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FPT Technology Research Institute, FPT University, Hanoi, Viet Nam

hoanghm@fpt.edu.vn

Rafael Martinelli

Departamento de Engenharia Industrial, Pontif́ıcia Universidade Católica do Rio de Janeiro, Brazil
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Abstract. We consider a vehicle routing problem which seeks to minimize cost subject to service

level constraints on several groups of deliveries. This problem captures some essential challenges

faced by a logistics provider which operates transportation services for a limited number of partners

and should respect contractual obligations on service levels. The problem also generalizes several

important classes of vehicle routing problems with profits. To solve it, we propose a compact

mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with

population management, which relies on problem-tailored solution representation, crossover and

local search operators, as well as an adaptive penalization mechanism establishing a good balance

between service levels and costs. Our computational experiments show that the proposed heuristic

returns very high-quality solutions for this difficult problem, matches all optimal solutions found

for small and medium-scale benchmark instances, and improves upon existing algorithms for two

important special cases: the vehicle routing problem with private fleet and common carrier, and the

capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal

solutions for all three problems.

Keywords. Routing, collaborative logistics, service level constraints, integer programming, genetic

algorithms.
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1. Introduction

In a recent industrial application, the authors have been confronted with a complex variant of

the vehicle routing problem (VRP) which received, until now, only limited attention in the academic

literature. We take the viewpoint of a third-party logistics provider (3PL), which operates long-haul

transportation services for a number of business partners. The company operates on a planning

horizon and delivers products to various delivery locations as requested by the partners a few days

in advance. A strict delivery deadline, in the form of a last possible delivery day, is set for each

transportation request. The company has established agreements with each partner specifying,

among others, a minimum level of on-time deliveries for its group of requests.

The efficient management of collaborative logistics has stimulated a rich set of studies over the

years [34, 42, 55]. In our case, even in the presence of precise information on delivery requests,

the company faces the following optimization challenge: because of limited available resources, i.e.,

fleet size and vehicle capacity, all services cannot be realistically fulfilled. It is necessary to select a

subset of deliveries and determine cost-efficient vehicle routes in such a way that the overall activity

is profitable and that the agreements with the partners are respected. A natural strategy of the

company consists in attempting to fulfill the service levels on a rolling horizon with some safety

margin, hence ensuring overall satisfaction of contractual clauses on a larger time period (e.g., one

month of activity). As such, the firm seeks to balance quality of service and operational costs,

subject to a minimum threshold on quality of service for some groups of requests. These group

requirements create linking constraints between the service selection decisions, which need to be

carefully considered during routing optimization.

We now introduce a simple and deterministic variant of the VRP which captures some essential

decisions in this situation. The study of this simplified problem will help to identify key properties

and methods. The VRP with service levels (VRP-SL) can be formulated as follows. Let G = (V, E)

be a complete undirected graph with |V| = n + 1 nodes. The node v0 ∈ V represents a depot,

where a fleet of m identical vehicles is based. Each other node vi for i ∈ {1, . . . , n} represents a

customer, associated with a demand qi, a profit pi, and a service weight si which represents its

relative importance in the group service level constraint.

The set of customers is distributed intoK subsets: V−{v0} =
⋃

k=1,...,K Vk, such that Vk∩Vk′ = ∅

for any k 6= k′. Each subset represents the deliveries of one partner and is associated with a requested

service level αk. Any edge (i, j) ∈ E represents a possible trip between a node vi ∈ V and a node
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vj ∈ V with a distance cost dij . The goal of the VRP-SL is to find up to m vehicle routes starting

and ending at the depot, such that

– each customer is serviced at most one time,

– the total demand quantity of any route does not exceed a vehicle capacity Q,

– the service level of each group k is attained, i.e., the total service weight of the deliveries to

this group reaches αk
∑

vi∈Vk si, and

– the sum of travel costs and lost profits is minimized.

This problem belongs to the wide class of vehicle routing problems with profits, which also

includes the team orienteering problem (TOP), the profitable VRP (VRPP), the VRP with private

fleet and common carrier (VRPPFCC) and the capacitated profitable tour problem (CPTP).

Interestingly, as highlighted in Section 2, this problem fills a gap in the literature, since most known

multi-vehicle problems with customer selections either aim to maximize service levels subject to

distance constraints (TOP) or seek a weighted optimization of distance and service levels, through

penalties for outsourcing or lost profits (VRPPFCC and CPTP). To this date, very few works on

deterministic settings [58, 68, 43] have addressed multi-vehicle routing optimization subject to a

service level (SL) constraint. Finally, the VRP-SL is finally a natural extension of the generalized

VRP (GVRP, see [29, 5, 10, 31]), which also models a rich set of VRP applications.

To address the VRP-SL, we introduce a compact ILP formulation and a branch-and-price

algorithm which can solve to optimality small- and medium-scale instances, as well as a hybrid

population metaheuristic inspired by the Unified Hybrid Genetic Search (UHGS) framework of

[62, 64]. Previous applications of UHGS have led to efficient algorithms for several VRPs, including

the GVRP, TOP, VRPP and VRPPFCC, among others [64, 66]. However, UHGS relies heavily on

the fact that problem objectives and constraints are either cumulated on or separately applied to

each route, hence allowing to optimize customer-selection decisions independently via a dedicated

route evaluation operator. This decomposition does not apply to the VRP-SL without a Lagrangian

relaxation of the group constraints, which would make it impossible to find the optimal solution in

some cases and impede the overall method performance. Because of these characteristics, we had

to revise most of the operators of the method while keeping the general principles. We thus use a

two-chromosome solution representation, which contains a service level chromosome and a giant-tour

chromosome. We derive a new crossover, use dedicated local search moves as well as a penalization

strategy to represent, optimize and inherit customer-selection decisions. The contributions of this

article are the following:
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1. We introduce the VRP-SL, a rich VRP connected with important applications in collaborative

logistics, generalizing many classes of routing problems with profits.

2. We propose a compact mathematical formulation for the problem, a branch-and-price algorithm,

as well as an efficient hybrid genetic search (HGS) which exploits problem-tailored selection

representation, crossover, local searches, and penalty management operators to find a good

balance between service levels and costs.

3. We conduct extensive computational experiments to evaluate the performance of the proposed

methods on new benchmark instances for the VRP-SL as well as classical benchmark instances

for the VRPPFCC and CPTP. The proposed HGS finds all known optimal solutions for the

considered problems, outperforms previous methods for the VRPPFCC and CPTP, and generates

solutions of consistent quality on large instances. Several solutions of the VRPPFCC and CPTP

are also proven optimal for the first time by the branch-and-price algorithm.

The remaining parts of the article are organized as follows. Section 2 reviews the related

literature. Section 3 presents some mathematical formulations for the problem. Sections 4 and 5

describe the branch-and-price and the hybrid genetic algorithm, respectively. Section 6 reports the

experimental analyses, and Section 7 concludes.

