment problems [9, 11].

As the original formulation proposed in [13] cannot solve instances with more than 30 customers

optimally, in this paper we propose an alternative formulation in which customers with the same

service interval are grouped into classes. The new formulation is then the basis for a reformulation

suitable for column generation. In its turn, the column generation reformulation has been embed-

ded in a branch-and-price solution algorithm, which is the main contribution of this work.

Branch-and-price is a solution method in combinatorial optimization that is widely used for

solving Integer Linear Programming (ILP) problems with a large number of variables ([5]). This

method has been applied to many different combinatorial optimization problems, e.g., cutting stock,

graph coloring, routing and scheduling. For examples of branch-and price solution algorithms ap-

plied to scheduling problems the interested reader is referred to [17, 14, 16].

In this paper we present the master problem of the column generation reformulation and its

associated pricing problem, for which we propose a polynomial-time exact solution algorithm. A

comparison of the Linear Programming (LP) bounds of the proposed formulations shows that the

latter outperforms the former. The details of the branch-and-price exact algorithm for the A-MSSP

are also presented. To speed-up the column generation we apply a stabilization procedure. We

analyze three different branching strategies for the exploration of the enumeration tree as well a

procedure to handle infeasibilities in the master problem.

The rest of the paper is organized as follows. In Section 2 we recall the formal definition of the

A-MSSP and we present an alternative formulation. In Section 3 we introduce the reformulation

that is suitable for column generation, compare its LP bound to the alternative formulation, and

discuss the pricing problem necessary for the generation of columns. Section 4 describes the branch-

3

and-price algorithm to solve the A-MSSP, including the algorithmic details of the implementation

as well as the procedure to obtain initial feasible solutions. The results of the computational

experiments as well as the comparison with the results of the formulation of Section 2 are shown

in Section 5. The paper ends with some conclusions.

2. The Aperiodic Multi-Period Service Scheduling Problem

We use the following notation: T is the index set of (discretized) time periods; I denotes the

index set of customers; ti is the service interval (in number of periods) for customer i ∈ I; Q is the

maximal number of customers an operator can serve per period; K is the index set of operators,

with |K| =
⌈
|I|
Q

⌉
.

In the A-MSSP the following decisions must be made: a) determine the service calendar for the

customers, i.e., the set of periods in which each customer will be served, given that the time between

two consecutive visits does not exceed the service interval, and b) assign each service period of a

customer to an operator taking into account the operator capacities. These decisions must be made

such that a convex combination of the number of operators needed and the earliness of the calendar

is minimized.

The ILP formulation for the A-MSSP that we present below is an alternative to the one pro-

posed in [13]. Its rationale is based on the observation that the service intervals of several customers

may coincide. According to the different values of the service intervals, ti, we classify customers

i ∈ I into interval classes (or simply, classes). That is, customers with an identical service interval

belong to the same class. We define J as the set of indices for the classes, where |J | ≤ |I|. For

each class j ∈ J , uj denotes the service interval for class j, i.e., the common service interval for

all customers of class j, and wj , the size of class j, i.e., the number of customers with a service

interval equal to uj . Additionally, we define the following parameters: Ht
j = {1, . . . ,mt

j}, with

mt
j = min{uj , |T |− t} denoting the number of potential periods for serving customers of class j ∈ J

after a visit in period t ∈ {0, ..., |T |−1}; ptj = min{uj , t}, the number of potential periods forserving

customers of class j ∈ J before a visit in period t ∈ T .

4

Since the formulation below takes advantage of the above classes of customers, we refer to it as

the class-based formulation. We define the following sets of decision variables:

For j ∈ J , t ∈ T ∪ {0},

xtj = number of customers of class j served in period t.

For j ∈ J , k ∈ K, t ∈ T ,

ytjk = number of customers of class j served by operator k in period t.

For k ∈ K, t ∈ T ,

ztk =

 1 if operator k is used in period t

0 otherwise

For j ∈ J , t ∈ {0, . . . , |T | − 1}, h ∈ Ht
j ,

f thj = number of customers of class j consecutively served in periods t and t+ h.

The class-based ILP formulation for the A-MSSP is the following:

5

(ASc) min β
∑
t∈T

∑
k∈K

ztk + (1− β)
∑
j∈J

|T |−1∑
t=1

∑
h∈Ht

j

(uj − h)f thj (1)

s.t.

uj∑
h=1

f0hj = wj j ∈ J (2)

xtj =

uj∑
h=1

f thj j ∈ J, t ∈ {0, ..., |T | − uj} (3)

ptj∑
h=1

f t−h,hj = xtj j ∈ J, t ∈ T (4)

ztk ≤
∑
j∈J

ytjk k ∈ K, t ∈ T (5)

xtj =
∑
k∈K

ytjk j ∈ J, t ∈ T (6)

∑
j∈J

ytjk ≤ Qztk k ∈ K, t ∈ T (7)

Qztk ≤
∑
j∈J

ytj,k−1 k ∈ K \ {1}, t ∈ T (8)

ztk ∈ {0, 1} k ∈ K, t ∈ T (9)

xtj , y
t
jk ∈ Z+

0 j ∈ J, k ∈ K, t ∈ T (10)

f thj ∈ Z+
0 j ∈ J, t ∈ {0, ..., |T | − 1}, h ∈ Ht

j . (11)

Objective (1) minimizes a weighted sum of the total number of operators used in the time horizon

and the total earliness. By assigning different values to β ∈ [0, 1], both criteria can be considered

within different scenarios. Constraints (2) guarantee that the first service period for customers in

class j occurs within their service interval. Constraints (3) are logical constraints, which relate the

x and f variables. Constraints (4) force that customers in class j being served in period t have a

previous service in no more than ptj periods before. Constraints (5) ensure that no idle operator

is considered as active. The rationale behind these constraints is to strengthen the formulation.

Constraints (6) guarantee that customers served in period t are assigned to some operator in that

period. Constraints (7) are capacity constraints that ensure that the number of customers assigned

to each operator in a given period must not exceed her capacity. Constraints (8) are symmetry

breaking constraints imposing that in each period operator k is not used unless operators 1, . . . , k−1

6

are full, i.e., each of them has Q assigned customers. Finally, Constraints (9) enforce variables ztk
to be binary, while Constraints (10) and (11) enforce integrality on the variables xtj , y

t
jk and f thj .

Formulation ASc contains a smaller number of variables and constraints than formulation AS

in [13], which does not make use of the classes, but uses binary variables only.

3. Column generation formulation

In this section we propose a different formulation for the A-MSSP that is suitable for column

generation. Columns of this formulation correspond to patterns of services. A pattern is repre-

sented by a vector c = (ac1, . . . , a
c
j , . . . , a

c
|J |) whose j-th component, acj ≤ wj , indicates the number

of customers of class j that are served in a given period. C is defined as the set of all patterns c

for any period t. The cost of a pattern c ∈ C is given by nc =

⌈
1
Q

|J |∑
j=1

acj

⌉
. For each period t ∈ T ,

the number of all possible patterns is |C| =
|J |∏
j=1

(wj + 1). For the column generation formulation we

define the following sets of decision variables:

For t ∈ T ∪ {0}, c ∈ Ct,

xtc =

 1 if the pattern c is served at period t

0 otherwise

Therefore, a formulation for the A-MSSP is as follows:

(MP c) minβ
∑
t∈T

∑
c∈C

ncx
t
c + (1− β)

∑
j∈J

|T |−1∑
t=1

∑
h∈Ht

j

(uj − h)f thj (12)

s.t.

uj∑
h=1

f0hj = wj j ∈ J (13)

∑
c∈C

xtc ≤ 1 t ∈ T (14)

∑
c∈C

acjx
t
c =

uj∑
h=1

f thj j ∈ J, t ∈ {0, ..., |T | − uj} (15)

ptj∑
h=1

f t−h,hj =
∑
c∈C

acjx
t
c j ∈ J, t ∈ T (16)

xtc ∈ {0, 1} t ∈ T, c ∈ C (17)

f thj ∈ Z+
0 j ∈ J, t ∈ {0, ..., |T | − 1}, h ∈ Ht

j . (18)

7

The objective function (12) again minimizes a weighted sum of the total number of operators used in

the time horizon and the total earliness. Constraints (13) are identical to (2), and Constraints (14)

are logical constraints for the columns. Without loss of generality, we can suppose that, for ev-

ery period, a single pattern is selected. Therefore, due to the definition of the x variables, the

latter constraints also define an optimality cut for MP c. As xtj =
∑
c∈C

acjx
t
c for all j ∈ J, t ∈ T ,

Constraints (15)- (16) are the same as (3)-(4). Finally, Constraints (17) enforce variables xtc to be

binary, while Constraints (18) enforce the integrality on the variables f thj .

