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Abstract

The structure signature of a system made up of n components

having continuous and i.i.d. lifetimes was defined in the eight-

ies by Samaniego as the n-tuple whose k-th coordinate is the

probability that the k-th component failure causes the system

to fail. More recently, a bivariate version of this concept was

considered as follows. The joint structure signature of a pair

of systems built on a common set of components having con-

tinuous and i.i.d. lifetimes is a square matrix of order n whose

(k, l)-entry is the probability that the k-th failure causes the first

system to fail and the l-th failure causes the second system to

fail. This concept was successfully used to derive a signature-

based decomposition of the joint reliability of the two systems.

In the first part of this paper we provide an explicit formula to

compute the joint structure signature of two or more systems

and extend this formula to the general non-i.i.d. case, assum-

ing only that the distribution of the component lifetimes has no

ties. We also provide and discuss a necessary and sufficient con-

dition on this distribution for the joint reliability of the systems

to have a signature-based decomposition. In the second part of

this paper we show how our results can be efficiently applied

to the investigation of the reliability and signature of multistate

systems made up of two-state components. The key observation

is that the structure function of such a multistate system can al-

ways be additively decomposed into a sum of classical structure

functions. Considering a multistate system then reduces to con-

sidering simultaneously several two-state systems.
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1 Introduction

Consider a system S = (C,φ,F ), where C is a set [n] ={1, . . . , n} of nonrepairable components, φ∶ {0,1}n → {0,1} is

a structure function, and F is the joint c.d.f. of the component

lifetimes T1, . . . , Tn, defined by

F (t1, . . . , tn) = Pr(T1 ⩽ t1, . . . , Tn ⩽ tn) , t1, . . . , tn ⩾ 0.

We assume that the system S (or equivalently, its structure func-

tion φ) is semicoherent, which means that the function φ is non-

decreasing in each variable and satisfies the conditionsφ(0) = 0
and φ(1) = 1, where 0 = (0, . . . ,0) and 1 = (1, . . . ,1). As

usual we say that the system S is coherent if it is semicoher-

ent and, additionally, every of its components is relevant (i.e.,

the function φ is nonconstant in each of its variables). We also

assume throughout that the joint c.d.f. F of the component life-

times has no ties, which means that Pr(Ti = Tj) = 0 for all

distinct i, j ∈ C.

Samaniego [27] defined the signature of any system S whose

components have continuous and i.i.d. lifetimes as the n-tuple

s = (s1, . . . , sn) whose k-th coordinate is the probability that

the k-th component failure causes the system to fail. In other

words, we have

sk = Pr(TS = Tk∶n), k = 1, . . . , n,

where TS is the system lifetime and Tk∶n is the k-th smallest

component lifetime, that is, the k-th order statistic of the com-

ponent lifetimes.

Boland [2] showed that sk can be computed only from the

structure function φ by means of the formula

sk = ∑
A⊆C

∣A∣=n−k+1

1

( n

∣A∣
) φ(A) − ∑

A⊆C

∣A∣=n−k

1

( n
∣A∣
) φ(A). (1)

Here and throughout we identify Boolean tuples x ∈ {0,1}n
and subsets A ⊆ [n] by setting xi = 1 if and only if i ∈ A. In

particular, ∣A∣ denotes the cardinality of A and ∣x∣ denotes the

number ∑i xi. We also use the same symbol to denote both

a function f ∶ {0,1}n → R and the corresponding set function

f ∶2[n] → R interchangeably. For instance, we write φ(0) =
φ(∅) and φ(1) = φ([n]).

Equation (1) clearly shows that the signature s is indepen-

dent of the joint distribution F of the component lifetimes.
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It depends only on n and φ and has an important combina-

torial meaning (see [2]). For this reason it is often called the

structure signature of the system. In this paper we will there-

fore regard the structure signature of the system as the n-tuple

s = (s1, . . . , sn) whose k-th coordinate is given by Eq. (1).

Thus defined, this concept always exists as a purely combinato-

rial object even in the general non-i.i.d. case.

The original definition of signature can be easily extended

to the general non-i.i.d. case where it is assumed only that the

joint distribution function F has no ties. The probability signa-

ture of a system S is the n-tuple p = (p1, . . . , pn) whose k-th

coordinate is defined by

pk = Pr(TS = Tk∶n), k = 1, . . . , n.

By definition the identity p = s holds (which means that the

probabilityPr(TS = Tk∶n) is exactly given by Boland’s formula

(1) for k = 1, . . . , n) whenever the component lifetimes are i.i.d.

and continuous. Actually, it was shown in [22] that this identity

still holds whenever the component lifetimes are exchangeable

(i.e., the function F is symmetric) and absolutely continuous.

However, it was also observed [17, 19, 26, 29] that in general

the probability signature p depends on the joint c.d.f. F of the

component lifetimes and that this dependence is captured by

means of the relative quality function q∶2[n] → [0,1], which is

defined as

q(A) = Pr ( max
i∈C∖A

Ti <min
j∈A

Tj), A ⊆ C,

with the convention that q(∅) = q(C) = 1. The k-th coordinate

of the probability signature is then given by the formula (see

[17])

pk = ∑
A⊆C

∣A∣=n−k+1

q(A)φ(A) − ∑
A⊆C

∣A∣=n−k

q(A)φ(A). (2)

which generalizes Boland’s formula (1) under the sole assump-

tion that the joint distribution function F has no ties.

Remark 1.1. Comparing formulas (1) and (2) shows that we

still have p = s whenever q(A) reduces to 1/( n
∣A∣
) for every

A ⊆ C. In the general dependent case when the latter condition

does not hold, both n-tuples p and s still exist but no longer

coincide.

Navarro et al. [23, 24] proposed to analyze the joint behav-

ior of several systems built on a common set of components.

They motivated their analysis by real-life applications based on

computer networks. From a mathematical viewpoint, such sit-

uations consist in considering simultaneously m semicoherent

systems

S1 = (C,φ1, F ) , . . . , Sm = (C,φm, F )
having a common set C of components and a common joint

distribution F of lifetimes.

To simplify our presentation we will henceforth restrict our-

selves to the case of two systems. However, our definitions and

results can be easily and naturally extended to an arbitrary num-

ber of systems.

Let us consider a basic example. The symbols ∧ and ∨ rep-

resent the min and max functions, respectively.

Example 1.2. Consider the systems S1 = (C,φ1, F ) and S2 =(C,φ2, F ), where C is a set of four components and the struc-

ture functions φ1 and φ2 are given by

φ1(x1, x2, x3, x4) = x1 ∧ x2 ,

and

φ2(x1, x2, x3, x4) = (x2 ∨ x3) ∧ x4 ,

as depicted in Figures 1 and 2. Since S1 is a series system

made up of components 1 and 2, the function φ1 is constant

with respect to its third and fourth variables. Similarly, we see

that φ2 is constant with respect to its first variable.

1 2r r

Figure 1: System S1

3

2

4r r

Figure 2: System S2

Remark 1.3. Example 1.2 enables us to emphasize the need

to consider semicoherent systems instead of coherent systems.

Indeed, by doing so we can consider several systems that share

only some (and not all) components.

Under the assumption that the lifetimes are i.i.d. and contin-

uous, Navarro et al. [24] defined the joint structure signature of

the systems S1 and S2 as the square matrix s of order n whose(k, l)-entry is the probability

sk,l = Pr(TS1
= Tk∶n and TS2

= Tl∶n), k, l = 1, . . . , n.

Thus, sk,l is exactly the probability that the k-th failure causes

the system S1 to fail and that the l-th failure causes the system

S2 to fail in the i.i.d. and continuous case.

We will see in Corollary 2.8 that the joint structure signature

is independent of the joint distribution c.d.f.F of the component

lifetimes. It depends only on n and the structure functions φ1

and φ2. It is then a purely combinatorial object and, similarly

to the structure signature, we will consider that this concept still

exists in the general non-i.i.d. case.

Just as for the concept of structure signature, the concept of

joint structure signature can also be extended to the general de-

pendent setting, assuming only that the function F has no ties.

Thus, we define the joint probability signature of two systems

S1 = (C,φ1, F ) and S2 = (C,φ2, F ) as the square matrix p of

order n whose (k, l)-entry is the probability

pk,l = Pr(TS1
= Tk∶n and TS2

= Tl∶n), k, l = 1, . . . , n.
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In general this matrix depends on both the structures of the sys-

tems and the joint c.d.f. F of the component lifetimes.

The outline of this paper is as follows. In the first part

(consisting of Sections 2 and 3) we provide a generalization

of Boland’s formula (1) to joint structure signatures (Corollar-

ies 2.2 and 2.8). We also introduce a bivariate version of the

relative quality function (Definition 2.3) and use it to provide

an extension of Eq. (2) to joint probability signatures (Theo-

rem 2.7).