2. Related literature and subproblems

Vehicle routing problems with profits are the subject of an extensive literature, surveyed in

[3, 23, 60, 63]. Generally, one seeks to jointly minimize cost and maximize customer’s service levels,

two objectives which are conflicting when the profits do not render all deliveries profitable, or in the

presence of additional vehicle constraints (e.g., distance or capacity limits). The related literature can

thus be classified according to three fundamental solution techniques for this bi-objective problem:

I) Weighted sum – minimizing a weighted difference of costs and service levels;

II) Constraints on cost/distance – maximizing service levels subject to distance constraints

(independently for each route);

III) Constraints on service levels – minimizing distance subject to service level constraints.

Table 1 presents an overview of these main classes of methods, for the single and multi-vehicle

routing problems with profits (variants of the TSP and VRP, respectively). Objectives I and II are the

subjects of a vast literature, which includes a very large variety of exact methods and metaheuristics.

The TOP, in particular, seeks the maximization of service levels subject to distance constraints, and

has been studied in dozens of articles in the past decade (see [1, 2, 13, 19, 22, 37, 38, 40, 44, 54, 59, 66],

among others). In contrast, a larger methodological gap remains for objective III, which aims to
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minimize travel cost subject to service level constraints. The multi-vehicle case of this objective has

been mostly studied in the context of hot strip mill scheduling for steel production [68, 69]. More

recently, [43] investigated a special case with one group of customers (all of them) and one service

level constraint, usually referred to as the prize-collecting VRP (PCVRP). The authors proposed

a self-adaptive VNS and reported computational experiments on new instances. These instances,

however, are now unavailable. The VRP-SL generalizes this problem by introducing multiple groups

and associating profits to deliveries. By doing so, the problem remains concise and simple to define,

but generalizes many VRP classes:

– The PCTSP and PCVRP correspond to VRP-SL instances with a single group.

– The CPTP, PTP and VRPPFCC all correspond to instances with 0% service levels.

– The CVRP corresponds to instances with 100% service levels.

– The generalized VRP (GVRP) can be reduced to the VRP-SL by imposing a small service level

for each group, hence forcing at least one delivery.

– Any instance of the periodic vehicle routing problem (PVRP) such that, for each customer i, any

combination of fi different days in a set Di of available days is feasible, can be transformed into

a VRP-SL instance with
∑

i |Di| customers. This is done by duplicating each customer i into

as many vertices as possible visit days, defining a group for the resulting visits with a service

level αi = fi/|Di|, and setting a large cost M for the edges that link two vertices from different

days. This reduction follows the same principles as the reduction from PVRP instances with

frequency fi = 1 into GVRP instances, discussed in [5], but is more general as it allows to deal

with frequency values greater than 1.

Finally, since the name prize-collecting VRP is not consistently used in the literature and far

from self-explanatory, we opted for the name VRP with service levels (VRP-SL) for the proposed

problem with several groups, which is clearer and more distinctive.

3. Mathematical Formulations

Compact formulation. We first propose a mixed integer linear formulation of the VRP-SL. Our

mathematical model is based on the two-commodity flow formulation of [7], which has already

been extended to several closely related VRP variants in [30, 31]. The graph G is first extended

into G = (V, E) by adding a new vertex vn+1, representing a copy of the depot. We thus define

V = V ∪ {vn+1}, V ′ = V \ {v0, vn+1}, E = E ∪ {(vi, vn+1), vi ∈ V ′}, and di,n+1 = d0,i for all vi ∈ V ′.

For each edge (vi, vj) ∈ E , we define a binary variable xij , set to 1 if and only if a vehicle travels on

this edge, as well as two flow variables fij and fji. When a vehicle travels from vi to vj , the flow fij

6



represents the current load in the vehicle, and the flow fji represents the residual capacity of the

vehicle (fji = Q− fij). Finally, yi is a binary variable which is set to 1 if and only if vi ∈ V \ {v0} is

serviced. The VRP-SL can be formulated as:

Minimize
∑

(vi,vj)∈E

dijxij +
∑

vi∈V\{v0}

pi(1− yi) (1)

Subject to
∑
vi∈Vk

siyi ≥ αk

∑
vi∈Vk

si k ∈ {1, . . . ,K} (2)

∑
vi∈V,i<k

xik +
∑

vj∈V,j>k

xkj = 2yk vk ∈ V ′ (3)

∑
vj∈V

(fji − fij) = 2qiyi vi ∈ V ′ (4)

∑
vj∈V ′

f0j =
∑
vi∈V ′

qiyi (5)

∑
vj∈V ′

fn+1j = zQ (6)

fij + fji = Qxij (vi, vj) ∈ E (7)

xij ∈ {0, 1} (vi, vj) ∈ E (8)

yi ∈ {0, 1} vi ∈ V \ {v0} (9)

fij ≥ 0, fji ≥ 0 (vi, vj) ∈ E (10)

z ≤ m, z ∈ N (11)

The objective of Equation (1) aims to minimize the sum of transportation costs and lost profits.

With this objective, the optimal solution value is always non-negative (no negative terms). Moreover,

the optimal CVRP solution is a feasible solution of this model, with a cost greater or equal to

the VRP-SL optimum. Constraints (2) impose the service levels for each group. Constraints (3)

ensure that each vertex of V \ {v0} is visited at most once. These constraints also connect the path

variables (xi) to the customer selection variables (yi) in order to evaluate the profits. Constraints

(4)–(7) define a feasible two-commodity flow between the source v0 and the sink vn+1. Specifically,

Constraints (4) state that the inflow minus the outflow at each vertex vi ∈ V ′ is equal to 2qi if vi

is used, and 0 otherwise. The outflow at the source vertex v0, computed in Constraint (5), is

set to the total demand of the vertices that are serviced in the solution, and the outflow at the

sink vn+1, calculated in Constraint (6), corresponds to the total capacity of the vehicle fleet. Finally,
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Constraints (7) establish the link between the flows fij and fji, and Constraint (11) sets a bound

on the number of vehicles.