3.1. Comparison of formulations

Next, we compare the LP bounds of formulationsMP c and ASc. As we will seeMP c may produce

better bounds.

Proposition 1. Formulation MP c is at least as tight as formulation ASc, in the sense that the LP

bound of MP c is greater than or equal to the one of ASc.

Proof. To see that, we will prove in the following that for every feasible solution of the LP relax-

ation of MP c, (x, f), there exists a feasible solution of the LP relaxation of ASc, (x̃, ỹ, z̃, f̃) whose

objective function value is smaller than or equal to the one of (x, f).

Let (x, f) be a feasible solution of the LP relaxation of MP c. Let Ct = {c | xtc > 0} and

J t = {j ∈ J | acj > 0, c ∈ Ct}, with t ∈ T . Then, we define the following vector x̃:

x̃tj =


∑
c∈Ct

xtca
c
j for j ∈ J t, t ∈ T

0 otherwise

By construction, and because (x, f) satisfies (13)-(16), it is clear that (x̃, f̃) satisfies constraints

(2) -(4).

To define the vector z̃t associated with a given t ∈ T , we set Kt = 1
Q

∑
j∈Jt

x̃tj . Then:

z̃tk =


1 for k = 1 . . .

⌊
Kt
⌋

Kt −
⌊
Kt
⌋

for k =
⌊
Kt
⌋

+ 1

0 otherwise

8

Observe that, by construction, for each t ∈ T , we have
∑
k∈K

z̃tk ≤
∑
c∈Ct

ncx
t
c. Thus, the objective

value (1) for (x̃, f̃) is smaller than or equal to the objective value (12) for (x, f).

To define an appropriate vector ỹ, we first set ỹtjk = 0, for all t ∈ T , j /∈ J t, k ∈ K. Then, we

consider the elements of J t by increasing order of their indices. Let jr be the r-th element of J t.

We define k(r) = arg min
{
k |

r∑
s=1

x̃tjs ≤ kQ
}
. Then, we define the following vector:

For r = 1:

ỹtjr,k =


Q for k < k(r)

x̃tjr −
∑
k′<k

ỹtjr,k′ for k = k(r)

0 otherwise.

For r > 1:

ỹtjr,k =



Q−
∑
s<r

ỹtjs,k for k(r − 1) = k < k(r)

Q for k(r − 1) < k < k(r)

x̃tjr −
∑
k′<k

ỹtjr,k′ for k(r − 1) < k = k(r)

x̃tjr for k(r − 1) = k = k(r)

0 otherwise.

The reader can check that above the vector ỹ is compatible with (x̃, f̃), so they jointly satisfy

constraints (5)-(8). �

3.2. The Pricing Problem

Formulation MP c has an exponential number of x variables and O(n3) variables f . The re-

striction of MP c to only a subset of x variables is called the Restricted Master Problem RMP c.

We use the following notation for the dual variables associated with the linear programming (LP)

relaxation of RMP c (LRMP c):

γt: t ∈ T , for Constraints (14).

πtj : j ∈ J, t ∈ {0, ..., |T | − uj}, for Constraints (15).

σtj : j ∈ J, t ∈ T , for Constraints (16).

9

We formulate the pricing problem for finding patterns with negative reduced costs for every

period t ∈ T . The formulation uses the following sets of decision variables:

v = number of operators needed.

For j ∈ J ,

yj = number of customers of class j served.

Then, the pricing problem associated with period t is:

(
P t
c

)
ztc = γt+ min βv −

∑
j∈J

αjyj (19)

s.t.
∑
j∈J

yj ≤ Qv (20)

yj ≤ wj j ∈ J (21)

v, yj ∈ Z+
0 j ∈ J (22)

with αj = πtj + σtj .

Objective (19) minimizes the reduced cost of any possible service pattern for period t relative

to the dual multipliers vector (γt, πtj , σ
t
j). Constraints (21) avoid multiple services to customers.

Constraints (20) are capacity constraints that ensure that the number of customers assigned to op-

erators does not exceed their capacity. Finally, Constraints (22) enforce integrality on the variables.

If ztc < 0, the pattern associated to the optimal solution defines a new variable, which may

improve the value of the current LRMP c. The new variable xtc is then defined by c = (acj)j∈J ,

where acj = yj , for all j ∈ J , with cost ntc = v.

Note that P tc has a very simple structure, as all y variables have the same coefficient in Con-

straints (20). Hence, those constraints basically become cardinality constraints, once the number

of operators v to be used has been fixed. Taking the objective function into account, any optimal

solution to P tc will serve as many customers as possible from classes with positive α coefficients,

and it will be customers from classes with the largest αj coefficients first. Thus, in the following

10

we sort the indices of classes by non-increasing α values, i.e., αj1 ≥ αj2 ≥ . . . ≥ αjs > 0, with ties

arbitrarily broken. In particular, P tc exhibits the following properties:

1. There always exists an optimal solution to P tc where yj > 0 only if αj > 0. If yj > 0 with

αj = 0 for some j, then we can set yj = 0 without changing the objective function value.

2. We can also assume that there is an optimal solution with at most one class j for which some

but not all customers are served, i.e., 0 < yj < wj . Suppose otherwise that there exist two

such classes jl and jl′ where l < l′.Let ∆ = min{wjl − yjl , yjl′}. Then, the solution with

yjl = yjl + ∆ and yjl′ = yjl′ − ∆ is also feasible, has an objective function value that is at

least as good as the previous one and has one class less with 0 < yj < wj .

Taking into account the above properties, an optimal solution P tc can be obtained by trying to

increase the number of operators to be used one at a time. After each increase in the number of

operators, we increase the number of served customers from classes with yj < wj , starting with

class j1 and then following the ordering, until either the operator capacity is again reached or there

are no more classes with αj > 0. If this results in a solution with a smaller objective function

value, we repeat the process. If not, we undo the last increase and stop. Next, we give a formal

description of this process, see also Algorithm 1.

Let w′j , for all j ∈ J , be the number of customers of class j not yet assigned to an operator.

Initially, w′j = wj , for all j ∈ J . At each iteration we try to use a new operator and to assign up

to Q unassigned customers to her. Customers of class j are tentatively assigned according to their

ordering, starting with customers of class j1. If jr denotes the index of the last class assigned at

iteration k − 1, then the set of classes with customers that can be assigned at iteration k is given

by Sk = {q : r ≤ q ≤ l} where:

l =


s if

s∑
h=r

w′jh ≤ Q

min

{
l′ :

l′∑
h=r

w′jh ≥ Q
}

otherwise
(23)

Then, at iteration k we use a new operator and assign customers of classes in Sk to her, provided

that αjl min
{
w′jl , Q −

∑
q∈Sk\l

w′jq

}
+

∑
q∈Sk\l

w′jqαjq > β. Otherwise the process terminates and the

output is given by the set of operators in use so far, together with their assigned customers. Since

11

Algorithm 1 ensures that a new operator is only used if, together with its tentative assignments,

it would improve the objective function value, it produces an optimal solution. The complexity of

Algorithm 1 is bounded by O(|J |log|J |), the time complexity of the sorting step. All other steps

can be done incrementally in O(|J |) total time.

Algorithm 1: Solution algorithm for P tc
Data: β, αj , wj , j ∈ J , K

1 sort αj1 ≥ αj2 ≥ . . . ≥ αjs > 0, breaking ties arbitrarily;
2 w′j ← wj , j ∈ J ;
3 stop ← false;
4 v ← 0; k ← 1; r ← 1;
5 while not stop do

6 if
s∑

h=r

w′jh ≤ Q then

7 l← s;
8 else

9 l← min

{
l′ :

l′∑
h=r

w′jh ≥ Q
}
;

10 end
11 Sk ← {q : r ≤ q ≤ l};
12 if αjl min

{
w′jl , Q−

∑
q∈Sk\l

w′jq

}
+

∑
q∈Sk\l

w′jqαjq > β and k ≤ |K| then

13 v ← v + 1;
14 yjq ← w′jq , q ∈ S

k \ l;

15 yjl ← min
{
w′jl , Q−

∑
q∈Sk/l

w′jq

}
;

16 w′jq ← 0, q ∈ Sk \ l;
17 w′jl ← w′jl − yjl ;

18 if w′jl > 0 then
19 r ← l;
20 else
21 r ← l + 1;
22 end
23 k ← k + 1;
24 else
25 stop ← true ;
26 end
27 end

12

4. Branch-and-price algorithm

To obtain integer solutions of guaranteed optimality, the column generation algorithm is embed-

ded into a branch-and-bound search tree. A sketch of the resulting branch-and-price implementation

is presented in Algorithm 2. In order to obtain an initial feasible solution for the RMP c, we apply

an initialization phase using an adaptation of the greedy heuristic proposed in [13]. Then, at each

iteration, after solving the current LRMP c we solve the pricing problem P tc with Algorithm 1 for

all t ∈ T . For each t ∈ T with ztc < 0 we add the corresponding new column and re-optimize. When

no new columns can be found we branch. If the LRMP c resulting after branching is unfeasible, we

apply Farkas pricing [7] in order to recover feasibility at the current node. Furthermore, we apply

a stabilization procedure in order to improve the convergence of the overall algorithm. Below we

give the details for the greedy heuristic, branching rules, Farkas pricing and stabilization procedure

which are included in the branch-and-price algorithm.

