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Abstract

Retrieving containers from a bay in a port terminal yard is a time consuming activity. The Block
Retrieval Problem (BRTP) aims to minimize the number of relocations, the unproductive moves
of hindering containers, while retrieving target containers belonging to a customer. The choice of
relocations leads to alternative bay configurations, some of which would minimize the relocations
of forthcoming retrievals. The Bi-objective Block Retrieval Problem (2BRTP) includes a secondary
objective, the minimization of the expected number of relocations for retrieving the containers of the
next customer. This paper provides NP-Hardness proofs for both the BRTP and 2BRTP. A branch-
and-bound algorithm and a linear time heuristic are developed for the BRTP; a branch-and-bound
algorithm and a beam search algorithm are presented for the 2BRTP. Extensive computational tests
on randomly generated instances as well as instances adapted from the literature are performed, and
the results are presented.

Keywords: combinatorial optimization, container terminals, import containers, branch-and-bound

1. Introduction

Container terminals are exchange hubs for containers flowing from one transportation mode
to another, or between container ships. Container terminals are typically located at ports, where
containers are loaded to/unloaded from cargo boats and delivered to the customers for the last
mile transportation. Containers can be classified as export (or outbound) containers, import or
(inbound) containers, and transshipment containers (Kim and Park 2003, Caserta et al. 2011).
Export containers arrive by trucks or trains to the terminal landside area, then they are placed in
the storage yard by internal vehicles, and relocated to the seaside area when the corresponding cargo
boat is available (Daganzo 1989). Import containers follow the reverse path; they arrive in the port
by cargo boats, then they are unloaded by quay cranes, and placed in the storage yard to be picked
up by trucks or trains in the landside area. Transshipment containers are restricted to the seaside
and the storage yard areas; they are unloaded from a vessel and stored in the port yard until they
are loaded to another cargo boat. A schematic representation of a container terminal together with
a classification of container flows is depicted in Figure 1.

Container terminals provide temporary storage space for preventing the need of synchronization
between the transportation modes, in addition to their function as exchange areas. Thus, containers
arriving in the terminal by ship, or by external trucks, or by trains are temporarily kept in storage
areas until they are requested for shipment. The dwell times for export, import, and transshipment
containers are different. Export containers typically arrive in the port up to weeks before the time
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Figure 1: A typical container terminal and the three types of container flows.

they have to be shipped and import containers stay in the terminal yard until they are claimed by
the customers.

The storage yard is a scarce resource just as berths, cranes, and internal vehicles, and its usage
needs to be carefully planned. Containers are stored in stacks in order to avoid spreading them
around the terminal yard, which would have required larger areas and would have demanded a
more substantial transportation effort. Stacks are aligned to form bays and blocks, as illustrated
in Figure 2. This configuration optimizes the space utilization and allows for crane operations.
Nevertheless, by adopting this storage policy, a trade-off between space saving and handling effort
for loading and unloading operations arises. More precisely, hindering or obstructing containers may
need to be relocated in order to provide access to the blocked target containers during a retrieval
request.

Figure 2: (a) Container storage block, and corresponding (b) bay representation.

We assume each bay stores uniformly shaped containers, consisting of S stacks of maximum
height H. Each container belongs to a group g ∈ {1, . . . , G} which can be defined according to its
weight, destination, owner, or any other classification criterion that can be used during the retrieval
process. Containers in a group have to be retrieved at the same time. The target group refers to
containers of the group t ∈ {1, . . . , G} which are about to be retrieved (note that t > 1 is allowed,
in contrast to the related problems in the literature). The LIFO policy has to be observed; i.e., only
the topmost containers can be directly reached by a crane or a gantry. Thus, retrieving a container
that is not positioned in the top tier requires all containers above it to be moved to other stacks.
Obstructing containers on top of target containers are called deadlocks. A relocation occurs when a
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deadlock has to be moved from one stack to another. A retrieval is performed when a container of
the target group is picked and leaves the bay. It is assumed that containers can be relocated to other
stacks and hence there exists enough space above the stacks to perform the necessary relocations. In
practice, it is not always possible to assure enough space above the stacks to perform the necessary
relocations, in such cases the non-target containers are relocated to a temporary dummy stack at
the side of the bay. Once the retrieval process is finished, the containers in the dummy stack have
to be put back into the bay.

Although it is optimal to place the containers of a group in adjacent empty stacks and bays upon
arrival, lack of available space may force the group to be divided in partially occupied stacks and
non-adjacent locations. Furthermore, retrieval operations for the other groups may further disperse
the containers within the same bay and cause deadlocks. In the Block Retrieval Problem (BRTP),
the aim is to retrieve all containers of a given target group t, 1 ≤ t ≤ G, provided that the relocation
cost Ct is minimized. In this paper, the cost Ct is defined as the number of relocations needed to
retrieve all the containers of the target group t. Even if there are several groups other than the
target group t, in the BRTP there is no distinction between them, i.e., essentially there are only two
groups: the given target group t and the other group formed by all remaining containers.

The BRTP is important in its own right; however, its objective is myopic, since it does not
consider a configuration of the deadlocks once they have been relocated in the bay, although that
could be important for retrievals of the forthcoming target groups. The Bi-objective Block Retrieval
Problem (2BRTP) overcomes this limitation. The 2BRTP is a bi-criteria problem with two lexi-
cographically ordered objectives: the primary objective is to minimize the cost Ct of the retrieval
of the initial target group t, and the secondary objective is to minimize the expected number of
relocations of the forthcoming retrieval. The lexicographic objective function reflects the priority
given to the customer currently at the port for the retrieval. However, among the fastest retrieval
solutions for the current customer, the solution resulting in the most promising bay configuration
for the upcoming customers is chosen by means of the secondary objective function. Assuming that
the probability that a group g, 1 ≤ g ≤ G, g 6= t, is retrieved after the first target group t is known
and is equal to Pg, the secondary objective function can be written as

∑

g∈{1,...,G}\t PgCg, where Cg

is the cost of the retrieval of group g from the bay of the configuration obtained after the containers
of the primary target group t have been retrieved at the minimum cost Ct. Figure 3a illustrates
an instance of the 2BRTP. In both solutions shown in Figures 3b and 3c the smallest relocation
cost is C1 = 12, i.e., each of these solutions can be considered as an optimal solution to the BRTP.
However, for the configuration shown in Figure 3b the secondary objective used for the 2BRTP is
2× P2, while in the configuration in Figure 3c there are no deadlocks, so that it corresponds to an
optimal solution of the 2BRTP.

(a) (b) (c)

Figure 3: (a) A bay with 4 stacks of maximum height 5 holding containers partitioned into 3 groups,
target group 1 and obstructing containers in dark gray, (b) BRTP solution where the future deadlocks
are diamond shape, (c) 2BRTP optimal solution.
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The remainder of this paper is organized as follows. Section 2 provides a literature review. We
present a proof of NP-Hardness for the BRTP (Section 3.1) and we show that the BRTP can be
solved in polynomial time if S is constant (Section 3.2). A B&B algorithm for the BRTP (Section
3.3) and a linear algorithm for solving a special class of BRTP instances (Section 3.4) are provided.
We present a proof ofNP-Hardness for the 2BRTP (Section 4.1) as well as a B&B algorithm (Section
4.2), and a beam search heuristic (Section 4.3). Extensive computational experiments have been
performed on newly generated instances and adaptations of instances from the literature, the results
of which are in Section 5. Finally, Section 6 provides our concluding remarks.

2. Literature review and motivation

In this section, we briefly review known results on various block retrieval models, keeping focus
on the differences between these models and the BRTP and the 2BRTP. We also give motivational
reasons for studying the BRTP and the 2BRTP, from both practical and theoretical points of view.

The turnaround time of vessels, trains and external trucks are key factors to measure the efficiency
of container terminals, and also contribute to the evaluation of customer service levels and port
competitiveness (Kim and Kim 1999). We refer the interested reader to the recent paper by Lee
and Song (2017) for a critical overview of the literature on container transport in global supply
chains. Among many factors that may affect the overall turnaround time, loading and unloading
operations are the most time consuming tasks performed in terminal yards, and therefore they need
to be optimized (Roberti and Pacino 2016). The BRTP and 2BRTP aim at improving the retrieval
times, in particular in the landside area of the port terminal. The amount of retrieval information
differs for import and export containers (Caserta et al. 2011). The loading sequence on a cargo
boat for export containers is typically known when a cargo boat approaches the berth, whereas the
retrieval sequence for import containers is typically revealed during the delivery process. Trucks
or trains may arrive at the container terminal for the retrieval at unspecified times. The landside
retrieval process has been less investigated in the literature. In the following, we provide a summary
of related problems.

A recent survey and classification scheme for loading, unloading, and pre-marshalling operations
in stack storage contexts is proposed by Lehnfeld and Knust (2014). For additional contributions
and surveys on container terminals and their operations see Steenken et al. (2004), Dekker et al.
(2006), Vis and Roodbergen (2009), Carlo et al. (2013, 2014a,b), Gharehgozli et al. (2015), Ku and
Arthanari (2016), Liu et al. (2016).

A popular stacking model that arises in storage yards is the Block Relocation Problem (BRP).
In this problem, it is required to minimize total relocation cost, provided that all groups have to be
retrieved in a known sequence (Kim and Hong 2006, Caserta and Voß 2009, Tanaka and Takii 2016).
Thus, the BRTP is a special case of the BRP where there are only two groups, with the target group
to be retrieved first, and the rest of the containers next.

There are several issues that motivate our study of the BRTP. First, the computational complex-
ity of this simplest version of the BRP has to be established, and this is done in Sections 3.1 and 3.2.
Second, mathematical formulations for the BRP presented in Caserta et al. (2012) and Zehendner
et al. (2015) show that the exact algorithms for the problem are limited to relatively small sizes.
Although the BRTP can be solved by the available algorithms developed for a more general BRP,
it is reasonable to expect that the algorithms tailored for solving the BRTP that explore its simpler
structure would performer better than general algorithms. We offer a simple linear-time heuristic for
solving the BRTP, provided that the bay has enough room for moving the deadlocks. Besides, we
have designed a branch-and-bound (B&B) algorithm for the BRTP; see Section 3.3 and Algorithm 1.
We have also performed computational experiments comparing our B&B algorithm with the B&B
algorithm by Tanaka and Takii (2016) for the BRP. Up to this date, the latter algorithm remains
the fastest exact algorithm for the BRP that can deal with grouped instances. We compare the
two algorithms on randomly generated BRTP instances with S = 10 stacks, maximum height up
to H = 15, G = {2, 3}, and filling rate of 95%; in total 4000 instances were randomly generated
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as described in Section 5.1. In our experiments we employed the original code made available by
Tanaka and Takii (2016). We have observed that our B&B algorithm for the BRTP is capable of
solving more instances to optimality in less time than the BRP B&B algorithm from the literature.
The difference in performance is negligible for smaller instances. These results are summarized in
Table 12 of Appendix C.

It is clear that the BRTP being the simplest block retrieval problem may have a rather limited
practical usage. To a very large extend, our study on the BRTP is a starting point that allows us to
define the 2BRTP, which we see as the main contribution of this paper. Still, the results obtained for
the BRTP are of a certain interest in their own right, and the designed algorithms serve as building
blocks for the exact and heuristic algorithms for the 2BRTP.

The 2BRTP assumes that the first target group is known, but the forthcoming group to be
retrieved is uncertain. Thus, the 2BRTP cannot be modeled as a special case of the BRP. Moreover,
examples of small-sized instances can be provided that demonstrate that the 2BRTP does not reduce
to a series of the BRP with various retrieval sequences. This makes 2BRTP an object on independent
mathematical study. From the application point of view, both the BRTP and the 2BRTP can be
utilized for optimized collection of containers of a single customer dispersed to multiple bays, by
solving the associated problem for each of these bays. In terms of the container flow in seaports, the
BRP better models the retrieval of export containers to be loaded into vessels (in which the loading
sequence is deterministic), while the BRTP and 2BRTP suit the retrieval operations of import
containers to be delivered to the landside transportation operator (in which the customers’ arrival
times are not known or are uncertain). In fact, out interest in studying the 2BRTP has arisen from
the discussions of the second author with the field managers of a major container port in Istanbul,
Turkey. Typically, the ports allow import containers to be stored without charging a storage fee for
up to seven days, depending on the country and port. After that a so-called demurrage fee is applied.
In this context, the term “demurage” refers to money that must be paid when goods are collected
later than the agreed time after being taken off a chartered ship. The free time before demurrage
allows the recipients to schedule the pickup to their convenience, and introduces uncertainty to the
order or the retrieval operations.