In the continuous and i.i.d. case, the structure signature was

used by Samaniego [27, 28] to derive a signature-based decom-

position of the reliability

FS(t) = Pr(TS > t), t ⩾ 0,

of the system S. The concept of joint structure signature was

used similarly by Navarro et al. [24] to derive a signature-based

decomposition of the joint reliability

FS1,S2
(t1, t2) = Pr(TS1

> t1 and TS2
> t2), t1, t2 ⩾ 0,

of the systems S1 and S2. In the general non-i.i.d. setting, we

provide and discuss a necessary and sufficient condition on the

function F for the joint reliability of two systems to have a

signature-based decomposition (Propositions 3.7 and 3.13).

In the second part of this paper (Sections 4–7) we fruitfully

apply the results obtained in Sections 2 and 3 to the investiga-

tion of the signature and reliability of multistate systems made

up of two-state components in the general dependent setting.

More specifically it is shown that our results offer a general

framework and an efficient tool to study such multistate systems

in the dependent setting and bring simplifications and general-

izations to recent results obtained, e.g., by Da and Hu [4] and

Gertsbakh et al. [11] on these topics.

2 The joint probability signature

In this section we mainly show how Eq. (1) can be extended to

joint structure signatures and how Eq. (2) can be extended to

joint probability signatures.

Recall first that the tail structure signature of a system S (a

concept introduced in [2] and named so in [9]) is the (n + 1)-
tuple S = (S0, . . . , Sn) defined by

Sk =
n

∑
i=k+1

si = ∑
A⊆C

∣A∣=n−k

1

( n
∣A∣
) φ(A) , k = 0, . . . , n, (3)

where the latter expression immediately follows from (1). (Here

and throughout we use the usual convention that ∑n
i=k+1 xi = 0

when k = n.) Conversely, the structure signature s can also be

easily retrieved from S by using (1), that is, by computing sk =
Sk−1 −Sk for k = 1, . . . , n. Thus, assuming that the component

lifetimes are i.i.d. and continuous, we see that Sk = Pr(TS >
Tk∶n) is the probability that the system S survives beyond the

k-th failure (with the usual convention that T0∶n = 0).

Similarly, the tail probability signature of a system S (see

[18]) is the (n + 1)-tuple P = (P 0, . . . , Pn), where

P k =
n

∑
i=k+1

pi = ∑
A⊆C

∣A∣=n−k

q(A)φ(A) , k = 0, . . . , n. (4)

Conversely, the probability signature p can be easily retrieved

from P by using (2), that is, by computing pk = P k−1 − P k for

k = 1, . . . , n. Thus, assuming only that the function F has no

ties, we see that P k = Pr(TS > Tk∶n) is the probability that the

system S survives beyond the k-th failure.

Since the tail signatures proved to be much easier to handle

than the standard signatures in many computation problems, it

is natural to extend these concepts to the bivariate case.

Given two systems S1 = (C,φ1, F ) and S2 = (C,φ2, F )
for which the component lifetimes are i.i.d. and continuous, the

joint tail structure signature is defined as the square matrix S

of order n + 1 whose (k, l)-entry is the probability

Sk,l = Pr(TS1
> Tk∶n and TS2

> Tl∶n), k, l = 0, . . . , n.

Similarly, assuming only that the function F has no ties, the

joint tail probability signature is the square matrix P of order

n + 1 whose (k, l)-entry is the probability

P k,l = Pr(TS1
> Tk∶n and TS2

> Tl∶n), k, l = 0, . . . , n.

Thus, P k,l is the probability that the system S1 survives beyond

the k-th failure and the system S2 survives beyond the l-th fail-

ure. In particular,

P k,l = 0, if k = n or l = n ,

P k,0 = Pr(TS1
> Tk∶n) , k = 0, . . . , n,

P 0,l = Pr(TS2
> Tl∶n) , l = 0, . . . , n,

P 0,0 = 1.

The following straightforward proposition provides the con-

version formulas between the matrices p and P. The corre-

sponding formulas between the matrices s and S are given in

Corollary 2.2.

Proposition 2.1. We have

P k,l =
n

∑
i=k+1

n

∑
j=l+1

pi,j , k, l = 0, . . . , n, (5)

and

pk,l = P k−1,l−1−P k,l−1−P k−1,l+P k,l , k, l = 1, . . . , n. (6)

Corollary 2.2. We have

Sk,l =
n

∑
i=k+1

n

∑
j=l+1

si,j , k, l = 0, . . . , n,

and

sk,l = Sk−1,l−1 − Sk,l−1 − Sk−1,l + Sk,l , k, l = 1, . . . , n.
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The conversion formulas given in Proposition 2.1 and Corol-

lary 2.2 show that all the information contained in the matrix p

(resp. the matrix s) is completely encoded in the matrix P (resp.

the matrix S) and vice versa.

We will now show how to compute the matrix P from φ1,

φ2, and F (see Theorem 2.7) and similarly for the matrix S (see

Corollary 2.8). These results actually constitute direct gener-

alizations of Eqs. (3) and (4), which are the ‘tail’ versions of

Eqs. (1) and (2), to joint structure signatures and joint probabil-

ity signatures, respectively.

Let us first introduce the bivariate version of the relative qual-

ity function.

Definition 2.3. The joint relative quality function associated

with the joint c.d.f. F is the symmetric function q∶2[n] ×2[n] →[0,1] defined by

q(A,B) = Pr( max
i∈C∖A

Ti <min
j∈A

Tj and max
i∈C∖B

Ti <min
j∈B

Tj),
with the convention that q(A,∅) = q(A,C) = q(A) for every

A ⊆ C and q(∅,B) = q(C,B) = q(B) for every B ⊆ C.

By definition, the joint relative quality function satisfies the

following properties: for every A,B ⊆ C, we have q(A,B) =
q(B,A) and q(A,A) = q(A). Moreover, the number q(A,B)
is the probability that the best ∣A∣ components are precisely

those in A and that the best ∣B∣ components are precisely those

in B. In particular, we have q(A,B) = 0 whenever A ⊈ B and

B ⊈ A.

A important link between the relative quality function and the

joint relative quality function is given in the following proposi-

tion.

Proposition 2.4. For every A ⊆ C and every l ∈ {0, . . . , n} we

have

∑
B⊆C

∣B∣=l

q(A,B) = q(A).

In particular, for every k, l ∈ {0, . . . , n} we have

∑
A⊆C

∣A∣=k

∑
B⊆C

∣B∣=l

q(A,B) = 1.

The joint relative quality function can also be computed in

terms of probabilities of events labeled by the permutations of[n] = {1, . . . , n}. Indeed, denote by Σn the group of permuta-

tions of [n] and define the events

Eσ = (Tσ(1) < ⋯ < Tσ(n)) , σ ∈ Σn.

Since the function F has no ties, the collection of events {Eσ ∶
σ ∈ Σn} forms a partition almost everywhere of the sample

space [0,+∞[n. Moreover, it is clear that

( max
i∈C∖A

Ti <min
j∈A

Tj and max
i∈C∖B

Ti <min
j∈B

Tj)
= ⋃

σ∈Σn ∶ {σ(n−∣A∣+1),...,σ(n)}=A
{σ(n−∣B∣+1),...,σ(n)}=B

Eσ

almost everywhere. We thus have

q(A,B)
= ∑

σ∈Σn ∶ {σ(n−∣A∣+1),...,σ(n)}=A
{σ(n−∣B∣+1),...,σ(n)}=B

Pr(Tσ(1) < ⋯ < Tσ(n)). (7)

We now show that this expression can be easily computed in

the i.i.d. and continuous case, or more generally whenever the

events Eσ (σ ∈ Σn) are equally likely, for which we have

Pr(Eσ) = 1/n! since the function F has no ties.

Definition 2.5. Define the symmetric function q0∶2[n]×2[n] →[0,1] as

q0(A,B) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(n−∣A∣)! (∣A∣−∣B∣)! ∣B∣!
n!

if B ⊆ A,
(n−∣B∣)! (∣B∣−∣A∣)! ∣A∣!

n!
if A ⊆ B,

0 otherwise.

(8)

Proposition 2.6. If the events Eσ (σ ∈ Σn) are equally likely,

then q = q0.

Proof. We simply use Eq. (7) and count the relevant permuta-

tions.

We now show how to compute the matrix P from φ1, φ2, and

q. This result together with Proposition 2.1 clearly generalize

Eq. (4) to the case of two systems.

Theorem 2.7. For every k, l ∈ {0, . . . , n} we have

P k,l = ∑
∣A∣=n−k

∑
∣B∣=n−l

q(A,B)φ1(A)φ2(B). (9)

Proof. We just consider the event

Ek,l = (TS1
> Tk∶n and TS2

> Tl∶n)
that defines P k,l. The fact that a given observed tuple of life-

times (t1, . . . , tn) belongs to Ek,l depends only on the ordering

of lifetimes. Therefore, for each permutation σ ∈ Σn, we have

either Eσ ⊆ Ek,l or Eσ ∩Ek,l = ∅. Moreover, the former case

occurs if and only if

φ1({σ(k + 1), . . . , σ(n)}) = φ2({σ(l + 1), . . . , σ(n)}) = 1.