The linear relaxation of the VRP-SL can be strengthened via some simple valid inequalities. If

si is integer for all vi ∈ V \ {v0}, then the service level constraints (2) can be transformed into:

∑
vi∈Vk

siyi ≥
⌈
αk

∑
vi∈Vk

si

⌉
k ∈ {1, . . . ,K}. (12)

Moreover, the following flow inequalities from [7, Equation 64] are used:

fij ≥ qjxij and fji ≥ qixij i, j 6= v0 and i, j 6= vn+1. (13)

The first inequality explicitly forces fij to contain the delivery quantity qj for the next customer,

and the second inequality forces the residual capacity fji to be greater than the delivery quantity qi

of the previous customer. Finally, for each group k ∈ {1, . . . ,K}, we define Zk as the minimum

load quantity which allows to satisfy the service level constraint:

Zk = min
yi∈{0,1}

∑
vi∈Vk

qiyi

∣∣∣∣ ∑
vi∈Vk

siyi ≥ αk

∑
vi∈Vk

si

 (14)

These values can be evaluated in pseudo-polynomial time. Then, the following capacity cut is valid

for each group k:

∑
vi∈Vk,vj∈V\Vk

xij ≥ 2

⌈
Zk

Q

⌉
k ∈ {1, . . . ,K}. (15)

Note that we also investigated in preliminary experiments a similar formulation based on one-

commodity flows [27] for directed graphs, hence associating two variables xij and xji for each

edge (vi, vj). Although both formulations should produce similar bounds [41], the suggested two-

commodity flow formulation of the VRP-SL led to overall better results in our context, possibly due

to the smaller number of binary variables.

Set Partitioning Formulation. We now present a set-partitioning based formulation of the VRP-

SL, which corresponds to a Dantzig-Wolfe decomposition of the model of Equations (1)–(11). Similar

formulations have been successfully used in the VRP literature in the past years to obtain stronger
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linear relaxations [6, 17, 26, 47]. The drawback of this formulation comes from its exponential

number of variables, which must be tackled using a column generation algorithm.

Let Ω be the set of all feasible routes for the problem. A route r ∈ Ω is a closed walk starting

and ending at the depot, visiting a set of customers only once and respecting the vehicle’s capacity

(this definition will be extended afterwards to allow visiting a customer more than once). Then for

each route, we define a binary variable λr indicating whether the route r is used in the solution.

The resulting formulation is as follows:

Minimize
∑
r∈Ω

crλr +
∑
vi∈V ′

pi(1− yi) (16)

Subject to
∑
vi∈Vk

siyi ≥ αk

∑
vi∈Vk

si k ∈ {1, . . . ,K} (17)

∑
r∈Ω

ariλr = yi vi ∈ V ′ (18)

∑
r∈Ω

λr ≤ m (19)

λr ∈ {0, 1} r ∈ Ω (20)

yi ∈ {0, 1} vi ∈ V ′ (21)

The objective function (16) minimizes the total cost of the active routes plus the lost profits.

Constraints (17) are the same as Constraints (2). In Constraints (18), ari (boolean) represents the

number of times route r visits customer i. Then each constraint forces one of the routes which visits

customer i to be active if variable yi is set to 1. Constraints (19) limit the number of active routes

to the number of available vehicles.

4. Branch-and-price algorithm

The set partitioning formulation has an exponential number of variables. To circumvent this

issue, we use a column generation algorithm which starts with no variables and solves a pricing

sub-problem to generate new ones. For the formulation presented in the last section, the pricing

sub-problem is an Elementary Shortest Path Problem with Resource Constraints (ESPPRC). Ideally,

one would want to price only elementary routes, but since the ESPPRC is known to be strongly

NP-hard [21], we solve a pseudo-polynomial relaxation, the Shortest Path Problem with Resource

Constraints (SPPRC) [16], allowing the routes to visit a given customer more than once. For both

problems, the objective is to find a route with negative reduced cost. Given the dual variables βi
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and γ associated to Constraints (18) and (19), a constant brij representing the number of times route

r traverses edge (vi, vj) and setting β0 = γ, the original reduced cost of a route and its reformulation

as a function of the edges are stated in Equations (22) and (23):

cr = cr − γ −
∑
i∈V ′

ariβi (22)

cr =
∑

(vi,vj)∈E

brij

(
cij −

βi + βj
2

)
. (23)

When relaxing the ESPPRC into the SPPRC, the bounds obtained by column generation

deteriorate in most cases. Some alternative relaxations have thus been proposed to find a better

balance between efficiency and solution quality [16, 33, 46]. We use the ng-route relaxation [8],

which has been successfully applied to multiple VRP variants in the last years. For each vertex i, a

set NGi ⊆ V ′ is defined to represent the “memory” of i. These NGi sets usually contain a subset

of vertices closest from i. The pricing sub-problem is solved by a forward dynamic programing

algorithm, which maintains a memory of past visits to prohibit some vertices, but uses the NGi sets

to reduce this memory size and thus the size of the state space. During the algorithm, each path P

has an associated label L(P ) containing the last customer visited v(P ), the total reduced cost c(P ),

the current load q(P ) and the customers which have been visited and remembered Π(P ). When

extending a path from customer v(P ) to customer vj , the extension is only allowed if j /∈ Π(P ), and

the label for the new path P ′ can be obtained as:

L(P ′) =
(
vj , c(P ) + cij , q(P ) + qvj ,Π(P ) ∩NGj ∪ {vj}

)
(24)

Lastly, we use a dominance rule to fathom labels which cannot lead to an optimal solution. A label

L(P1) dominates a label L(P2) if

{v(P1) = v(P2)} ∧ {c(P1) ≤ c(P2)} ∧ {q(P1) ≤ q(P2)} ∧ {Π(P1) ⊆ Π(P2)}.

Other techniques can be used to further improve the overall column generation efficiency. We

use two approaches. The first one is a simple heuristic pricing. This algorithm stores only the label

with best reduced cost for each customer vi and load q during the dynamic programming. The

second approach is dual stabilization [50]. We use a parameter α ∈ [0, 1[, as shown in Equations

(25)–(26), to avoid a large variation in the values of the dual variables between two iterations of the

column generation. Our algorithm starts with α = 0.9 and reduces the value of α by 0.1 each time

10



the pricing sub-problem returns an invalid route.

γ = αγk−1 + (1− α)γk (25)

βi = αβk−1
i + (1− α)βki ∀vi ∈ V ′ (26)

Finally, to improve the bounds obtained by the column generation algorithm, we embedded

it into a branch-and-bound (B&B) procedure. At each node of the branch-and-bound tree, the

column generation algorithm is called to obtain the solution of the linear relaxation, taking into

account possible fixed variables due to branching. This algorithm framework is usually called

branch-and-price (B&P). A key difference with classic B&B algorithms relates to the fact that it is

not possible, in our context, to branch on the λr variables, since a fixing of λr = 0 would result in

repricing the variable. To overcome this difficulty, the B&P branches on the original xij variables as

well as the yi variables, choosing at each node on the tree the most fractional variable to branch,

but always giving priority to yi variables. Fixing a yi variable is straightforward. The xij variables,

however, are not explicitly present in the formulation, and thus we add Equation (27) to the set

partitioning formulation for each fixed edge. In this equation, brij represents the number of times

route r traverses edge (vi, vj), and xij is the value which should be fixed for xij .

