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Place des Doyens 1, 1348 Louvain-la-Neuve, Belgium

Abstract

We study the joint dynamic pricing and lot-sizing problem when firms operate in a competitive environ-

ment. Bearing in mind that a dynamic pricing strategy is successful when customers understand it, we

assume each firm selects prices from a discrete set. The problem corresponds to a Bertrand model, so the

pricing strategies of the firms should constitute a Nash equilibrium. Given the combinatorial nature of the

decisions, computing the equilibrium in a tractable time may not be feasible for larger instances. In order

to compute the equilibrium efficiently, we propose a framework consisting of solving iteratively Mixed

Integer Programming formulations. The framework reduces the complexity of the problem by using the

fact that pricing and inventory planning remain stable to marginal variations in competitors’ prices.

Keywords: Production, dynamic pricing, competition, lot-sizing, joint production/marketing decisions

1. Introduction

Setting the right price for a product is one of the keys to a successful business. Although microe-

conomics began proposing pricing models long ago, pricing has become even more challenging because

the proliferation of products that can often be substituted for one another. Thus, firms seeking to sus-

tain a competitive position should implement aggressive price strategies to maximize their revenues while

meeting the demand efficiently. One such price strategy increasingly adopted is that of dynamic pricing,

by which the posted price of a product varies over time and provides the firm with dual benefits: it

extracts the maximum surplus from customers and influences the demand to control its operating costs.

A dynamic pricing strategy cannot be made in isolation, because the efficiency of such a strategy depends

on how customers and competitors react to the prices (see Elmaghraby and Keskinocak (2003) and Yano

and Gilbert (2005)). Hence, a firm has to consider the interaction with its competitors when pricing its

products.
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Moreover, pricing cannot be made in isolation from the firm’s other activities. For instance, pricing

depends on production/inventory planning, because this planning will determine the cost structure that

will be used as an input for price setting. The inverse relationship also holds; production/inventory

planning should meet the demand resulting from the firm’s pricing strategy. Therefore, decision-making

processes should plan pricing and production/inventory activities simultaneously. This is typically the

goal of the Sales & Operations Planning (S&OP) process that is increasingly adopted by companies.

Some hurdles, however, arise from the computational resources to implement a simultaneous optimization

approach. In general, production/inventory planning is characterized by economies of scale and may

involve discrete decisions, such as when and how much to order, so the time required for optimal planning

can increase with the length of the planning horizon.

Another two elements characterize simultaneous dynamic pricing and inventory/manufacturing plan-

ning. First, in actual business environments the success of dynamic pricing depends on how the consumer

understands and manages pricing signals (Bonsall et al., 2007); so a reduced set of prices helps pricing

transparency, customer satisfaction and long-term loyalty (Mauri, 2007). Two practical illustrations of

discrete dynamic pricing are provided by the fashion business, with discounts of 70%, 50% or 20%; and the

power supply industry, with low-demand, medium-demand and high-demand prices (Lanquepin-Chesnais

et al., 2012). Thus, it is natural to model prices as discrete decision variables.

Second, the competitive environment is another factor influencing the complexity of simultaneous

pricing and inventory/manufacturing planning. As each competitor aims to maximize its profit and there

is a mutual substitution effect between the products on offer, the competitive environment corresponds to

a Bertrand competition, i.e. competitors will assume that others will not change their prices in response

to its price cuts. Thus, the pricing strategies posted by competitors should constitute a Nash Equilibrium

(NE) (Nash, 1950). Reaching an NE will increase the complexity of the problem, because it requires

computing the payoff matrices of the firms for any combination of potential pricing strategies and these

computations increase with the set of available prices and the length of the horizon.

We propose a tractable time approach for simultaneous dynamic pricing and production/inventory

planning in competitive environments. We represent the substitution effect between competitors by

assuming that the demand for each depends on the prices posted by each competitor. We model each

competitor’s production/inventory activities as a dynamic lot-sizing problem (LSP), i.e., we determine

when and how much to produce in order to minimize ordering, production and holding costs over a finite

horizon consisting of discrete periods (see Wolsey (1995); Karimi et al. (2003); Brahimi et al. (2006) for
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an extended literature review of this problem). For any pricing strategy of the competitor, an LSP should

be solved to construct the full payoff matrices. These computations can increase the time required to

obtain an NE, so we set aside unnecessary calculations by extending the LSP formulation to obtain the

best pricing and production/inventory response for each pricing strategy of the competitors . In addition,

given that the best pricing and production/inventory response does not vary significantly with marginal

variations in competitors’ pricing strategies, we can discard pricing strategies that will not constitute

an NE before computations are made. We, therefore, reach an NE by partially calculating the payoff

matrices of the competitors. Our numerical experiments provide evidence of the significant time savings

that can be achieved by implementing the proposed selective revision of the payoff matrices.

Our paper contributes to the scientific discussion by introducing joint dynamic pricing and lot-sizing

under competition and a discrete set of prices. We also provide a novel approach for determining pricing

strategies that combines pricing decisions, discrete mathematical programming and game theory. In

particular, we characterize the payoff matrix of the firms by combining a Mixed Integer Programming

(MIP) formulation for identifying dominated pricing strategies and the information of already revised

pricing strategies. The characterization helps to reduce computational time significantly compared with

a full revision of the payoff matrices. Our paper also helps practitioners, because the proposed framework

enables them to solve larger instances of the problem in tractable time. Moreover, this paper builds

bridges between theoretical micro-economic models and actual business operations; in particular, we adapt

the classical pricing/cost equilibrium to settings in which firms operate in the presence of economies of

scale and need to make discrete decisions. Further, our numerical experiments provide evidence of the

advantages of dynamic pricing and modeling competition.

2. Literature Review

The literature on both operations management and marketing pays particular attention to the need for

stronger coordination between production and marketing decisions. Upasani and Uzsoy (2007) classify ex-

isting research on the production/marketing interface into three main streams: (1) joint price-production

quantity determination, (2) promotion planning and coordination, and (3) price, capacity and lead time

models. We focus on the first research stream, where firms subject their price and production planning

decisions to both operations and marketing constraints; the significance of the stream lies on the fact

that an approach that cordinate such decisions is not only usefu, but essential for a firm (Chan et al.,

2004). Since a firm’s production planning implies management of the stock of finished products, we use
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the concept of joint pricing and production/inventory planning.

We start by classifying the existing research on joint price-production quantity according to their time

modeling: continuous time models and discrete time models.

The first group of approaches to simultaneously planning pricing and production/inventory assumes

continuous time horizons. The early work of Whitin (1955) constitutes the first quantitative approach to

such planning. Within assumes price sensitive demand and uses the well-known Economic Order Quantity

(EOQ) problem to model production/inventory operations. The goal is to set a single unit price p and

a re-order quantity Q in order to maximize profits. Cheng (1990) and Chen and Min (1994) extend

Within’s model to multi-item settings. The authors provide the Kuhn-Tucker optimality conditions when

both storage space and inventory investment are limited. Lee (1994) includes inventory investment budget

and shows that computational time grows almost linearly with problem size. Kim and Lee (1998); Lee

(1993) and Jung and Klein (2006) propose Geometric Programming approaches for the single item joint

EOQ and pricing problem.

In the same stream of continuous time horizons, Pekelman (1974) addresses simultaneous dynamic

pricing and time-dependent production quantities. Here, production rate q(t) and optimal price p(t) at

time t are the decision variables. Vanthienen (1975) and Feichtinger and Hartl (1985) extend Pekelman’s

model by including capacity constraints and by allowing backlog, respectively. Chen and Chu (2003) adapt

pricing and production/inventory planning to frequent market updates. Their results are interesting for

the launch of new products, because sales rates are highly sensitive to price strategies. Ray et al. (2005)

study the EOQ problem when demand corresponds to linear or log-linear functions of the prices; the

authors state, counter-intuitively, that batch size is not necessarily monotone increasing in set-up cost.