We thus have

P k,l = Pr(Ek,l) = Pr
⎛
⎝ ⋃

σ∈Σn ∶φ1({σ(k+1),...,σ(n)})=1
φ2({σ(l+1),...,σ(n)})=1

Eσ

⎞
⎠,

that is,

P k,l = ∑
σ∈Σn

Pr(Eσ) φ1({σ(k + 1), . . . , σ(n)})
× φ2({σ(l + 1), . . . , σ(n)}).

To compute this sum we group the terms for which {σ(k +
1), . . . , σ(n)} is a given set A of cardinality n − k and {σ(l +
1), . . . , σ(n)} is a given set B of cardinality n − l (with a nec-

essary inclusion relation) and then sum over all the possibilities

for such A’s and B’s. The result then follows from Eq. (7).
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As mentioned above, Eq. (9) generalizes Eq. (4). Moreover,

if P
1

(resp. P
2

) denotes the tail probability signature of the

system S1 (resp. S2), from Eqs. (4) and (9) it follows that

P k,0 = P
1

k for k = 0, . . . , n,

P 0,l = P
2

l for l = 0, . . . , n.

Also, if p1 (resp. p2) denotes the probability signature of the

system S1 (resp. S2), we clearly have

n

∑
l=1

pk,l = p1k for k = 1, . . . , n, (10)

n

∑
k=1

pk,l = p2l for l = 1, . . . , n. (11)

From Theorem 2.7 we immediately derive the following

corollary, which concerns the joint tail structure signature.

Corollary 2.8. For every k, l ∈ {0, . . . , n} we have

Sk,l = ∑
∣A∣=n−k

∑
∣B∣=n−l

q0(A,B)φ1(A)φ2(B), (12)

Remark 2.9. Corollary 2.2 together with Corollary 2.8 general-

ize Eq. (3) (i.e., the ‘tail’ version of Boland’s formula (1)) to the

case of two systems. This shows that even though the matrices

s and S are defined in the i.i.d. case, they are also combinatorial

objects associated to the systems. Throughout this paper we

will thus consider these matrices as defined in Corollaries 2.2

and 2.8, in full accordance with the univariate case.

Let us now consider a basic example to help the reader get

familiar with these results.

Example 2.10. Applying Corollary 2.8 and then Corollary 2.2

to Example 1.2, we obtain the following matrices

S =
1

12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 9 4 0 0

6 3 1 0 0

2 1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and s =

1

12

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 3 3 0

2 1 1 0

1 1 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Remark 2.11. Formula (10) shows that, by adding the entries

in each row of the matrix s, we obtain the structure signature s1

(with four coordinates) of the system S1. Applying this fact to

the example above, we immediately obtain s1 = 1

12
(6,4,2,0).

However, it is important to remember that S1 has four compo-

nents, two of which are null or irrelevant. As detailed in [25],

from this signature it is not difficult to compute the signature of

the (coherent) system obtained from S1 by ignoring the irrele-

vant components.

It is clear that Theorem 2.7 easily generalizes to the case of

m systems

S1 = (C,φ1, F ), . . . ,Sm = (C,φm, F ).
Indeed, using an obvious notation, for k1, . . . , km ∈ {0, . . . , n}
we then have

P k1,...,km

= ∑
∣A1∣=n−k1

⋯ ∑
∣Am ∣=n−km

q(A1, . . . ,Am)φ1(A1)⋯φm(Am).

The same applies to Corollary 2.8. Moreover, if there exists a

permutation σ ∈ Σm such that Aσ(m) ⊆⋯ ⊆ Aσ(1), then

q0(A1, . . . ,Am)
=
(n − ∣Aσ(1)∣)! (∣Aσ(1)∣ − ∣Aσ(2)∣)!⋯ ∣Aσ(m)∣!

n!
.

Otherwise, q0(A1, . . . ,Am) = 0.

3 Signature-based decomposition of the

joint reliability

Navarro et al. [24] recently provided a signature-based decom-

position of the joint reliability function of two systems S1 =(C,φ1, F ) and S2 = (C,φ2, F ) whose components have con-

tinuous and i.i.d. lifetimes.

In this section we provide the generalization of this decom-

position to arbitrary distributions of the component lifetimes.

More precisely, we give necessary and sufficient conditions on

the joint c.d.f. F for the signature-based decomposition to hold

for every pair of systems. Note that in this general setting we

consider both the decomposition with respect to the structure

signature (seen as a combinatorial object; see Corollaries 2.2

and 2.8 and Remark 2.9) and the decomposition with respect to

the probability signature.

For every j ∈ C and every t ⩾ 0, let us denote by Xj(t) =
Ind(Tj > t) the state variable of component j at time t. Let

us also consider the state vector X(t) = (X1(t), . . . ,Xn(t)) at

time t ⩾ 0.

It was proved in [19] (see also [5, 25, 27] for earlier works)

that the reliability function of any system S = (C,φ,F ) is given

by

FS(t) = ∑
x∈{0,1}n

φ(x) Pr(X(t) = x), t ⩾ 0, (13)

and that if the state variables X1(t), . . . ,Xn(t) are exchange-

able for a given t ⩾ 0, which means that

Pr(X(t) = x) = Pr(X(t) = σ(x)) , x ∈ {0,1}n, σ ∈ Σn,

where σ(x) = (xσ(1), . . . , xσ(n)), then the reliability FS(t) of

the system at time t ⩾ 0 admits the following signature-based

decomposition:

FS(t) = n

∑
k=1

sk F k∶n(t) , (14)

where sk is given by Eq. (1) and F k∶n(t) = Pr(Tk∶n > t).
We actually have the following stronger result, which essen-

tially states that the exchangeability of the state variables is a

necessary and sufficient condition for the signature-based de-

composition of the reliability to hold.

Proposition 3.1 (see [19, Thm 4]). Let t ⩾ 0 be fixed. If the

state variables X1(t), . . . ,Xn(t) are exchangeable, then (14)

holds for any semicoherent system S. Conversely, if n ⩾ 3 and

if (14) holds for any coherent system S, then the state variables

X1(t), . . . ,Xn(t) are exchangeable.
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The following proposition gives a variant of Proposition 3.1

in which the reliability function is decomposed with respect to

the probability signature.

Proposition 3.2 (see [19, Thm 6]). Let t ⩾ 0 be fixed. If the

joint c.d.f. F satisfies the condition

Pr(X(t) = x) = q(x) ∑
u∈{0,1}n

∣u∣=∣x∣

Pr(X(t) = u) (15)

for any x ∈ {0,1}n, then we have

FS(t) = n

∑
k=1

pk F k∶n(t) (16)

for any semicoherent system S. Conversely, if n ⩾ 3 and if (16)

holds for any coherent system S, then the joint c.d.f. F satisfies

condition (15) for any x ∈ {0,1}n.

We now generalize Eq. (13) and Propositions 3.1 and 3.2

to the case where two systems S1 = (C,φ1, F ) and S2 =(C,φ2, F ) are simultaneously considered. To this aim we will

consider the joint distribution of the state vectors X(t1) and

X(t2) at times t1 ⩾ 0 and t2 ⩾ 0. To simplify the notation we

regard these two vectors together as a single object, namely a

2 × n random array (X(t1)
X(t2)

).
Let us first express the joint reliability function in terms of

the component state vectors. This immediate result merely gen-

eralizes Eq. (13) to the case of two systems.

Proposition 3.3. We have

FS1,S2
(t1, t2) = ∑

x,y∈{0,1}n
φ1(x)φ2(y) Pr((X(t1)

X(t2)) = (
x

y
)).

(17)

Proof. We have

FS1,S2
(t1, t2) = Pr(φ1(X(t1)) = 1 and φ2(X(t2)) = 1)

= ∑
x∈{0,1}n

φ1(x)=1

∑
y∈{0,1}n

φ2(y)=1

Pr((X(t1)
X(t2)) = (

x

y
)),

which proves the result.

By applying Proposition 3.3 to the joint reliability function

of a k-out-of-n system and an l-out-of-n system, namely

F k∶n,l∶n(t1, t2) = Pr(Tk∶n > t1 and Tl∶n > t2)
(k, l = 1, . . . , n) we immediately obtain the following corollary.

Corollary 3.4. We have

F k∶n,l∶n(t1, t2) = ∑
x∈{0,1}n

∣x∣⩾n−k+1

∑
y∈{0,1}n

∣y∣⩾n−l+1

Pr((X(t1)
X(t2)) = (

x

y
)).