Algorithm 2: Generic branch-and-price for the MP c

1 Initialization;
2 stop ← false ;
3 while not stop do
4 solve (LRMP c);
5 if (LRMP c) feasible then
6 solve (P tc) ∀t ∈ T ;
7 if no new variables then
8 if integer solution then
9 eliminate current node;

10 if unexplored nodes then
11 select a new node;
12 else
13 stop ← true;
14 end
15 else
16 do branching;
17 end
18 end
19 else
20 solve Farkas’s pricing problem;
21 end
22 end

13

4.1. Initialization

In the greedy procedure proposed in [13] we iteratively build a solution by selecting calendar-less

customers one by one and finding a best calendar for each. To find such a calendar efficiently, we

reformulate the problem for a customer as a shortest path problem in an auxiliary network which

contains the calendars of all already scheduled customers.For further details the interested reader

is referred to [13]. As we are now dealing with classes of customers instead of individual customers,

we adapt the heuristic as follows. We first sort the classes of customers by non decreasing values

of their service intervals, i.e., sj1 ≤ sj2 ≤ . . . ≤ sj|J| , then we pick the classes one by one, starting

with the class j1. For class jr, we iteratively pick the customers and find the best calendar for

each, as in [13]. An initial set of calendars now consists of all calendars used in the greedy solution,

i.e., calendars c = (ac1, . . . , a
c
j , . . . , a

c
|J |) where acj is the number of customers of class j scheduled

in period t. In addition, we included the set of calendars where customers of just one class are

scheduled, i.e., calendars c = (0, . . . , acj , . . . , 0). (Computational results show that including these

partial calendars speeds up the exploration of the search trees in 19% of the computing time.) The

initial set of columns for the RMP c then consists of all variables xtc = 1, t ∈ T , where c is a calendar

in the initial set of calendars.

4.2. Branching strategies

Several branching rules can be used to define the search tree of any branch-and-price algorithm.

General branching schemes can be found in [5, 18]. In this work, branching rules are applied taking

advantage of the specific structure of the RMP c. Observe that the optimality cut defined by

Constraints (14) can be rewritten as:∑
c∈C

xtc + vt = 1 t ∈ T, (24)

with vt ∈ {0, 1}, t ∈ T .

Let, (x, f, v) denote an optimal solution to LRMP c. We apply three different branching strate-

gies:

BS1: Branching on variables vt. Branching on variable vt forces to decide whether or not to schedule

visits in period t. In particular, we apply the most fractional variable rule, i.e., we choose to branch

on variable vt∗ such that:

14

t∗ = arg min
t∈T

{∣∣vt − 0.5
∣∣} (25)

BS2: Branching on variables f thj . Since RMP c inherits the original variables f thj , we use them in

one of the branching strategies. We again apply the most fractional variable branching rule.

BS3: Branching on xtc variables. We use again the most fractional branching rule. When branching

on an xtc variable, the structure of the pricing problem associated with time periods t′ 6= t remains

the same. Moreover, if we fix xtc = 1 then the pricing problem associated with time period t does

not have to be solved again in this branch. On the contrary, in the xtc = 0 branch it could happen

that the pricing problem for time period t produces again the same variable xtc. In such a case,

additional precautions have to be taken to avoid such a behavior. One possibility is to solve the

pricing problem using its MILP formulation (19)-(22), extended with additional constraints exclud-

ing the respective column xtc. This can be done by (i) defining additional binary variables δj , j ∈ J

to indicate whether or not yj = acj ; (ii) relating each δj to yj − acj in order to guarantee that δj = 1

if and only if yj − acj 6= 0; and, (iii) adding the constraint
∑

j∈J δj ≥ 1, to impose that at least one

component differs from that of xtc. Since the yj are general integer variables, (ii) requires, in its

turn, introducing additional variables and constraints. Indeed, the extended MILP is considerably

more involved, not only than Algorithm 1, but also than the MILP (19)-(22) without the additional

binary variables and constraints. To reduce the number of calls to the extended MILP, we first

apply the usual pricing via Algorithm 1, and only if for time period t it produces a negative reduced

cost column associated with a branching variable xtc that we fixed to zero we solve the extended

MILP.

Computational tests showed that the best performance is obtained when applying BS1, BS2

and BS3 sequentially, i.e., we explore the branching tree looking first for variables vt to branch on,

then for variables f thj , and finally for variables xtc. In our tests we observed that with this policy,

Algorithm 1 never produced a negative reduced cost column associated with a branching variable

xtc. Thus, in practice we never had to solve the extended MILP. This is probably due to the fact that

BS3 follows the two previous branching rules BS1 and BS2, so when this rule is applied, solutions

are almost integer.

15

4.3. Recovering infeasibility

When the LRMP c resulting after branching turns out to be infeasible, we apply Farkas pricing

in order to recover feasibility by finding a new variable to add to the current RMP. Farkas pricing

reduces therefore to the standard pricing with different objective function coefficients. In particular,

the original cost coefficients are substituted by zero values and the components associated with an

extreme dual ray are used instead of the dual variables vector. Thus, for formulation LRMP c, the

Farkas pricing problem is formulated as P t
c with vector (γt, πtj , σ

t
j) as the dual rays associated with

MP c’s constraints (14) (15) and (16), respectively.

4.4. Stabilization

Since the convergence of column generation algorithms can be very slow when solving the

LRMP c with the simplex algorithm, particularly for large and degenerate problems [12], several

approaches have been developed to limit the erratic behaviour of the dual variables. In this work we

apply the smoothing stabilization approach first introduced in [20] and further developed in [15], in

which just a single parameter needs to be adjusted. Let λ∗ = (γ, π, σ) be the dual variables vector

associated with the current LMRP c. When solving the pricing problems, we use a convex com-

bination of λ∗ and the best dual multipliers found so far λ, i.e., λ̂ = ∆λ∗+(1−∆)λ, with 0 ≤ ∆ ≤ 1.

When a promising column is found relative to vector λ̂, it is added to the LRMP c only if this

column has a negative reduced cost with respect to λ∗ as well. When the dual multipliers λ̂ improve

the dual bound, we update the best known vector to λ = λ̂. For defining and updating ∆, we have

tried several strategies based on [19]. The updating of ∆ strongly depends on the relative difference

between the upper and lower bounds of the RMP (that we respectively denote by ZMP and L(λ̂)),

i.e.,

Gap =
ZMP − L(λ̂)

L(λ̂)
(26)

The strategies we have used are the following:

SS1. We set ∆ equal to a fixed value ∆fix. When Gap < ε, we stop the stabilization by

setting ∆ = 1.

SS2. We use ∆init ∈ (0, 1] as an initial value for ∆. Every time Gap < 1 − ∆init we set

∆ = 1−Gap. When Gap < ε, then ∆ = 1.

16

In both cases ε is a fixed parameter that is used to stop the stabilization.

5. Computational experience

To assess the effectiveness of the branch-and-price algorithm versus the class-based formula-

tion, we ran a series of computational experiments. Since IBM ILOG CPLEX does not include

callback routines for the implementation of branch-and-price algorithms (i.e., column generation

within the exploration of an enumeration tree), we use SCIP for all experiments. This allows us

to put all experiments on an equal footing for the comparison. Both formulations AS and ASc,

and the branch-and-price algorithm based on MP c were implemented and run using SCIP 3.1.1 on

a platform with a Linux 64 bit Ubuntu 12.04 operating system, a Intel R© CoreTM i7-2600 CPU @

3.40GHz processor and 7.7 GB RAM. We use IBM ILOG CPLEX 12.5 to solve the linear program-

ming relaxations. The computing time limit was set to one hour.