In order to deal with demand uncertainty, Adida and Perakis (2006) extend the nominal formulation by

taking a robust optimization approach.

The second group of approaches assumes the horizon to be a set of discrete periods. Most of these

approaches consider the LSP as the most suitable model for representing production/inventory planning.

Thomas (1970) studies simultaneous dynamic pricing and LSP. Through an analytical characterization

of optimal solutions, the author reduces the computations required to obtain the optimal pricing. In

order to simplify the dynamic pricing decision, some approaches assume a single price for the whole

horizon. For instance, Kunreuther and Schrage (1973); Gilbert (1999) study the joint single price and

LSP decisions and Gilbert (2000) extends this problem for multiple items that share a common capacity.

When prices can vary through time, Bhattacharjee and Ramesh (2000) propose heuristic approaches for
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the uncapacitated version of the problem. Martel and Gascon (1998) deal with the problem of maximizing

profits when operations are uncapacitated and the unit inventory holding costs in a period is a function

of the procurement decisions made in previous periods. The authors derive an O(T 2) algorithm which

provides a probably optimal solution of an integer linear programming formulation of the general problem.

For capacitated operations, Deng and Yano (2006) characterize the optimal solution and propose an

algorithm whose complexity is slightly greater than the traditional LSP. The authors also show that

larger capacity may lead to higher optimal prices. Haugen et al. (2007) propose a Lagrangian relaxation

procedure to solve the problem for capacitated operations. For the same problem, Gonzalez-Ramirez et al.

(2011) propose a Dantzig-Wolfe decomposition where the capacity constraints are the linking constraints.

Onal and Romeijn (2011) extend the capacitated problem to the multi-item case. They develop two

alternative Dantzig-Wolfe decomposition formulations and propose to solve the relaxations using column

generation and the overall problem using branch-and-price. The authors test such formulations for both

dynamic and static pricing strategies. Similar to our assumptions (but considering the decisions of a firm

in isolation), Lanquepin-Chesnais et al. (2012) study a single item problem where a firm maximizes its

profit over a discrete set of prices. The authors propose a Lagrangian relaxation to solve this problem.

Although there is a vast literature on simultaneous pricing and production/inventory planning, the

scientific discussion has paid less attention to this problem in competitive environments. Min (1992);

Chen et al. (1995) were the first authors to investigate simultaneous pricing and production/inventory

planning under competition. These authors assume that each competitor must solve an EOQ problem

and that their products compete for the same buyers. Cachon and Harker (2002) study a duopoly

where competitors operate in a situation where economies of scale are possible, such as in the case of

the EOQ model. The authors derive general conditions for the existence of one equilibrium at most

between competitors. Transchel and Minner (2011) propose an extension of Cachon and Harker (2002)

by assuming that one firm has an EOQ cost structure, and another implements a just-in-time policy.

Adida and Perakis (2010) address the problem where two firms compete through dynamic pricing and

inventory control and where demand is uncertain. These authors introduce a demand base fluid model

where the demand is a linear function of the price of the supplier and of her competitor, the inventory

and production costs are quadratic, and all coefficients are time dependent.

More related to our work, several papers focuses on discrete time decisions in competitive environ-

ments. Fredergruen and Meissner (2009) study the competition between firms when their production lines

can be modeled as a capacitated LSP. The authors prove the existence of price equilibrium and associated
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optimal dynamic lot-sizing plans, under mild conditions. In contrast to our work, they assume that each

firm sets a single price for the whole production period. The constant price condition is relaxed in Pedroso

and Smeers (2010). The authors propose a fixed-point iteration to achieve a duopoly equilibrium when

competitors produce perfect substitute items. Our work differs from this in three ways: we assume that

competitors select prices from a discrete set; we examine the possibility of randomizing price strategies

(Mixed Nash Equilibrium); and we assume that competitors offer non-perfect substitutes products. To

the best of our knowledge, our paper is the first attempt to include such dimensions in discrete time

problems.

3. Problem Description

3.1. Problem parameters

Consider two self-interested firms, Firm 1 and Firm 2, that manufacture and sell interchangeable

products, so the demand for these products depends on the prices set by each firm. The firms therefore

maximize their profits by making pricing decisions that take into account both their operating costs and

the competitor’s price.

We assume that each firm plans its production for N consecutive periods, which we call a planning

block. The dynamics for a planning block are as follows. Note that, in our description Firm i represents

either Firm 1 or Firm 2, and Firm j represents its competitor.

• Before carrying out the production for the planning block, each firm decides the unit selling price

of its product for each period. Firm i selects such prices from the discrete set Mi consisting of

Ki elements, where Mi = {mi,1,mi,2, ...,mi,Ki}. Without loss of generality, we assume mi,k <

mi,k+1,∀k = 1, ...,Ki − 1. The pricing decision of Firm i for the planning block is what we call a

pure pricing strategy, and we represent it by si ∈ RN , such that si,n ∈Mi. We denote the set of all

pure pricing strategies of Firm i by Si. Note that |Si| = (Ki)
N , so the number of available strategies

grows exponentially with the planning block length.

• The pure pricing strategies selected by each firm induce their demand for each period in the planning

block. We use di : Si × Sj → RN to represent the relationship between price and demand for Firm

i, in which demand is a linear function of prices, as we show in equation (1).

di,n(si, sj) = αi,n − βi,n · si,n + γi,n · sj,n, ∀i = 1, 2, j 6= i, (1)
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αi,n represents the demand for Firm i when the prices of both firms are equal to 0 in period n; βi,n is

the sensitivity of demand for Firm i to its product price in period n. We assume an inverse relation

between price and firm demand. γi,n is the sensitivity of demand for Firm i to its competitor’s price

in period n. Since the firms offer interchangeable products, we establish that γi,n ≥ 0.

• Once the firms have priced their products, they produce according to their demand for each period

in the planning block. Each firm organizes its production to meet the demand while minimizing

operating costs. We assume that the operating costs for each firm is derived from solving an LSP .

The parameters of the LSP faced by each firm are (note that for simplicity, we assume that the costs

do not vary over time):

• ci: unit production cost of firm i.

• fi: setup cost of the line managed by firm i.

• hi: unit holding cost of firm i.

• di,n(si, sj): demand faced by firm i in period n (see equation (1)).

The decision variables of the LSP are x, y, z ∈ R2×N , such that:

• xi,n: production volume for firm i in period n.

• yi,n: 1 if the line managed by firm i is used in period n, 0 otherwise.

• zi,n: amount of inventory of the item held by firm i at the end of period n.

The set of constraints ensuring that the operations of Firm i satisfy the demand derived from pure

pricing strategies si and sj are as follows:

zi,n = zi,n−1 + xi,n − di,n(si, sj) ∀n ∈ N (2)

xi ≤M · yi, (3)

xi, zi ≥ 0, yi ∈ {0, 1}, (4)

where constraint (2) represents inventory conservation and demand satisfaction; constraint (3) states that

production can occur in a period only if such production is activated; in this constraint M represents a
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large number. Let Xi(si, sj) be the set of all the decisions xi that satisfy the constraints (2) - (4) when

the firms implement pure pricing strategies (si, sj).

Example 1. To illustrate our model and the proposed resolution method we will follow a little example

with the following parameters:

Firm i and Firm j are planning their pricing and operations for the next 4 periods. The cost parameters

of the firms are: fi = fj = 3, hi = hj = 1 and ci = cj = 0. The demand function of both firms is constant

across the time and poses the same sensitivity parameters βi,n = βj,n = 1,∀n and γi,n = γj,n = 0.5,∀n;

the demand functions, however, differ between each other in terms of the free parameter: αi,n = 5, ∀n

and αj,n = 4, ∀n. For each period n the firms have to choose a price from the sets: Mi = {3, 4, 5} and

Mi = {2, 3, 4}.