∑
r∈Ω

brijλr = xij (27)

The presence of Equation (27) introduces a new dual variable ρij which must be considered when

computing the reduced costs, thus changing Equation (23) into Equation (28).

cr =
∑

(vi,vj)∈E

brij

(
cij −

βi + βj
2

− ρij
)

(28)

This combination of techniques leads to an efficient exact method, whose performance will be

analyzed in Section 6.

5. Population-based metaheuristic

The VRP-SL is known to be NP-hard as it generalizes the CVRP, and even sophisticated exact

approaches can only solve small- and medium-scale problem instances within a reasonable CPU

time. To fill this methodological gap and to solve the larger instances which arise in practice, we

introduce a dedicated hybrid genetic search with advanced diversity control.
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5.1. General structure of the method

The method, illustrated in Algorithm 1, uses the same resolution strategy as the unified hybrid

genetic search (UHGS) of [62, 64]. Starting from an initial population, it iteratively selects two

parents to generate an offspring individual via a crossover operator. This offspring is improved by

means of a local search procedure and inserted in the population. This sequence of operations is

performed until the termination of the method, once ItNI successive iterations without improvement

have been performed.

Algorithm 1 Hybrid Genetic Search (HGS) for the VRP–SL

1: Initialize the population with random solutions

2: while not Itni consecutive iterations without improvement of the best solution do

3: Select two parents P1 and P2

4: Generate an offspring C by applying the crossover on P1 and P2

5: Educate C using local search

6: Insert C into the population

7: if C is not feasible then

8: With 50% probability, repair C and insert it into the population

9: if Itdiv iterations elapsed since the last diversification then

10: Diversify the population

11: return best feasible solution

The method exploits penalized infeasible solutions in the population, which is divided into

two sub-populations of feasible and infeasible individuals. Whenever one sub-population reaches

a maximum size, a number of individuals are eliminated to retain the best solutions. A repair

procedure is also applied on infeasible solutions to restore feasibility and generate additional feasible

individuals. Finally, the approach uses an adaptive diversity management, which has been shown to

be particularly successful when solving VRPs [62]. Parents and survivors selections are driven by

two criteria, cost and diversity contribution, rather than solely on cost as in traditional GAs, and

additional diversification phases are implemented after every Itdiv iterations without improvement

to provide new solution characteristics to the population.

Finally, the proposed algorithm also significantly differs from UHGS in the definition of its basic

building blocks: solution representation, crossover, local search moves, distance measure between

individuals, and penalties allowed. These components are described below.

5.2. Solution Representation and Evaluation

In the proposed HGS, each individual in the population is represented by two chromosomes: a

service level chromosome, which gives the current service level of each group k ∈ {1, . . . ,K}, and the

12



giant-tour chromosome, which provides a permutation of visits for the serviced customers, without

occurrences of the depot. This solution representation is illustrated in Figure 1. It is incomplete in

the sense that some additional information, the locations of the visits to the depot, is needed to

perform cost evaluations. Still, this information can be quickly recovered by means of a dynamic-

programming algorithm, called Split, which optimally subdivides the giant-tour chromosome into

separate routes. In the proposed HGS, the Split algorithm strictly respects the sequence of visits,

i.e., it cannot select or exclude customer visits and modify the service levels. This is the classical

context of application of the algorithm of [9] and [52], which reduces the splitting problem into the

search of a shortest path in an acyclic graph in which each arc represents a possible route, i.e., a

sequence of consecutive visits in the giant tour, connected to the depot. The reader is referred to [52]

and [61] for a detailed description of the Split algorithm as well as an efficient O(n) implementation. 
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Figure 1: Solution representation and decoding via the Split algorithm. To compute the service levels, three groups
are considered in the example: V1 = {1, 2, 3, 4}, V2 = {5, 6, 7, 8, 9, 10} and V3 = {11, 12}. For all i, si = 1.

We now describe the cost function used for route and solution evaluations. As observed in our

computational experiments and in [65], the exploration of penalized infeasible solutions during the

search has a significantly positive impact on solution quality. Thus, the cost φ(r) of a route r involves

the distance, the total profit associated to the customers which are visited, and a possible excess of

load in a route multiplied by a penalty factor wQ. Let φD(r) =
∑|r|−1

i=1 dr(i),r(i+1), φ
Q(r) =

∑|r|
i=1 qr(i)

and φP (r) =
∑|r|

i=1 pr(i) be, respectively, the total distance, load and profit collected in route r, then

the route cost is defined as:

φ(r) = φD(r)− φP (r) + wQ max{0, φQ(r)−Q}. (29)

We also explore infeasible solutions with respect to service level constraints. These linking

constraints involve the whole solution, and thus the penalty is defined at the level of the solution
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evaluation rather than the route cost. The penalized cost φcost(S) of a solution S, described as a

set of routes r ∈ S, can thus be evaluated as:

φcost(S) = φP +
∑
r∈S

φ(r) +
K∑
k=1

wS
k max(αk − φk(S), 0), (30)

with φk(S) =
∑

vi∈Vk∩S
si

/ ∑
vi∈Vk

si k ∈ {1, . . . ,K}. (31)

In this equation, φP =
∑n

i=1 pi is the total profit of all customers (a constant), φk(S) is the weight

ratio of group k in solution S, and wS
k for k ∈ {1, . . . ,K} are the penalty coefficients associated to

service level violations. These penalty coefficients are automatically adjusted by the method during

the search, as explained in Section 5.4.

5.3. Generation of New Individuals

Each new solution is generated by a successive application of the Selection, Crossover, and

Education operators, followed by a possible Repair.

Selection and Crossover. To generate a new solution, the algorithm first selects two parents P1

and P2 in the population via a binary tournament based on the biased fitness measure described in

Section 5.4. A new offspring solution C is then obtained by crossover of P1 and P2. For this purpose,

we propose an adapted order crossover (AOX), which extends the well-known order crossover with

the ability to transmit customer selection and visit sequence decision from both parents. This

crossover operator is illustrated in Figure 2.

In a first step, the crossover inherits the service level information from both parents. This is

done by crossing the service level chromosomes of both parents using an extended intermediate

recombination [48], i.e., a target weight ratio αT
k (C) is randomly chosen between αk(P1) and αk(P2)

for each group k, where αk(P ) is the weight ratio of group k in individual P .

Then, in a second step, the giant-tour chromosome of the child C is initialized with the longest

size among both parent and inherits, as in the order crossover (OX), a fragment of P1.

In the third and final step, the giant-tour chromosome of C is completed by sweeping circularly

the deliveries of P2 and inheriting them, starting one index after the end of the fragment from P1.

Each insertion of a visit i of a group k is done under the condition that i does not already exist in C,

and that the target service level αT
k (C) has not yet been reached. To complete the representation,

the service level chromosome of the child is finally derived from the giant-tour chromosome.
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Figure 2: AOX crossover – In this example, V1 = {1, 2, 3, 4, 5}, V2 = {6, 7, 8, 9, 10} and si = 1 for all i.