We randomly generated 360 problem instances with the following characteristics. For the num-

ber of customers we chose |I| ∈ {50, 100, 200}. The respective instances are denoted by “I50”, “I100”,

and “I200”. The number of periods is related to a time horizon of one month, i.e., |T | = 30. For the

possible service intervals ti of the customers, we considered two different settings corresponding to

6 and 10 different classes in each case. The first one considers the intervals ti ∈ {3, 4, 5, 7, 11, 13}.

The second one considers the intervals ti ∈ {4, 5, . . . , 15}. We abbreviate the two settings by A, and

B, respectively. Different values Q ∈ {3, 5, 7, 10} were used for the capacity of the operators. For

each combination of values for |I| and Q and for the two different settings for the service intervals,

we generated five different problem instances by randomly determining service intervals for the

customers according to a discrete uniform distribution over the respective set of service intervals.

The resulting instances are denoted by “{A,B}_I < |I| > _Q < Q > _C < #instance >”.

For example, the first instance with 50 customers, an operator capacity of 3, and service intervals

taken from {3, 4, 5, 7, 11, 13} is denoted “A_I50_Q3_C1”. Finally, we consider four different values

for β ∈ {0.2, 0.5, 0.8, 1.0}. The extreme value of β = 1.0 was considered to analyze the effect of

minimizing the total number of operators used over all periods without penalizing earliness.

First, we tested the effect of the stabilization. For this we solved LRMP c, i.e. only the root

17

node of the branch-and-price algorithm, with both stabilization strategies presented in Section 4.4.

Tables 1 and 2 summarize the comparison between the stabilization strategies SS1 and SS2 and

without any stabilization (NS). The tables report the average times (in seconds) and the average

number of generated columns over ten instances (five instances for each setting), for every size and

every value of β. For strategies SS1 and SS2 the results are presented for the best tested values for

∆fix and ∆init, respectively, which, for both types of instances, turned out to be 0.1 in both cases.

For both strategies we set ε = 0.01. In both tables, results for the best strategy for each instance

size are highlighted in bold.

As can be seen in Table 1, the effect of stabilization is not clear for the A-instances, where the

computing times indicate that it would be preferable not to apply any stabilization technique. On

the contrary, Table 2 shows that for the B-instances stabilization helps, in general, to reduce not

only the number of added columns but also the computing times. In addition, SS2 outperforms

SS1 in most cases across all types of problem instances and parameter settings. On average, SS2

obtains optimal solutions 62.6% faster than without stabilization, generating 29.6% fewer columns.

Overall, it seems that the number of classes affects stabilization more than the number of customers.

Moreover, particularly for B-instances, the performance of stabilization decreases as the number of

customers per class increases.

Tables 3 and 4 give a summary of the results for the formulation AS proposed in [13], as well as

the new formulation ASc, and the branch-and-price algorithm for the formulationMP c proposed in

this paper, for A- and B-instances, respectively. Results are presented for every value of β. Each ta-

ble displays the average values over the five instances in each group of zLP , the initial lower bounds

(LP-relaxation for formulations AS and ASc and lower bound at the root node for MP c), and UB,

the values of the best solutions found. The columns labeled Gap show the maximum values among

the five instances in the group for the percentage relative deviations of the best-known solutions

with respect to the lower bounds at termination (LB); that is, Gap = UB−LB
LB 100. The average of

computing times in seconds, the number of nodes in the branch-and-bound/branch-and-price trees,

and the total number of optimally solved instances are given in columns Time, Nodes, and Solved,

respectively.

18

β
St

ra
te

gy
I
5
0

I
1
0
0

I
2
0
0

T
ot

al

Q
3

Q
5

Q
7

Q
1
0

Q
3

Q
5

Q
7

Q
1
0

Q
3

Q
5

Q
7

Q
1
0

N
S

T
im

e
3.

4
2.

8
2.

7
2.

8
3.

9
36

3.
1

3.
1

2.
7

7.
4

5.
5

4.
5

4.
0

40
6.

0
C

ol
s

14
8.

6
15

5.
5

17
1.

5
17

6.
0

14
4.

4
17

4.
6

16
4.

3
16

4.
1

14
9.

9
16

4.
4

16
8.

6
18

7.
1

19
69

.0

0
.2

SS
1

T
im

e
7.

0
4.

4
3.

6
2.

3
9.

0
6.

5
5.

5
4.

3
12

.0
9.

5
7.

4
5.

9
77

.6
C

ol
s

15
6.

2
14

4.
8

14
4.

5
13

4.
0

17
6.

7
16

1.
8

15
1.

8
15

4.
3

17
3.

5
17

6.
5

16
2.

8
17

6.
8

19
13

.6

SS
2

T
im

e
5.

1
4.

2
3.

5
2.

4
6.

0
6.

4
4.

0
3.

8
10

.6
6.

6
6.

1
4.

7
63

.4
C

ol
s

15
8.

2
15

4.
5

14
4.

7
13

4.
0

16
0.

0
17

7.
0

15
2.

1
15

6.
1

19
2.

0
17

0.
7

17
4.

1
16

0.
9

19
34

.6

N
S

T
im

e
3.

0
2.

8
2.

8
2.

6
4.

6
3.

7
3.

5
3.

4
8.

5
5.

8
5.

0
3.

9
49

.6
C

ol
s

14
8.

6
15

7.
6

16
5.

8
17

3.
2

16
4.

7
17

7.
5

18
6.

6
19

9.
7

16
6.

3
18

0.
5

19
1.

1
18

9.
1

21
00

.7

0
.5

SS
1

T
im

e
6.

9
4.

6
3.

4
2.

3
10

.1
7.

0
5.

4
4.

5
19

.5
12

.7
11

.0
6.

7
94

.2
C

ol
s

16
2.

7
15

1.
3

13
3.

2
13

8.
8

16
4.

8
17

5.
9

16
4.

5
15

3.
0

19
9.

3
18

8.
6

17
8.

9
16

9.
9

19
80

.9

SS
2

T
im

e
6.

2
4.

6
3.

5
2.

4
8.

3
5.

9
3.

9
4.

0
12

.4
9.

5
7.

6
5.

1
73

.5
C

ol
s

15
9.

4
16

3.
4

13
6.

8
14

0.
0

18
6.

7
16

1.
0

16
2.

2
16

0.
3

18
7.

3
18

5.
1

18
4.

1
17

1.
8

19
98

.1

N
S

T
im

e
3.

2
2.

6
2.

8
2.

7
4.

3
3.

3
3.

3
3.

1
8.

1
5.

8
4.

4
3.

9
47

.4
C

ol
s

14
1.

1
14

7.
3

16
7.

5
17

4.
1

16
0.

2
15

9.
0

17
5.

4
18

5.
4

16
0.

9
17

9.
2

16
9.

5
17

3.
8

19
93

.4

0
.8

SS
1

T
im

e
6.

3
4.

2
3.

2
2.

2
10

.9
7.

6
1.

0
6.

8
4.

8
20

.5
14

.4
12

.0
8.

5
10

1.
4

C
ol

s
14

6.
5

14
3.

2
13

4.
3

12
7.

5
18

1.
5

16
5.

6
16

7.
0

15
1.

3
20

0.
3

18
2.

7
17

7.
7

17
4.

8
19

52
.4

SS
2

T
im

e
5.

9
3.

9
3.

2
2.

3
5.

7
6.

3
4.

8
3.

9
10

.6
8.

6
7.

4
6.

0
68

.7
C

ol
s

15
7.

7
14

7.
1

13
9.

6
12

8.
3

15
8.

9
16

5.
3

16
4.

0
15

1.
1

16
9.

7
17

8.
7

18
4.

9
16

5.
6

19
10

.9

N
S

T
im

e
1.

8
1.

2
1.

4
1.

2
2.

1
1.

8
1.

5
1.

5
4.

8
2.

9
2.

5
2.

3
24

.8
C

ol
s

81
.1

68
.7

79
.0

81
.4

84
.5

87
.5

78
.2

90
.4

96
.7

95
.5

98
.0

10
9.

5
10

50
.5

1
.0

SS
1

T
im

e
2.

0
1.

3
1.

2
0.

9
3.

1
2.

5
2.

1
1.

6
5.

7
4.

3
3.

1
2.

5
30

.3
C

ol
s

83
.2

71
.4

82
.1

76
.3

95
.6

96
.7

80
.3

92
.9

11
2.

2
96

.2
11

0.
0

10
0.

6
10

97
.6

SS
2

T
im

e
1.

7
1.

1
1.

1
0.

8
3.

2
2.

0
1.

4
1.

4
7.

1
4.

0
3.

1
2.