The number of relocations needed to retrieve target containers from stacks is affected by the
height and the width of the stacks and the strategy employed during the storage process. Castilho
and Daganzo (1993) analyze two strategies which involve segregation and non-segregation of new
containers arriving to the storage area (i.e., new containers are put in a dedicated area or they are
mixed with the previously stored containers). They present methods for estimating the expected
number of relocations when retrieving a single container and also when retrieving several containers
from a group of stacks in two scenarios, with and without new containers being added to the stacks.
Using simulation, the authors observe that in the scenario in which new containers enter the bay,
the segregation strategy is advantageous if the throughput of incoming ships is small and the stacks
are high. In the case of large ships throughput and short stacks, the non-segregating strategy results
in a better performance.

Considering a given bay setting in which no incoming containers are allowed, Kim (1997) proposes
a numerical approximation to estimate the expected number of relocations to retrieve an arbitrary
container and also to retrieve all containers from the bay. The estimation approach outperforms
other methods available (Watanabe 1991) in both accuracy and unbiasedness of the estimations.

The problem addressed in this paper differs from those described in the papers reviewed above.
The contributions in the literature focus on the rehandling of import containers at the strategic
level; i.e., searching for the best stacking dimensions and storage strategies for reducing or avoiding
relocations during the retrieving process. This paper deals with the problem at an operational level,
and provides fast algorithms for the retrieval of target containers.

Similarly, Borjian et al. (2015a) and Borjian et al. (2015b) study the Container (Blocks) Relo-
cation Problem and the Blocks Relocation Problem with Incomplete Information. For the latter,
the authors assume that the retrieval sequence of some container groups is known, while for the
remaining groups only a probability distribution of the retrieval order is given. In addition, the true
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retrieval sequence of the unknown groups is revealed during the execution of the algorithm. For
the BRP, they introduce service time windows among other side constraints, and provide an integer
programming formulation. For the BRP with Incomplete Information, the authors adopt an A∗

algorithm from the literature and combine it with a sampling technique.

3. The Block Retrieval Problem

In this section, we prove that the BRTP isNP-Hard if the number of stacks is variable and admits
a polynomial-time solution algorithm for a fixed number of stacks. We also describe a branch-and
bound (B&B) algorithm and a linear time algorithm for a restricted set of BRTP instances. These
algorithms are then used as building blocks for developing algorithms for 2BRTP in Section 4.

An instance of the BRTP can be described by providing the following information. There are
S ≥ 2 stacks such that stack i contains hi tiers numbered from bottom to top, i.e., may contain
up to hi containers. Let us call hi the height of stack i and define H = max {hi|1 ≤ i ≤ S}, the
maximum height. All these values are initial characteristics of the bay and remain constant. We
distinguish between the target containers and non-target containers. Considering a stack i in the
order of numbering of its tiers, let ui,0 be the number of non-target containers at the bottom of the
stack; if there are no such containers then ui,0 = 0. The remaining containers are organized in pi
pairs of the form (wi,j , ui,j), where for the j-th pair, 1 ≤ j ≤ pi, wi,j is the number of contiguous
slots with the target containers while ui,j is the number of contiguous slots with the non-target
containers. Thus, a configuration of stack i can be described by a string of the form

Qi = [ui,0, (wi,1, ui,1) , . . . , (wi,pi
, upi

)] .

Visual representation of a stack defined by the string Qi = [0, (1, X) , (1, 1)] is depicted in the
leftmost column of the bay in Figure 4a. The objective of BRTP is to retrieve all target containers
making the smallest possible number of relocations of non-target containers.

3.1. BRTP with Variable Number of Stacks

We prove the NP-Hardness of the BRTP by providing a valid reduction from the well-known
NP-Complete problem Partition.

Recall the definition of Partition from Garey and Johnson (1979). Given positive integers
a1, . . . , an and the index set N = {1, . . . , n} such that

∑

i∈N ai = 2A, is it possible to partition set
N into disjoint subsets N1 and N2 such that

∑

i∈N1
ai =

∑

i∈N2
ai = A?

Proposition 3.1. The Block Retrieval Problem (BRTP) is NP-Hard in the ordinary sense, pro-
vided that the number of stacks S is variable.

Proof Proof. Given an instance of Partition, denote

â = max {ai|i ∈ N} ,

X = 2nâ− 3A.

Define the following instance of the BRTP. The number of stacks is S = n+ 1 and the height of
each of them is H = 2â+X + 1. Each stack i, 1 ≤ i ≤ n, is described by the configuration

Qi = [0, (1, X) , (ai, ai)] .

Thus, starting from the bottom of stack i, its content is a single target container, a set of X
non-target containers, ai target containers and ai non-target containers. The configuration of stack
n+ 1 is given by

Qn+1 = [0, (1, X)] .

We show that for the created instance the cost of retrieving all target containers is at most
(n+ 2)X+3A if and only if Partition has a solution. Note that the total number of the deadlocks
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in this instance is (n+ 1)X + 2A. For this instance, the length of input of Partition is bounded
above by n log â. To compute â and X, we need O (n) operations, and the content of each stack
requires at most logX + 2 log â bits, so that the described reduction is polynomial with respect to
the length of input of Partition.

For an instance of Partition with n = 4 and a1 = 1, a2 = a3 = 2 and a4 = 3, the structure of
the corresponding instance of the BRTP is shown in Figure 4a. The target containers are labeled by
“1” while the non-target containers are labelled by “0”Ẇe will use this example to illustrate parts
of the proof.

Necessity (⇒): Assume that Partition has a solution, so that N1 and N2 are the required
subsets such that N1 = {i1, . . . , iq}. Notice that the total number of free slots in all stacks i,
1 ≤ i ≤ n+ 1, is equal to (n+ 1) (H −X − 1)− 4A = 2 (n+ 1) â− 4A = X −A+ 2â, including 2â
free slots in stack n+ 1. Perform the following actions:

1. For stack i1, move ai1 non-target containers to stack n+ 1 and retrieve ai1 target containers.

2. For each k from 2 to q, for stack ik, move aik non-target containers to stack ik−1 and retrieve
aik target containers.

This transformation requires
∑q

k=1 aik = A moves and creates A additional free slots. As a
result of this transformation, there exists at least one stack iq containing one target container at the
bottom and X non-target on top, i.e., its current configuration is Qiq = [0, (1, X)], and the total
number of free slots in all other stacks is equal to X. This bay configuration is illustrated in Figure
4b, where we have taken N1 = {1, 4}, i.e., a1 = 1 container is moved from stack 1 to stack 5, followed
by the relocation of a4 = 3 containers from stack 4 to stack 1.

After actions 1 and 2 are completed, we may proceed as follows.

3. Move X non-target containers from stack iq to stacks with available space, make stack iq empty
by retrieving the bottom target container (see Figure 4c).

4. Process non-empty stacks with target containers in any order. Empty each stack by moving the
non-target containers into an empty stack and retrieving all target containers.

After Step 3, stack iq is empty, with H free slots, while all other n stacks are completely full. In
each iteration of Step 4, a stack with target containers is made empty, and its non-target containers
are moved to the stack that is empty in the beginning of the iteration. In Step 4, each of the
(n+ 1)X +2A non-target containers is relocated exactly once. In the end of this process, all target
containers will be retrieved. Together with A +X moves performed in Steps 1, 2 and 3, the total
number of moves is (n+ 2)X + 3A.

Sufficiency (⇐): Suppose that for the constructed instance of the BRTP, there exists a solution
with at most (n+ 2)X + 3A moves. We now demonstrate that no solution can be obtained with
less than (n+ 2)X + 3A relocations. During the relocation process, a situation arises that we call
Event R: some stack k contains only one target container at the bottom and X non-target containers
on top, and there is enough room in all other stacks to relocate the X non-target containers from
stack k. Denote the number of moves that lead to Event R by T (R). If Event R occurs, all target
containers can be retrieved, starting from stack k, in (n+ 2)X+2A additional moves. If T (R) > A,
then the total number of moves exceeds (n+ 2)X + 3A, which contradicts our supposition. Thus,
T (R) ≤ A.

Consider the process of reaching Event R. We cannot start with the relocation of the X non-
target containers from stack n + 1, since the number of the free slots in all other stacks is X − A.
Thus, we will move non-target containers from the top pair of some stacks i, 1 ≤ i ≤ n. If Event R
is reached after T (R) such moves are performed, then T (R) target containers are retrieved, the
total number of all free slots is X −A+ T (R) + 2â, and there exists a stack k with only one target
container at the bottom, X non-target on top and 2â free slots in that stack. In the case of Event R,
we must have at least X free slots in all stacks other than k, which is only possible if T (R) = A.
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Figure 4: BRTP instance for Partition set a = {1, 2, 2, 3}, and bay layouts after performing actions
1, 2, and 3.

Denote by N1 the set of stacks from which the target containers are retrieved in order to reach
Event R, and define N2 = N\N1. These two sets form a solution to Partition. Q.E.D.

3.2. Fixed Number of Stacks

In this subsection, we show that the BRTP is solvable in polynomial time with respect to the
number of containers (or, equivalently, the maximum stack height H), provided that the number of
stacks is fixed. We will employ a dynamic programming (DP) algorithm for this purpose.

Given an instance of the BRTP represented by S strings Qi, 1 ≤ i ≤ S, we redefine hi := hi−ui,0,
since the non-target containers below all target containers are not relocated and only affect the
number of free slots in a stack.

As a preprocessing part of the algorithm, for each stack i, 1 ≤ i ≤ S, compute fi,k, the number
of slots above the k-th pair

fi,0 = hi,

fi,k = fi,k−1 − (wi,k + ui,k) , k = 1, . . . , pi.

We show that the problem with a fixed number of stacks can be solved by a DP algorithm. The
algorithm uses states of the form:

(k1, x1; k2, x2; . . . ; kS , xS) ,

where

ki is the number of pairs in stack i in the current partial solution; if ki = 0 then stack i may only
contain non-target containers;

xi is the number of non-target containers in the top pair in stack i; if ki = 0 then xi is the number
of all (non-target) containers in the stack;

For a given state, we denote by Φ the current number of relocations, i.e., the smallest number of
moves of non-target containers needed to achieve that state. The DP algorithm starts with the initial
state (p1, u1,p1

; p2, u2,p2
; · · · ; pS , uS,pS

) associated with Φ (p1, u1,p1
; p2, u2,p2

; · · · ; pS , uS,pS
) = 0.

Given a state of the form (k1, x1; k2, x2; . . . ; kS , xS), the algorithm selects a stack t from which
xt non-target containers will be relocated. For the case of general S, we have to generate all options
of redistributing the non-target containers from a chosen stack.
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To facilitate these options, recall that a composition of an integer u made of v summands is a
sequence (z1, z2, . . . , zv) of positive integers such that u = z1 + z2 + · · ·+ zv. According to Flajolet
and Sedgewick (2009), the number of compositions of u into at most v positive summands (i.e.,
exactly v non-negative summands) is

C(≤v)
u =

(
u+ v − 1

v − 1

)

, (1)

which can be estimated as O
(
uv−1

)
.

A typical recursion can be written as follows. For a state of the form (k1, x1; k2, x2; . . . ; kS , xS),
select a stack t with kt ≥ 1. For a generated composition xt = z1 + · · ·+ zt−1 + zt+1 + · · ·+ zS into
S − 1 non-negative summands, define the state

(
k1, x1 + z1; . . . ; kt−1, xt−1 + zt−1; kt − 1, ut,kt−1

; kt+1, xt+1 + zt+1; . . . ; kS , xS + zS
)
,

which is only feasible if the inequality

fi,ki−1 + xi + zi ≤ hi

holds for each i, 1 ≤ i ≤ S, i 6= t. Notice that for stack t the number of pairs decreases by 1 since
ut,kt

non-target containers are relocated and then wt,kt
target containers are retrieved.

The process is repeated until all states of the form (0, x1; 0, x2; · · · ; 0, xS) are found. If during
the described computation, a state with the same values of state variables has already been reached,
we keep only one state associated with the smallest value of the function Φ. The smallest value of
the function Φ associated with the states of the form (0, x1; 0, x2; · · · ; 0, xS) is the optimal number
of relocations. The sequence of relocations that solves the problem can be found by backtracking.

For a chosen stack t, 1 ≤ t ≤ S, the overall number of ways to redistribute xt non-target
containers from the its top pair does not exceed the number of compositions of xt into exactly S− 1
non-negative summands. Thus, the total number of states generated this way from a given state
(k1, x1; k2, x2; . . . ; kS , xS) for a chosen stack t is O

(
xS−2
t

)
, which for all stacks yields O

(
HS−2

)
.