Education. The goal of the crossover operator was to generate new solutions which inherit common

characteristics from both parents while introducing a significant level of randomness. As such, the

crossover operator is not the main force which drives solution improvement, this role being assumed

by a subsequent local search-based education procedure.

The local search (LS) is applied on the complete solution representation, including the visits

to the depot. Therefore, the Split algorithm has to be run beforehand. The LS uses the same

classical vehicle routing neighborhoods as in [62]: 2-Opt, 2-Opt*, Swap, Relocate as well as

generalized Swap and Relocate involving two consecutive nodes, and limited to moves between

close services. These classical neighborhoods only involve services which are present in the current

solution. To also optimize the decision subset related to customer selections in the LS, we include

three additional neighborhoods:

– Remove: If u is a visited customer, then remove u from the solution.

– Add: If u is a visited customer and v is a non-visited customer, add v after u.

– Replace: If u is a visited customer and v is a non-visited customer, replace u by v.

All neighborhoods are explored in a random order with a first improvement move acceptance policy.

The LS stops when no improving move can be found in the entire neighborhood, and the resulting

solution is converted back into a giant-tour and service level individual representation, which is

inserted in the population.
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Repair. Finally, it is possible for a solution to remain infeasible after education. When this situation

happens, a Repair operator is applied with 50% chance. As in [62], this operator simply consists in

running the local search with higher penalty values, first by a factor of 10, and then 100, with the

aim of converging towards a feasible solution.

5.4. Population Management

The population is formed of two sub-populations, designed to host feasible and infeasible

individuals, respectively. The algorithm starts by generating 4× µ random initial solutions. Each

sub-population is then managed to contain at least µ and at most µ+ λ individuals. Whenever a

population reaches its maximum size, λ individuals are eliminated to produce the next generation.

This is done by iteratively selecting out either a clone solution, with a distance of 0 to another

solution, or the worst solution according to a biased fitness function φbias(S) when there are no more

clones. The biased fitness measure evaluates every solution S based on its cost φcost (Equation 30)

and its contribution to the sub-population diversity, defined as:

φdivP (S) =

∑
S2∈NP (S) δ(S, S2)

nclose
, (32)

where NP (S) is the set of the nclose individuals in the sub-population P closest to S with respect

to a distance measure δ(S1, S2). Our distance measure counts the percentage of common edges

between two solutions. Let E(S1) and E(S2) be the set of edges used in the solutions S1 and S2,

then the distance is expressed as:

δ(S1, S2) = 1− |E(S1) ∩ E(S2)|
|E(S1) ∪ E(S2)|

. (33)

Finally, let nelite be a parameter controlling how elitist φbias(S) is, and let R(S, P, f) be an

application which returns the rank of an individual S in the sub-population P relatively to a

measure f . Then, the biased fitness of S in P is evaluated as in UHGS [64]:

φbiasP (S) = R(S, P, φcost) +
(

1− nelite

|P |

)
R(S, P, φdiv). (34)

Each distance measure can be evaluated in O(n) time. As such, when a new individual enters

the population, its distance from every other solution can be computed in O(n|P |) time, and the

computational complexity of updating the biased fitness measures is O(n|P |+ |P | log |P |).
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Adaptive Penalty Coefficients. The exploration of infeasible solutions contributes positively to

the search if the ratio of feasible solutions is adequately controlled. To that extent, the penalty

parameters are adapted to achieve a ratio of feasible solutions within a predefined interval [ξmin, ξmax].

We rely on 1 +K penalty parameters for the VRP-SL: one for the capacity constraints, and K

penalties for the service level constraints, one for each group. Let ξc be the ratio of feasible

individuals with respect to a constraint c, measured among the last 100 individuals generated by

local search. In order to drive the search towards feasible solutions, every 100 iterations we update

the penalty coefficient of constraint c using the following rule:

wc =


wc × 1.2 if ξc ≤ ξmin,

wc × 0.85 if ξc ≥ ξmax,

wc otherwise.

(35)

Initially, all penalty parameters are set to 10. We aim to obtain around 25% feasible solutions

after LS. Since all constraints need to be respected to obtain a globally feasible solution, we used

ξmin = 0.15
1

1+K and ξmax = 0.35
1

1+K to achieve this goal.

Diversification procedure. Finally, after each consecutive Itdiv iterations without improvement of

the best solution, we apply the same diversification procedure as in [62] to only keep the best µ/3

individuals in each subpopulation and reintroduce new random initial solutions. This procedure

complements the biased fitness function so as to avoid a premature convergence of the method due

to the strong intensification of the LS.

6. Experimental Analyses

This section aims to 1) introduce a set of instances for the VRP-SL derived from classical vehicle

routing instances, 2) evaluate the performance of the proposed methods on the VRP-SL instances,

3) evaluate the performance of the metaheuristic and the branch-and-price on classical problems

generalized by the VRP-SL, namely the VRPPFCC and CPTP, and finally 4) examine the impact

of some key parameters and design choices. All algorithms were coded in C/C++. The exact

algorithms were run on a single thread of a 3.07-GHz Intel Xeon CPU, and the metaheuristic was

run on a single thread of a 3.4-GHz Intel Core i7 CPU. We used CPLEX 12.7 for the resolution of

the compact formulation and for the linear programs in the B&P algorithm.
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Benchmark instances for the VRP-SL. To compensate for the unavailability of benchmark

instances for the VRP-SL, we derived two sets of instances from classical CVRP and prize-collecting

VRP test sets:

– The first set (S1) has been generated from a subset of 26 instances from [4], and includes between

31 and 80 vertices. The profit of each client has been set to h× qi, where h is a random variable

uniformly generated in the interval [0.75, 2.25].

– The second set (S2) has been derived from the 10 capacitated profitable tour instances of [1],

with 51 to 200 vertices. The capacity of the vehicles has been set to 500, and the number of

vehicles has been set to

m =

⌈∑K
k=1(Qmin

k +Qmax
k )

2Q

⌉
, (36)

where Qmin
k is the subset of services of group k with smallest delivery quantity which allows to

satisfy the service level requirements, and Qmax
k is the sum of demands of all customers of this

group. The original profits were multiplied by a factor of 0.5 to obtain a good balance between

profits and distance.

For each instance, we considered five configurations for the assignment of visits to groups:

{1, 2R, 2C, 5R, 5C}. The first number corresponds to the number of groups, and the second letter,

when applicable, corresponds to their distribution: random (R) or clustered (C). In all cases, the

service levels for each group have been randomly selected in {0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1}, and

the weight of each customer, reflecting its importance for the service level constraint, coincides

with the demand quantity (si = qi). Overall, this leads to 26× 5 = 130 instances of set S1, and

10×5 = 50 instances of set S2. For each instance, the distance values between customers are rounded

to the nearest integer. For the sake of brevity, the results presented in the paper are aggregated per

group of five instances. All instances and detailed results are available in the electronic companion

of this paper, also available at https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html.