1
29

.1
C

ol
s

82
.5

71
.7

82
.1

76
.3

10
1.

5
94

.0
76

.3
94

.0
10

8.
1

95
.4

10
7.

0
93

.1
10

81
.9

N
S

T
im

e
11

.4
9.

4
9.

7
9.

3
14

.9
37

1.
9

11
.4

10
.7

28
.8

20
.0

16
.4

14
.0

52
7.

9
C

ol
s

51
9.

4
52

9.
1

58
3.

8
60

4.
7

55
3.

8
59

8.
6

60
4.

5
63

9.
6

57
3.

8
61

9.
6

62
7.

2
65

9.
5

71
13

.6

SS
1

T
im

e
22

.3
14

.5
11

.3
7.

8
33

.2
23

.6
19

.9
15

.2
57

.7
41

.0
33

.5
23

.6
30

3.
5

C
ol

s
54

8.
6

51
0.

7
49

4.
1

47
6.

6
61

8.
6

60
0.

1
56

3.
5

55
1.

5
68

5.
3

64
4.

0
62

9.
4

62
2.

1
69

44
.5

SS
2

T
im

e
18

.9
13

.8
11

.4
7.

9
23

.2
20

.5
14

.2
13

.1
40

.8
28

.7
24

.2
17

.9
23

4.
7

C
ol

s
55

7.
8

53
6.

7
50

3.
2

47
8.

6
60

7.
1

59
7.

3
55

4.
6

56
1.

5
65

7.
1

63
0.

0
65

0.
1

59
1.

4
69

25
.4

T
ab

le
1:

Su
m
m
ar
y
of

th
e
st
ab

ili
za
ti
on

re
su
lt
s
fo
r
L
R
M

P
c
(A

-in
st
an

ce
s)
.

19

β
Strategy

I
5
0

I
1
0
0

I
2
0
0

T
otal

Q
3

Q
5

Q
7

Q
1
0

Q
3

Q
5

Q
7

Q
1
0

Q
3

Q
5

Q
7

Q
1
0

N
S

T
im

e
367.2

7.4
7.4

8.0
16.1

10.5
368.0

9.5
26.5

16.5
14.1

12.0
863.1

C
ols

373.9
386.8

418.0
464.8

444.8
404.8

457.5
473.3

352.0
387.2

420.3
462.3

5045.7

0
.2

SS1
T

im
e

12.6
8.0

5.5
5.4

18.7
9.0

9.5
7.1

31.1
16.1

16.3
10.6

149.7
C

ols
273.2

315.5
290.2

333.9
339.1

248.8
294.3

314.7
324.2

274.6
326.1

322.0
3656.7

SS2
T

im
e

10.2
7.3

5.1
5.4

15.9
8.2

8.8
6.6

29.6
15.2

13.8
9.6

135.7
C

ols
263.8

306.5
288.4

334.3
315.6

244.9
290.9

306.8
325.5

271.2
322.6

316.0
3586.2

N
S

T
im

e
9.6

8.4
7.7

7.5
17.2

13.0
11.4

9.8
40.1

20.0
17.7

13.3
175.7

C
ols

365.1
402.2

397.0
430.4

464.9
470.8

478.7
481.3

463.9
433.9

498.4
490.1

5376.7

0
.5

SS1
T

im
e

10.8
7.5

5.6
5.1

18.7
10.3

10.2
7.6

45.7
20.6

18.4
10.6

171.0
C

ols
242.5

292.9
287.4

310.2
295.2

290.0
288.5

306.7
382.4

335.0
349.2

303.0
3683.0

SS2
T

im
e

9.3
6.8

5.0
5.1

16.4
9.5

9.1
6.3

38.6
18.5

14.0
9.3

147.8
C

ols
238.6

293.0
286.7

306.0
290.8

289.8
285.0

296.8
386.6

333.2
338.1

294.8
3639.4

N
S

T
im

e
10.7

9.7
9.2

8.0
18.2

12.3
12.0

10.7
39.7

21.0
16.3

13.9
181.8

C
ols

375.2
422.0

433.5
430.4

443.3
432.7

481.8
499.4

460.9
445.5

457.6
501.6

5383.9

0
.8

SS1
T

im
e

10.5
6.7

5.4
5.0

21.0
10.6

10.0
7.3

48.2
31.1

18.4
12.8

187.0
C

ols
245.5

271.3
277.6

299.5
308.3

244.7
273.5

305.7
373.3

354.2
304.7

317.6
3575.9

SS2
T

im
e

7.9
6.1

5.1
4.9

16.8
7.9

8.7
6.5

35.7
21.4

14.6
11.0

146.5
C

ols
248.2

259.3
274.1

296.5
315.7

238.3
275.0

300.1
363.9

356.8
302.7

303.6
3534.2

N
S

T
im

e
3.4

2.8
3.1

3.4
5.5

4.8
4.0

3.4
10.1

7.0
5.7

5.1
58.5

C
ols

147.3
145.3

170.6
177.5

167.5
186.9

182.0
177.8

131.5
160.5

174.2
182.5

2003.6

1
.0

SS1
T

im
e

2.8
2.1

1.8
1.9

5.9
3.6

3.8
2.1

11.8
7.9

4.9
4.3

52.9
C

ols
130.1

132.1
136.2

150.0
183.5

141.7
173.8

146.1
157.9

169.1
151.6

153.4
1825.4

SS2
T

im
e

2.7
2.0

1.9
1.7

6.0
3.0

3.2
2.2

11.4
6.8

4.5
3.4

48.7
C

ols
133.1

130.2
136.2

150.0
186.1

137.7
168.7

140.8
173.2

164.4
156.2

155.5
1832.2

N
S

T
im

e
390.9

28.3
27.4

26.9
57.0

40.6
395.4

33.4
116.4

64.5
53.8

44.4
1279.0

C
ols

1261.5
1356.3

1419.1
1503.1

1520.5
1495.2

1600.0
1631.8

1408.3
1427.1

1550.5
1636.5

17809.9

SS1
T

im
e

36.6
24.3

18.4
17.3

64.2
33.5

33.4
24.1

136.8
75.6

58.0
38.3

560.6
C

ols
891.3

1011.8
991.4

1093.6
1126.1

925.1
1030.2

1073.2
1237.8

1132.9
1131.6

1096.0
12741.0

SS2
T

im
e

30.1
22.2

17.0
17.1

55.1
28.7

29.7
21.6

115.2
61.9

46.9
33.3

478.7
C

ols
883.7

989.0
985.4

1086.8
1108.2

910.7
1019.6

1044.5
1249.2

1125.5
1119.6

1069.9
12592.1

T
able

2:
Sum

m
ary

of
the

stabilization
results

for
L
R
M

P
c
(B

-instances).

20

For formulations AS and ASc we use as initial upper bounds the values of the best solutions

obtained by the greedy heuristic. The beneficial effect of adding these initial upper bounds is not

clear for AS, as it increases the computing times in 4% on average. However, the positive effect

of these initial upper bounds is considerable for ASc, as it speeds up the exploration of the search

trees in 64% on average.

Formulations AS, ASc and MP c produce the same initial lower bounds, except for β = 1.0.

For this value, MP c produces slightly better lower bounds than formulations AS, and ASc. This

similarity ends, however, when looking at the upper bounds, maximum gaps, computing times

and number of optimally solved instances for AS, ASc, and the branch-and-price algorithm. For

example, despite the upper bound provided in the initialization, formulation AS is not able to

find a feasible integer solution for larger instances (I100 and I200). In contrast to the branch-and-

price algorithm, which even finds optimal solutions for a large number of these instances. For all

size of instances, average maximum gaps are around 1.33% and 0.77% (for formulation ASc), and

0.37% and 0.16% (for formulation MP c), for A- and B-instances, respectively. In general, proving

optimality of the obtained solutions strongly depends on the instance type. For A-instances, proven

optimal solutions can be found for 0.0%, 42.5% and 75.4% of the cases for formulations AS, ASc

and MP c, respectively. For the B-instances, these percentages increase to 0.4%, 72.1% and 90.0%,

respectively.

A remarkable feature of the branch-and-price algorithm for MP c is the small number of nodes

that have to be explored in the enumeration tree. Furthermore, the algorithm is not only able to

obtain the largest number of optimal solutions in shorter computing times when compared to AS

and ASc, but it also provides the same or better upper bounds with considerable lower gaps for

instances without optimal solutions, especially for the A-instances which are the most difficult ones

to solve.