For instance, if the firms choose the strategies si = {3, 3, 3, 3} and sj = {2, 2, 2, 2}, then the demand

for Firm i is {3, 3, 3, 3} the revenues of Firm i correspond to 36 and the cost derived from the LSP is 12;

thus, πi,si,sj = 24. For the same pair of strategies, Firm j has revenues of 28 and the cost derived from

the LSP is 12; thus, πj,si,sj = 16.

3.2. The Competitive Lot-Sizing Problem

In order to determine the resulting pricing and production decisions of both firms, we assume each

firm has perfect information about its competitor’s set of prices. So, the firms will choose prices that

constitute an NE. Nevertheless, an NE may not exist, because the set of prices is discrete. In such a case,

we assume that firms randomize their pricing. Firm i will select the pure pricing strategy si ∈ Si with a

certain probability. The probabilities that firms assign to each pure pricing strategy constitute a Mixed

Nash Equilibrium (MNE).

In the remaining part of this section we describe our model of the decisions related to each firm’s

operations and pricing, and we formulate NE and MNE as sets of linear MIP constraints.

We define the function Ci(xi) that gives the total operating cost of Firm i associated with the opera-

tional decision xi ∈Xi(si, sj), as we show in expression (5).

Ci(xi) = ci · xTi + fi · yTi + hi · zTi . (5)

Each firm expects that its pricing will lead to maximum profits. In other words, the goal is to maximize

the difference between income and production/inventory costs. Given that the firms choose the pure

pricing strategies (si, sj) ∈ Si × Sj , we represent their income, production costs and profits by functions
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R : Si×Sj → R2, Co : Si×Sj → R2 and B : Si×Sj → R2, respectively, where Ri(si, sj) = si ·di(si, sj)T ,

Coi (si, sj) = minxi {Ci(xi)|xi ∈Xi(si, sj)} and Bi(si, sj) = Ri(si, sj)− Coi (si, sj).

Next, we describe the problems of selecting and randomizing pure pricing strategies.

3.2.1. Pure pricing strategies

Each firm takes into account its known competitor’s pricing sj ∈ Sj when deciding its own price to

maximize profits, i.e., maxsi{Bi(si, sj)|(si, sj) ∈ Si×Sj}. Since the firms’ prices are mutually dependent,

they should choose pure pricing strategies that satisfy the conditions for an NE. The pair (si, sj) is an NE

if Bi(si, sj) ≥ Bi(s
′
i, sj),∀s′i ∈ Si and ∀i = 1, 2; j 6= i. In other words, a firm has no incentive to change

its pure pricing strategy unless its competitor’s strategy changes.

3.2.2. Randomizing pure pricing strategies

Here, each firm estimates the probability that its pure pricing strategy will maximize its profits. Let

pi ∈ [0, 1]|Si| be the vector containing the probability that Firm i assigns to its pure pricing strategy.

maxpi{
∑

si∈Si
pi,si ·

∑
sj∈Sj

pj,sj · Bi(si, sj)|
∑

si∈Si
pi,si = 1 ∧ pi,si ≥ 0,∀si ∈ Si} represents the pricing

problem of Firm i for given pj . Note that the constraints of this problem ensure that pi is a valid

probability distribution.

Since the probability assignments are mutually dependent, the solution of the pricing problem should

satisfy the MNE condition. (pi, pj) is an MNE if
∑

si∈Si
pi,si ·

∑
sj∈Sj

pj,sj · Bi(si, sj) ≥
∑

si∈Si
p′i,si ·∑

sj∈Sj
pj,sj · Bi(si, sj),∀p′i and ∀i = 1, 2; j 6= i. In other words, a firm has no incentive to change its

mixed strategy unless its competitor’s mixed strategy changes. Nash (1950) proves that at least one

equilibrium exists for this game.

3.2.3. Nash Equilibrium and Mixed Nash Equilibrium

Sandholm et al. (2005) propose constraints (6) - (11) to describe an MNE. Two facts support Sand-

holms’ formulation: in any equilibrium, every pure strategy is either played with probability 0, or has 0 re-

gret ; and, any vector of mixed strategies for the players where every pure strategy is either played with prob-

ability 0, or has 0 regret, is an equilibrium. By regret of a strategy, we mean the difference between the pay-

off derived from such strategy and the optimal payoff. Sandholms’ formulation uses two parameters: π ∈

R2×|Si|×|Sj | such that πi,si,sj = Bi(si, sj) and π̄ ∈ R2, such that π̄i = maxsli,shi ∈Si,slj ,s
h
j ∈Sj

(πi,shi ,shj
−πi,sli,shj ).

Although, the decision variables correspond to the vector of probabilities pi, ∀i = 1, 2, the authors also

use variables bi, ri ∈ R|Si|, ui ∈ {0, 1}|Si| and b̄i ∈ R, where:
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• bi,si : expected profit of Firm i when implementing strategy si ∈ Si.

• ri,si : expected regret of Firm i when playing strategy si ∈ Si.

• ui,si : 1 if Firm i plays the strategy si ∈ Si with probability 0; 0 otherwise.

• b̄i: highest possible expected profit that Firm i can obtain given the competitor’s strategies.

∑
si∈Si

pi,si = 1, ∀i = 1, 2, (6)

bTi = πi · pTj ∀i = 1, 2; j 6= i, (7)

ri,si = b̄i − bi,si ∀si ∈ Si;∀i = 1, 2, (8)

pi,si ≤ 1− ui,si si ∈ Si; ∀i = 1, 2, (9)

ri,si ≤ π̄i · ui,si ∀si ∈ Si;∀i = 1, 2, (10)

pi, bi, b̄i, ri ≥ 0;ui ∈ {0, 1} ∀i = 1, 2. (11)

Constraint (6) ensures that pi is a valid probability distribution. Constraints (7) - (8) define the

regret of a strategy. Constraint (9) ensures that ui,s = 1 only if ps,i = 0. Constraint (10) states that

the regret of a strategy equals 0, unless the strategy is played with probability 0. Even though this

formulation characterizes an MNE, we can make it an NE by including the constraint pi ∈ {0, 1},∀i = 1, 2

in Sandholm’s formulation.

Sandholm’s formulation provides pricing strategies that represent specific equilibriums between firms.

For instance, solving the MIP models resulting from max(bi + bj) subject to (6) - (11) will lead to the

equilibrium that maximizes the firms’ joint profits. If we set the objective function min(bi + bj), the

equilibrium minimizes the firms’ joint profit. We can use other objective functions, including min(bi)

(minimizing the profit of a firm), max(bi) (maximizing the profit of a firm), and maxmin{bi, bj} (bal-

ancing the profits of the firms).

When modeling joint pricing and production/inventory planning, Sandholm’s formulation may become

computationally intensive, because the values |S1| and |S2| increase exponentially with N , K1 and K2.

Thus, the formulation consists of 3 · (KN
1 +KN

2 ) + 2 continuous variables and KN
1 +KN

2 binary variables.

Moreover, Sandholm’s formulation requires the full payoff mapping B as a parameter, which necessitates

the solution of 2 · (K1 ·K2)N LSP s.
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We propose a methodology that reduces the effort for computing an equilibrium between the firms’

price strategies. The methodology calculates either a NE or a MNE by comparing only the firms’ best

responses. Further, with the aim of shrinking the computation of a best response, we identify and discard

dominated strategies from the set of potential equilibriums, so that we reduce both the number of variables

of Sandholm’s formulation and the number of LSP s that should be solved. In Section 4 we describe and

analyze the problem of finding the best response to each competitor’s strategy.