The total number of generated states is O
(
γSHS

)
, γ = max {pi|1 ≤ i ≤ S}, which gives the overall

time complexity of O
(
γSH2S−2

)
. Since γ ≤ H, we deduce that the described DP algorithm requires

O
(
H3S−2

)
time.

3.3. A Branch-and-Bound Algorithm for the BRTP

In this section, we present a B&B algorithm to solve exactly the BRTP. The pseudocode of
our B&B algorithm is provided in Algorithm 1 and Appendix A provides additional information
concerning the data structures used in the pseudocode of this algorithm, as well as the rest of the
algorithms in the article.

A preprocessing step is performed in the initial bay in order to retrieve all the unobstructed
target containers (i.e., in the top tiers). A lower bound on the number of deadlocks for the BRTP is
computed as follows. For each stack i ∈ {1, . . . , S}, the lower bound LBi on the number of relocations

needed to retrieve all target containers is
∑pi

k=1 ui,k, and the global bound is LB =
∑S

i=1 LBi. In
addition, an upper bound on the total number of relocations needed to retrieve all target containers
can be set to a high enough value or computed using a linear time algorithm (Algorithm 2 to be
presented in Section 3.4), when applicable.

The B&B root node is initialized with the initial configuration of the bay, and the branching
strategy consists of enumerating all possible retrieval operations starting from the given bay config-
uration (and corresponding relocations). Algorithm 1 explores the B&B search tree in a depth-first
fashion. At each node of the tree, if the number of relocations executed so far for retrieving the
target block plus the lower bound in the number of relocations that will be necessary to retrieve
the remaining target containers is greater than or equal the best BRTP upper bound, the node is
fathomed (lines 2 to 9). If any target container sits in the bay and no fathoming condition is reached,
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new nodes are created from a B&B node (lines 10 to 56) by selecting a stack s ∈ {1, . . . , S} and
retrieving target containers which are no longer obstructed (line 11). If such a stack does not exist,
a pickup stack containing at least one target container is selected (line 37), as well as a delivery
stack, in which the non target container will be placed (line 44). We note that the B&B algorithm
considers moving one container at a time instead of handling one pair at a time. This is to avoid
the complexity of determining how to distribute the obstructing containers in a pair to the stacks
with empty space.

Two strategies are employed in order to reduce the number of choices of pickup and delivery
stacks. The strategy for choosing the pickup stack consists in using the same stack from the previous
node, provided that there are obstructing containers above the target (line 22). If such stack is not
available (e.g., in the beginning of the search or after retrievals), a stack s ∈ {1, . . . , S} that contains
at least one target container is selected. Likewise, the strategy for delivery stacks consists in first
relocating to those stacks with no target containers. If no stack meets this condition, any other
stack s′ ∈ {1, . . . , S} different from the pickup stack is selected (line 28). Once the pair of stacks is
chosen, the topmost container from the pickup stack is relocated to the delivery stack. Note that
both strategies would be suboptimal for the 2BRTP.

Finally, if the lower bound on the number of relocations is smaller than the current upper bound,
and there is no target container left in the bay, then a new best known BRTP solution is found. The
incumbent solution is updated and the node is fathomed.

3.4. A Linear Time Algorithm for the BRTP with empty slots

In this section, we describe a linear time algorithm (in terms of n, the number of containers) that
can solve to optimality BRTP instances in which at any step of the algorithm it is always possible
to reach the lowest level target container in at least one stack, i.e.

∃k ∈ {1, . . . , S}|LBk ≤
S∑

i=1,i6=k

(hi −

pi∑

j=0

(wi,j + ui,j)) (2)

During our testing, all the instances adapted from the literature and randomly generated (with
bay sizes similar to instances for related problems from the literature) observed to be feasible and
solvable with the linear time algorithm. We artificially generated instances to test how often Con-
dition 2 is violated and observed that only unlikely configurations may produce infeasibility, a mere
3.4% of the artificially hard instances. Details will be provided in Section 5, but the linear algorithm
proved to be of practical relevance according to our computational tests.

We now present this algorithm for the BRTP, the pseudocode of which is provided in Algorithm 2.
The trivial retrievals are performed at first; i.e., the target containers available at the top of the
stacks. Next, LBi is computed for each stack i ∈ {1, . . . , S} and the stacks that do not hold target
containers are marked as priority stacks, in linear time. The remaining stacks containing target
containers are sorted with respect to their LBi in non-decreasing order in O(S) (linear) time using
the Counting Sort algorithm (Cormen et al. 2009). The following steps are repeated until the sorted
list is empty. The first stack in the sequence is selected and all obstructing containers positioned over
the target containers are relocated to stacks marked as priority target stacks if available, otherwise
the containers are relocated to the next stacks in the sorted sequence. This can be done in O(h)
complexity, at most O(S) times, which brings the overall complexity to O(n). After retrieving all
the target containers, the selected stack is removed from the sorted sequence and included in the
priority target list. A priority stack with minimum height is chosen for the relocation process. The
priority target list is implemented as a linked list of linked lists. The main list is sorted in non-
decreasing order according to the number of containers in each non-target stack. Each element in
the list is a linked list that contains all the non-target stacks with the same amount of containers.
Using this data structure, the complexity for inserting new elements is O(H) (as in lines 11 and 31),
and retrieving the less occupied stack and updating the list can be performed in constant time (as
in line 23). The complexity of Algorithm 2 is O(n).
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Notice that the described heuristic is only applicable if there is enough room in the bay, so that
it is always possible to reach the lowest target container in at least one stack. On the other hand,
there are instances of the BRTP, even with a small number of stacks, e.g., S = 2, such that the
problem either admits no solution or the running time for finding an optimal solution is not linear
with respect to the maximum height H, or to the total number of containers n in the original setup.

For an illustration, assume that S = 2 and the height of each stack is even, i.e., H = 2h. The
structure of Stack 1 is described by the string

Q1 =

(

0, (1, 1) , (1, 1) , · · · (1, 1)
︸ ︷︷ ︸

)

h times
.

If the structure of Stack 2 is given by Q2 = (1, (1, H − 3)) then it is only possible to retrieve the
top target container from Stack 1, so that the problem has no solution.

Let the structure of Stack 2 be given by

Q2 =

(

1, (1, 1) , (1, 1) , · · · (1, 1)
︸ ︷︷ ︸

)

h− 1 times
,

so that initially there are n = 2H − 1 containers and only one free slot, which is the top slot of
Stack 2.

The only way to solve the problem is at any time to move all top non-target containers from the
stack that is currently full and to retrieve the target container that becomes available. Then the
same actions are performed starting from the other stack. The process is repeated until all target
containers are retrieved. During this process, 1 container is moved from Stack 1 to Stack 2; then 2
containers are moved from Stack 2 to Stack 1; then 3 containers are moved from Stack 1 to Stack 2,
etc. The total number of moves is given by 1+2+3+ · · ·+H−1 = 1

2H (H − 1) = O
(
H2

)
= O

(
n2

)
.

Figure 5 illustrates this process for H = 8.

4. The Bi-objective Block Retrieval Problem

In this section, we discuss the computational complexity of the 2BRTP and a B&B algorithm
for the problem. Additionally, we also describe a beam search algorithm in order to cope with the
intrinsic difficulty of the problem.

An instance of the 2BRTP can be described by providing the following information. There are
S ≥ 2 stacks such that stack i has a height of hi tiers (slots) numbered from bottom to top. Define
H = max {hi|1 ≤ i ≤ S}, the maximum height. Each stack i can be seen as an array such that in
each cell the group g, 1 ≤ g ≤ G, of the corresponding container is stored.

A target group t is given, and the primary objective is to retrieve all containers of that group
with the smallest possible number of relocations. For each group g 6= t, a probability Pg that the
containers of that group will form the next target is given. The secondary objective function can be
written as

∑

g∈{1,...,G}\t PgCg, where Cg is the cost of the retrieval of group g from the bay of the
configuration obtained after the containers of the primary target group t have been retrieved at the
minimum cost Ct.

4.1. Proof of NP-Hardness for the 2BRTP

Proposition 4.1. The 2BRTP is NP-Hard in the strong sense, even if all groups have the same
probability to become the next target.

Proof Proof. The 3-Dimensional Matching (3DM) is used for reduction. Given 3 disjoint sets
X,Y, and Z with |X| = |Y | = |Z| = n, and a set of triplets T ⊆ X × Y × Z, find T ′ ⊆ T such
that each element of X,Y, and Z is contained within exactly one triplet in T ′. Recall that 3DM is
NP-Complete in the strong sense (Garey and Johnson 1979).
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Figure 5: Solution process applied to a BRTP instance with S = 2 and H = 8.

Given an instance of 3DM with X = {1, ..., n}, Y = {n+ 1, ..., 2n}, and Z = {2n+ 1, ..., 3n}, let
T consist of triplets τk, 1 ≤ k ≤ |T |, and let an integer g, 1 ≤ g ≤ 3n, occur in θg triplets of set
T . Based on the described instance of 3DM, we construct an instance of the 2BRTP with 3|T |+ 2
stacks, each of height H = 3n+ 3|T |+ 1.

The number of groups G is defined equal to 3n+ |T |+ 1, and their structure is as follows. The
primary target is group 0 which consists of a single container. For each group g, 1 ≤ g ≤ 3n,
there are θg + 1 containers. Group 3n + 1 consists of 3 |T | + 1 containers, while each group g,
3n + 2 ≤ g ≤ 3n + |T | + 1, contains 9 |T | + 9n containers. It is equally probable that a group
g, 1 ≤ g ≤ 3n + |T | + 1, is chosen as the next target, i.e., the probability of such a choice is
P = 1/ (3n+ |T |+ 1) for any g 6= 0.

The bay configuration is as follows. The structure of each stack is described from bottom to top.
Stack 1 contains 3|T | + 1 containers of group 3n + 1; the remaining slots of that stack are initially
free. Each triplet τk, 1 ≤ k ≤ |T |, is associated with three stacks 3k − 1, 3k and 3k + 1. Each of
these stacks contains containers of group 3n+k+1 up to height 3n+3 |T |−1. One container of the
group defined by the first, second, and third elements of triple τk is placed on top of stack 3k−1, 3k,
and 3k + 1, respectively. Each of the stacks from 2 to 3 |T |+ 1 contains one empty slot. The initial
configuration of the remaining stack 3 |T | + 2 is as follows: it contains one container of the target
group 0 at the bottom, then blocks of three containers of the groups 3n+2, 3n+3, . . . , 3n+ |T |+1
in this order, followed by one container of each group 1, 2, . . . , 3n in this order, leaving no empty
slots.

The generic structure of the instance is shown in Figure 6a. For illustration, Figure 6b shows
the bay configuration derived for n = 3, X = {1, 2, 3}, Y = {4, 5, 6}, Z = {7, 8, 9}, and T =
{(1, 5, 7), (2, 4, 9), (2, 5, 8), (3, 6, 8)}.

The length of input of 3DM in the unary encoding is O (n |T |). The total number of slots

in the produced bay configuration is O
(

n |T |+ |T |2
)

= O
(

|T |2
)

, so that the described input of
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the 2BRTP can be obtained in time that is polynomial in terms of O (n |T |), which provides a
pseudopolynomial-time reduction.

We prove that 3DM has a solution if and only if for the constructed instance of the 2BRTP the
value of the primary objective is at most 3|T | + 3n, while the value of the secondary objective is
P (3n(n+ 1)/2) + 6P |T |.

(3k+1)(3k) . . .1

3|T| + 2

3|T| + 3n + 1

3n +
 3

0

3n +
 2
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 1

.
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Figure 6: (a) BRTP bay arrangement for generic instances. (b) BRTP bay arrangement for the
proposed example.

Necessity (⇒): Assume that 3DM has a solution given by a collection T ′ of n triplets. In order
to retrieve the container of the target group 0, we need to relocate 3|T |+ 3n other containers from
stack 3 |T |+ 2. Thus, in our solution to the 2BRTP we only may relocate the containers from that
stack. We relocate the containers of groups 1 to 3n from stack 3 |T | + 2 to the top of the stacks
corresponding to the triplets in T ′ to match the container on top. For relocating containers of groups
3n+ |T |+ 1 down to 3n+ 2 from stack 3 |T |+ 2, we use one of the stacks 2, . . . , 3 |T |+ 1 for which
position 3n + |T | + 1 is empty and the group of the container to be relocated matches that of the
container at the bottom of the stack. If such a stack is not available, we relocate the container to the
first stack. In the obtained configuration, stack 3 |T | + 2 is empty, so that it is possible to retrieve
containers of any group that may obstruct a secondary target.