6. Conclusions

We have introduced two alternative formulations for the A-MSSP which are based on clusters of

customers with identical service intervals. One of these formulations is suitable for column genera-

tion and has been taken as the basis for an exact branch-and-price algorithm. We have presented

21

Instance
z
L
P

U
B

G
a
p

T
im
e

N
o
d
es

S
o
lv
ed

A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c

I
5
0

Q
3

17.48
17.48

17.48
-

17.8
17.8

-
2.1

0.0
3600.0

3600.0
75.5

-
460114.6

434.2
0

0
5

Q
5

10.49
10.49

10.49
-

10.9
10.9

-
3.3

0.0
3600.0

3482.7
59.8

-
895724.0

184.4
0

2
5

Q
7

7.49
7.49

7.49
8.8

8.0
8.0

22.2
0.0

0.0
3600.0

641.8
55.3

8819.8
175455.6

396.8
0

5
5

Q
1
0

5.24
5.24

5.24
5.8

5.8
5.8

14.8
0.0

0.0
3600.0

172.7
44.0

12301.0
77700.8

265.2
0

5
5

β
=

0
.2

I
1
0
0

Q
3

31.95
31.95

31.95
-

32.3
32.2

-
1.4

0.6
3600.0

3600.0
2097.9

-
112853.8

301.2
0

0
3

Q
5

19.17
19.17

19.17
-

19.5
19.5

-
2.0

0.9
3600.0

3600.0
2584.0

-
300864.6

267.8
0

0
2

Q
7

13.69
13.69

13.69
-

14.0
14.0

-
2.8

1.4
3600.0

3600.0
770.3

-
489158.8

186.0
0

0
4

Q
1
0

9.58
9.58

9.58
-

9.9
9.9

-
0.0

0.0
3600.0

1583.7
52.8

-
355511.8

241.6
0

5
5

I
2
0
0

Q
3

48.76
48.76

48.76
-

49.2
49.0

-
1.1

0.5
3600.0

3600.0
1541.8

-
26225.6

383.4
0

0
3

Q
5

29.26
29.26

29.26
-

29.6
29.5

-
1.8

0.9
3600.0

3600.0
2219.2

-
69787.0

319.8
0

0
2

Q
7

20.90
20.90

20.90
-

21.2
21.2

-
2.4

0.8
3600.0

3598.5
1484.4

-
158599.0

217.4
0

1
3

Q
1
0

14.63
14.63

14.63
-

15.0
14.9

-
3.1

1.4
3600.0

3600.0
1477.3

-
326103.6

226.6
0

0
3

I
5
0

Q
3

43.70
43.70

43.70
-

44.5
44.5

-
2.3

0.0
3600.0

3600.0
845.4

-
425984.4

612.0
0

0
5

Q
5

26.22
26.22

26.22
-

27.3
27.3

-
3.3

0.0
3600.0

3352.3
1157.0

-
828725.4

265.6
0

2
5

Q
7

18.73
18.73

18.73
22.8

19.9
19.9

32.0
0.0

0.0
3600.0

825.3
629.2

8630.2
212998.2

567.4
0

5
5

Q
1
0

13.11
13.11

13.11
15.1

14.6
14.5

16.4
0.0

0.0
3600.0

290.6
454.8

13506.6
130449.6

496.0
0

5
5

β
=

0
.5

I
1
0
0

Q
3

79.87
79.87

79.87
-

80.8
80.5

-
1.6

0.6
3600.0

3600.0
2684.2

-
97409.0

288.2
0

0
3

Q
5

47.92
47.92

47.92
-

48.8
48.7

-
2.6

1.0
3600.0

3600.0
1492.0

-
283981.0

200.6
0

0
4

Q
7

34.23
34.23

34.23
-

35.1
35.0

-
2.8

1.5
3600.0

3600.0
732.8

-
539176.8

201.2
0

0
5

Q
1
0

23.96
23.96

23.96
-

24.8
24.8

-
0.0

0.0
3600.0

1426.8
506.0

-
325025.2

370.4
0

5
5

I
2
0
0

Q
3

121.90
121.90

121.90
-

122.8
122.6

-
1.0

0.4
3600.0

3600.0
3218.8

-
28497.4

173.2
0

0
1

Q
5

73.14
73.14

73.14
-

74.2
73.8

-
2.1

0.7
3600.0

3600.0
2997.1

-
71754.8

269.2
0

0
2

Q
7

52.24
52.24

52.24
-

53.2
52.9

-
2.3

0.8
3600.0

3600.0
1756.8

-
155458.4

253.6
0

0
4

Q
1
0

36.57
36.57

36.57
-

37.4
37.3

-
2.7

1.4
3600.0

3600.0
2002.9

-
302861.2

293.2
0

0
3

I
5
0

Q
3

69.92
69.92

69.92
-

70.9
70.9

-
1.5

0.0
3600.0

3600.0
1210.0

-
343674.2

619.8
0

0
5

Q
5

41.95
41.95

41.95
-

43.4
43.1

-
2.9

0.0
3600.0

3600.0
596.2

-
697950.8

304.6
0

0
5

Q
7

29.97
29.97

29.97
-

31.4
31.4

-
1.7

0.0
3600.0

2411.1
550.6

-
640957.2

328.2
0

3
5

Q
1
0

20.98
20.98

20.98
28.8

23.2
23.2

109.5
0.0

0.0
3600.0

1147.6
419.4

12208.4
486889.4

313.2
0

5
5

β
=

0
.8

I
1
0
0

Q
3

127.79
127.79

127.79
-

128.8
128.4

-
1.0

0.4
3600.0

3600.0
3255.0

-
109725.8

270.8
0

0
1

Q
5

76.67
76.67

76.67
-

77.7
77.5

-
1.5

0.9
3600.0

3600.0
3014.0

-
252162.2

212.0
0

0
1

Q
7

54.77
54.77

54.77
-

56.1
55.6

-
2.8

1.1
3600.0

3600.0
2402.9

-
383808.4

331.0
0

0
2

Q
1
0

38.34
38.34

38.34
-

39.5
39.5

-
2.6

0.0
3600.0

3599.9
561.6

-
786505.8

198.8
0

1
5

I
2
0
0

Q
3

195.04
195.04

195.04
-

196.5
195.9

-
1.1

0.4
3600.0

3600.0
3600.0

-
30923.2

163.6
0

0
0

Q
5

117.02
117.02

117.02
-

118.4
117.8

-
1.3

0.6
3600.0

3600.0
3600.0

-
82400.0

270.2
0

0
0

Q
7

83.59
83.59

83.59
-

84.8
84.5

-
1.6

0.7
3600.0

3600.0
3600.0

-
152987.2

226.2
0

0
0

Q
1
0

58.51
58.51

58.51
-

59.8
59.5

-
2.7

0.9
3600.0

3600.0
3600.0

-
270892.2

239.8
0

0
0

I
5
0

Q
3

87.40
87.40

87.75
-

87.8
87.8

-
0.0

0.0
3600.0

64.2
3.3

-
4310.2

1.0
0

5
5

Q
5

52.44
52.44

52.60
-

52.6
52.6

-
0.0

0.0
3600.0

35.7
1.8

-
3593.4

1.0
0

5
5

Q
7

37.46
37.46

37.80
-

37.8
37.8

-
0.0

0.0
3600.0

21.8
1.8

-
2449.8

1.0
0

5
5

Q
1
0

26.22
26.22

26.60
-

26.6
26.6

-
0.0

0.0
3600.0

66.8
1.5

-
19733.6

1.0
0

5
5

β
=

1
.0

I
1
0
0

Q
3

159.73
159.73

160.20
-

160.2
160.2

-
0.0

0.0
3600.0

54.3
7.7

-
589.4

1.0
0

5
5

Q
5

95.84
95.84

96.16
-

96.2
96.2

-
0.0

0.0
3600.0

61.2
3.9

-
2449.4

1.0
0

5
5

Q
7

68.46
68.46

68.80
-

68.8
68.8

-
0.0

0.0
3600.0

65.1
2.4

-
3567.6

1.0
0

5
5

Q
1
0

47.92
47.92

48.40
-

48.4
48.4

-
0.0

0.0
3600.0

23.7
2.1

-
1243.2

1.0
0

5
5

I
2
0
0

Q
3

243.80
243.80

244.30
-

244.4
244.4

-
0.0

0.0
3600.0

94.9
8.4

-
270.0

1.0
0

5
5

Q
5

146.28
146.28

146.73
-

146.8
146.8

-
0.0

0.0
3600.0

111.6
4.4

-
1888.6

1.0
0

5
5

Q
7

104.49
104.49

105.00
-

105.2
105.0

-
1.3

0.0
3600.0

760.2
3.3

-
22629.4

1.0
0

4
5

Q
1
0

73.14
73.14

73.68
-

73.8
73.8

-
1.4

0.0
3600.0

1443.1
3.0

-
79623.4

1.0
0

4
5

T
able

3:
B
ranch-and-price

results
com

parison
vs.

form
ulations

A
S
and

A
S

c
(A

-instances).