Example 2. We continue with the same example introduced earlier. In order to reach a NE (or a MNE)

with Sandholm’s formulation, we have to compute for each firm the payoff resulting from 34× 34 = 6, 561

combinations of pure pricing strategies of Firm i and Firm j ,i.e., for any combination of pure pricing

strategies si and sj, we then compute the difference between the revenues derived from those strategies and

the optimal cost of the corresponding LSP.

Firm i Firm j

Max. Payoff Min. Payoff Max. Payoff Min. Payoff
si {3,3,3,3} {5,5,5,5} {5,5,5,5} {3,3,3,3}
sj {4,4,4,4} {2,2,2,2} {4,4,3,4} {2,3,4,4}

B(si, sj) 36 12 30 14.5
π 24 15.5

Table 1: The strategies defining the regret function

Table 1 summarizes the maximum and the minimum payoff that Firm i and Firm j can obtain when

planning pricing and operations. The rows si and sj represents the strategies that lead the corresponding

payoff. As we can observe in the Table 1, the maximum payoff for Firm i is 36 and the minimum is

12, so the maximum regret is bounded by the difference between both numbers; therefore, we set the value

of parameter πi to 36 − 12 = 24. In the same way, we fix the value of this parameter for Firm j to

πj = 30− 14.5 = 15.5.

The pricing strategies of the NE are si = {3, 4, 4, 4} and sj = {3, 3, 4, 3}, the demand derived from

those pricing strategies are di = {3.5, 2.5, 3.0, 2.5} and dj = {2.5, 3.0, 2.0, 3.0} ; the production planning of

Firm i consists of producing 6.0 units in period 1 and 5.5 units in period 3, i.e., xi = {6.0, 0.0, 5.5, 0.0} and

the production of firm j is given by xj = {2.5, 5.5, 0.0, 2.0}. The corresponding profits are Bi(si, sj) = 31.5

and Bj(si, sj) = 22.5.

4. Best Response Problem

We start by defining the best response of a firm to its competitor’s pure pricing strategy.

11



Definition 1. s∗i (sj) ∈ Si is the best response of the firm i to sj ∈ Sj when Bi(s
∗
i (sj), sj) ≥ Bi(si, sj), ∀si ∈

Si.

We formulate a MIP for obtaining s∗i (sj). To do so, we introduce the decision variable wi ∈ {0, 1}Ki×N ,

where wi,k,n is 1 if the firm i selects the price mi,k ∈ Mi for period n; 0 otherwise. We can express any

si ∈ Si as a linear combination of w, such that si,n(wi) =
∑Ki

k=1mi,k · wi,k,n. Then, we obtain the best

response to the competitor’s pricing strategy from the formulation (12) - (14).

maxwi Ri(si(wi), sj)− Coi (si(wi), sj) (12)

s.t.

Ki∑
k=1

wi,k,n = 1, ∀n = 1, ..., N, (13)

wi,k,n ∈ {0, 1} ∀n = 1, ..., N, ∀k = 1, ...,Ki. (14)

Expression (12) gives the firm’s maximum profit. Note that, Coi (si(w), sj) is the cost obtained by

Firm i when solving the LSP resulting from choosing strategies si(w) and sj . Constraints (13) - (14)

state that Firm i must select one and only one price per period.

Formulation (12)- (14) can help to reduce the computations of pricing equilibria, because it maps

the payoff of the relevant pricing strategies by solving (K1)N + (K2)N best response problems. As we

explained above, the full payoff computation, requires the solution of 2 · (K1 · K2)N LSP s. Moreover,

even though model (12) - (14) contains Ki · N new binary variables for each LSP , solving the problem

may require fewer computations than for the full payoff mapping, because the full mapping is an iterative

procedure that ignores the structure of the problem. Nevertheless, model (12) - (14) can express such a

structure by implementing simple, well-known algorithms, such as Branch & Bound or Branch & Cut.

In the following two sub-sections, we show how to reduce computations even more by eliminating

pricing strategies that can be shown not to be the best response to the competitor’s strategy.

First, by analyzing small variations on the pricing strategy selected by the firm, we identify the pricing

strategies that can be discarded as the best response to the competitor’s strategy. Given that the analysis

is born of the variations of the prices of the own firm, we call this active pruning.

Second, starting from the best response strategy to a given strategy of the competitor, we show how

we can use the optimality conditions of the best response strategy to discard strategies as a response to

small variations of the competitor’s strategy. Thus, we may avoid revising the full set of strategies if we

12



know the best response to a small variation of the competitor’s strategy. We call this reactive pruning, as

it is obtained from analyzing the variations of the prices of the competitor. We start by providing some

definitions to clarify our presentation.

Definition 2. λ(s′i, si, sj) is the difference between the minimum costs of the operations of Firm i when

choosing strategies si and s′i as responses to the pure pricing strategy sj ∈ Sj, i.e. λ(s′i, si, sj) = Coi (s′i, sj)−

Coi (si, sj).

Definition 3. τ(s′j , si, sj) is the difference between the minimum cost of the operations of Firm i by

selecting the pure pricing strategy si ∈ Si as a response to sj and s′j ∈ Sj, i.e. τ(s′j , si, sj) = Coi (si, s
′
j)−

Coi (si, sj).

Besides these definitions, we use φ(sj , n) =
αi,n+γi,n·sj,n

βi,n
and ∆(s′i, si) =

∑N
n=1(si,n − s′i,n), where

φ(sj , n) is the maximum price that Firm i can set in order to obtain non-negative demand in period n, given

that the competitor chooses the pricing strategy sj ; and ∆(s′i, si) corresponds to the sum of the difference

between the prices per period of the pure pricing strategies si and s′i (note that ∆(s′i, si) = si,n′ − s′i,n′ if

si,n = s′i,n,∀n 6= n′ ∧ si,n′ ≥ s′i,n′). We also assume that demand in a period cannot be negative for any

combination of pure pricing strategies.

4.1. Active Pruning

Given that the competitor chooses the pure pricing strategy sj ∈ Sj , we analyze the relative conve-

nience for Firm i of choosing between two pure pricing strategies. Firm i will prefer the pure pricing

strategy si to s′i when condition (15) holds, i.e. the additional revenues obtained through s′i does not

surpass the additional cost associated with such a strategy relative to si.

Ri(s
′
i, sj)−Ri(si, sj) < λi(s

′
i, si, sj). (15)

We cannot express equation (15) in a closed form, because it requires the solution of two LSP s.

Further, the complexity of solving an LSP increases with N , so we would like to avoid dealing directly

with an LSP . Hence, we obtain closed form bounds for λ(s′i, si, sj), and we derive sufficient conditions

for expression (15) to be satisfied.

Lemma 1. Given the pure pricing strategies si, s
′
i ∈ Si such that si,n = s′i,n, ∀n 6= n′ ∧ s′i,n′ ≤ si,n′, then

λ(s′i, si) and λ(s′i, si, sj) constitute lower and upper bounds for λ(s′i, si, sj), respectively, where
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λ(s′i, si) = ci · βi,n′ ·∆(s′i, si),

and

λ(s′i, si, sj) = λ(s′i, si) + min{hi · (n′ − 1) · βi,n′ ·∆(s′i, si)if ∃n ∈ [1, ni]|φ(sj , n) > mKi , fi}

Proof. Given that di,n(s′i, sj) = di,n(si, sj),∀n 6= n′ and di,n′(s
′
i, sj) ≥ di,n′(si, sj), if Firm i chooses s′i

instead of si, then its total production cost will increase by at least ci · (di,n′(s′i, sj)− di,n′(si, sj)).

The changes in the total setup and holding costs depend on the periods in which Firm i carries out

its production when choosing s′i. Although, such periods are unknown before the corresponding LSP is

solved, we can estimate the cost changes by analyzing the following scenarios:

• For the lowerbound, we consider only the production cost of the additional demand resulting from

the change in price in period n′ without considering any potential additional holding or setup cost.