As a result of the relocation process described, the first stack will be totally filled, since 3n
containers in total will be moved from stack 3 |T | + 2. These containers belong to n groups from
the set {3n + 2, ..., 3n + |T | + 1} and will be organized in blocks of three. Thus, a contribution of
stack 1 to the secondary objective is P (3n(n + 1)/2). We add a single container on top of a stack
from 2 to 3|T |+1 so that its group either matches the group of the containers at the bottom or the
group of the container on top will result in a secondary objective contribution of 2P , summing up
to 6P |T | for all such stacks. The value of the secondary function is hence P (3n(n+ 1)/2) + 6P |T |,
as required.

Sufficiency (⇐): Assume that we have a solution to the constructed 2BRTP instance with the
values of the primary and the secondary objective functions at most 3|T |+3n and P (3n(n+ 1)/2)+
6P |T |, respectively. As noticed above, the value of the primary objective must be equal to 3|T |+3n
and no relocations from stacks other than 3 |T |+ 2 are allowed.

The total number of the free slots in the initial configuration is equal to 3|T | + 3n, i.e., in any
solution feasible with respect to the primary objective, stack 1 will be filled with 3n containers. The
contribution of stack 1 to the secondary objective increases as the number of groups in the stack
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increases. The minimum contribution is realized if, as a result of reallocation, containers that belong
to n groups are moved to stack 1 and arranged there as blocks of three for each group. This results
into a contribution of P (3n(n+ 1)/2) from stack 1 to the secondary objective function.

For each stack from the range from 2 to 3|T |+1, the minimum contribution towards the secondary
objective is 2P , which is realized when the container relocated to this stack either matches the group
of the container on top or the group of the containers at the bottom. Relocating a container that
does not match the other containers in such a stack will result in a contribution of 3P . Hence, the
minimum total contribution of stacks 2 to 3|T | + 1 is 6P |T |. The only way of attaining the total
minimum of P (3n(n+ 1)/2) + 6P |T | is to relocate the containers of group 1 to 3n from the last
stack the stacks of the range from 2 to 3|T | + 1 that correspond to exactly n triplets in T . That
means that 3DM must have a solution. Q.E.D.

Note that Proposition 4.1 does not resolve the complexity status of the special case of the 2BRTP
in which each group consists of a single container. It can be verified that if each group consists of a
single container and the retrieval probabilities for the secondary target are equal for all groups other
than the primary target, then the 2BRTP can be solved in polynomial time. However, in the case
of unequal probabilities and each group consists of a single container, the complexity status of the
2BRTP is open.

4.2. A B&B algorithm for the 2BRTP

The bi-objective structure of the 2BRTP requires the sequential solution of the retrieval of the
target container group, as well as all scenarios regarding the retrieval of the remaining groups. Hence,
developing an Integer Programming model for 2BRTP is unlikely to yield a tractable formulation.
In what follows, we derive a combinatorial bound and a B&B algorithm to solve the 2BRTP.

A lower bound for the secondary 2BRTP objective function approximates the expected number
of relocations to retrieve the non-target groups. The bound is based on the concept of counting
the obstructing containers above any non-target group and below all target containers in the stack.
Figures 7 (a) and (b) depict the container deadlocks that will be taken into account when computing
the lower bounds for the primary objective and for the secondary objective, respectively. In Figure 7
(b), the stack s = 1 does not contain any target container and thus none of its containers are going
to be relocated during the retrieval process of the target group. The same observations can be made
about those non-target containers positioned below target containers, as in stack s = 2. Nevertheless,
once the retrieval process is finished, the containers belonging to group 2 or group 3 will in turn be
considered for retrieval and in both cases additional relocations will be necessary. If group 2 is the
second target, at least one container of group 3 will be relocated. Similarly, if group 3 is the second
target, at least 4 containers of group 2 will be relocated. Denoting the probability of retrieving group
g as Pg, the secondary objective lower bound for the bay depicted will be E[Rel] = (1×P2)+(4×P3).
Containers above any of the target containers cannot be taken into account in the secondary objective
computation, given that their relocation may alter the bay configuration.

The pseudocode in Algorithm 3 states the steps required for computing the lower bound for
the secondary objective of 2BRTP. For each container group in the bay other than the target, the
algorithm counts the number of containers of non target groups located above it in all stacks, if no
target container is located in between. These containers will be deadlocks in the secondary objective
computation and are therefore added to the lower bound. Note that for each non target group and
stack, we compute the bound based on the topmost container and stacks containing one container
or no containers do not contribute to the lower bound.

We now present our B&B algorithm for the 2BRTP, the pseudocode of which is provided in
Algorithm 4. Before executing the B&B, a preprocessing step is performed in the initial bay in
order to retrieve all the unobstructed target containers (i.e., in the top tiers). In addition, the
optimal number or relocations for the BRTP and the lower and upper bound for the secondary
objective are also computed using Algorithms 2 and 3. The upper bound is computed by applying
Algorithm 2 on the initial configuration, and then G − 1 times on the resulting configuration,
each time assuming a different g ∈ {1, . . . , G} \ {t} to be the group to be retrieved second. The
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(a) (b)

Figure 7: (a) Target group 1 and respective obstructing containers (in dark gray) which represents
the primary objective lower bound, (b) Non-target groups 2 and 3 are used in the secondary objective
lower bound.

overall upper bound is computed by multiplying the number of deadlocks of each group by the
probability of retrieval and summing up the contribution of all groups (other than the target).
The root node is initialized with the initial configuration of the bay, and the branching strategy
consists of enumerating all possible retrieval operations starting from the given bay configuration
(and corresponding relocations). Algorithm 4 explores the B&B search tree in a depth first fashion.
At each node of the tree, if the number of relocations executed so far for retrieving the target block
is greater than the optimal BRTP solution or the lower bound is greater than or equal to the upper
bound on the secondary objective, the node is fathomed.

The branching strategies employed in the BRTP B&B algorithm described in Section 3.3 cannot
be applied when solving the 2BRTP, provided they may cut off the optimal solutions. Hence,
for the 2BRTP, if any target container sits in the bay and no fathoming condition is reached,
new nodes are created from a B&B node by selecting each stack s ∈ {1, . . . , S} that contains at
least one target container. If the target containers in s are not obstructed, they are retrieved.
Otherwise, if there are containers obstructing the target containers in the selected stack, any other
stack s′ ∈ {1, . . . , S}, s′ 6= s, is selected and the topmost container from s is relocated to s′.

If the number of relocations is equal to the BRTP optimal solution, the lower bound on the
secondary objective is smaller than the current upper bound, and there is no target container left
in the bay, then a new best known 2BRTP solution was found. The incumbent solution is updated
and the node is fathomed.

4.3. A Beam Search algorithm for the 2BRTP

The B&B algorithm described above can be very time consuming depending on the size of
the instance being solved. In search for a better balance between solution quality and execution
time, we incorporated in Algorithm 4 the two restricted branching rules employed in the BRTP B&B
algorithm. These rules transform the B&B algorithm into a beam search algorithm since the optimal
solution can be disregarded in the search, but the CPU time requirement decreases significantly. We
refer the interested reader to Furcy and Koenig (2005), Zhou and Hansen (2005) for more information
about beam search algorithms. We state our branching strategy as the following two rules:

• Rule 01 (Cyclic relocations). If a stack s containing target containers was selected in an
iteration and the target containers in s are still obstructed, choose s to relocate another
deadlock in the next iteration.

• Rule 02 (Non-target stacks). Select a stack s′ ∈ R (set of stacks with no target containers), if
R 6= ∅, to receive a relocated non-target container.
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5. Computational Experiments

The proposed algorithms were coded in C and executed on an Intel R© CoreTM i7-2600 3.40 GHz
CPU, with 8.0 GB of RAM memory running under GNU/Linux Debian 7.9.

5.1. Test Instances

In order to assess the performance of the proposed algorithms, we have transformed the set of
BRP instances proposed by Caserta et al. (2012) into BRTP instances. The original BRP set is
composed of 840 instances forming 21 classes, each one containing 40 instances. The classes are
characterized by the dimensions of the bay (S × H). For each bay, the first H ′ = H − 2 tiers are
filled with containers, resulting in a total of n = S ×H ′ containers. Each one of these n containers
is randomly placed in the bay and assigned an identifier in the range 1 to n, meaning that each
bay is composed by n groups and each group contains a container. The number of stacks is chosen
among S ∈ {3, 4, . . . , 10} and the number of filled tiers among H ′ ∈ {3, 4, 5, 6, 10}. Note that not all
combinations of these values were considered in Caserta et al. (2012), in which the authors point out
that these bay settings are based on the physical limitations of gantry cranes. The BRP instances
were transformed into BRTP instances using the original bay dimensions and amount of occupied
tiers per stack. In order to fill the originally occupied space with containers, the following steps are
repeated for each stack s until H ′ tiers have been used. A group g, and a number of containers
h′ smaller than or equal to H ′ are selected at random and inserted in s. If h′ < H ′ the previous
step is repeated until the remaining (H ′ − h′) tiers have been filled. Else, the next available stack
is processed. Once all stacks are processed in this manner, if there is any group not being used, the
whole algorithm is repeated. This procedure was used to generate 2520 instances with G ∈ {3, 4, 5}.
Note that by construction all instances in this set satisfy the condition to apply Algorithm 2.

We have also developed a random BRTP instance generator which, along with a set of chosen
parameters, is used for generating additional instances. The pseudocode for the generator is shown
in Algorithm 5. The procedure generates a bay with dimensions (S × H) randomly filled with
containers belonging to G groups. The total amount of containers is proportional to the size of the
bay and an occupancy rate parameter. A random group g ∈ {1, . . . , G} and a random amount h′ of
containers (smaller than or equal to H) belonging to this group are selected and inserted in a stack.
These steps are repeated for each stack until they are all completely filled. Next, containers are
randomly removed from the bay until the occupancy rate is reached. If the container being removed
is in between filled tiers, the topmost containers are moved downwards. Finally, the algorithm halts
if at least one container of each group is present in the final bay, otherwise the instance is rejected
and the whole process is repeated.

The procedure described above was used to generate 3240 instances with S ∈ {4, 6, 8, 10}, H ∈
{4, 5, 6}, and G ∈ {3, 4, 5}. For each combination of the these three parameters, 30 instances were
generated for the occupancy rates of 70%, 75%, and 80%, resulting in 3240 instances. During the
experiments, group number 1 was designated to be the target. A CPU time limit of 5 minutes was
imposed for each instance. All these instances satisfied the condition to apply Algorithm 2 (we also
increased the occupancy rate to 85%, 90% and 95% but the result was the same).

We therefore generated instances with the following artificial characteristics: S = 10, H ∈
{10, 15, 20}, G = 3 and occupancy rate 95%. These bay configurations do not respect standard
height of stacks in the landside of a container terminal, but this, combined with a very high occu-
pancy rate, decreases the likelihood of finding stacks in which the bottommost target container can
be retrieved. Moreover, we slightly modified the instance generator procedure to further increase
the chances of producing infeasible instances for the linear algorithm, by imposing in Line 20 that
new Containers = 1. This would result in instances in which many pairs are in the same stack.
Among 3000 generated instances, 19/22/62 did not respect condition (2) for H ∈ {10, 15, 20}, re-
spectively. Among these, all H ∈ {10, 15} were solved in less than one second by the B&B (few were
the feasible retrievals in the bay), but one instance that required 57 seconds. The latter’s optimal
solution was 122 relocations, therefore a configuration that would require a couple of hours for the
retrieval of the containers (assuming one relocation might take 1 minute) and therefore not realistic
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in real world settings. Similarly, the B&B failed to converge within the time limit in the instances
with H = 20 due to the very large number of relocations.

5.2. Results of instances with equal retrieval probabilities

The following column headings are employed in Tables 1-11. Average results are reported for
each instance class and set.

• Instance Set : specifies the instance set.

• OccRate: the occupancy rate employed in the respective instance set.

• Rel : the average number of relocations.

• E[Rel] : the average expected number of relocations for retrieving the non-target groups

• Time(s): the average computational time in seconds.

• Gap(%): the gap between the average expected number of relocations of non-target containers
considering the final configuration obtained at the end of Algorithm 2 and the average expected
number of relocations obtained using the B&B algorithm, computed as Gap(%) = (100 ×
(BRTP E[Rel]− B&B E[Rel])/B&B E[Rel]).

• BGap(%): the gap between the E[Rel] obtained by the B&B algorithm (B&B E[Rel]), if
the instance is solved to optimality, otherwise, the 2BRTP secondary objective lower bound
(2BRTP LB) is employed, and the E[Rel] obtained using one of the beam search algorithms
(Beam E[Rel]), computed as BGap(%) = (100× (Beam E[Rel]−B&B E[Rel])/B&B E[Rel]) in
the case of B&B optimality, and asBGap(%) = (100×(Beam E[Rel]−2BRTP LB)/2BRTP LB),
otherwise.