Let us now generalize Proposition 3.1 to the joint reliability

function of two systems S1 = (C,φ1, F ) and S2 = (C,φ2, F ).
To this extent we naturally consider the joint distribution of the

component states at times t1 ⩾ 0 and t2 ⩾ 0, that is, the joint

distribution of the 2 × n random array (X(t1)
X(t2)

). The columns of

this array are the {0,1}2-valued random variables

V1(t1, t2) = (X1(t1)
X1(t2)) , . . . , Vn(t1, t2) = (Xn(t1)

Xn(t2)).
They are exchangeable if

(Vσ(1)(t1, t2), . . . , Vσ(n)(t1, t2))
and (V1(t1, t2), . . . , Vn(t1, t2))
have the same distribution for any permutation σ ∈ Σn. Equiv-

alently, this exchangeability property holds if and only if

Pr((X(t1)
X(t2)) = (

x

y
)) = Pr((X(t1)

X(t2)) = (
σ(x)
σ(y))) (18)

for any x,y ∈ {0,1}n and any σ ∈ Σn.

Lemma 3.5. Let t1, t2 ⩾ 0 be fixed. Condition (18) holds for

any x,y ∈ {0,1}n and any σ ∈ Σn if and only if for any x,y ∈{0,1}n we have

Pr((X(t1)
X(t2)) = (

x

y
))

= q0(x,y) ∑
u∈{0,1}n

∣u∣=∣x∣

∑
v∈{0,1}n

∣v∣=∣y∣

Pr((X(t1)
X(t2)) = (

u

v
)). (19)

Proof. Since the components are not repairable and by defini-

tion of q0(x,y), each side of Eqs. (18) and (19) reduces to zero

whenever x ≰ y and y ≰ x (i.e., x and y are not ordered by

inclusion). We then can assume for instance that x ⩾ y. The

other case can be dealt with similarly.

Condition (18) can be equivalently rewritten as

Pr((X(t1)
X(t2)) = (

x

y
)) = 1

n!
∑

σ∈Σn

Pr((X(t1)
X(t2)) = (

σ(x)
σ(y))) .

The right-hand side of this equation can also be rewritten as

1

n!
∑

u,v∈{0,1}n
n(x,y,u,v) Pr((X(t1)

X(t2)) = (
u

v
)),

where n(x,y,u,v) represents the number of permutations σ ∈
Σn such that (σ(x)

σ(y)
) = (u

v
). Clearly, we have n(x,y,u,v) = 0

if ∣u∣ ≠ ∣x∣, or ∣v∣ ≠ ∣y∣, or u ≱ v. Otherwise, the matrices (x
y
)

and (u
v
) have the same number of columns of each possible type

and hence we obtain

n(x,y,u,v) = (n − ∣x∣)! (∣x∣ − ∣y∣)! ∣y∣! .
This completes the proof.

Remark 3.6. It follows directly from the proof of the previous

lemma that condition (18) holds for any nonzero x,y ∈ {0,1}n
and any σ ∈ Σn if and only if (19) holds for any nonzero x,y ∈{0,1}n.
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We can now state the generalization of Proposition 3.1 to the

case of two systems.

Proposition 3.7. Let t1, t2 ⩾ 0 be fixed. If the joint c.d.f. F

satisfies condition (18) for any nonzero x,y ∈ {0,1}n, then we

have

FS1,S2
(t1, t2) = n

∑
k=1

n

∑
l=1

sk,l F k∶n,l∶n(t1, t2) (20)

for any semicoherent systems S1 and S2, where sk,l is defined

in Corollaries 2.2 and 2.8. Conversely, if n ⩾ 3 and if (20)

holds for any coherent systems S1 and S2 (at times t1, t2), then

the joint c.d.f. F satisfies condition (18) for any nonzero x,y ∈{0,1}n.

Proof. The left-hand side of (20) is given by (17). Let us com-

pute the right-hand side. For any sequence xk, define the se-

quence (∆x)k = xk+1 − xk. For two sequences xk and yk such

that x0y0 = xnyn = 0, we then clearly have

n

∑
k=1

(∆x)k−1yk = −n−1

∑
k=0

xk(∆y)k. (21)

For any double sequence xk,l (k, l = 0, . . . , n), define(∆1x)k,l = xk+1,l − xk,l and (∆2x)k,l = xk,l+1 − xk,l. By

Corollary 2.2 we then clearly have sk,l = (∆1∆2S)k−1,l−1 for

k, l = 1, . . . , n.

On the other hand, for the sequence fk,l = F k∶n,l∶n(t1, t2),
by Corollary 3.4 we observe that

(∆1∆2f)k,l = ∑
u∈{0,1}n

∣u∣=n−k

∑
v∈{0,1}n

∣v∣=n−l

Pr((X(t1)
X(t2)) = (

u

v
)). (22)

Now, observing that Sk,l = 0 whenever k = n or l = n and

defining F k∶n,l∶n(t1, t2) = 0 whenever k = 0 or l = 0, by two

applications of (21) we can rewrite the right-hand side of (20)

as

n

∑
k=1

n

∑
l=1

(∆1∆2S)k−1,l−1fk,l = n−1

∑
k=0

n−1

∑
l=0

Sk,l(∆1∆2f)k,l.
Using Eqs. (12) and (22), this double sum immediately becomes

n−1

∑
k=0

n−1

∑
l=0

( ∑
x∈{0,1}n

∣x∣=n−k

∑
y∈{0,1}n

∣y∣=n−l

q0(x,y)φ1(x)φ2(y))

× ( ∑
u∈{0,1}n

∣u∣=n−k

∑
v∈{0,1}n

∣v∣=n−l

Pr((X(t1)
X(t2)) = (

u

v
)))

or equivalently (observing that φ1(x)φ2(y) = 0 whenever ∣x∣ =∣y∣ = 0),

∑
x∈{0,1}n

∑
y∈{0,1}n

q0(x,y)φ1(x)φ2(y)
× ∑

u∈{0,1}n

∣u∣=∣x∣

∑
v∈{0,1}n

∣v∣=∣y∣

Pr((X(t1)
X(t2)) = (

u

v
)). (23)

If F satisfies condition (18) for any nonzero x,y ∈ {0,1}n,

then it follows from Lemma 3.5, Remark 3.6, and Proposition

3.3 that (20) holds.

Let us now prove the converse part. Denote by Ψn the vec-

tor space of functions φ∶{0,1}n → R satisfying φ(0) = 0. Fix

t1, t2 ⩾ 0 and define two bilinear operators B1 and B2 on Ψn

by letting B1(φ1, φ2) be equal to the right-hand side of (17)

and B2(φ1, φ2) be given by (23) for any φ1, φ2 ∈ Ψn. Then,

if (20) holds for any coherent systems S1 and S2, the restric-

tions of B1 and B2 to the set of coherent structure functions

are equal. Since B1 and B2 are bilinear operators and since,

for n ⩾ 3, the coherent structure functions span the vector

space Ψn (see [19, Appendix]), the operators B1 and B2 are

equal. In particular, for any nonzero x,y ∈ {0,1}n we have

B1(δx, δy) = B2(δx, δy), where for every t ≠ 0 the function δt
is defined by δt(z) = 1, if z = t, and δt(z) = 0, otherwise. We

then obtain (19) for any nonzero x,y ∈ {0,1}n.

Remark 3.8. (a) We would like to stress again on the fact

that even though the joint structure signature is involved

in Eq. (20) it has to be regarded as a combinatorial object

(see Remark 2.9). Therefore in Proposition 3.7 we do not

need to assume that the component lifetimes are i.i.d. or

exchangeable.

(b) Moreover, it is well known that the decomposition (14)

still holds in the case of exchangeable component lifetimes

with possible ties. Considering the joint structure signature

as a combinatorial object allows us to use it when F has

possible ties. It is then easy to check that Proposition 3.7

still holds in this case.

(c) The proof of Proposition 3.7 mainly uses combinatorial

arguments and therefore constitutes an alternative proof of

the decomposition reported in Navarro et al. [24].

The following example shows that representation (20) cannot

be extended to arbitrary joint distribution functions F , even for

particular systems.

Example 3.9. Consider the systems S1 = (C,φ1, F ) and S2 =(C,φ2, F ), where φ1(x1, x2) = x1 and φ2(x1, x2) = x1 ∧ x2

and assume that the component lifetimes T1 and T2 are inde-

pendent and have exponential distributions with reliability func-

tions F 1(t) = e−t and F 2(t) = e−2t, respectively. Then the joint

reliability function of these systems is given by

FS1,S2
(t1, t2) =

⎧⎪⎪⎨⎪⎪⎩
e−3t2 , if t1 ⩽ t2,
e−t1−2t2 , if t2 ⩽ t1.
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We also have

F 1∶2,1∶2(t1, t2) =
⎧⎪⎪⎨⎪⎪⎩
e−3t2 , if t1 ⩽ t2,
e−3t1 , if t2 ⩽ t1,

F 1∶2,2∶2(t1, t2) =
⎧⎪⎪⎨⎪⎪⎩
e−2t1−t2 + e−t1−2t2 − e−3t2 , if t1 ⩽ t2,
e−3t1 , if t2 ⩽ t1,

F 2∶2,1∶2(t1, t2) =
⎧⎪⎪⎨⎪⎪⎩
e−3t2 , if t1 ⩽ t2,
e−2t1−t2 + e−t1−2t2 − e−3t1 , if t2 ⩽ t1,

F 2∶2,2∶2(t1, t2) =
⎧⎪⎪⎨⎪⎪⎩
e−t2 + e−2t2 − e−3t2 , if t1 ⩽ t2,
e−t1 + e−2t1 − e−3t1 , if t2 ⩽ t1.