This implies ci · (di,n′(s′i, sj)− di,n′(si, sj)) ≤ λ(s′i, si, sj). By replacing equation (1) on the left-hand

side of the last expression, we obtain λ(s′i, si).

• For the upperbound, we consider two cases:

– Given the strategy sj , the condition φ(sj , n) > mKi states there is a positive demand in period

1; thus the first scenario of the lowerbound assumes that at least one set-up occurs in interval

[1, n′]. In a pessimistic scenario, the last period in which a setup occurs is period 1; then the

additional demand can be satisfied from period 1. Producing for the additional demand at the

same time will lead to an additional holding cost of at least hi·(n′−1)·(di,n′(s′i, sj)−di,n′(si, sj)).

Thus, λ(s′i, si, sj) ≤ λ(s′i, si)+hi ·(n′−1) ·(di,n′(s′i, sj)−di,n′(si, sj)). By replacing equation (1)

in the right hand side of the last expression, we obtain the first case of λ(s′i, si, sj).

– We impose a production in period n′ and potentially incur the cost of an additional setup, but

avoid any holding cost.

Based on λ(s′i, si), we establish sufficient conditions to determine whether si or s′i is a better response

to a given strategy of the competitor, as we show in Theorem 1.
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Theorem 1. Given the pure pricing strategies si, s
′
i ∈ Si such that si,n = s′i,n, ∀n 6= n′ ∧ s′i,n′ ≤ si,n′, if

si,n′ + s′i,n′ ≤ φ(sj , n
′) + ci, then Firm i prefers si as a response to sj rather than s′i.

Proof. From expression (15), Firm i prefers si as a response to sj rather than s′i if Ri(s
′
i, sj)−Ri(si, sj) ≤

λi(s
′
i, si, sj). The left hand side of the expression corresponds to s′i,n′ ·di,n′(s′i, sj)−si,n′ ·di,n′(si, sj); λ(s′i, si)

constitutes a lower bound for the right hand side, then s′i,n′ · di,n′(s′i, sj) − si,n′ · di,n′(si, sj) ≤ λ(s′i, si)

establishes a sufficient condition for discarding s′i as a best response to sj . By using Lemma 1 and by

replacing equation (1) in the previous expression, we obtain the following expression:

−∆(s′i, si) · (αi,n′ + γi,n′ · sj,n′)− βi,n′ · (s′2i,n′ − s2
i,n′) ≤ ci · βi,n′ ·∆(s′i, si) (16)

By dividing the previous inequality by βi,n′ we obtain the following expression (note that we re-write

(s′2i,n′ − s2
i,n′) as −∆(s′i, si) · (si,n′ + s′i,n′)):

−∆(s′i, si) · φ(sj , n
′) + ∆(s′i, si) · (s′i,n′ + si,n′) ≤ ci ·∆(s′i, si) (17)

By simplifying ∆(s′i, si) from both sides of the previous inequality, we obtain the condition introduced

in Theorem 1.

From Theorem 1 we derive conditions for selecting or discarding prices as part of a best response

strategy, as we show in Corollary 1.

Corollary 1. Given that Firm j chooses the pure pricing strategy sj ∈ Sj, if mi,Ki+mi,Ki−1 ≤ φ(sj , n)+ci,

then the best response of Firm i consists of setting the highest price for period n; if mi,ki+1 + mi,ki ≤

φ(sj , n) + ci, then the best response of Firm i discards any price lower than mi,ki+1 for period n.

Proof. From Theorem 1, si,n′ + s′i,n′ ≤ φ(sj , n
′) + ci establishes that Firm i should prefer price si,n′ rather

than s′i,n′ in period n′ when responding to sj . The left-hand side of this expression increases with prices,

which leads to two statements: (i) the maximum of that sum occurs for si,n′ = mi,Ki and s′i,n′ = mi,Ki−1,

so if mi,Ki +mi,Ki−1 ≤ φ(sj , n) + ci holds, then Firm i prefers mi,Ki to any other price in period n; and

(ii) mi,ki+1 +mi,ki ≥ mi,koi +1 +mi,koi
for koi < ki, so if mi,ki+1 +mi,ki ≤ φ(sj , n) + ci, then Firm i discards

any price lower than mi,ki+1 in period n.

In a similar fashion to Theorem 1, we use λ(s′i, si, sj) to establish adequate conditions for determining

whether si or s′i is a better response to a particular strategy of the competitor, as we show in Theorem 2.
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Theorem 2. Given the pure pricing strategies si, s
′
i ∈ Si such that si,n = s′i,n, ∀n 6= n′ ∧ s′i,n′ ≤ si,n′ and

sj ∈ Sj, if si,n′ + s′i,n′ ≥
λ(s′i,si,sj)

βi,n′ ·∆(s′i,si)
+ φ(sj , n

′), then Firm i prefers s′i as a response to sj rather than si.

Proof. From expression (15), if Ri(s
′
i, sj) − Ri(si, sj) ≥ λ(s′i, si, sj), then Firm i prefers s′i as a response

to sj rather than si. Given that λ(s′i,n′ , si,n′ , sj) represents an upper bound of the right-hand side of the

previous expression, Ri(s
′
i, sj)−Ri(si, sj) ≥ λ(s′i, si, sj) is sufficient to discard si as a best response to sj .

By replacing equation (1) in the previous expression, we obtain the condition presented in Theorem 2.

Based on Theorem 2, we derive additional conditions for selecting and discarding the prices contained

in the best response strategy, as we show in Corollary 2.

Corollary 2. (a) Given that Firm j chooses the pure pricing strategy sj ∈ Sj, if n ≤ 1+
mi,1+mi,2−ci−φ(sj ,n)

hi
,

then the best response of Firm i consists of setting the lowest price for the period n; if n ≤ 1 +

mi,k+mi,k+1−ci−φ(sj ,n)
hi

, then the best response of Firm i discards any price higher than mi,k for the pe-

riod n.

(b) Given that Firm j chooses the pure pricing strategy sj ∈ Sj, if mi,1 + mi,2 − ci − φ(sj , n) ≥
fi

βi,n·(mi,2−mi,1) , then the best response of Firm i consist of setting the lowest price for the period n; if

mi,k +mi,k+1− ci−φ(sj , n) ≥ fi
βi.n·(mi,k+1−mi,k) , then the best response of Firm i discards any price higher

than mi,k for the period n.

Proof. From Theorem 2, si,n′ + s′i,n′ ≥
λ(s′i,si,sj)

βi,n′ ·∆(s′i,si)
+ φ(sj , n

′) establishes that Firm i should prefer price

s′i,n′ to si,n′ in period n′ when responding to the pure pricing strategy sj . The left-hand side of such

condition increases with the prices, which leads to two statements: (i) the minimum of that sum occurs

for si,n′ = mi,2 and s′i,n′ = mi,1, so if mi,2 +mi,1 ≥
λ(s′i,si,sj)

βi,n′ ·∆(s′i,si)
+ φ(sj , n

′) holds, then Firm i prefers mi,1

to any other price in period n; and (ii) mi,ki+1 +mi,ki ≤ mi,koi +1 +mi,koi
for koi > ki, so if mi,ki+1 +mi,ki ≥

λ(s′i,si,sj)
βi,n′ ·∆(s′i,si)

+ φ(sj , n
′), then Firm i discards any price higher than mi,ki in period n.

If now we take the second scenario of λ(s′i, si, sj) in Lemma 1 into consideration, we can derive part

(b) of the corollary in a similar fashion.