• Solved : the number of instances that the relevant algorithm was able to solve to optimality
within the time limit.

• Less 1s : the number of instances, among the solved ones, that the respective algorithm was
able to solve in less than one second.

• Optimal : the number of solved instances in which the beam search algorithm was able to find
the optimal solution obtained using the B&B algorithm.

Before presenting a more detailed analysis of the computational results for the 2BRTP B&B and
beam search algorithms, we will analyze the performance of the BRTP linear algorithm and the
BRTP B&B algorithm. Table 1 presents the results for the BRTP linear time algorithm and the
BRTP B&B algorithm. In terms of computational time, both the BRTP linear time algorithm and
the B&B are able to solve all the BRTP instances to optimality in less than one second.

The linear time algorithm and the B&B algorithm can be used to find upper bounds for the
2BRTP, if used sequentially. The algorithms first are employed to generate a bay configuration in
which all target containers are retrieved (with minimum cost), and then the same algorithms can be
used to compute the cost of retrieval of all other groups.

Table 1 compares the performance of these upper bounds (the one using sequentially the linear
time algorithm and the BRTP B&B, respectively). On average, the upper bounds provided by the
BRTP linear time algorithm are at least 20% better than those of the BRTP B&B. The better upper
bounds have some impact when solving the 2BRTP. The 2BRTP B&B using the BRTP linear time
algorithm was able to solve 3 instances more than the 2BRTP B&B using the BRTP B&B within
the time limit, and on average they have similar computational times. Provided the good quality
of the results obtained by the BRTP linear time algorithm, in the remaining of the computational
experiments, we will be using the linear time algorithm algorithm as heuristic 2BRTP solver.

Table 1 shows that the B&B algorithm is capable of solving 1077, 1067, and 1074 out of 1080
instances within the specified time limit, respectively. In addition, 98% of the instances were solved
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in less than one second. We note that the B&B algorithm results in solutions with a higher E[Rel]
value than the linear time algorithm, due to the depth first implementation that tends to stack the
containers belonging to other customers into the leftmost columns. Tables 2, 3, 4 present detailed
results for the 2BRTP B&B algorithm using the BRTP linear time algorithm in bays of different
dimensions, variable number of groups, and occupancy rate of 70%, 75%, and 80%, respectively.

The results of both BRTP and 2BRTP for the instances of Caserta et al. (2012) with different
number of groups are presented in Table 5. The B&B method is capable of solving 94% of the
instances within the specified time limit, and 92% of these instances were solved in less than one
second. The B&B algorithm requires a longer CPU time to prove optimality when the number of
relocations increases. Nevertheless, most of the instances with up to 9 stacks and 7 tiers were solved
to optimality. The BRTP linear time algorithm requires less than one second of CPU time for each
instance.

In summary, the B&B algorithm solved 97% of the instances to optimality. We observe that
2BRTP allows for average savings in the number of expected number of operations at least of
19% across all instances considered, with respect to solutions obtained using BRTP algorithms
sequentially. This highlights the importance of looking ahead and trying to achieve the best possible
bay configuration in the process of retrieving the target containers.

5.2.1. Results of Beam Search Algorithms

Table 6 presents the average results for three versions of the beam search method described in
Section 4.3. The first version applies the first branching rule, the second applies the second rule, and
the third employs both rules. The results obtained are compared with those reported in the previous
tables for the B&B algorithm. Summing up for the two instance sets, the beam search employing
Rule 01 is capable of solving 99% of the instances within the time limit, 98% of those solved in less
than 1 second, and for only 5 instances the method was not able to find the known optimal solutions.
The beam search employing Rule 02 was not capable of solving only seven instances within the time
limit, 99% were solved in less than 1 second, and all the known optimal solutions were found. The
beam search employing both rules was capable of solving all but 2 instances within the time limit,
and only 4 instances were not solved in less than 1 second. The method successfully found the known
optimal solutions for all instances but 5, similar to the method using Rule 01. The reason is that
the third method inherits the limitations of both rules. Among the three, the method combining
the two rules performs better both in terms of computing time and solution quality. We attribute
the success of the beam search algorithm to the choice of intuitive branching rules.

5.3. Results for instances with unequal retrieval probabilities

The results obtained with the BRTP linear time algorithm and the 2BRTP B&B algorithms for
the generated instances with different retrieval probabilities for the groups, and occupancy rates of
70%, 75%, and 80% are similar to those obtained when using equal retrieval probabilities. They are
presented in Tables 7, 8, 9 of Appendix B. The B&B algorithm is capable of solving 1076, 1065,
and 1073 out of 1080 instances within the specified time limit, respectively. In addition, 98% of the
instances were solved in less than one second.

The results of both BRTP and 2BRTP for the instances of Caserta et al. (2012) with different
number of groups and different retrieval probabilities per group are presented in Table 10 of Ap-
pendix B. The B&B method is capable of solving 94% of the instances within 5 CPU minutes, and
91% of those were solved in less than one second. Similar to the case with equal retrieval probabil-
ities, the average number of expected relocations, when solving them as a 2BRTP, was reduced by
21% across all instances considered, with respect to the BRTP optimal solutions.

The average results for the three versions of the beam search method are summarized in Table 11
of the appendix. Among the three methods, the beam search combining the two rules outperforms
the other two both in terms of time and solution quality.
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6. Concluding Remarks

In this paper, we study two problems related to the optimal container retrieval, the BRTP and
the 2BRTP. We show that both problems are in general NP-hard, however, the BRTP can be solved
in polynomial time, provided that the number of stacks is fixed. For the BRTP, a B&B algorithm is
designed, as well as and a linear time algorithm that is able to handle instances of practical relevance.
For the 2BRTP, a B&B algorithm and a beam search algorithm are developed.

The effectiveness of the 2BRTP B&B and beam search algorithms has been assessed by extensive
computational experiments on two benchmark sets with instance bay sizes varying from small to
large dimensions. The B&B algorithm is capable of solving 97% of the instances to optimality within
5 CPU minutes, and the average number of expected relocations has been reduced by at least 21%
with respect to the BRTP optimal solutions. Three versions of the beam search algorithm that
employ different branch rules have been tested. The most efficient version is capable of solving
99.9% of the instances within the time limit. The reduction in the average number of expected
relocations varies among 1% and 2% when compared to the results obtained by the B&B algorithm.
The 2BRTP instances with up to 10 stacks in a bay with a maximum height of 6 and 5 groups of
customers can be solved consistently to optimality within 5 minutes of CPU time.

Further research may focus on multiple bays, and optimizing the expected number of relocations
when more information about the sequence of retrieval for the non-target containers is available.

Appendices

A. Pseudocode Notation and Data Structures

In the pseudocodes shown in Algorithms 1, 2, 3, 4, and 5, the following data structures, functions,
and variables are employed.

• accounted Group is an array of size G. It contains the information regarding if a given group
appears or not in a stack.

• aux is an auxiliary variable used to identify a specific slot of a stack or array.

• available T iers is a variable that contains the number of free tiers/slots in a stack.

• bay configuration is a matrix of dimensions (S × H). It holds the current configuration of
the container bay.

• bound is a variable that contains the value of the bound of the incumbent 2BRTP solution.

• blocks left is a variable that stores how many target containers are still in the bay and need
to be retrieved.

• BRTP relocations is a variable that contains the number of relocations need retrieve all the
target containers from a given bay (i.e., the BRTP solution).

• depth is a variable that stores the level of the branch-and-bound tree being explored.

• find() is a function that informs if a given stack contains a given target container.

• first Element() is a function that informs the first valid element from an array.

• free stack is a variable used to identify a stack that does not contain target blocks and has
empty slots.

• group id is a variable used to identify the group for which containers will be generated.
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• insert() is a function used to insert new elements in the arrays sorted StackList and priority StackList.
The new elements are inserted after the last used position.

• lower bound is a variable that stores the value of the best lower bound.

• new Containers is a variable that informs the amount of containers that will be inserted for
the selected group.

• number Container is a variable that informs the number of containers to be inserted in the
bay being generated.

• occ Rate is a variable that stores the occupancy rate of a bay.

• pickup stack is a variable that keep track of the stack from where non target containers have
to be relocated in order to access the target containers being obstructed.

• pr() is a function that informs the probability of a given container group.

• priority StackList is an array of size S. It stores the information about which stacks does not
contain target containers and has available slots.

• relocations is a variable used to count the number of relocations performed during the retrieval
process performed by the algorithms.

• remove() is a function used to remove an element from the array specified.

• retrieve() is a function used to retrieved a target container from the bay slot specified by the
parameters. It updates the affected data structures; e.g., bay configuration.

• second bound is an auxiliary variable employed during the computation of the secondary ob-
jective in a 2BRTP solution.

• seed is a variable used to initialize the random number generator.

• size() is a function that informs the size of an array; i.e., it informs the number of elements
that an array contains.

• slot is a variable used to identify a specific slot of a stack or array.

• sorted StackList is an array of size S. It stores the information about the stacks that contains
target containers and it is sorted according to the number of deadlock in each stack.

• Target block LB() is a function that computes the number of deadlocks for a given bay and
target group.

• target container is a variable that keep track of the current target group.

• upper bound is a variable that stores the value of the best upper bound.

• used T iers is a variable that contains the number of occupied tiers/slots in a stack.
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B. Results for instances with unequal retrieval probabilities

During our experiments with unequal retrieval probabilities, we generate the probabilities Pg, for
each group g ∈ {1, . . . , G}, g 6= t as follows. For the first group, the probability is set to be a random
number in r1 =]0.0, 1[, for the second group the probability is a random number in ]0.0, 1− r1[, and
we similarly assign the probabilities to the other groups, but the last. For the latter, the probability
is set to 1−

∑

i=1,...,G−1 ri.
Tables 7, 8, 9 present the B&B results of both BRTP and 2BRTP for the generated instances

with different retrieval probabilities for the groups, and occupancy rates of 70%, 75%, and 80%.
The results of both BRTP and 2BRTP for the instances of Caserta et al. (2012) with different

number of groups and different retrieval probabilities per group are presented in Table 10. The
average results for the three versions of the beam search method are summarized in Table 11.

C. Results for BRP algorithm
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A. Brabazon, S. Cagnoni, G. A. Di Caro, A. Ekárt, A. I. Esparcia-Alcázar, M. Farooq, A. Fink,
and P. Machado, editors, Applications of Evolutionary Computing, volume 5484 of Lecture Notes in
Computer Science, pages 788–797. Springer Berlin Heidelberg, 2009.

M. Caserta, S. Schwarze, and S. Voß. Container rehandling at maritime container terminals. In J. W.
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Algorithm 1: Branch-and-bound algorithm for the BRTP.
1 BRTP BranchBound(bay configuration, target container, upper bound, blocks left, pickup stack, relocations,

lower bound, depth)
2 if (relocations + lower bound ≥ upper bound) then

3 return; // Fathoming

4 end if

5 if (relocations < upper bound) and (blocks left = 0) then

6 upper bound = relocations; // Update best bound
7 Store incumbent solution;
8 return; // Fathoming

9 end if

10 if (blocks left > 0) then

11 if (there exists a stack s in bay configuration with a target block available for retrieval) then

12 Retrieve the target block from s;
13 BRTP BranchBound(bay configuration, target container, upper bound, blocks left − 1, 0, relocations,

lower bound, depth + 1);

14 else

15 free stack = 0;
16 for (s = 1, . . . , S) do // Preprocessing: Find a stack s in bay with no target block
17 if (stack s has no target block and is not full) then

18 free stack = s;
19 break;

20 end if

21 end for

22 if (pickup stack 6= 0) then // Relocate from previous selected stack with deadlocks
23 if (free stack 6= 0) then // Relocate to stack with no target blocks
24 Move an obstructing block from pickup stack to free stack;
25 Update lower bound;
26 BRTP BranchBound(bay configuration, target container, upper bound, blocks left,

pickup stack, relocations + 1, lower bound, depth + 1);

27 else // Find a stack s′ in bay with available space

28 for (s′ = 1, . . . , S) do

29 if (pickup stack 6= s′ and s′ is not full) then

30 Move an obstructing block from pickup stack to s′;
31 Update lower bound;
32 BRTP BranchBound(bay configuration, target container, upper bound, blocks left,

pickup stack, relocations + 1, lower bound, depth + 1);

33 end if

34 end for

35 end if

36 else // Find a stack s in bay with an obstructed target block
37 for (s = 1, . . . , S) do

38 if (stack s has a target block) then

39 if (free stack 6= 0) then

40 Move an obstructing block from s to free stack;
41 Update lower bound;
42 BRTP BranchBound(bay configuration, target container, upper bound, blocks left, s,

relocations + 1, lower bound, depth + 1);