22

In
st

an
ce

z L
P

U
B

G
a
p

T
im
e

N
o
d
es

S
o
lv
ed

A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c
A
S

A
S
c

M
P

c

I
5
0

Q
3

12
.0

9
12

.0
9

12
.0

9
-

12
.2

12
.2

-
0.

0
0.

0
36

00
.0

11
46

.8
27

8.
5

-
26

94
3.

6
52

.2
0

5
5

Q
5

7.
26

7.
26

7.
26

-
7.

4
7.

3
-

2.
8

0.
0

36
00

.0
18

41
.1

30
3.

9
-

11
32

48
.6

74
.8

0
3

5
Q
7

5.
18

5.
18

5.
18

5.
6

5.
3

5.
3

11
.1

0.
0

0.
0

36
00

.0
42

2.
4

27
4.

4
61

57
.2

45
13

6.
0

28
.4

0
5

5
Q
1
0

3.
63

3.
63

3.
63

4.
0

4.
0

4.
0

12
.3

0.
0

0.
0

36
00

.0
12

1.
8

13
.9

13
91

1.
4

23
47

2.
2

23
.4

0
5

5

β
=

0
.2

I
1
0
0

Q
3

21
.5

9
21

.5
9

21
.5

9
-

21
.7

21
.7

-
0.

0
0.

0
36

00
.0

68
5.

7
26

6.
0

-
35

53
.4

15
9.

2
0

5
5

Q
5

12
.9

5
12

.9
5

12
.9

5
-

13
.0

13
.0

-
2.

0
0.

0
36

00
.0

95
5.

5
12

5.
3

-
16

40
1.

4
99

.8
0

4
5

Q
7

9.
25

9.
25

9.
25

-
9.

4
9.

4
-

0.
0

0.
0

36
00

.0
15

3.
7

14
1.

8
-

38
97

.2
15

2.
2

0
5

5
Q
1
0

6.
48

6.
48

6.
48

-
6.

6
6.

6
-

0.
0

0.
0

36
00

.0
10

4.
2

10
4.

8
-

60
25

.2
11

4.
2

0
5

5

I
2
0
0

Q
3

45
.0

4
45

.0
4

45
.0

4
-

45
.3

45
.1

-
0.

9
0.

0
36

00
.0

33
74

.3
28

0.
8

-
88

63
.0

73
.4

0
1

5
Q
5

27
.0

2
27

.0
2

27
.0

2
-

27
.2

27
.1

-
1.

0
0.

0
36

00
.0

27
98

.4
60

7.
7

-
15

72
2.

4
18

6.
2

0
3

5
Q
7

19
.3

0
19

.3
0

19
.3

0
-

19
.4

19
.4

-
1.

2
0.

0
36

00
.0

22
73

.3
47

2.
5

-
18

15
0.

2
17

9.
6

0
3

5
Q
1
0

13
.5

1
13

.5
1

13
.5

1
-

13
.6

13
.6

-
1.

4
0.

0
36

00
.0

10
38

.5
22

9.
0

-
16

91
9.

8
11

7.
8

0
4

5

0.
0

I
5
0

Q
3

30
.2

3
30

.2
3

30
.2

3
-

30
.5

30
.4

-
1.

6
0.

0
36

00
.0

92
9.

2
50

2.
1

-
17

91
2.

6
59

.4
0

4
5

Q
5

18
.1

4
18

.1
4

18
.1

4
-

18
.4

18
.3

-
2.

8
0.

0
36

00
.0

97
6.

8
51

7.
2

-
56

18
6.

8
73

.6
0

4
5

Q
7

12
.9

6
12

.9
6

12
.9

6
14

.2
13

.3
13

.3
16

.0
0.

0
0.

0
36

00
.0

51
0.

9
70

9.
9

76
40

.6
49

62
3.

8
21

.6
0

5
5

Q
1
0

9.
07

9.
07

9.
07

10
.0

9.
9

9.
9

12
.3

0.
0

0.
0

32
71

.3
15

4.
6

65
.3

13
90

4.
2

28
26

2.
0

20
.2

1
5

5

β
=

0
.5

I
1
0
0

Q
3

53
.9

7
53

.9
7

53
.9

7
-

54
.3

54
.3

-
0.

0
0.

0
36

00
.0

51
4.

5
28

5.
7

-
28

28
.0

14
1.

0
0

5
5

Q
5

32
.3

8
32

.3
8

32
.3

8
-

32
.5

32
.5

-
0.

0
0.

0
36

00
.0

57
0.

4
13

2.
4

-
94

94
.2

11
0.

4
0

5
5

Q
7

23
.1

3
23

.1
3

23
.1

3
-

23
.4

23
.4

-
0.

0
0.

0
36

00
.0

20
7.

2
15

5.
5

-
52

19
.6

16
8.

8
0

5
5

Q
1
0

16
.1

9
16

.1
9

16
.1

9
-

16
.5

16
.5

-
0.

0
0.

0
36

00
.0

10
1.

9
11

2.
3

-
49

14
.6

13
7.

4
0

5
5

I
2
0
0

Q
3

11
2.

60
11

2.
60

11
2.

60
-

11
3.

4
11

2.
7

-
2.

2
0.

0
36

00
.0

31
18

.5
87

4.
9

-
50

20
.4

12
8.

6
0

1
5

Q
5

67
.5

6
67

.5
6

67
.5

6
-

67
.7

67
.7

-
0.

0
0.

0
36

00
.0

17
29

.6
22

5.
0

-
73

19
.6

18
5.

0
0

5
5

Q
7

48
.2

6
48

.2
6

48
.2

6
-

48
.6

48
.4

-
1.

4
0.

0
36

00
.0

22
51

.5
24

1.
0

-
18

46
8.

8
17

6.
2

0
3

5
Q
1
0

33
.7

8
33

.7
8

33
.7

8
-

34
.2

34
.0

-
1.

8
0.

0
36

00
.0

16
37

.1
13

9.
6

-
25

40
1.

6
19

4.
4

0
3

5

I
5
0

Q
3

48
.3

7
48

.3
7

48
.3

7
-

48
.7

48
.6

-
1.

2
1.

0
36

00
.0

31
11

.8
15

65
.8

-
66

11
7.

6
48

.2
0

1
3

Q
5

29
.0

2
29

.0
2

29
.0

2
-

29
.3

29
.3

-
2.

4
2.

0
36

00
.0

30
70

.5
15

82
.6

-
21

42
42

.6
46

.8
0

2
3

Q
7

20
.7

3
20

.7
3

20
.7

3
-

21
.2

21
.2

-
3.

7
0.

0
36

00
.0

23
21

.2
53

4.
0

-
23

63
07

.8
25

.4
0

3
5

Q
1
0

14
.5

1
14

.5
1

14
.5

1
17

.3
15

.7
15

.7
53

.8
0.

0
0.

0
36

00
.0

56
7.

7
37

2.
3

12
85

4.
8

10
48

21
.6

20
.0

0
5

5

β
=

0
.8

I
1
0
0

Q
3

86
.3

5
86

.3
5

86
.3

5
-

86
.9

86
.9

-
0.

7
0.

5
36

00
.0

36
00

.0
36

00
.0

-
23

06
9.

0
13

9.
4

0
0

0
Q
5

51
.8

1
51

.8
1

51
.8

1
-

52
.3

52
.0

-
2.

2
0.

6
36

00
.0

27
55

.9
24

5.
2

-
55

49
9.

4
77

.0
0

2
5

Q
7

37
.0

1
37

.0
1

37
.0

1
-

37
.4

37
.4

-
1.

4
0.

7
36

00
.0

36
00

.0
29

59
.6

-
12

86
62

.2
15

3.
2

0
0

1
Q
1
0

25
.9

0
25

.9
0

25
.9

0
-

26
.4

26
.4

-
2.

3
1.

8
36

00
.0

36
00

.0
36

00
.0

-
25

48
51

.2
13

6.
0

0
0

0

I
2
0
0

Q
3

18
0.

16
18

0.
16

18
0.

16
-

18
1.

2
18

0.
4

-
1.

6
0.

2
36

00
.0

36
00

.0
15

31
.0

-
80

91
.2

11
7.

8
0

0
4

Q
5

10
8.

10
10

8.
10

10
8.

10
-

10
8.