We can use the results of Corollary 1 and Corollary 2 to reduce the number of binary variables of

the best response formulation. Therefore, when we are certain that the best response to the competitor’s

pricing strategy consists in setting price mi,k in period n, the decision for that period is avoided. When

we are certain that the best response to the competitor’s pricing strategy discards prices lower than mk

in period n, we add the constraint wi,k′,n = 0,∀k′ < k in model (12)- (14). When we are certain that the
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best response to the competitor’s pricing strategy discards prices higher than mi,k in period n, we add

the constraint wi,k′,n = 0,∀k′ > k in model (12)- (14).

Example 3. Consider Firm i and Firm j of our example. Table 2 summarizes the parameters of Corol-

lary 1, where row αi,n = 5 corresponds to period 1,3 and 4, and αi,n = 10 corresponds to period 2.

αi,n mi,1 +mi,2 mi,2 +mi,3
φ(sj , n

′) + ci
sj,n′ = 2 sj,n′ = 3 sj,n′ = 4

5 7 9 6 6.5 7
10 7 9 11 11.5 12

Table 2: Data for Corrolary 1 for Firm i

From Table 2, we observe that mi,1 +mi,2 ≤ φ(sj , n
′) + ci for αi,n = 5 and sj,n′ = 4, thus we discard

price any pure pricing strategy that contains the price 3 in periods 1,3 or 4 from the set of potential

best responses. Note that for period 2, the condition of the Corollary 1 are not met, so no price can be

discarded.

Table 3 shows similar analysis for Firm j. In this case, we discard any pure pricing strategy that

contains the price 2 from the set of potential best responses.

αj,n mj,1 +mj,2 mj,2 +mj,3
φ(si, n

′) + c
si,n′ = 3 si,n′ = 4 si,n′ = 5

4 5 7 5.5 6 6.5

Table 3: Data for Corrolary 1 for Firm j

4.2. Reactive Pruning

Next, we determine whether si is the best response to s′j , given that s′j results from increasing (or

decreasing) the price in one period with respect to sj and si is the best response to sj . We start by

proposing upper and lower bounds for τ(s′j , si, sj) in Lemma 2.

Lemma 2. Given the competitor’s pure pricing strategies sj , s
′
j ∈ Sj such that sj(n) = s′j(n),∀n 6=

n′ ∧ sj(n′) < s′j(n
′) and let ñ be the last period of interval [1, n′] in which Firm i produces when imple-

menting the best response to sj, τ(s′j , sj) and τ(s′j , si, sj) constitute lower and upper bounds for τ(s′j , si, sj),

respectively, where

τ(s′j , sj) = ci · γi,n′ ·∆(sj , s
′
j),
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and

τ(s′j , sj) = τ(s′j , sj) + min
{
hi · (n′ − ñ) · γi,n′ ·∆(sj , s

′
j), fi

}
,

Proof. Since di,n(si, sj) = di,n(si, s
′
j),∀n 6= n′ and di,n′(si, sj) ≤ di,n′(si, s′j), if the competitor changes its

strategy from sj to s′j , the total unit production cost of Firm i will increase by at least ci · (di,n′(si, s′j)−

di,n′(si, sj)). In an optimistic scenario, the setup and holding costs will remain identical to those obtained

when responding to sj ; so, the increase of the total unit production cost is a lower bound for τ(s′j , si, sj).

We obtain τ(s′j , sj) by replacing equation (1) in ci · (di,n′(si, s′j)− di,n′(si, sj)).

We now estimate the changes in setup and holding costs for less optimistic scenarios. A first alternative

is to increase the production of ñ; the number of setups does not increase, so the total cost increases by

τ(s′j , sj) + hi · (n′ − ñ) · γi,n′ · ∆(sj , s
′
j). A second alternative is to produce in period n′ to meet the

additional demand in that period. The holding cost does not vary, but a new set-up occurs, so the total

cost increases by τ(s′j , sj) + fi. Both cases provide upper bounds for τ(s′j , si, sj).

Once we obtain the best response to a competitor’s pure pricing strategy, we can use Lemma 2 to

obtain upper and lower bounds for the best response when the competitor’s varies its price in one period,

as we show in Theorem 3.

Theorem 3. Let ñ be the last period of interval [1, n′] in which Firm i produces when implementing the

best response to sj ∈ Sj, (a) if the competitor increases its price in period n′ with respect to sj, then the

price of the new best response in period n′ is greater than or equal to s∗i,n′(sj) − hi · (n′ − ñ); (b) if the

competitor decreases its price in period n′ with respect to sj, then the price of the new best response in

period n′ is less than or equal to s∗i,n′(sj) + hi · (n′ − ñ).

Proof. Given sj , let s′j be the pure pricing strategy resulting from increasing the price in period n′; Firm

i will prefer s∗i (sj) to any si ∈ Si as a response to s′j when condition Bi(s
∗
i (sj), s

′
j) ≥ Bi(si, s′j), holds. We

can re-write the previous expression as follows.

Bi(s
∗
i (sj), sj) + γi,n′ ·∆(sj , s

′
j) · (s∗i,n′(sj)− si,n′) ≥

Bi(si, sj) + τ(s′j , s
∗
i (sj), sj)− τ(s′j , si, sj).

(18)

From Definition 1, Bi(s
∗
i (sj), sj) ≥ Bi(si, sj),∀si ∈ Si. Hence, expression (19) is a sufficient condition

for satisfying expression (18).
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γi,n′ ·∆(sj , s
′
j) · (s∗i (sj)− si,n′) ≥ τ(s′j , s

∗
i (sj), sj)− τ(s′j , si, sj). (19)

Moreover, Lemma 2 establishes that τ(s′j , sj) ≥ τ(s′j , s
∗
i (sj), sj) and τ(s′j , sj) ≤ τ(s′j , si(sj), sj), thus

τ(s′j , sj)− τ(s′j , sj) is an upper bound for the right-hand side of expression (19). So, expression (20) is a

sufficient condition for (19).

γi,n′ ·∆(sj , s
′
j) · (s∗i,n′(sj)− si,n′) ≥ hi(n′ − ñ) · γi,n′ ·∆(sj , s

′
j). (20)

By reorganizing expression (20), we obtain s∗i,n′(sj)− hi · (n′ − ñ) ≥ si,n′ . The proof for the part (b)

of the theorem is derived in a similar fashion.

As for the active pruning, we can use the results of Theorem 3 to reduce the number of binary variables

used in the best response problem. Furthermore, the reactive pruning may provide a new best response

based on a subset of already computed best responses. We may therefore calculate the pricing equilibrium

between firms by performing a partial revision of the competitor’s pure pricing strategies, as we explain

in Section 5.

5. Obtaining a Nash Equilibrium

In this section we explain how to implement the models and the active and reactive pruning introduced

in Section 3 and Section 4 to reduce the computations for price equilibrium between firms. We propose

and compare three approaches for constructing the payoff matrices: Best Response (Approach BR),

Active Pruning (Approach AP ) and Full Pruning (Approach FP ). The three approaches provide the

same pricing equilibrium, but the computational time may vary between them. Here, we describe each

approach.

• Approach BR limits the payoff mapping to the best responses for each competitor’s pure pricing

strategy. We use model (12) - (14) to compute these best responses. Based on the partial payoff

mapping that contains only best responses, we use formulation (6) - (11) to compute the equilibrium.

• Approach AP is similar to Approach BR, but now we take the results of Corollaries 1 - 2 into

account. Thus, before solving model (12) - (14), we set the value of certain binary variables either

to 0 or 1 according to the conditions derived from those corollaries. Then, we may reduce the time

for getting the solution of this model.
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• Approach FP also includes the conditions derived in Corollaries 1 - 2, but in addition it takes the

reactive pruning derived of Theorem 3 into account when we explore the competitor’s pure pricing

strategies.