Since the exponential functions involved in the expressions

above are linearly independent, one can easily show that there

cannot exist real numbers w1,1, w1,2, w2,1, and w2,2 such that

FS1,S2
= w1,1F 1∶2,1∶2+w1,2F 1∶2,2∶2+w2,1F 2∶2,1∶2+w2,2F 2∶2,2∶2.

In particular, representation (20) does not hold for these sys-

tems.

Remark 3.10. When (20) does not hold, proceeding as in [26]

we can consider two pairs of bivariate mixed systems (i.e.,

mixtures of pairs of semicoherent systems with component

lifetimes T1, . . . , Tn) associated with (S1,S2). The first pair(S̃1, S̃2) is called bivariate projected systems and defined to

be equal to (Sk∶n,Sl∶n) with probability pk,l, where Sk∶n is

the k-out-of-n system. The second pair (S1,S2) is called bi-

variate average (or symmetrized) systems and defined to be

equal to (Sk∶n,Sl∶n) with probability sk,l. These latter sys-

tems (S1,S2) are equivalent (equal in law) to the parent sys-

tems (S1,S2) when all the components are placed randomly

in the structures. Equivalently, they are the systems obtained

with the structure functions φ1 and φ2 from the exchange-

able random vector (T EXC
1 , . . . , T EXC

n ) defined to be equal to(Tσ(1), . . . , Tσ(n)) with probability 1/n! for any permutation

σ. Both pairs (S̃1, S̃2) and (S1,S2) can be seen as approxima-

tions (in law) of the pair (S1,S2).
It was observed in [19, Remark 2] that in general the ex-

changeability of the component states does not imply the ex-

changeability of the component lifetimes. We now show that

Eq. (18) provides an intermediate condition between these ex-

changeabilities. More precisely, we have the following result.

Proposition 3.11. The following assertions hold.

(a) If the component lifetimes T1, . . . , Tn are exchangeable,

then condition (18) holds for any t1, t2 ⩾ 0 and any x,y ∈{0,1}n.

(b) If condition (18) holds for some 0 ⩽ t1 < t2 and any

nonzero x,y ∈ {0,1}n, then the component states X1(t2),
. . ., Xn(t2) at time t2 are exchangeable.

Proof. (a) Suppose without loss of generality that t1 ⩽ t2. Then

the event (X(t1) = x and X(t2) = y) is empty if y ≰ x.

Otherwise, it is equal to

( ⋂
xi=0

(Ti ⩽ t1)) ∩ ( ⋂
xi=1

yi=0

(t1 < Ti ⩽ t2)) ∩ ( ⋂
yi=1

(t2 < Ti)).

Since T1, . . . , Tn are exchangeable, we see that the probability

of this event remains unchanged if we replace T1, . . . , Tn with

Tσ(1), . . . , Tσ(n). This shows that condition (18) holds for any

x,y ∈ {0,1}n and any permutation σ ∈ Σn.

(b) For every σ ∈ Σn, the equality Pr(X(t2) = y) =
Pr(X(t2) = σ(y)) is trivial if y = 0. Otherwise, since t1 < t2,

we obtain

Pr(X(t2) = y) = ∑
x∈{0,1}n

x⩾y

Pr((X(t1)
X(t2)) = (

x

y
))

= ∑
x∈{0,1}n

x⩾y

Pr((X(t1)
X(t2)) = (

σ(x)
σ(y))).

Using the fact that x ⩾ y if and only if σ(x) ⩾ σ(y), we then

have

Pr(X(t2) = y) = ∑
x∈{0,1}n

σ(x)⩾σ(y)

Pr((X(t1)
X(t2)) = (

σ(x)
σ(y)))

= Pr(X(t2) = σ(y)).
This completes the proof.

In most of the previous results, we have considered fixed

times t1, t2. If we are interested in condition (18) for any times

t1, t2, then we have the following result.

Proposition 3.12. Condition (18) holds for any t1, t2 > 0 and

any nonzero x,y ∈ {0,1}n if and only if it holds for any t1, t2 >
0 and any x,y ∈ {0,1}n. Moreover in this case, the component

states X1(t), . . ., Xn(t) are exchangeable at any time t > 0.

Proof. Fix a time t > 0 and choose t1 such that 0 < t1 < t. Since

condition (18) holds for t1 and t and any nonzerox,y ∈ {0,1}n,

the component states X1(t), . . ., Xn(t) are exchangeable by

Proposition 3.11.

Now, assume without loss of generality that 0 < t1 ⩽ t2 and

compute, for x ≠ 0,

Pr((X(t1)
X(t2)) = (

x

0
))

= Pr(X(t1) = x) − ∑
y∈{0,1}n∖{0}

y⩽x

Pr((X(t1)
X(t2)) = (

x

y
)).

Due to the exchangeability of the component states at times t1
and to the hypothesis, this expression remains unchanged if we

replace x with σ(x) for any σ ∈ Σn.

We end this section by stating the generalization of Propo-

sition 3.2 to the case of two systems. The proof is a straight-

forward adaptation of the proof of Proposition 3.7. However,

just as in the case of a single system (see [19, Theorem 6]), the

corresponding condition cannot be easily interpreted.
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Proposition 3.13. Let t1, t2 ⩾ 0 be fixed. If the joint c.d.f. F

satisfies the condition

Pr((X(t1)
X(t2)) = (

x

y
))

= q(x,y) ∑
u∈{0,1}n

∣u∣=∣x∣

∑
v∈{0,1}n

∣v∣=∣y∣

Pr((X(t1)
X(t2)) = (

u

v
)) (24)

for any nonzero x,y ∈ {0,1}n, then we have

FS1,S2
(t1, t2) = n

∑
k=1

n

∑
l=1

pk,l F k∶n,l∶n(t1, t2), (25)

for any semicoherent systems S1,S2. Conversely, if n ⩾ 3 and

if (25) holds for any coherent systems S1,S2 (at times t1, t2),

then the joint c.d.f. F satisfies condition (24) for any nonzero

x,y ∈ {0,1}n.

4 Applications to multistate systems

We now apply the results obtained in Sections 2 and 3 to the in-

vestigation of the signature and reliability of multistate systems

made up of two-state components.

Let n ⩾ 1 and m ⩾ 1 be fixed integers. Consider an (m +
1)-state system S = (C,φ,F ), where C = [n] represents n

nonrepairable two-state components, φ∶{0,1}n → {0, . . . ,m}
is the structure function that expresses the state of the system

in terms of the states of its components, and as usual F denotes

the joint c.d.f. of the component lifetimes T1, . . . , Tn.

Note that the structure function φ has now m+1 possible val-

ues that represent the possible states of the system, going from

the lowest value “0” representing the complete failure state to

the highest value “m” representing the perfection state. Such

multistate systems made up of two-state components have been

investigated and applied to network reliability for instance in

Levitin et al. [15], Gertsbakh et al. [11], and Da and Hu [4].

We assume that the system S (or equivalently, its structure

function φ) is semicoherent, i.e., it is nondecreasing in each

variable and satisfies the boundary conditions φ(0) = 0 and

φ(1) = m. Here again, we also assume that the c.d.f. F has no

ties.

Recall that Xj(t) = Ind(Tj > t) denotes the state variable of

component j ∈ C at time t ⩾ 0, and X(t) denotes the n-tuple(X1(t), . . . ,Xn(t)). By definition, XS(t) = φ(X(t)) is then

precisely the state of the system at time t.

Since the system has m + 1 possible states, its “lifetime” can

be described by m random variables that represent the times at

which the state of the system strictly decreases. We introduce

these random variables, denotedT ⩾1
S

, . . . , T ⩾m
S

, by means of the

conditions

T ⩾k
S
> t ⇔ φ(X(t)) ⩾ k , k = 1, . . . ,m.

Thus defined, T ⩾k
S

is the time at which the system ceases to be

at a state ⩾ k and deteriorates to a state < k. It is then clear that

these variables satisfy the inequalities T ⩾1
S
⩾⋯ ⩾ T ⩾m

S
.

In this setting it is also useful and natural to introduce the

reliability function (called reliability of the system at states ⩾ k)

F
⩾k

S (t) = Pr(T ⩾k
S
> t), t ⩾ 0, (26)

for k = 1, . . . ,m as well as the (overall) reliability function

FS(t1, . . . , tm)
= Pr(T ⩾1

S
> t1 , . . . , T ⩾mS > tm), t1, . . . , tm ⩾ 0. (27)

Due to the inequalities T ⩾1
S
⩾ ⋯ ⩾ T ⩾m

S
, it is clear that we also

have F
⩾1

S ⩾ ⋯ ⩾ F
⩾m

S .