6.1. Exact solutions and lower bounds

The two exact methods have been tested on each VRP-SL instance using a single core with a

time limit of two hours. Since the VRP-SL instances were designed to be challenging for both exact

and heuristic approaches, only a subset of the problems could be solved to optimality. To speed up

the resolution, we used the best integer solution found by the metaheuristic as a warm start for

both exact methods, hence limiting the size of the branch-and-bound tree.

Table 2 presents average results for each group of instances. The first columns list the character-

istics of each group, followed by the minimal number of visits nmin required to satisfy service level
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constraints, the value LB0 of the lower bound and the processing time T0 at the root node, the

value LB of the best overall lower bound, the number of nodes in the search tree, the final integrality

gap and the total CPU time. For each instance, the best lower bound is highlighted in boldface.

We do not indicate the best upper bound found by each method, since no improvement was found

over the initial value obtained by the metaheuristic.
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Figure 3: Instances of set S1 currently solved to optimality using the compact formulation “×”, via branch-and-price
“◦”, or still open “·”, as a function of the number of visits n and the minimum number of deliveries nmin needed to
satisfy the service level constraint.

As illustrated by the experiments, the branch-and-price algorithm outperformed the compact

formulation-based method on most instances. More precisely, it performed better on all instances of

the set S1 with the exception of B1 and B2. For the set S2, the compact formulation performed

better for the first five groups of instances and worse for the remaining ones. As expected, the

branch-and-price algorithm is very effective when the solution includes short routes, while the

compact formulation performs better on instances with few vehicles. The total number of instances

solved to optimality for configurations {1, 2R, 2C, 5R, 5C} were {10, 9, 9, 9, 8} for the compact

formulation and {15, 9, 9, 8, 9} for the branch-and-price algorithm. These results show that the

exact methods’ performances are rather insensitive to the distribution of nodes in V , as well as the

number of groups K. However, the complexity generally increases with n, m and nmin, as visualized

in Figure 3.

6.2. Performance of the hybrid genetic algorithm

In this subsection, we report the results obtained with the proposed HGS on the VRP-SL instances.

For each instance, the algorithm was run ten times with different seeds, using the same parameter
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setting and termination criterion as in [62] for the CVRP, that is (nelite, µ, λ) = (10, 25, 40),

Itmax = 2× 104 and Itdiv = 0.4× Itmax. Moreover, to accelerate the convergence, the parameters

governing the population size have been halved when dealing with problem instances containing 200

or more services. Table 3 reports, for each group of instances, the worst, average and best solution

quality of HGS over 10 runs (Wor-10, Avg-10 and Best-10), the percentage gap between the average

solutions and the best ones found (GapBKS), the percentage gap between the average solutions and

the best lower bounds found by the exact methods (GapLB), the average CPU time in seconds, the

best known solutions (BKS) and lower bounds (BKLB).

Inst n m Wor-10 Avg-10 Best-10 GapBKS GapLB T(s) BKS BKLB

A1 31 5 707.4 707.40 707.4 0.00 0.00 9.06 707.4 707.4

A2 32 6 658.2 658.20 658.2 0.00 0.32 8.72 658.2 656.1

A3 35 5 666.2 666.20 666.2 0.00 0.00 9.70 666.2 666.2

A4 36 6 805.0 805.00 805.0 0.00 0.00 9.51 805.0 805.0

A5 38 5 669.4 669.40 669.4 0.00 0.23 10.18 669.4 667.9

A6 43 6 789.6 789.60 789.6 0.00 0.13 12.78 789.6 788.6

A7 44 7 1023.0 1023.00 1023.0 0.00 0.22 13.90 1023.0 1020.8

A8 47 7 948.2 948.20 948.2 0.00 0.44 12.99 948.2 944.0

A9 53 7 1073.2 1073.20 1073.2 0.00 0.68 18.49 1073.2 1066.0

A10 59 9 1234.8 1234.50 1234.4 0.01 0.67 21.21 1234.4 1226.3

A11 61 8 1124.8 1124.10 1124.0 0.01 1.08 20.69 1124.0 1112.1

A12 62 10 1132.6 1132.44 1132.4 0.00 0.36 19.54 1132.4 1128.3

A13 64 9 1101.8 1101.70 1101.6 0.01 1.04 22.64 1101.6 1090.4

A14 79 10 1526.2 1525.30 1525.2 0.01 1.11 32.05 1525.2 1508.6

B1 30 5 584.8 584.80 584.8 0.00 0.57 9.53 584.8 581.5

B2 34 5 748.2 748.20 748.2 0.00 1.10 8.34 748.2 740.0

B3 38 5 497.2 497.20 497.2 0.00 3.98 10.24 497.2 478.2

B4 42 6 666.2 666.20 666.2 0.00 0.46 12.00 666.2 663.2

B5 44 5 625.0 625.00 625.0 0.00 1.66 11.71 625.0 614.8

B6 49 7 668.8 668.80 668.8 0.00 1.77 14.25 668.8 657.2

B7 50 7 956.2 956.20 956.2 0.00 2.38 15.13 956.2 934.0

B8 55 7 637.4 637.40 637.4 0.00 3.97 18.26 637.4 613.1

B9 56 9 1378.2 1376.72 1376.2 0.04 2.03 22.17 1376.2 1349.4

B10 63 9 812.0 812.00 812.0 0.00 2.33 20.20 812.0 793.5

B11 66 10 951.8 951.56 951.4 0.02 1.65 24.15 951.4 936.1

B12 77 10 1092.6 1091.94 1091.4 0.05 2.13 28.92 1091.4 1069.1

p03 100 – 555.0 555.00 555.0 0.00 0.10 22.67 555.0 554.4

p06 50 – 387.0 387.00 387.0 0.00 0.00 10.74 387.0 387.0

p07 75 – 519.6 519.60 519.6 0.00 0.00 17.51 519.6 519.6

p08 100 – 544.8 544.80 544.8 0.00 0.09 22.50 544.8 544.3

p09 150 – 695.6 695.60 695.6 0.00 1.50 46.12 695.6 685.3

p10 199 – 810.8 810.44 810.2 0.03 1.36 86.30 810.2 799.6

p13 120 – 640.8 640.20 639.8 0.06 8.70 44.05 639.8 588.9

p14 100 – 588.0 588.00 588.0 0.00 3.43 27.04 588.0 568.5

p15 100 – 588.8 588.80 588.8 0.00 2.93 26.78 588.8 572.1

p16 199 – 805.0 804.24 803.8 0.05 1.29 92.85 803.8 794.0

All 0.01 1.38 22.58

Table 3: Performance of the HGS on the VRP-SL instance sets
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In the absence of results from previously published heuristics, we consider three main indicators

of method performance: its ability to reach known optimal solutions, the stability of the solution

quality over several runs, illustrated by the gap between the average solution quality and the BKS,

and the deviation from the lower bounds produced by the mathematical programming algorithms.