Note that, the computations involved in Approach FP depends on the sequence used to revise the

competitor’s pure pricing strategies. We propose a sequence that increases the number of prices that can

be pruned when solving the best response problem. In order to illustrate the dynamics of the proposed

sequence, we use Figure 1a to represent such sequence when the problem consists of two periods (N = 2)

and the firms can choose the pricing from a set consisting of three prices (Ki = Kj = 3). Each cell

symbolizes the competitor’s pure pricing strategy, where [a, b] denotes the price selected by the competitor

for period 1 and period 2, and the number between ‘()’represents the position in the sequence of revision.

Our sequence consists of the following steps.

1. We start by solving the best response problem for the scenario in which the competitor sets the

lowest price in each period, i.e., we obtain s∗i (sj)|sj,n = mj,1, ∀n. Based on s∗i (sj), we establish

lower bounds for the best responses when the competitor increases the price in a single period. In

our example, we start the revision for the cell containing the number ‘(1)’. Once we solve the best

response problem for that cell, we can set lower bounds for the best response problems of cells ‘(2)’,

‘(3)’, ‘(4)’and ‘(7)’(red dashed lines).

2. We solve the best response problem when the competitor increases the price to its highest value

in period 1, i.e., we obtain s∗i (sj)|sj,n = mj,1, for n 6= 1 ∧ sj,1 = mj,Kj . Based on that response,

we establish upper bounds for the best responses to the competitor’s strategies where the price of

period 1 is decreased, and lower bounds for the best responses when the competitor increases the

price of another period. In our example, we continue revising the cell with the number ‘(2)’. Note

that, when solving the best response problem for that cell we take into consideration the lower

bound we established in Step 1. Based on the obtained solution, we set lower bounds for the best

response problems of cells ‘(8)’and ‘(5)’(red dashed line), and upper bounds for the best response

problems of cell ‘(3)’(green dashed lines).

3. We solve the best response problem when the competitor sets a “medium”price in period 1, i.e.,

we obtain s∗i (sj)|sj,n = mj,1, for n 6= 1 ∧ sj,1 = m
j,d

Kj
2
e
. For solving the problem, we take the

already calculated lower and upper bounds into account. In the same fashion as in Steps 1 and

2, we establish upper and lower bounds for other best responses. In our example, we solve the
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best response problem of cell ‘(3)’by including the lower bound obtained in Step 1 and the upper

bound of Step 2. Based on the obtained solution, we determine lower bounds for the best response

problems of cells ‘(6)’and ‘(9)’. For the case Ki > 3, the step continues by setting the price in period

1 to the two “medium”prices between mj,1 and m
j,d

Kj
2
e
, and m

j,d
Kj
2
e

and mj,Kj . We repeat this

procedure until we have revised all the prices of period 1.

Step 4 and 5 should be performed sequentially for periods n̂ = 2..., N .

4. We revise the strategy in which the competitor sets the highest price in period n̂, but the rest of the

prices remains in their lowest value, that is, we obtain s∗i (sj)|sj,n = mj,1, for n 6= n̂ ∧ sj,n̂ = mj,Kj .

We repeat step 1 and 2, but we substitute period 1 by period n̂. In our example, we solve the best

response problems of cells ‘(4)’, ‘(5)’, and ‘(6)’.

5. We calculate the best response problems for the competitor’s pricing strategy corresponding to the

lowest price for period n̂, and later for all the resulting “medium”prices until we have revised all

the prices of period n̂. In our example, we solve the best response problems of cells ‘(7)’, ‘(8)’, and

‘(9)’.

(a) Proposed Sequence. (b) Ordinal Sequence.

Figure 1: Sequence for revising pure pricing strategies of the competitor.

It is interesting to point out that the proposed sequence allows to solve some competitor’s pure

pricing strategies when upper and lower bounds are already calculated (e.g. when solving the pricing

strategy [mj,1,mj,2] of Figure 1a). If the bounds are tight, the best response arises from such bounds,

and consequently, there is not need for solving the corresponding best response problem. This advantage

does not occur when we revise the competitor’s pure pricing strategies in an ordinal sequence, as we show

in Figure 1b. Hence, our sequence reduces the computations for a pricing equilibrium rather than the
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ordinal sequence.

6. Comparison of solution methods

In this section we investigate the efficiency of the approaches introduced in Section 5. In particular,

we aim to get insights about the following aspect of the LSP under price competition:

• The computational time for obtaining payoff matrices by implementing the Approach BR, Approach

AP and Approach FP .

• The sensitivity of the computational time to the length of the horizon and the number of possible

prices.

Our experiments consider identical firms, i.e., the operations, the set of available prices and the demand

functions are characterized by identical parameters for both firms. We derive the NE that maximizes the

sum of the profit of the firms, in other words, we maximize max(bi + bj) subject to the constraints (6) -

(11). If such equilibrium does not exist, then we compute an MNE. We implemented the tests in the Java

language. The computer used was a 6-Core Intel Xeon 2× 2.66 GHz with 48 GB of RAM. MIP problems

are solved using Gurobi 4.6.1 (http://www.gurobi.com/).

6.1. Instance setting

In order to cover a broad spectrum of operational, pricing and demand scenarios, we analyze 1,792

instances, that result from the full factorial combination of the following values of the parameters of the

problem. We represent the operations of the firms by: N = 2, ..., 7; fi = {2.00, 8.00} and hi = {0.20, 1.00}.

Without loss of generality, we set the unit production cost of the items to 0, indeed, we can assume that

the set of prices already discounted this cost. We set the number of prices that firms can choose in each

period to Ki = 3. Moreover, we consider two more parameters when setting the prices of an instance: the

lowest price (mi,1) and the difference between two consecutive prices (dpi). We study instances in which

mi,1 = {1, 2} and dpi = {1, 2}. In terms of the demand function, we vary the sensitivity parameters as

follows: βi,n = {0.66, 2.66}; γi,n = {0.20 ·βi,n, 0.80 ·βi,n}; note that, it is natural to assume that γi,n ≤ βi,n

since in general the demand for a product is more sensitive to its own price. Further, we use parameter

d = {0.40, 1.60} for representing the minimum demand in each period; so, any pair of pricing strategies

leads to non negative demand.
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6.2. Computational time

We compare the computational time when implementing Approach BR, Approach AP and Approach

FP . Our initial concern lies on measuring how the computational time grows with the length of the

horizon. Table 4 summarizes the average computational time for calculating payoff matrices when im-

plementing the approaches studied. We include a column representing the number of pricing strategies

revised when implementing the corresponding approach. Thus, the values on that column for Approach

BR correspond to twice the number of pricing strategies of the competitor, i.e. 2 ·KN
i (we multiply by

two because the problem is solved for the two firms). If we use a full inspection of the combination of the

pricing strategies of the firms such values increases to K2N
i . Therefore, implementing a full inspection is

pointless as the value of N increases. Further, the last column of Table 4 represents the average time for

computing the NE (or MNE) based on constraints (6) - (11).

Approach
BR AP FP NE

N Time Rev. strategies Time Rev. strategies Time Rev. strategies Time

2 0.10 18 0.04 4.2 0.01 1.50 0.00
3 0.34 54 0.16 10.5 0.03 6.7 0.00
4 1.73 182 0.83 74.6 0.11 42.8 0.01
5 9.31 486 6.19 245.6 0.59 130.0 0.01
6 80.32 1,458 29.84 770.8 2.96 392.2 0.06
7 176.18 4,374 108.26 2,398.4 15.68 1,070.6 0.52

Table 4: Average Computational Time (in seconds) and Average Revised Pricing Strategies for Different Approaches and
Different Horizon Lengths.