For simplicity let us now consider the special case where m =
2. In this setting, the probability signature of a 3-state system

S = (C,φ,F ) is the square matrix p of order n whose (k, l)-
entry is the probability

pk,l = Pr(T ⩾1
S
= Tk∶n , T ⩾2

S
= Tl∶n), k, l = 1, . . . , n, (28)

where T1∶n ⩽ ⋯ ⩽ Tn∶n are the order statistics of the component

lifetimes T1, . . . , Tn. Note that if pk,l > 0, then necessarily k ⩾
l.

Also, the tail probability signature of a 3-state system S =(C,φ,F ) is the square matrix P of order n + 1 whose (k, l)-
entry is the probability

Pk,l = Pr(T ⩾1
S
> Tk∶n , T ⩾2

S
> Tl∶n), k, l = 0, . . . , n. (29)

We remark that the concepts of probability signature and tail

probability signature were already introduced by Gertsbakh et

al. [11] and later by Da and Hu [4] as the “bivariate signature”

and “bivariate tail signature”, respectively, of a 3-state system

in the special case where the component lifetimes are i.i.d. and

continuous (see also [15] for an earlier work). In the general

non-i.i.d. setting, we naturally call these concepts “probability

signature” and “tail probability signature” in full analogy with

the case of two-state systems (see Section 2). Clearly, these

definitions can be immediately extended to the more general

case of (m + 1)-state systems.

In Sections 5 and 6 we will show how the results obtained

in Sections 2 and 3 on the investigation of the joint probabil-

ity signature and joint reliability of two or more systems can be

usefully and very easily applied to the computation of the prob-

ability signature and reliability function of a multistate system

made up of two-state components. Our results actually simplify

and generalize to the non-i.i.d. case several results obtained by

Gertsbakh et al. [11] and Da and Hu [4] on these topics. More-

over, we do not require the restrictive “regularity condition”

(which states that the system must be coherent and that the state

of the system may not suddenly decrease by more than one unit;

see Remark 5.16 below).

The key feature of our approach is given by the Decomposi-

tion Principle given in Section 5, which states that such a multi-

state system can always be additively decomposed into several

two-state systems. Although this feature was already observed

in the eighties by Block and Savits [3, Theorem 2.8], it seems

that it has never been exploited to investigate the probability

signature of a multistate system.

9



5 Decomposition principle and some of

its consequences

By defining the state variable X⩾k
S
(t) = Ind(T ⩾k

S
> t) for k =

1, . . . ,m, we can immediately express the state φ(X(t)) of the

system at time t by

XS(t) = m

∑
k=1

X⩾k
S
(t).

This equation shows that it is natural to express the structure

function φ as a sum of m Boolean (i.e., {0,1}-valued) structure

functions. Actually, this idea was already suggested in another

form by Block and Savits [3, Theorem 2.8].

Proposition 5.1 (Boolean decomposition). Any semicoherent

structure function φ∶{0,1}n → {0, . . . ,m} decomposes in a

unique way as a sum

φ =
m

∑
k=1

φ⟨k⟩, (30)

where φ⟨k⟩∶{0,1}n → {0,1} (k = 1, . . . ,m) are semicoherent

structure functions such that φ⟨1⟩ ⩾ ⋯ ⩾ φ⟨m⟩ (i.e., φ⟨1⟩(x) ⩾
⋯ ⩾ φ⟨m⟩(x) for all x ∈ {0,1}n).

Proof. (Uniqueness) Assume that we have functionsφ⟨1⟩ ⩾ ⋯ ⩾
φ⟨m⟩ for which (30) holds. For any j ∈ {1, . . . ,m} and any

x ∈ {0,1}n, if φ⟨j⟩(x) = 1, then φ⟨i⟩(x) = 1 for every i ⩽ j.

By (30) we then have φ(x) ⩾ j. Similarly, if φ⟨j⟩(x) = 0, then

φ(x) < j. Therefore, for every k ∈ {0, . . . ,m} we must have

φ⟨k⟩(x) = 1 ⇔ φ(x) ⩾ k. (31)

(Existence) It is straightforward to see that the decomposition

holds if we define each φ⟨k⟩∶{0,1}n → {0,1} by the condition

(31). Each of these functions is clearly semicoherent.

Remark 5.2. We observe that the equivalence (31) strongly re-

sembles condition (4.1) in Natvig [20] (see also [21, Def. 2.6,

p. 16]). Actually, taking into consideration Section 6 of [20],

the equivalence (31) shows that every multistate system made

up of two-state components is a (modified) multistate coherent

system of type 2 in Natvig’s sense.

The Boolean decomposition stated in Proposition 5.1 shows

that any semicoherent (m+1)-state system always gives rise to

m semicoherent two-state systems constructed on the same set

of components. This observation naturally leads to the follow-

ing definition.

Definition 5.3. Given a semicoherent (m+1)-state system S =(C,φ,F ), with Boolean decomposition φ = ∑k φ⟨k⟩, we define

the semicoherent systems Sk = (C,φ⟨k⟩, F ) for k = 1, . . . ,m.

From Definition 5.3 we can immediately derive the following

important theorem. For every k ∈ {1, . . . ,m}, let TSk
denote

the random lifetime of Sk.

Theorem 5.4. We have T ⩾k
S
= TSk

for k = 1, . . . ,m.

Proof. For any k ∈ {1, . . . ,m} and any t ⩾ 0, by using (31) we

obtain the equivalence

T ⩾k
S
> t ⇔ φ(X(t)) ⩾ k ⇔ φ⟨k⟩(X(t)) = 1

⇔ TSk
> t,

which proves the theorem.

As we will see in the rest of this paper, Definition 5.3 and

Theorem 5.4 have important consequences. They actually re-

veal the following decomposition principle, which shows that

considering a multistate system reduces to considering simulta-

neously several two-state systems.

Decomposition Principle. Any semicoherent (m + 1)-state

system S made up of two-state components can be addi-

tively decomposed into m semicoherent two-state systems

S1, . . . ,Sm constructed on the same set of components, with

the property that for any k ∈ {1, . . . ,m} the lifetime of Sk is

the time at which S deteriorates from a state ⩾ k to a state < k.

In Sections 2 and 3 the joint signature and the joint relia-

bility of two or more systems have been investigated in detail

and several explicit formulas for these concepts have been pre-

sented. As we will now see, the Decomposition Principle will

enable us to use these results to efficiently investigate both the

signature and reliability of multistate systems made up of two-

state components. For simplicity, we will restrict ourselves to

the case m = 2.

Considering the systems S1 and S2 introduced in Defini-

tion 5.3 and using Theorem 5.4, we immediately see that the

probability signature and the tail probability signature of any 3-

state system (as defined in (28) and (29)) are precisely the joint

probability signature and the joint tail probability signature, re-

spectively, of the systems S1 and S2. Thus, we have established

the following proposition.

Proposition 5.5. We have p = p and P = P.

Proposition 5.5 not only provides an interesting connection

with the results presented in Sections 2 and 3 but also provides

an explicit expression (see Theorem 5.7 below) of the tail prob-

ability signature of a multistate system in a way that simplifies

and generalizes to the non-i.i.d. case the results recently ob-

tained by Gertsbakh et al. [11] and Da and Hu [4] on these top-

ics. From now on, we will then use the symbols p and P in

place of p and P, respectively.

We first observe that Proposition 2.1 immediately provides

the conversion formulas between the matrices p and P (already

obtained in the i.i.d. case in [11]).

In this setting of multistate systems we have already observed

the following condition on the matrix p: if pk,l > 0, then k ⩾ l.
From this observation we easily derive the following condition

on the matrix P (obtained in another form and in the i.i.d. case

by Da and Hu [4, p. 148]).

Proposition 5.6. If k ⩽ l, then we have P k,l = P l,l. That is,

each value P k,l located in the column l and above the diagonal

of P is precisely given by the corresponding value P l,l on the

diagonal.
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Proof. Since pi,j = 0 if i < j, by Eq. (5) for k ⩽ l we have

P k,l =∑i⩾j>l pi,j = P l,l.

Now, from Theorem 2.7 we immediately derive the follow-

ing theorem, which provides an explicit expression of P k,l in

which the structure function φ is represented through the func-

tions φ⟨1⟩ and φ⟨2⟩ and the distribution F of the component life-

times is encoded in the joint relative quality function.

Theorem 5.7. For every k, l ∈ {0, . . . , n} we have

P k,l = ∑
A⊆C

∣A∣=n−k

∑
B⊆C

∣B∣=n−l

q(A,B)φ⟨1⟩(A)φ⟨2⟩(B).