43 else

44 for (s′ = 1, . . . , S) do // Find a stack s′ in bay with available space

45 if (s 6= s′ and s′ is not full) then

46 Move an obstructing block from s to s′;
47 Update lower bound;
48 BRTP BranchBound(bay configuration, target container, upper bound,

blocks left, s, relocations + 1, lower bound, depth + 1);

49 end if

50 end for

51 end if

52 end if

53 end for

54 end if

55 end if

56 end if

57 return;
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Algorithm 2: Retrieve all containers belonging to a given target group.
1 Retrieve TargetBlocks(bay configuration, target container)
2 relocations = 0;
3 sorted StackList = 0;
4 priority StackList = 0;
5 Retrieve from bay configuration all target containers not being blocked;
6 for (s = 1, 2, . . . , S) do

7 lower bound = Target block LB(bay configuration[s], target container);
8 if (lower bound > 0) then

9 insert(sorted StackList, s, lower bound);
10 else

11 insert(priority StackList, s);
12 end if

13 end for

14 Sort sorted StackList accordingly to lower bound in non-decreasing order;
15 while (size(sorted StackList) 6= 0) do

16 s = firstElement(sorted StackList);
17 while (find(bay configuration[s], target container)) do

18 slot = size(bay configuration[s]);
19 if (bay configuration[s][slot] = target container) then

20 retrieve(bay configuration[s][slot]);
21 else

22 if (size(priority StackList) > 0) then

23 Relocate bay configuration[s][slot] to the stack in priority StackList less occupied;
24 else

25 Relocate bay configuration[s][slot] to the next stack in sorted StackList with available space;
26 end if

27 relocations = relocations + 1;

28 end if

29 end while

30 remove(sorted StackList, s);
31 insert(priority StackList, s);

32 end while

33 return relocations;

Algorithm 3: Compute the secondary objective function lower bound for a given 2BRTP bay.
1 2BRTP LB(bay configuration, target container)
2 lower bound = 0;
3 for (s = 1, . . . , S) do

4 if (size(bay configuration[s]) > 1) then

5 accounted Group[1, . . . , G] = false;
6 slot = 1;
7 while (slot ≤ size(bay configuration[s]) − 1) and (bay configuration[s][slot] 6= target container) do

8 aux = slot + 1;
9 while (aux ≤ size(bay configuration[s])) and (bay configuration[s][aux] 6= target container) do

10 if (bay configuration[s][aux] 6= bay configuration[s][slot]) then

11 lower bound = lower bound + pr(bay configuration[s][slot]);
12 accounted Group[bay configuration[s][slot]] = true;

13 end if

14 aux = aux + 1;

15 end while

16 repeat

17 slot = slot + 1;
18 until (accounted Group[bay configuration[s][slot]] = true) and (slot ≤ size(bay configuration[s]));

19 end while

20 end if

21 end for

22 return lower bound;
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Algorithm 4: Branch-and-bound algorithm for the 2BRTP.
1 2BRTP BranchBound(bay configuration, target container, BRTP relocations, upper bound, blocks left,

relocations, bound, depth)
2 if (relocations > BRTP relocations) or (bound ≥ upper bound) then

3 return; // Fathoming
4 end if

5 if (relocations = BRTP relocations) and (bound < upper bound) and (blocks left = 0) then

6 second bound = 0;
7 for (g = 1, . . . , G) do // Compute second objective with BRTP algorithm
8 if (g 6= target container) then

9 second bound = second bound + Retrieve TargetBlocks(bay configuration, g);
10 end if

11 end for

12 if (second bound < upper bound) then

13 upper bound = second bound; // Update best bound
14 Store incumbent solution;

15 end if

16 return; // Fathoming

17 end if

18 if (blocks left > 0) then

19 if (there exists a stack s in bay with a target block available for retrieval) then

20 Retrieve the target block from s;
21 2BRTP BranchBound(bay configuration, target container, BRTP relocations, upper bound,

blocks left − 1, relocations, bound, depth + 1);

22 else

23 for (s = 1, . . . , S) do

// Find a stack s in bay with an obstructed target block
24 if (stack s has a target block) then

25 for (s′ = 1, . . . , S) do

// Find a stack s′ in bay with available space

26 if (s 6= s′) then

27 Move an obstructing block from s to s′;

28 bound = 2BRTP LB(bay configuration[s′], target container); // Compute new 2BRTP
lower bound

29 2BRTP BranchBound(bay configuration, target container, BRTP relocations,
upper bound, blocks left, relocations + 1, bound, depth + 1);

30 end if

31 end for

32 end if

33 end for

34 end if

35 end if

36 return;
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Algorithm 5: Generate initial bay configurations randomly.
1 Instance Generator(S, H, G, occ Rate, seed)
2 counter = 0;
3 Initialize random number generator with seed;
4 number Containers = ⌊(S × H × occ Rate)⌋; // Compute the number of bay slots that will be occupied
5 if (G > number Containers) then

6 G = number Containers;

7 end if

8 repeat

9 for (s = 1, . . . , S) do

10 for (h = 1, . . . , H) do

11 bay configuration[s][h] = 0;
12 end for

13 end for

/* Fill one stack each time with group of containers selected at random */
14 for (s = 1, . . . , S) do

15 used Tiers = 0;
16 repeat

17 available T iers = H − used Tiers;
18 Select group id from {1, 2, . . . , G} at random with equal probability;
19 Select new Containers from {1, 2, . . . , available T iers} at random with equal probability;
20 Insert new Containers of type group id in bay configuration[s];
21 used Tiers = used Tiers + new Containers;

22 until (used Tiers = H);
23 Remove ((S × H) − number Containers) blocks from the bay configuration at random ; // Achieve the

occupancy rate

24 end for

25 until Each group (1, . . . , G) appears at least once in the bay configuration;
26 return bay configuration;

Table 1: Results of the BRTP linear time and B&B algorithms on equal retrieval probabilities
instances.

BRTP linear BRTP B&B

Instance Set OccRate Rel E[Rel] Solved Time(s) Rel E[Rel] Rel Gap(%) Gap(%) Solved Time(s)

70% 2.08 1.38 1077 0.37 2.08 1.66 0.00 -22.18 1078 0.54
BRTP 75% 2.40 1.55 1067 0.27 2.40 1.84 0.00 -22.16 1066 0.40

80% 2.43 1.75 1074 0.71 2.43 2.00 0.00 -20.32 1073 0.50

Caserta et al. (2012) 60% − 85% 3.22 2.32 2387 1.32 3.22 2.69 0.00 -21.20 2385 1.28

2BRTP B&B 2BRTP B&B
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Table 2: Results of the BRTP linear time and 2BRTP B&B algorithms for 2BRTP instances,
occupancy rate 70%.

BRTP linear 2BRTP B&B
S H G Rel E[Rel] E[Rel] Time(s) Gap(%) Solved
4 4 3 0.47 0.60 0.57 0.00 3.45 30
4 4 4 0.93 0.67 0.57 0.00 17.53 30
4 4 5 0.87 0.83 0.79 0.00 9.44 30
4 5 3 1.40 0.77 0.60 0.00 15.12 30
4 5 4 1.30 1.19 0.99 0.00 36.21 30
4 5 5 1.30 1.08 0.98 0.00 12.42 30
4 6 3 2.03 1.28 1.07 0.00 17.90 30
4 6 4 1.43 1.16 1.11 0.00 1.72 30
4 6 5 1.37 1.33 1.13 0.00 29.34 30

6 4 3 0.93 0.52 0.48 0.00 1.72 30
6 4 4 1.23 0.94 0.82 0.00 18.51 30
6 4 5 0.97 0.70 0.63 0.00 12.64 30
6 5 3 2.30 0.90 0.70 0.00 16.03 30
6 5 4 3.13 1.24 0.96 0.06 32.65 30
6 5 5 1.17 1.33 1.21 0.00 18.94 30
6 6 3 3.40 1.48 0.87 0.05 55.00 30
6 6 4 2.90 1.69 1.43 0.01 29.94 30
6 6 5 1.67 1.78 1.62 0.00 15.80 30

8 4 3 1.83 0.75 0.68 0.00 4.31 30
8 4 4 1.83 0.98 0.87 0.01 14.83 30
8 4 5 1.20 1.05 0.98 0.00 14.58 30
8 5 3 2.23 1.53 1.35 0.00 8.95 30
8 5 4 2.27 1.72 1.52 0.06 20.99 30
8 5 5 2.13 1.68 1.45 0.01 25.83 30
8 6 3 3.37 1.97 1.53 4.95 27.96 30
8 6 4 3.17 1.68 1.22 0.08 57.33 30
8 6 5 2.40 2.09 1.88 0.01 24.96 30

10 4 3 2.20 1.30 1.18 0.00 9.62 30
10 4 4 2.13 1.29 1.18 0.00 10.54 30
10 4 5 1.83 1.33 1.18 0.00 18.42 30
10 5 3 3.10 1.60 1.33 0.21 15.95 29
10 5 4 2.57 1.64 1.50 0.00 5.99 30
10 5 5 2.40 1.88 1.63 0.05 24.07 30
10 6 3 4.10 2.15 1.77 1.30 15.40 30
10 6 4 3.27 2.89 2.44 0.94 17.74 29
10 6 5 3.97 2.73 2.31 5.52 42.15 29
Average: 2.08 1.38 1.18 0.37 19.56
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Table 3: Results of the BRTP linear time and 2BRTP B&B algorithms for 2BRTP instances,
occupancy rate 75%.

BRTP linear 2BRTP B&B
S H G Rel E[Rel] E[Rel] Time(s) Gap(%) Solved
4 4 3 1.27 0.72 0.62 0.00 8.33 30
4 4 4 1.53 0.80 0.71 0.00 7.10 30
4 4 5 1.07 0.83 0.79 0.00 8.33 30
4 5 3 2.00 0.90 0.72 0.00 18.00 30
4 5 4 1.57 1.10 0.93 0.00 27.76 30
4 5 5 1.20 1.33 1.23 0.00 14.37 30
4 6 3 1.97 1.22 0.98 0.06 13.14 30
4 6 4 2.03 1.57 1.33 0.00 28.87 30
4 6 5 1.83 1.63 1.50 0.00 15.15 30

6 4 3 1.70 0.93 0.80 0.16 11.43 30
6 4 4 1.57 1.00 0.82 0.00 33.06 30
6 4 5 1.20 0.97 0.87 0.00 7.02 30
6 5 3 1.90 0.90 0.77 0.00 9.26 30
6 5 4 1.53 1.04 0.93 0.00 17.33 30
6 5 5 1.87 1.28 1.17 0.00 14.12 30
6 6 3 2.67 1.98 1.65 0.00 32.90 30
6 6 4 2.83 1.81 1.46 1.96 28.92 30
6 6 5 2.00 1.95 1.73 0.01 20.08 30

8 4 3 2.20 0.98 0.90 0.00 9.77 30
8 4 4 1.63 1.12 1.02 0.00 14.48 30
8 4 5 1.93 1.10 0.98 0.00 8.33 30
8 5 3 3.20 1.70 1.40 0.00 17.09 28
8 5 4 2.37 1.88 1.71 0.02 16.27 30
8 5 5 1.83 1.97 1.78 0.01 13.92 30
8 6 3 4.97 2.50 1.98 0.12 29.94 28
8 6 4 3.40 2.30 1.86 0.01 36.76 28
8 6 5 2.73 2.49 2.24 0.00 23.43 30

10 4 3 2.47 1.18 1.00 0.00 17.36 30
10 4 4 2.90 1.56 1.36 0.01 14.30 30
10 4 5 2.13 1.36 1.16 0.00 21.50 30
10 5 3 3.57 1.57 1.35 2.45 16.38 29
10 5 4 3.30 2.03 1.62 0.45 32.40 30
10 5 5 3.17 1.89 1.59 0.13 23.88 29
10 6 3 5.33 2.38 1.87 0.00 36.61 27
10 6 4 4.00 2.98 2.56 3.97 22.17 29
10 6 5 3.63 2.92 2.42 0.34 29.78 29
Average: 2.40 1.55 1.33 0.27 19.43
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Table 4: Results of the BRTP linear time and 2BRTP B&B algorithms for 2BRTP instances,
occupancy rate 80%.