5
10

8.
3

-
0.

7
0.

0
36

00
.0

34
33

.7
69

8.
5

-
19

50
8.

4
16

1.
0

0
1

5
Q
7

77
.2

1
77

.2
1

77
.2

1
-

77
.6

77
.4

-
0.

8
0.

4
36

00
.0

35
71

.2
10

65
.9

-
47

89
6.

2
20

7.
8

0
1

4
Q
1
0

54
.0

5
54

.0
5

54
.0

5
-

54
.6

54
.4

-
1.

1
0.

6
36

00
.0

36
00

.0
29

19
.8

-
91

84
3.

8
23

2.
4

0
0

1

0.
0

I
5
0

Q
3

60
.4

7
60

.4
7

60
.8

0
-

60
.8

60
.8

-
0.

0
0.

0
36

00
.0

95
.7

1.
3

-
22

64
.6

1.
0

0
5

5
Q
5

36
.2

8
36

.2
8

36
.6

0
-

36
.6

36
.6

-
0.

0
0.

0
36

00
.0

28
.7

1.
9

-
87

1.
8

1.
0

0
5

5
Q
7

25
.9

1
25

.9
1

26
.2

0
-

26
.2

26
.2

-
0.

0
0.

0
36

00
.0

24
.6

1.
9

-
91

9.
6

1.
0

0
5

5
Q
1
0

18
.1

4
18

.1
4

18
.4

0
-

18
.4

18
.4

-
0.

0
0.

0
36

00
.0

24
.1

2.
9

-
15

30
.0

1.
0

0
5

5

β
=

1
.0

I
1
0
0

Q
3

10
7.

93
10

7.
93

10
8.

55
-

10
9.

5
10

8.
6

-
0.

0
0.

0
36

00
.0

71
.1

7.
7

-
33

9.
3

1.
0

0
5

5
Q
5

64
.7

6
64

.7
6

65
.0

0
-

65
.0

65
.0

-
0.

0
0.

0
36

00
.0

53
.4

3.
0

-
56

0.
0

1.
0

0
5

5
Q
7

46
.2

6
46

.2
6

46
.7

8
-

46
.8

46
.8

-
0.

0
0.

0
36

00
.0

42
.6

3.
8

-
70

0.
8

1.
0

0
5

5
Q
1
0

32
.3

8
32

.3
8

32
.9

6
-

33
.0

33
.0

-
0.

0
0.

0
36

00
.0

17
.5

3.
1

-
25

7.
8

1.
0

0
5

5

I
2
0
0

Q
3

22
5.

20
22

5.
20

22
5.

33
-

22
5.

4
22

5.
4

-
0.

0
0.

0
36

00
.0

17
0.

8
11

.5
-

37
3.

4
1.

0
0

5
5

Q
5

13
5.

12
13

5.
12

13
5.

38
-

13
5.

4
13

5.
4

-
0.

0
0.

0
36

00
.0

12
6.

2
8.

7
-

43
6.

0
1.

0
0

5
5

Q
7

96
.5

1
96

.5
1

96
.7

8
-

96
.8

96
.8

-
0.

0
0.

0
36

00
.0

82
.6

7.
2

-
44

0.
4

1.
0

0
5

5
Q
1
0

67
.5

6
67

.5
6

67
.9

9
-

68
.0

68
.0

-
0.

0
0.

0
36

00
.0

49
.5

5.
4

-
53

4.
8

1.
0

0
5

5

T
ab

le
4:

B
ra
nc
h-
an

d-
pr
ic
e
re
su
lt
s
co
m
pa

ri
so
n
vs
.
fo
rm

ul
at
io
ns

A
S
an

d
A
S

c
(B

-in
st
an

ce
s)
.

23

the master problem as well its associated pricing problem, for which a polynomial time exact algo-

rithm has been proposed. The branch-and-price algorithm includes several features that improve

its performance. Three different branching strategies are combined and Farkas pricing is applied

when the subproblem resulting after branching becomes unfeasible. Additionally, a stabilization

procedure has been included to avoid generating a large number of columns. Computational re-

sults show not only an improvement in efficiency over the class based formulations but also the

outperformance of the branch-and-price algorithm.

Acknowledgements

This research has been partially supported by the Spanish Ministry of Economy and Compet-

itiveness and EDRF funds through grant MTM2015-63779-R (MINECO/FEDER). The research

of the third author has been partially through of the Mexican National Council for Science and

Technology (CONACyT) through grant 310857. This support is gratefully acknowledged.

References

[1] Anily, S., Glass, C., Hassin, R., 1998. The scheduling of maintenance service. Discrete Applied Mathematics

82 (1-3), 27–42.

[2] Bar-Noy, A., Bhatia, R., Naor, J., Schieber, B., 2002. Minimizing service and operation costs of periodic

scheduling. Mathematics of Operations Research 27 (3), 518–544.

[3] Bar-Noy, A., Ladner, R., 2003. Windows scheduling problems for broadcast systems. SIAM Journal on Com-

puting 32 (4), 1091–1113.

[4] Bar-Noy, A., Ladner, R., Tamir, T., Van De Grift, T., 2012. Windows scheduling of arbitrary-length jobs on

multiple machines. Journal of Scheduling 15 (2), 141–155.

[5] Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P. H., 1998. Branch-and-price: Column

generation for solving huge integer programs. Operations research 46 (3), 316–329.

[6] Campbell, A., Hardin, J., 2005. Vehicle minimization for periodic deliveries. European Journal of Operational

Research 165 (3), 668–684.

[7] Farkas, G., 1894. A fourier-féle mechanikai elv alkamazásai [hungarian]. Mathematikai és Természettudományi

Értesítö 12, 457–472.

[8] Grigoriev, A., van de Klundert, J., Spieksma, F., 2006. Modeling and solving the periodic maintenance problem.

European Journal of Operational Research 172 (3), 783–797.

[9] Han, C.-C., Lin, K.-J., Hou, C.-J., 1996. Distance-constrained scheduling and its applications to real-time

systems. IEEE Transactions on Computers 45 (7), 814–826.

24

[10] Herrmann, J., 2011. Using aggregation to reduce response time variability in cyclic fair sequences. Journal of

Scheduling 14 (1), 39–55.

[11] Korst, J., Aarts, E., Lenstra, J., Wessels, J., 1994. Periodic assignment and graph colouring. Discrete Applied

Mathematics 51 (3), 291–305.

[12] Lübbecke, M., 2011. Column generation. In: Cochran, J. (Ed.), Encyclopedia of Operations Research and

Management Science. John Wiley & Sons, Chichester.

[13] Núñez-del Toro, C., Fernández, E., Kalcsics, J., Nickel, S., 2016. Scheduling policies for multi-period services.

European Journal of Operational Research 251 (3), 751–770.

[14] Pereira-Lopes, M., de Carvalho, J. V., 2007. A branch-and-price algorithm for scheduling parallel machines with

sequence dependent setup times. European Journal of Operational Research 176 (3), 1508 – 1527.

[15] Pessoa, A., Uchoa, E., de Aragão, M. P., Rodrigues, R., 2010. Exact algorithm over an arc-time-indexed

formulation for parallel machine scheduling problems. Mathematical Programming Computation 2 (3-4), 259–

290.

[16] Solyalı, O., Özpeynirci, Ö., 2009. Operational fixed job scheduling problem under spread time constraints: a

branch-and-price algorithm. International Journal of Production Research 47 (7), 1877–1893.

[17] Vance, P., Barnhart, C., Johnson, E., Nemhauser, G., 1997. Airline crew scheduling: A new formulation and

decomposition algorithm. Operations Research 45 (2), 188–200.

[18] Vanderbeck, F., 2011. Branching in branch-and-price: a generic scheme. Mathematical Programming 130 (2),

249–294.

[19] Violin, A., 2014. Mathematical programming approaches to pricing problems. Ph.D. thesis, Universite Libre de

Bruxelles.

[20] Wentges, P., 1997. Weighted dantzig-wolfe decomposition for linear mixed-integer programming. International

Transactions in Operational Research 4 (2), 151–162.

[21] Xu, Y., Yu, H., Liu, K., Tang, L., 2011. Inventory replenishment scheduling to minimize the number of vehicles.

Proceedings - 2011 International Joint Conference on Service Sciences, IJCSS 2011, 74–78.

25

	Introduction
	The Aperiodic Multi-Period Service Scheduling Problem
	Column generation formulation
	Comparison of formulations
	The Pricing Problem

	Branch-and-price algorithm
	Initialization
	Branching strategies
	Recovering infeasibility
	Stabilization

	Computational experience
	Conclusions