Remark 5.8. Recall that when the component lifetimes

T1, . . . , Tn are exchangeable and continuous (and in particular

when they are i.i.d. and continuous), then q(A,B) reduces to

the value q0(A,B) as given in Definition 2.5. In this case the

signature no longer depends on the distribution of the compo-

nent lifetimes and can be seen as a purely combinatorial object

that depends only on the structure function. This object is called

structure signature and the corresponding tail probability sig-

nature is called tail structure signature. In accordance with the

notation used in the previous sections, we then use the symbols

s, S, sk,l, and Sk,l instead of p, P, pk,l, and P k,l, respectively.

Let us now investigate the reliability functions F
⩾1

S (t),
F
⩾2

S (t), and FS(t1, t2) as defined in (26) and (27). Consid-

ering again the systems S1 and S2 introduced in Definition 5.3,

we can introduce the reliability functionsFS1
(t) = Pr(TS1

> t)
and FS2

(t) = Pr(TS2
> t) of systems S1 and S1, respectively,

as well as the joint reliability function

FS1,S2
(t1, t2) = Pr(TS1

> t1 , TS2
> t2).

By using Theorem 5.4 we immediately see that the reliability

functionsF
⩾1

S and F
⩾2

S coincide with the reliability functions of

the systems S1 and S2, that is,

F
⩾1

S = FS1
, F

⩾2

S = FS2
.

Similarly, the reliability function FS coincides with the joint

reliability function of the systems S1 and S2, that is

FS = FS1,S2
.

From this observation we immediately obtain

FS(t1, t2) = Pr(φ⟨1⟩(X(t1)) = 1 , φ⟨2⟩(X(t2)) = 1), (32)

from which we also derive the formula (see Proposition 3.3)

FS(t1, t2)
= ∑

x,y∈{0,1}n
φ⟨1⟩(x)φ⟨2⟩(y) Pr((X(t1)

X(t2)) = (
x

y
)).

Also, from Proposition 3.7 we derive the following propo-

sition, which provides a sufficient condition on the component

states for the reliability of system S to admit a signature-based

decomposition. Once again, this result simplifies and general-

izes to the non-i.i.d. setting a recent result obtained by Gerts-

bakh et al. [11, Theorem 1] and Da and Hu [4, Theorem 7.2.3].

Proposition 5.9. If, for any t1, t2 ⩾ 0, the joint c.d.f. F satisfies

condition (18) for any nonzero x,y ∈ {0,1}n and any permuta-

tion σ on [n], then we have

FS(t1, t2) = n

∑
k=1

n

∑
l=1

sk,l F k∶n,l∶n(t1, t2), (33)

where the coefficients sk,l correspond to the structure signature

as mentioned in Remark 5.8.

Remark 5.10. We would like to stress on the fact that even

though the structure signature is involved in Eq. (33) it has to be

regarded as a combinatorial object as mentioned in Remark 5.8.

Therefore we do not need to assume in Proposition 5.9 that the

component lifetimes are i.i.d. or exchangeable.

Before closing this section, let us discuss a little further the

Boolean decomposition stated in Proposition 5.1 to help the

reader get familiar with this important technique.

The following immediate proposition can be seen as a con-

verse result to Proposition 5.1.

Proposition 5.11. Given m semicoherent structure functions

φk ∶{0,1}n → {0,1} (k = 1, . . . ,m), the function φ = ∑m
k=1 φk

is a {0, . . . ,m}-valued semicoherent structure function.

By definition, if the functions φk given in Proposition 5.11

are not ordered as φ1 ⩾ ⋯ ⩾ φm, then they do not correspond to

the Boolean decomposition of φ as defined in Proposition 5.1.

Example 5.12. Consider the functionsφ1∶{0,1}3 → {0,1} and

φ2∶{0,1}3 → {0,1} defined by

φ1(x1, x2, x3) = x1 ∧ (x2 ∨ x3)
and

φ2(x1, x2, x3) = x2 ∧ x3.

We have φ1(1,0,1) > φ2(1,0,1) and φ1(0,1,1) < φ2(0,1,1).
Hence φ1 and φ2 are not comparable (i.e., φ1 ≰ φ2 and φ2 ≰ φ1).

Therefore, they do not correspond to the Boolean decomposi-

tion of φ = φ1 + φ2.

Proposition 5.13. If φ = φ1 + φ2 for some functions

φk ∶{0,1}n → {0,1} (k = 1,2), then φ⟨1⟩ = φ1 ∨ φ2 and

φ⟨2⟩ = φ1 ∧ φ2. More generally, if φ = φ1 + ⋯ + φm for some

functions φk ∶{0,1}n → {0,1} (k = 1, . . . ,m), then

φ⟨k⟩ = ⋁
A⊆{1,...,m}
∣A∣=k

⋀
i∈A

φi .

In other terms, for every x ∈ {0,1}m, the value of φ⟨k⟩(x) is

the kth largest value from among φ1(x), . . . , φm(x).
Proof. Let x ∈ {0,1}n. By (31) we have φ⟨k⟩(x) = 1 if and

only if ∑m
l=1 φl(x) ⩾ k. This means that at least k of the val-

ues φ1(x), . . . , φm(x) are equal to 1, or equivalently, the kth

largest of these values is equal to 1.
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Example 5.14 (Example 5.12 continued). Consider the func-

tion φ = φ1 + φ2, where φ1 and φ2 are given in Example 5.12.

Then, by Proposition 5.13, we have

φ⟨1⟩(x) = φ1(x) ∨ φ2(x)
= (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1),

φ⟨2⟩(x) = φ1(x) ∧ φ2(x) = x1 ∧ x2 ∧ x3 ,

and the Boolean decomposition of φ is φ = φ⟨1⟩ + φ⟨2⟩.

Remark 5.15. The functions φ⟨1⟩, . . . , φ⟨m⟩ can also be de-

fined in terms of “path sets” in a very easy way. For any

k ∈ {1, . . . ,m} we say that a subset P of components is a k-

path set of the system S = (C,φ,F ) if φ(P ) ⩾ k. We say that a

k-path set is minimal if it does not contain any other k-path set.

Using (31) we immediately see that P is a (minimal) k-path set

of S if and only if it is a (minimal) path set of Sk = (C,φ⟨k⟩, F ).
The system Sk can therefore be defined from the k-path sets of

S for k = 1, . . . ,m. Considering Example 5.12 for instance,

we obtain the minimal 1-path sets {1,2}, {1,3}, {2,3}, and the

minimal 2-path set {1,2,3}. This leads to the structure func-

tions φ⟨1⟩ and φ⟨2⟩ as described in Example 5.14.

Remark 5.16. In the literature on multistate systems, it is of-

ten assumed that the system be coherent (i.e., in addition to be

semicoherent, the structure function φ is nonconstant in each

of its variables) and that the state of the system may not sud-

denly decrease by more than one unit. This restriction is called

“regularity condition” in, e.g., [4, 10, 11]. In the present paper

we do not need this restriction. On the one hand, being “coher-

ent” is a condition that is not easy to handle and that is rarely

required from a mathematical viewpoint. In some cases, this

condition could even become a major obstacle. For instance,

when decomposing a {0, . . . ,m}-valued structure function φ

into a sum of {0,1}-valued structure functions φ1, . . . , φm as

in Example 5.12, it would seem very restrictive to consider

only coherent structure functions for φ1, . . . , φm. We therefore

only ask the systems to be semicoherent. On the other hand,

we allow ourselves that for any k ∈ {1, . . . ,m − 1} the event

T ⩾k
S
= T ⩾k+1

S
has a nonzero probability. Forbidding this condi-

tion would be very unnatural. For instance, consider the sim-

ple 3-state system on C = {1,2,3} whose structure function is

given by φ = φ⟨1⟩ + φ⟨2⟩, with

φ⟨1⟩(x1, x2, x3) = x1 ∧ (x2 ∨ x3)
and

φ⟨2⟩(x1, x2, x3) = x1 ∧ x2 ∧ x3.

In this case we have φ(1,1,1) = 2 and φ(0,1,1) = 0. Such a

situation is not unnatural and hence should not be discarded.

6 Some applications

We now consider some examples and applications of the theory

developed in Section 5, which demonstrate the power of the De-

composition Principle when compared with previous methods.

6.1 Some illustrative examples

Let us consider a couple of special applications and examples

to illustrate our results.

Example 6.1. Let us compute the reliability and structure sig-

nature of the system considered in Example 5.14. By using (9)

and (32) we immediately obtain

FS(t1, t2) = Pr(∣X(t1)∣ ⩾ 2 , X(t2) = (1,1,1)) , t1, t2 ⩾ 0,

and

P k,l = ∑
∣A∣⩾2
∣A∣=3−k

∑
∣B∣=3
∣B∣=3−l

q(A,B) , k, l = 0, . . . , n.

We know that P 0,0 = 1 and we also see that P 1,0 =
∑∣A∣=2 q(A,C) = q(C) = 1. Using also (6) we see that the

matrices P and p are then given by

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and p =

⎡⎢⎢⎢⎢⎢⎣
0 0 0

1 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Note that the sparsity of these matrices comes from the fact that

both φ⟨1⟩ and φ⟨2⟩ are symmetric functions (i.e., they represent

k-out-of-n systems).