BRTP linear 2BRTP B&B
S H G Rel E[Rel] E[Rel] Time(s) Gap(%) Solved
4 4 3 1.03 0.52 0.45 0.00 0.00 30
4 4 4 0.90 1.03 0.90 0.00 10.29 30
4 4 5 1.00 0.91 0.85 0.00 10.22 30
4 5 3 2.13 1.00 0.88 0.00 8.65 30
4 5 4 1.47 1.27 1.14 0.00 7.47 30
4 5 5 1.47 1.31 1.24 0.00 17.50 30
4 6 3 1.83 1.38 1.22 0.00 15.56 30
4 6 4 2.07 1.79 1.54 0.01 29.27 30
4 6 5 1.70 1.93 1.73 0.00 17.21 30

6 4 3 2.33 1.15 0.88 0.00 30.17 30
6 4 4 1.27 1.11 0.98 0.00 7.13 30
6 4 5 1.73 1.20 1.05 0.00 23.43 30
6 5 3 2.30 1.10 0.85 0.00 33.46 30
6 5 4 2.43 1.49 1.29 0.00 22.01 29
6 5 5 2.57 2.01 1.80 0.02 16.34 30
6 6 3 3.17 1.85 1.38 0.25 42.99 30
6 6 4 3.77 2.38 1.80 10.86 58.94 29
6 6 5 2.03 2.00 1.80 0.00 17.31 30

8 4 3 1.87 1.15 0.97 0.00 27.01 30
8 4 4 1.73 1.19 1.01 0.00 27.78 30
8 4 5 1.50 1.28 1.13 0.00 22.06 30
8 5 3 3.03 1.82 1.52 0.00 22.77 30
8 5 4 2.67 2.28 1.94 0.00 22.24 30
8 5 5 1.93 1.93 1.78 0.00 15.17 30
8 6 3 3.87 2.47 1.95 2.39 23.53 30
8 6 4 2.47 2.14 1.80 0.00 43.00 30
8 6 5 3.30 2.40 2.05 0.02 33.01 29

10 4 3 2.97 1.53 1.23 0.10 16.73 30
10 4 4 2.63 1.59 1.37 0.00 24.59 30
10 4 5 1.53 1.82 1.67 0.00 11.76 30
10 5 3 4.53 2.18 1.80 2.47 36.92 29
10 5 4 2.80 2.38 2.11 1.19 19.74 30
10 5 5 2.87 2.43 2.20 0.42 13.12 30
10 6 3 4.57 3.12 2.43 6.48 43.74 30
10 6 4 3.77 2.87 2.37 0.00 37.17 29
10 6 5 4.07 2.98 2.58 1.27 27.55 29
Average: 2.43 1.75 1.49 0.71 23.22

29



Table 5: Results of the BRTP linear time and 2BRTP B&B algorithms for 2BRTP instances based
on Caserta et al. (2012).

BRTP linear 2BRTP B&B
S H G Rel E[Rel] E[Rel] Time(s) Gap(%) Solved

data3-3-3 3 5 3 0.78 0.65 0.65 0.00 0.00 40
data3-3-4 3 5 4 0.83 0.90 0.80 0.00 13.21 40
data3-3-5 3 5 5 0.85 0.99 0.94 0.00 2.95 40

data3-4-3 4 5 3 0.95 0.64 0.50 0.00 6.43 40
data3-4-4 4 5 4 1.08 0.78 0.70 0.00 10.00 40
data3-4-5 4 5 5 1.10 0.96 0.85 0.00 23.21 40
data4-4-3 4 6 3 2.03 1.04 0.79 0.00 24.29 40
data4-4-4 4 6 4 1.20 1.31 1.18 0.00 7.54 40
data4-4-5 4 6 5 1.68 1.41 1.28 0.00 12.73 40
data5-4-3 4 7 3 2.30 1.76 1.43 0.00 17.33 40
data5-4-4 4 7 4 2.15 1.78 1.52 0.00 30.36 40
data5-4-5 4 7 5 2.43 1.83 1.60 0.00 14.68 40

data3-5-3 5 5 3 1.15 0.83 0.66 0.00 18.75 40
data3-5-4 5 5 4 1.03 0.99 0.93 0.00 10.21 40
data3-5-5 5 5 5 1.00 0.84 0.78 0.00 10.25 40
data4-5-3 5 6 3 2.18 1.24 0.80 0.00 38.74 40
data4-5-4 5 6 4 1.85 1.47 1.27 0.00 21.49 40
data4-5-5 5 6 5 1.55 1.47 1.28 0.02 18.66 40
data5-5-3 5 7 3 2.60 1.66 1.34 0.00 19.95 40
data5-5-4 5 7 4 2.53 1.74 1.49 0.00 16.90 40
data5-5-5 5 7 5 2.58 1.83 1.55 4.04 18.12 40

data3-6-3 6 5 3 1.50 1.01 0.83 0.00 16.67 40
data3-6-4 6 5 4 1.28 1.01 0.92 0.00 14.32 40
data3-6-5 6 5 5 0.55 0.96 0.91 0.00 4.19 40
data4-6-3 6 6 3 2.98 1.53 1.04 0.00 51.87 39
data4-6-4 6 6 4 2.35 1.28 1.00 0.12 28.96 39
data4-6-5 6 6 5 2.28 1.89 1.63 6.03 28.97 40
data5-6-3 6 7 3 4.05 1.68 1.15 2.17 44.49 39
data5-6-4 6 7 4 2.78 2.04 1.66 1.07 34.00 39
data5-6-5 6 7 5 2.28 2.11 1.84 1.85 25.11 40
data6-6-3 6 8 3 3.83 2.49 1.93 0.56 33.74 39
data6-6-4 6 8 4 3.48 2.73 2.31 2.34 32.19 40
data6-6-5 6 8 5 2.85 2.90 2.51 2.73 20.62 40
data10-6-3 6 12 3 8.05 5.30 4.35 1.22 46.90 31
data10-6-4 6 12 4 6.38 5.35 4.75 0.49 45.33 32
data10-6-5 6 12 5 4.68 5.32 4.81 0.94 16.39 34

data3-7-3 7 5 3 1.98 1.14 0.89 0.02 19.91 40
data3-7-4 7 5 4 2.05 1.48 1.22 0.00 27.84 40
data3-7-5 7 5 5 1.65 1.28 1.14 0.00 12.80 40
data4-7-3 7 6 3 3.18 1.63 1.21 0.00 40.00 40
data4-7-4 7 6 4 3.03 1.83 1.53 0.02 33.86 39
data4-7-5 7 6 5 2.33 2.00 1.71 0.22 21.32 40
data5-7-3 7 7 3 3.08 1.69 1.53 0.07 13.54 38
data5-7-4 7 7 4 3.65 2.49 2.05 0.07 37.62 35
data5-7-5 7 7 5 2.80 2.41 2.09 0.29 24.06 40

data3-8-3 8 5 3 1.88 0.96 0.86 0.00 8.76 40
data3-8-4 8 5 4 1.85 1.25 1.09 0.00 13.83 40
data3-8-5 8 5 5 1.48 1.25 1.15 0.00 11.44 40
data5-8-3 8 7 3 4.70 2.30 1.70 0.74 42.43 39
data5-8-4 8 7 4 3.53 2.84 2.32 0.71 34.94 40
data5-8-5 8 7 5 2.98 2.68 2.30 2.01 22.70 39

data5-9-3 9 7 3 4.78 2.33 1.85 0.14 38.87 35
data5-9-4 9 7 4 3.70 3.41 2.83 0.66 28.10 39
data5-9-5 9 7 5 3.95 3.43 2.88 0.23 25.39 38

data5-10-3 10 7 3 6.23 2.99 2.26 12.15 56.05 33
data5-10-4 10 7 4 5.20 2.95 2.45 3.09 32.21 36
data5-10-5 10 7 5 4.53 2.99 2.68 0.00 17.63 36
data6-10-3 10 8 3 6.40 4.30 3.25 0.03 47.36 35
data6-10-4 10 8 4 5.98 4.46 3.72 1.83 26.31 32
data6-10-5 10 8 5 4.93 3.93 3.24 0.09 30.63 36
data10-10-3 10 12 3 12.08 6.85 5.26 21.60 68.92 24
data10-10-4 10 12 4 11.98 9.88 8.47 0.01 20.20 17
data10-10-5 10 12 5 9.85 8.01 7.03 15.43 20.73 24
Average: 3.22 2.32 1.95 1.32 24.71
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Table 6: Results of the Beam Search on instances with equal retrieval probabilities.

Beam Seach - Rule 01
Instance Set OccRate E[Rel] Time(s) BGap(%) Solved Optimal Less 1s

70% 1.18 0.10 0.06 1080 1076 1078
BRTP 75% 1.32 0.02 0.21 1079 1065 1075

80% 1.49 0.00 0.22 1080 1072 1078
Caserta et al. (2012) 60%− 85% 1.91 0.99 2.60 2467 2387 2417

Beam Seach - Rule 02
Instance Set OccRate E[Rel] Time(s) BGap(%) Solved Optimal Less 1s

70% 1.18 0.00 0.01 1080 1077 1080
BRTP 75% 1.32 0.00 0.05 1080 1067 1080

80% 1.49 0.28 0.19 1080 1074 1078
Caserta et al. (2012) 60%− 85% 1.86 0.28 1.18 2513 2387 2499

Beam Seach - Rules 01 and 02
Instance Set OccRate E[Rel] Time(s) BGap(%) Solved Optimal Less 1s

70% 1.18 0.00 0.06 1080 1076 1080
BRTP 75% 1.32 0.00 0.12 1080 1065 1080

80% 1.49 0.00 0.22 1080 1072 1080
Caserta et al. (2012) 60%− 85% 1.86 0.01 1.07 2518 2387 2516

Table 7: Results of the BRTP linear time and 2BRTP B&B algorithms for 2BRTP instances,
occupancy rate 70%, and unequal retrieval probabilities.

BRTP linear 2BRTP B&B
S H G Rel E[Rel] E[Rel] Time(s) Gap(%) Solved
4 4 3 0.47 0.60 0.58 0.00 1.79 30
4 4 4 0.93 0.69 0.58 0.00 17.55 30
4 4 5 0.87 0.79 0.73 0.00 15.99 30
4 5 3 1.40 0.76 0.58 0.00 16.77 30
4 5 4 1.30 1.18 0.97 0.00 39.42 30
4 5 5 1.30 1.14 1.04 0.00 10.39 30
4 6 3 2.03 1.31 1.13 0.00 13.90 30
4 6 4 1.43 1.14 1.08 0.00 3.53 30
4 6 5 1.37 1.30 1.09 0.00 30.87 30

6 4 3 0.93 0.49 0.45 0.00 2.27 30
6 4 4 1.23 0.91 0.79 0.00 18.72 30
6 4 5 0.97 0.74 0.65 0.00 14.64 30
6 5 3 2.30 0.85 0.68 0.00 11.89 30
6 5 4 3.13 1.24 0.96 0.08 29.09 30
6 5 5 1.17 1.36 1.23 0.00 17.86 30
6 6 3 3.40 1.45 0.81 0.06 64.82 30
6 6 4 2.90 1.70 1.43 0.01 32.70 30
6 6 5 1.67 1.92 1.74 0.00 20.85 30

8 4 3 1.83 0.65 0.58 0.00 4.31 30
8 4 4 1.83 0.96 0.85 0.01 14.90 30
8 4 5 1.20 1.02 0.94 0.00 23.73 30
8 5 3 2.23 1.61 1.41 0.00 8.81 30
8 5 4 2.27 1.71 1.50 0.10 22.76 30
8 5 5 2.13 1.68 1.45 0.02 25.23 30
8 6 3 3.37 2.09 1.66 4.87 31.94 30
8 6 4 3.17 1.71 1.24 0.09 63.24 30
8 6 5 2.40 2.01 1.78 0.01 42.63 30

10 4 3 2.20 1.36 1.24 0.00 8.38 30
10 4 4 2.13 1.27 1.17 0.00 9.94 30
10 4 5 1.83 1.33 1.18 0.00 20.29 30
10 5 3 3.10 1.62 1.32 0.20 20.12 29
10 5 4 2.57 1.62 1.48 0.00 5.41 30
10 5 5 2.40 1.97 1.72 0.17 23.40 30
10 6 3 4.10 2.13 1.75 1.91 15.41 30
10 6 4 3.27 2.91 2.47 1.07 18.52 29
10 6 5 3.97 2.60 2.21 0.09 52.61 28
Average: 2.08 1.38 1.18 0.24 21.52
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Table 8: Results of the BRTP linear time and 2BRTP B&B algorithms for 2BRTP instances,
occupancy rate 75%, and unequal retrieval probabilities.