As observed in our experiments, HGS finds all of the 70 known optimal solutions on all test runs.

The method also returns solutions of consistent high quality: it found for 25/36 groups of instances

the value of the best known solution on all runs of all instances. The percentage gaps between the

average and best known solutions are close to zero (0.01% overall), and the instances with fewer

groups appear to be generally easier to solve. The gaps to the lower bounds are also small (1.38% in

average), and thus the solutions of HGS are guaranteed to be close to the optima. This gap is more

likely to be due to the quality of the lower bounds, since over all 2h-runs of the exact approaches

not a single best solution of the metaheuristic was improved. Finally, the average CPU time never

exceeds 93 seconds, the worst case being observed on problem p16 with 199 services.

6.3. Comparative analyses on key subproblems

As discussed in Section 2, the VRP-SL generalizes several important problem classes. Two such

problems in particular, the VRPPFCC and CPTP, have been the focus of a wide literature, opening

the way to some comparative performance analyses.

Experiments on the VRPPFCC. We rely on the two sets of instances from [12]. Set CE includes

up to 199 customers, while Set G includes larger instances with up to 483 customers. For these

instances, the convention is to compute all distances with double precision and report the final

solution with two digits. Our heuristic method is compared to the two best current metaheuristics

in the literature: the UGHS proposed by [66], which uses an exhaustive solution representation

(with all visits) with a route-evaluation operator in charge of customer selections, and the recent

AVNS of [32]. To the best of our knowledge there are no known exact results for this problem in

the literature. The results of our methods are displayed in Table 4. The column BKS reports the

best known solutions found in the literature before this paper. Avg-10 and Best-10 represent the

average and best solutions found by the metaheuristic over ten runs. For each instance, the best

heuristic method in highlighted in boldface. For the branch-and-price results, columns LB0 and LB

follow the same convention as Table 2.

In these experiments, the proposed metaheuristic appears to outperform previous methods in

terms of solution quality, with an average gap of 0.141%, in comparison to 0.445% for UHGS with

the exhaustive solution representation, and 0.345% for AVNS. During these tests, eight new best
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known solutions (BKS) have been found, as underlined in the table. Finally, the average CPU time

is markedly faster than previous approaches which were run on processors of a similar generation,

with 340 seconds on average, compared to 1584 and 4656 seconds for the other methods. The

proposed branch-and-price algorithm is the first in the literature to report optimal VRPPFCC

solutions for three instances: CE-01, CE-06 and G-17. On the other hand, on six instances, the

algorithm was not able to solve the root node within a time limit of two hours. This is due to

their size (up to 480 customers), which can be considered very large for the current exact methods.

Finally, the average integrality gap calculated over the tractable instances was 0.667%, confirming

the good performance of the approach.

Experiments on the CPTP. For this problem, we compare the proposed HGS with the previous

two best methods in the literature, the UHGS with exhaustive solution representation and the

multi-start ILS of [66]. We also compare the proposed branch-and-price algorithm with the exact

approach of [1], which generated, to this date, the best bounds for the CPTP. In that work, the

authors proposed a branch-and-price algorithm using a q-route relaxation, and reported detailed

results with and without a primal heuristic. We rely on the ten test cases of [2], each case being used

to produce 12 instances with a different fleet size and vehicle capacity, for a total of 120 instances.

Tables 5 and 6 present a summary of our computational experiments on these instances, using the

same conventions as previously. Each line in the table corresponds to an average measure over a

group of 12 instances.

UGHS – [66] ILS – [66] This paper – HGS

Instance n Avg-10 Best-10 T(s) Avg-10 Best-10 T(s) Avg-10 Best-10 T(s) BKS

p03 100 254.07 254.07 215.82 253.99 254.07 191.63 254.07 254.07 12.32 254.07

p06 50 129.13 129.13 30.78 129.09 129.11 23.35 129.13 129.13 7.18 129.13

p07 75 192.51 192.56 103.94 192.37 192.56 85.80 192.52 192.56 8.36 192.56

p08 100 254.07 254.07 216.28 253.93 254.07 191.49 253.90 254.07 12.17 254.07

p09 150 319.61 319.72 295.34 319.23 319.72 289.75 319.67 319.72 18.44 319.72

p10 199 387.87 388.41 303.55 386.67 387.73 309.23 388.79 388.85 19.90 388.41

p13 120 180.20 180.39 235.98 178.33 180.32 255.97 180.08 180.32 15.15 180.39

p14 100 246.24 246.24 116.26 246.23 246.24 111.83 246.24 246.24 10.78 246.24

p15 150 327.99 328.36 295.02 326.91 327.81 289.85 328.28 328.37 15.24 328.36

p16 199 393.09 393.75 303.88 392.21 393.32 309.74 394.03 394.04 21.16 393.75

Avg. Gap(%) 0.029 0.000 0.172 0.014 0.012 -0.002

Avg. T(s) 211.68 205.86 14.07

CPU Xe 3.07GHz Xe 3.07GHz Intel i7 3.4GHz

Table 5: Performance of HGS on the CPTP benchmark instances

These instances are generally smaller, with 50 to 199 service locations, and thus the performance

differences between state-of-the-art heuristics are less marked. Still, we observe that the proposed
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B&P1 – [1] B&P2 – [1] This paper – B&P

Instance n UB LB T(s) UB LB T(s) UB0 UB LB T(s) BKUB

p03 100 256.90 254.07 1135.31 256.82 147.01 1135.38 258.17 255.36 254.07 1116.00 256.82

p06 50 129.75 129.13 625.08 129.64 118.09 602.38 131.77 129.39 129.13 287.89 129.64

p07 75 193.18 192.56 622.38 193.11 163.49 613.92 194.21 192.82 192.56 285.06 193.11

p08 100 256.89 254.07 1134.31 256.82 147.01 1135.00 258.17 255.36 254.07 1116.05 256.82

p09 150 324.25 316.33 1163.69 324.20 160.90 1163.85 323.66 320.83 319.72 1123.65 324.20

p10 199 392.03 377.01 1117.77 391.66 176.43 1117.77 392.07 390.43 388.85 596.37 391.66

p13 120 191.74 167.78 1916.08 191.70 116.06 1916.77 186.72 183.93 180.32 1216.18 191.70

p14 100 255.47 237.02 1110.31 255.41 116.24 1110.31 248.67 247.20 246.24 556.22 255.40

p15 150 331.98 324.19 893.54 331.93 190.18 893.77 332.36 330.67 328.37 603.52 331.93

p16 199 398.57 379.03 1118.46 398.27 178.90 1118.38 398.58 396.47 394.04 941.83 398.27

Average 273.07 263.12 1083.69 272.96 151.43 1080.75 272.44 270.25 268.74 784.28 272.96

CPU Xe 2.26GHz Xe 2.26GHz Intel i7 3.4GHz

Table 6: Performance of the proposed branch-and-price algorithm on the CPTP benchmark instances

HGS obtains average solutions of similar or better quality (0.012% gap compared to 0.029% and

0.172% gap) in a fraction of the CPU time of previous algorithms (14 seconds in average, compared

to 211 or 205 seconds). Three previous BKS were improved, leading to an average gap of −0.002%

for the best solution quality of 10 runs. For the branch-and-price algorithm, we set the time limit

to 3600 seconds in order to make a fair comparison with [1]. The proposed B&P found similar or

better solutions for all instances tested. It improved the bounds for 37 instances, with an average

improvement of 0.629%, and proved optimality for 103 instances, including ten new optimality

certificates.