Example 6.2. Let S1 = (C,φ1, F ) and S2 = (C,φ2, F ) be the

systems considered in Example 1.2. Let also S = (C,φ,F )
be the multistate system whose structure function is given by

φ = φ1 + φ2.

Let us compute the probability signature of S. First, it is

easy to see that the Boolean decomposition of φ is given by

φ = φ⟨1⟩ + φ⟨2⟩, where

φ⟨1⟩(x) = (x1 ∧ x2) ∨ (x2 ∧ x4) ∨ (x3 ∧ x4)
and

φ⟨2⟩(x) = x1 ∧ x2 ∧ x4.

We can now compute the matrices P and p by using (6) and

(9). Proceeding as in Example 6.1 we easily obtain

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 P 0,1 0 0 0

1 P 1,1 0 0 0

P 2,0 P 2,1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

p2,1 p2,2 0 0

p3,1 p3,2 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where

P 2,0 = q({1,2})+ q({2,4})+ q({3,4})
P 0,1 = P 1,1 = q({1,2,4})
P 2,1 = q({1,2,4},{1,2})+ q({1,2,4},{2,4})
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and

p2,1 = 1 +P 2,1 −P 1,1 −P 2,0

p2,2 = P 1,1 − P 2,1

p3,1 = P 2,0 − P 2,1

p3,2 = P 2,1.

6.2 Probability that the system be at a given

state

It is noteworthy that from the Decomposition Principle and in

particular from Eq. (31), we immediately obtain the formula

Pr(φ(X(t)) ⩾ k) = Pr(φ⟨k⟩(X(t)) = 1) = F
⩾k

S (t)
= FSk

(t) , k ∈ {1, . . . ,m}.
That is, the probability that the system be at least at state k at

time t ⩾ 0 is simply given by the reliability FSk
(t).

From this observation, we immediately derive the following

explicit expression of the probability that the system be exactly

at state k at time t ⩾ 0. We remark that a similar result was

established in the i.i.d. case in [10, Theorem 2].

Proposition 6.3. We have

Pr(φ(X(t)) = k) = FSk
(t) −FSk+1

(t),
where by convention FSm+1

(t) = 0 (i.e., φ⟨m+1⟩ ≡ 0).

6.3 Dual systems

Recall that the dual of a structure function φ∶{0,1}n → {0,1}
is the structure function φD ∶{0,1}n → {0,1} defined from φ

by

φD(x) = 1 − φ(1 − x) , x ∈ {0,1}n,
where 1 denotes the n-tuple (1, . . . ,1). Similarly, for multi-

state systems El-Neweihi et al. [6] defined the dual of the struc-

ture function φ∶{0,1}n → {0, . . . ,m} as the structure function

φD ∶{0,1}n → {0, . . . ,m} defined from φ by

φD(x) = m − φ(1 − x) , x ∈ {0,1}n.
The following result provides a very simple conversion for-

mula between the Boolean decompositions of φ and φD .

Proposition 6.4. We have (φD)⟨k⟩ = (φ⟨m−k+1⟩)D for any k ∈{1, . . . ,m}.
Proof. We have

(φD)⟨k⟩(x) = 1 ⇔ φD(x) ⩾ k

⇔ φ(1 − x) ⩽m − k
⇔ φ⟨m−k+1⟩(1 − x) = 0

⇔ (φ⟨m−k+1⟩)D(x) = 1,

which proves the result.

Using Proposition 6.4 we can retrieve the explicit expres-

sion of the structural signature of the dual system as established

by Da and Hu [4, Theorem 7.2.4]. The following proposition

shows that this result actually still holds for the probability sig-

nature whenever the joint relative quality function is invariant

under the operation of set complement. This is the case for in-

stance when the numbers q(A,B) are given by (8).

Let us denote the probability signature and the tail probability

signature of the dual system by pD and PD, respectively.

Proposition 6.5. Assume that the joint relative quality function

is invariant under the operation of set complement, that is

q(A,B) = q(C ∖A,C ∖B), A,B ⊆ C. (34)

Then we have

pDk,l = pn−l+1,n−k+1 , k, l = 1, . . . , n (35)

and

PD
k,l = Pn−l,n−k −Pn−l,0 −P 0,n−k + P 0,0 , k, l = 0, . . . , n.

(36)

Proof. Let us prove the second formula. The first formula can

then be derived from the conversion formula (6). By Proposi-

tion 5.6 we can assume that k ⩾ l. By Theorem 5.7 we have

PD
k,l = ∑

B
′
⊆C

∣B′ ∣=n−l

∑
A
′
⊆B

′

∣A′∣=n−k

q(A′,B′) (φD)⟨1⟩(A′)(φD)⟨2⟩(B′).

Letting A = C ∖ A′ and B = C ∖ B′, the latter expression

becomes

PD
k,l = ∑

A⊆C

∣A∣=k

∑
B⊆A

∣B∣=l

q(C ∖A,C ∖B)

× (φD)⟨1⟩(C ∖A)(φD)⟨2⟩(C ∖B).
Using both Proposition 6.4 and our assumption on the joint rel-

ative quality function, we obtain

PD
k,l = ∑

A⊆C

∣A∣=k

∑
B⊆A

∣B∣=l

q(A,B)

× (1 − φ⟨2⟩(A) − φ⟨1⟩(B) + φ⟨2⟩(A)φ⟨1⟩(B)).
Now recall from Proposition 2.4 that

∑
A⊆C

∣A∣=k

∑
B⊆A

∣B∣=l

q(A,B) = 1 = P 0,0.

Also, denoting the tail structure signature of φ⟨2⟩ by P⟨2⟩ and

using (4), we have

∑
A⊆C

∣A∣=k

φ⟨2⟩(A) ∑
B⊆A

∣B∣=l

q(A,B) = Pn−k,⟨2⟩

= Pr(T ⩾2
S
> Tn−k∶n) = P 0,n−k .
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Similarly, we obtain

∑
B⊆C

∣B∣=l

φ⟨1⟩(B) ∑
A⊇B

∣A∣=k

q(A,B) = Pn−l,⟨1⟩

= Pr(T ⩾1
S
> Tn−l∶n) = Pn−l,0 .

We then use Theorem 5.7 again and collect the terms to com-

plete the proof.

Remark 6.6. (a) We observe that, independently of any as-

sumption, Equations (35) and (36) are equivalent (due to

the conversion formulas (5) and (6)). This means that (35)

holds if and only if (36) holds.

(b) Condition (34) might be surprising. However, this condi-

tion is not only sufficient for Eqs. (35) and (36) to hold,

but it is also necessary in the sense that if we ask (35)

and (36) to hold for every semicoherent system, then (34)

must hold. To see that this claim holds, just apply (36) to

the system φ = φ⟨1⟩ + φ⟨2⟩, where φ⟨1⟩(x) = ⋁i∈B xi and

φ⟨2⟩(x) = ⋁i∈A xi for some A,B ⊆ C such that A ⊆ B.

(c) It is not difficult to exhibit examples to show that, as soon

as n ⩾ 3, condition (34) is weaker than requiring that q = q0
(where q0 is defined in (8)).

7 Some concluding remarks about mul-

tistate systems

In Sections 4 and 5 we have investigated the concepts of prob-

ability signature and reliability function for multistate systems

made up of two-state components. To this extent we have stated

a Decomposition Principle based on the Boolean decomposition

of the structure functions and this decomposition has revealed

the interesting fact that the investigation of a multistate system

reduces to the simultaneous investigation of several two-state

systems.

Although the use of the Boolean decomposition in the inves-

tigation of multistate systems dates back to the work by Block

and Savits [3] in 1982 and possibly earlier, the fact that a mul-

tistate system can be decomposed into several two-state sys-

tems on the same set of components has, up to our knowledge,

never been exploited to investigate the signature of multistate

systems. For instance, Gertsbakh et al. [11, Theorem 1] and Da

and Hu [4, Theorem 7.2.3] recently obtained a signature-based

decomposition of the reliability of a 3-state system in the i.i.d.

case. However, their proofs strongly rely on both the regular-

ity condition (see Remark 5.16 above) and the i.i.d. character

of the component lifetimes. In the present paper the Decom-

position Principle enabled us to use the results of Sections 2

and 3 to derive Proposition 3.7 almost immediately and without

any restrictive condition. This shows that the Decomposition

Principle offers a more general algebraic framework and a very

efficient tool to deal with such problems in the general non-i.i.d.

case.

Note that the system components considered in this paper

have two states only. Of course it is natural to also investigate

multistate systems made up of multistate components (see, e.g.,

[1, 3, 7, 8, 12–14, 16]). We believe that our algebraic approach

can be extended to this general case to investigate the concept

of signature. This constitutes a topic of ongoing research work.
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