BRTP linear 2BRTP B&B
S H G Rel E[Rel] E[Rel] Time(s) Gap(%) Solved
4 4 3 1.27 0.71 0.61 0.00 10.49 30
4 4 4 1.53 0.80 0.70 0.00 8.13 30
4 4 5 1.07 0.86 0.80 0.00 11.82 30
4 5 3 2.00 0.91 0.71 0.00 22.18 30
4 5 4 1.57 1.12 0.94 0.00 30.67 30
4 5 5 1.20 1.39 1.27 0.00 13.97 30
4 6 3 1.97 1.13 0.90 0.07 11.62 30
4 6 4 2.03 1.49 1.26 0.00 30.50 30
4 6 5 1.83 1.58 1.44 0.00 24.94 30

6 4 3 1.70 0.92 0.77 0.19 15.39 30
6 4 4 1.57 0.99 0.80 0.00 34.06 30
6 4 5 1.20 0.96 0.84 0.00 10.86 30
6 5 3 1.90 0.95 0.84 0.00 9.22 30
6 5 4 1.53 1.06 0.92 0.00 24.24 30
6 5 5 1.87 1.36 1.23 0.00 16.47 30
6 6 3 2.67 2.05 1.75 0.00 28.16 30
6 6 4 2.83 1.83 1.44 2.28 32.15 30
6 6 5 2.00 2.01 1.76 0.02 19.66 30

8 4 3 2.20 1.02 0.93 0.00 13.11 30
8 4 4 1.63 1.12 1.02 0.00 13.37 30
8 4 5 1.93 1.10 0.98 0.00 9.23 30
8 5 3 3.20 1.74 1.44 0.00 18.21 28
8 5 4 2.37 1.96 1.79 0.00 18.69 30
8 5 5 1.83 1.97 1.79 0.01 13.32 30
8 6 3 4.97 2.38 1.85 0.37 35.20 27
8 6 4 3.40 2.32 1.86 0.01 37.34 28
8 6 5 2.73 2.50 2.22 0.00 23.64 30

10 4 3 2.47 1.25 1.05 0.00 21.50 30
10 4 4 2.90 1.59 1.40 0.03 14.56 30
10 4 5 2.13 1.37 1.17 0.00 23.28 30
10 5 3 3.57 1.62 1.36 2.66 20.85 29
10 5 4 3.30 2.03 1.60 0.36 37.54 30
10 5 5 3.17 1.80 1.50 0.24 30.60 29
10 6 3 5.33 2.37 1.90 0.00 37.72 27
10 6 4 4.00 2.93 2.48 0.01 21.07 28
10 6 5 3.63 2.82 2.30 0.55 34.80 29
Average: 2.40 1.56 1.32 0.19 21.63
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Table 9: Results of the BRTP linear time and 2BRTP B&B algorithms for 2BRTP instances,
occupancy rate 80%, and unequal retrieval probabilities.

BRTP linear 2BRTP B&B
S H G Rel E[Rel] E[Rel] Time(s) Gap(%) Solved
4 4 3 1.03 0.52 0.46 0.00 0.00 30
4 4 4 0.90 1.03 0.89 0.00 10.45 30
4 4 5 1.00 0.86 0.78 0.00 25.60 30
4 5 3 2.13 1.12 0.99 0.00 14.85 30
4 5 4 1.47 1.27 1.15 0.00 7.83 30
4 5 5 1.47 1.29 1.21 0.00 40.67 30
4 6 3 1.83 1.42 1.26 0.00 13.36 30
4 6 4 2.07 1.76 1.50 0.01 38.67 30
4 6 5 1.70 1.92 1.73 0.00 16.00 30

6 4 3 2.33 1.19 0.91 0.00 29.19 30
6 4 4 1.27 1.12 0.97 0.00 9.70 30
6 4 5 1.73 1.25 1.07 0.00 31.60 30
6 5 3 2.30 1.17 0.91 0.00 39.45 30
6 5 4 2.43 1.47 1.25 0.00 23.58 29
6 5 5 2.57 1.97 1.77 0.02 19.23 30
6 6 3 3.17 1.69 1.27 0.26 35.03 30
6 6 4 3.77 2.42 1.82 1.24 61.73 28
6 6 5 2.03 2.11 1.85 0.00 20.08 30

8 4 3 1.87 1.18 0.98 0.00 27.54 30
8 4 4 1.73 1.21 1.05 0.00 25.63 30
8 4 5 1.50 1.28 1.11 0.00 28.92 30
8 5 3 3.03 1.79 1.48 0.00 27.70 30
8 5 4 2.67 2.33 2.00 0.00 19.68 30
8 5 5 1.93 1.96 1.80 0.00 18.13 30
8 6 3 3.87 2.41 1.88 4.42 26.87 30
8 6 4 2.47 2.16 1.78 0.00 43.75 30
8 6 5 3.30 2.43 2.07 0.05 35.14 29

10 4 3 2.97 1.64 1.30 0.10 17.30 30
10 4 4 2.63 1.62 1.38 0.00 26.02 30
10 4 5 1.53 1.88 1.73 0.00 12.42 30
10 5 3 4.53 2.36 1.95 2.84 35.98 29
10 5 4 2.80 2.36 2.09 1.33 19.41 30
10 5 5 2.87 2.40 2.15 0.11 16.47 30
10 6 3 4.57 3.16 2.46 6.92 57.97 30
10 6 4 3.77 2.93 2.40 0.65 35.75 29
10 6 5 4.07 2.91 2.51 1.81 26.26 29
Average: 2.43 1.77 1.50 0.55 26.05
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Table 10: Results of the BRTP linear time and 2BRTP B&B algorithms for 2BRTP instances based
on Caserta et al. (2012), and unequal retrieval probabilities.

BRTP linear 2BRTP B&B
Instance S H G Rel E[Rel] E[Rel] Time(s) Gap(%) Solved

data3-3-3 3 5 3 0.78 0.73 0.73 0.00 0.00 40
data3-3-4 3 5 4 0.83 0.89 0.79 0.00 13.13 40
data3-3-5 3 5 5 0.85 0.95 0.91 0.00 2.92 40

data3-4-3 4 5 3 0.95 0.62 0.48 0.00 6.83 40
data3-4-4 4 5 4 1.08 0.77 0.68 0.00 12.00 40
data3-4-5 4 5 5 1.10 0.94 0.83 0.00 33.55 40
data4-4-3 4 6 3 2.03 1.07 0.81 0.00 31.93 40
data4-4-4 4 6 4 1.20 1.26 1.13 0.00 10.49 40
data4-4-5 4 6 5 1.68 1.37 1.21 0.00 21.94 40
data5-4-3 4 7 3 2.30 1.70 1.39 0.00 16.71 40
data5-4-4 4 7 4 2.15 1.78 1.49 0.00 31.63 40
data5-4-5 4 7 5 2.43 1.77 1.51 0.00 20.08 40

data3-5-3 5 5 3 1.15 0.82 0.66 0.00 19.99 40
data3-5-4 5 5 4 1.03 0.96 0.89 0.00 10.50 40
data3-5-5 5 5 5 1.00 0.87 0.78 0.00 12.71 40
data4-5-3 5 6 3 2.18 1.09 0.69 0.00 31.91 40
data4-5-4 5 6 4 1.85 1.47 1.25 0.00 23.89 40
data4-5-5 5 6 5 1.55 1.46 1.24 0.02 25.53 40
data5-5-3 5 7 3 2.60 1.60 1.25 0.00 24.91 40
data5-5-4 5 7 4 2.53 1.71 1.45 0.00 17.53 40
data5-5-5 5 7 5 2.58 1.93 1.58 5.30 22.48 40

data3-6-3 6 5 3 1.50 1.04 0.85 0.00 15.35 40
data3-6-4 6 5 4 1.28 1.00 0.91 0.00 15.89 40
data3-6-5 6 5 5 0.55 0.91 0.87 0.00 3.92 40
data4-6-3 6 6 3 2.98 1.51 1.05 0.00 51.46 39
data4-6-4 6 6 4 2.35 1.28 0.99 0.20 34.62 39
data4-6-5 6 6 5 2.28 1.85 1.57 0.46 28.36 39
data5-6-3 6 7 3 4.05 1.72 1.17 3.59 46.60 39
data5-6-4 6 7 4 2.78 1.97 1.60 1.17 38.73 39
data5-6-5 6 7 5 2.28 2.17 1.86 3.75 27.45 40
data6-6-3 6 8 3 3.83 2.53 2.00 1.90 35.88 39
data6-6-4 6 8 4 3.48 2.70 2.27 4.13 34.38 40
data6-6-5 6 8 5 2.85 2.98 2.55 2.62 25.16 40
data10-6-3 6 12 3 8.05 5.35 4.42 1.95 36.61 31
data10-6-4 6 12 4 6.38 5.37 4.72 0.62 46.48 32
data10-6-5 6 12 5 4.68 5.11 4.53 0.23 20.93 34

data3-7-3 7 5 3 1.98 1.10 0.87 0.02 22.58 40
data3-7-4 7 5 4 2.05 1.45 1.18 0.00 29.31 40
data3-7-5 7 5 5 1.65 1.28 1.13 0.00 13.81 40
data4-7-3 7 6 3 3.18 1.60 1.21 0.00 40.85 40
data4-7-4 7 6 4 3.03 1.87 1.55 0.03 35.24 39
data4-7-5 7 6 5 2.33 2.05 1.72 0.41 31.65 40
data5-7-3 7 7 3 3.08 1.75 1.60 0.08 12.96 38
data5-7-4 7 7 4 3.65 2.49 2.05 0.07 42.91 35
data5-7-5 7 7 5 2.80 2.44 2.08 1.61 25.87 40

data3-8-3 8 5 3 1.88 0.93 0.83 0.00 9.04 40
data3-8-4 8 5 4 1.85 1.25 1.08 0.00 14.94 40
data3-8-5 8 5 5 1.48 1.31 1.21 0.00 11.46 40
data5-8-3 8 7 3 4.70 2.32 1.68 0.73 41.88 39
data5-8-4 8 7 4 3.53 2.76 2.25 3.41 37.77 40
data5-8-5 8 7 5 2.98 2.67 2.25 2.28 26.97 39

data5-9-3 9 7 3 4.78 2.27 1.83 0.22 37.01 35
data5-9-4 9 7 4 3.70 3.40 2.82 1.27 28.92 39
data5-9-5 9 7 5 3.95 3.41 2.77 0.37 31.02 38

data5-10-3 10 7 3 6.23 2.84 2.21 15.03 62.35 33
data5-10-4 10 7 4 5.20 3.07 2.55 2.69 31.68 36
data5-10-5 10 7 5 4.53 3.00 2.63 0.49 20.38 36
data6-10-3 10 8 3 6.40 4.42 3.36 0.14 43.97 34
data6-10-4 10 8 4 5.98 4.45 3.66 0.39 30.15 32
data6-10-5 10 8 5 4.93 4.12 3.46 0.48 23.47 36
data10-10-3 10 12 3 12.08 6.89 5.56 15.35 51.42 21
data10-10-4 10 12 4 11.98 9.85 8.43 2.49 21.06 16
data10-10-5 10 12 5 9.85 7.93 6.93 4.02 21.45 22

Average: 3.22 2.32 1.94 1.23 26.23
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Table 11: Beam Search results for unequal retrieval probabilities.

Beam Seach - Rule 01
Instance Set OccRate E[Rel] Time(s) BGap(%) Solved Optimal Less 1s

70% 1.18 0.01 0.06 1079 1075 1078
BRTP 75% 1.31 0.04 0.18 1079 1061 1075

80% 1.49 0.01 0.27 1080 1070 1078
Caserta et al. (2012) 60%− 85% 1.90 1.25 2.88 2460 2377 2414

Beam Seach - Rule 02
Instance Set OccRate E[Rel] Time(s) BGap(%) Solved Optimal Less 1s

70% 1.18 0.00 0.01 1080 1076 1080
BRTP 75% 1.31 0.01 0.04 1080 1065 1079

80% 1.49 0.00 0.21 1078 1073 1078
Caserta et al. (2012) 60%− 85% 1.85 0.37 1.38 2510 2379 2493

Beam Seach - Rules 01 and 02
Instance Set OccRate E[Rel] Time(s) BGap(%) Solved Optimal Less 1s

70% 1.18 0.00 0.06 1080 1075 1080
BRTP 75% 1.31 0.00 0.09 1080 1061 1080

80% 1.49 0.00 0.27 1080 1070 1080
Caserta et al. (2012) 60%− 85% 1.85 0.01 0.99 2517 2377 2513

Table 12: Results of the Tanaka and Takii (2016) BRP B&B algorithm and the BRTP B&B algorithm
on BRTP instances.

Instance Set Literature B&B algorithm Our B&B algorithm
G S H Rel Time(s) Solved Rel Time(s) Solved
2 10 10 46.176 0.0062 1000 46.176 0.0002 1000
3 10 10 35.769 0.0024 1000 35.769 0.0000 1000
2 10 15 81.921 6.2845 987 81.870 1.2755 998
3 10 15 68.415 2.6506 983 68.395 0.1157 998
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