6.4. Sensitivity analyses

Finally, this section reports additional sensitivity analyses on the impact of key components

of the proposed HGS. For this purpose, we compare the results of the standard method described

in Section 5 against several alternative configurations obtained by modifying one operator, design

choice, or group of parameters:

EOX – An edge-recombination crossover (EOX) is used. As described in [67], this crossover

maintains, for each vertex i, an adjacency list of non-visited vertices adjacent to i in

at least one parent. After a random choice for the first vertex, EOX iteratively inserts

the adjacent vertex with the shortest adjacency list. Ties are broken randomly, and a

random vertex is chosen whenever the adjacency list is empty. As in our adaptation of

OX, target service levels are inherited for the groups from the parents, and any vertex

belonging to a group for which the target service level has already been attained is

eliminated from the adjacency lists.
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No SL – Service levels are not used to filter service insertions in the crossover.

No INF – All penalty coefficients are set to a large value to avoid infeasibility.

No DIV – Individual diversity contributions are not counted in the biased fitness.

No Rep – The Repair operator is not applied.

Pop ↓ – Smaller population: (µelite, µ, λ) = (4, 12, 20).

Pop ↑ – Larger population: (µelite, µ, λ) = (16, 50, 80).

Feas ↑ – 50% feasible solutions as a target: (ξmin, ξmax) = (0.4
1

1+K , 0.6
1

1+K ).

Feas ↑↑ – 75% feasible solutions as a target: (ξmin, ξmax) = (0.65
1

1+K , 0.85
1

1+K ).

Each of these algorithm configurations was run 10 times on every benchmark instance for the

VRP-SL, VRPPFCC and CPTP. Table 7 presents the average percentage gap, best percentage gap

and time of each method for each set of instances.

VRP-SL Set S1 VRP-SL Set S2 VRPPFCC CPTP

Best-10 Avg-10 T(s) Best-10 Avg-10 T(s) Best-10 Avg-10 T(s) Best-10 Avg-10 T(s)

Standard 0.00 0.01 16.01 0.00 0.01 39.66 0.06 0.21 340.00 0.00 0.02 14.07

EOX 0.02 0.05 19.98 0.03 0.10 66.61 1.69 2.04 225.45 0.02 0.06 20.39

No SL 0.00 0.01 16.70 0.00 0.02 41.68 0.07 0.20 360.61 0.02 0.04 15.22

No INF 0.05 0.12 15.05 0.07 0.14 40.84 0.15 0.38 344.67 0.02 0.05 12.70

No DIV 0.01 0.05 13.62 0.01 0.08 29.04 0.12 0.37 155.33 0.02 0.17 11.68

No Repair 0.00 0.02 12.51 0.01 0.03 34.85 0.05 0.20 337.18 0.00 0.02 12.40

Pop ↓ 0.00 0.01 12.99 0.00 0.02 31.16 0.05 0.23 343.94 0.00 0.03 11.24

Pop ↑ 0.00 0.01 26.48 0.00 0.02 60.53 0.12 0.26 545.01 0.00 0.01 25.14

Feas ↑ 0.00 0.01 15.12 0.00 0.02 40.01 0.10 0.26 348.12 0.01 0.03 14.06

Feas ↑↑ 0.01 0.04 14.93 0.01 0.05 40.61 0.16 0.37 380.05 0.01 0.05 14.23

Table 7: Sensitivity Analysis on the components of the HGS

From these experiments, it appears that the proposed method is a sort of “local optimum” in

terms of design choice and parameter settings, in the sense that any change of its main operators

and parameters impacts negatively the method performance. Still, some design choices have a much

larger impact than others. In particular, using the EOX crossover operator strongly deteriorates the

method performance for VRPPFCC instances, while speeding-up the resolution. Such a speed-up

may be a symptom of premature convergence due, in this case, to the crossover. Both diversity

management and infeasible-solution management contribute significantly to the performance of the

method (configurations No INF and No DIV). This confirms the earlier observations of [62, 65].

Still, although the management of infeasible solutions is critical, deactivating the repair operator or

changing the target level of feasible solutions has little impact (configurations No Rep, Feas ↑ and
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Feas ↑↑). The control of the service levels in the crossover has a beneficial effect on performance

for the CPTP (configuration No SL). Finally, HGS is relatively insensible to reasonable changes of

population size (configurations Pop ↓ and Pop ↑).

7. Conclusions

In this article, we have introduced the VRP-SL, an important VRP variant arising in collaborative

logistics operations, which aims to take into account the requirements of various partners via service

level constraints on groups of deliveries. To establish a basis for further research, we introduced a

first set of benchmark instances, a compact mathematical formulation, a branch-and-price algorithm

and a first effective hybrid genetic search. The service level constraints tend to make the selection

of services more complex, and thus new problem-tailored search operators, solution representation,

crossover, LS moves, and penalty management strategies were introduced in HGS. Thanks to these

elements, the proposed heuristic finds all known optimal solutions for the VRP-SL, and outperforms

previous algorithms for two important special cases, the VRPPFCC and the CPTP, which have

been intensively studied in past literature. Finally, the proposed branch-and-price algorithm was

able to produce tight bounds for all problems and new optimality certificates for 63 instances,

outperforming the existing exact approaches.

The research perspectives are numerous. First, the new algorithms can still be improved via

the addition of new families of cuts, better relaxations, new neighborhoods and other heuristic

strategies. Moreover, the VRP-SL is only a simplification of an intricate real-life application, and

the assumptions about the time constraints, the dynamics and stochasticity of the problem were

voluntarily simplified to allow for reproducibility. Guaranteeing, in a stochastic and on-line context,

the satisfaction of contractual service levels for prize-collecting problems is an important challenge,

as the violation of such obligations can lead to large penalties or lost contracts. To circumvent this

risk while mitigating the cost of robustness, it is possible to search for robust solutions on a larger

planning horizon, and consider alternative transportation modes as a recourse. These aspects, and

the interactions between them, will be considered in future works.
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