The first column of Table 4 provides evidence of the exponential growth of the computational time

of Approach BR as the number of periods increases. Such time is significant in comparison to the one

needed for obtaining NE from the resulting payoff matrix (last column in Table 4), thus any effort for

speed up the pricing problem under competition should focus on the matrix construction. In this sense,

implementing Approach AP reduces the computational time because such approach shrinks the space of

potential best responses to the competitor’s pure pricing strategies. However, the most remarkable result

exposed in Table 4 is the significant time reduction when taking into consideration the solution of the

already revised best response problems (Approach FP ); computing a full payoff matrix requires revising

a fraction of the full set of pure pricing strategies. Although Approach FP may not be able to determine

some of the best responses in advance, it reduces the time for computing the best pricing, because the

space of feasible solutions is shrunk by including the constraints we derived in Section 4.
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Further, we study the robustness of the time savings due to Approach FP across different instances of

the problem. With this in mind, we analyze the distribution of the computational time. In particular, me

measure the time for solving each instance for Approach BR, Approach AP and Approach FP . Figure 2

shows the distribution of the computational time of Approach AP and Approach FP as a percentage

of the computational time of Approach BR. In this figure we present the results in a box and whiskers

format: the upper and the lower bounds of the boxes represent the percentile 25 and 75 of the percentages,

respectively; the upper and the lower whiskers correspond to the percentile 5 and 95 of the percentages;

the markers are the average values obtained for the relative running times.

(a) Approach AP . (b) Approach FP .

Figure 2: Computational Time Savings in Comparison to Approach FP .

Figure 2a shows that the number of instances where Approach BR outperforms Approach AP increases

with the horizon length. This means that the additional computation for discarding prices of Approach

AP does not compensate the computational time of implementing that approach. A different pattern is

observed for Approach FP . Figure 2b shows that the computation time speed up factor is not affected

by the problem size, because the additional computations required for implementing the lower and upper

bounds of Approach FP are compensated by the fact that many best response problems do not need to

be solved. Given the clear dominance of implementing Approach FP in comparison to Approach AP , in

the rest of the analysis of this paper we omit the results for that last approach.

Because measuring the computational time of Approach BR is quickly becoming prohibitive for long

horizons, we estimate how fast each approach revises and solves the best response problem. Thus, for

the instances studied we run each approach for 10 seconds and we compute the number of solved best

response problems as a percentage of the total number of competitor’s pure pricing strategies that need

to be considered, from hereon denoted %rs. Table 5 shows the average values of %rs in our experiments.

This table underscores the limitations of Approach BR for addressing larger instances and how Approach
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FP can construct a big portion of the payoff matrix in a short time.

Based on the values of %rs we can forecast the time it will take to fulfill the payoff matrices of

the firms. With this in mind, we use 10
60·%rs to estimate the time (in minutes) for full-filling the payoff

matrices. Figure 3 summarizes the estimated time in our experiments. As we can observe, Approach

BR results in prohibitive computational times as the size of the instance grows. Approach FP is highly

efficient in reducing such time; for instance, when the horizon consists of 12 periods the expected time

for implementing Approach BR is 879 minutes, that is significantly higher than the time for Approach

FP (2.24 minutes). Note that, the way we compute the expected time represents a pessimistic scenario

for Approach FP , because this approach saves time from the information that we can extract from

already appraised best response problems, this is not taken into account in our simple extrapolation of

the computational time, and therefore, we can expect even faster computational times in practice.

N Approach BR Approach FP
7 14.25 % 43.25 %
8 2.49 % 36.64 %
9 0.68 % 32.06 %
10 0.16 % 25.19 %
11 0.07 % 22.90 %
12 0.02 % 7.43 %

Table 5: Average Percentage of Revised Pricing Strategies in 10 Seconds For Long Horizons Lengths

Figure 3: Estimated Computational Time for Computing Payoff Matrices For Long Horizons Lengths.

Further, we compare the computational times when implementing Approach BR and Approach FP

for different sizes of the set of available prices. In our experiments we consider the instances defined

above, but now we vary the number of available prices in the range Ki = {2, 3, 4}, and we set the

horizon to N = 6 periods. Thus, this experiment consists of solving 144 instances for each value of
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Ki = {2, 3, 4}. Table 6 summarizes the average computational time for calculating the payoff matrices

in our experiment. For each approach we include a column representing the number of pricing strategies

considered when implementing the corresponding approach. Again, Approach FP reports significant time

savings in comparison to Approach BR.

Approach
BR FP NE

Ki Time Rev. strategies Time Rev. strategies Time

2 0.46 128 0.03 10.5 0.02
3 29.46 1,458 3.56 165.3 0.04
4 453.83 8,192 4.25 294.14 0.07

Table 6: Average Computational Time (in seconds) and Average Revised Pricing Strategies for Different Approaches and
Different Cardinality of Set of Potential Prices.

7. Managerial Insights

In this section we show the potential usefulness of our model through illustrative examples of com-

petitive situations that might arise in real life. In particular we look at the following questions.

• The effect of implementing a constant price policy on the profits of the firms. Our analysis provides

evidence about the potential gains due to dynamic pricing.

• The effect of incorporating competitor’s decision on the decision making of a firm.

We will start by using our example to illustrate the dynamics that result from dynamic pricing and

lot sizing when one of the firms faces a demand surge.

Example 4. Consider Firm i and Firm j of Example 1 , but now assume αi,2 = 10, i.e. Firm i

faces a peak of demand in the second period of the horizon. If both firms do not change the pricing

strategies they choose in Example 1, the profit of Firm i will be 53 and the profit of Firm j will not vary.

Nevertheless, the Firm i can use the fact that its demand tends to be higher in period 2, consequently,

the pricing and planning of the firms may vary. Thus, the pair of pure pricing strategies si = {3, 5, 4, 4}

and sj = {3, 4, 3, 4} constitutes a NE. Given the new pricing, the demands faced by the firms are di =

{3.5, 7.0, 2.5, 3.0} and dj = {2.5, 2.5, 3.0, 2.0}. Thus, the production planning of both firms vary with

respect to Example 1: xi = {3.5, 9.5, 0.0, 3.0} and xj = {5.0, 0.0, 5.0, 0.0}. The new profits are Bi(si, sj) =

56.0 and Bj(si, sj) = 24.0, which are higher than the profits that both firms can obtain by keeping the

pricing strategies of Example 1.
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7.1. Static versus Dynamic pricing

We analyze how a dynamic pricing strategy can increase the profits of the firm in comparison to

setting a static price for the whole horizon. To do so, we compute the profit of a firm for three types of

experiments: (i) both competitors set static pricing strategies; (ii) both competitors set dynamic pricing

strategies; (iii) the firm for whom we estimate profits sets a static pricing strategy and its competitor

sets dynamic pricing. We use bSS , bDD and bSD to denote the profits obtained by a firm for experiments

(i), (ii), and (iii), respectively. Note that, bSD corresponds to the natural benchmark for dynamic pricing

strategies, because a firm can control its own strategy, but it cannot influence on the type of strategy of its

competitor. Nevertheless, we also compare dynamic pricing strategies with bSS , even though implementing

simultaneously static pricing strategies requires coordinated pricing between competitors, that in real-

business environments may be penalized as a collusive initiative.

Figure 4: Profits for Dynamic and Static Pricing Stategies.

Figure 4 shows the results of our experiments for the instances used in this section and the horizon

N = 6. The x-axis of Figure 4 represents the percentage of increase of profits when implementing

dynamic pricing strategies in comparison to setting a static price for the whole horizon (when competitor

may implement a dynamic pricing strategy). As we can observe from the figure, in almost all the instances

that we tested (just with the exception of one), a firm increases its profit when setting a dynamic pricing

strategy. On average, the dynamic pricing strategy increases the profit of a firm on 4.9% in comparison

to a static pricing strategy. The y-axis of Figure 4 represents the percentage of increase of profits when

27



both competitors set static pricing strategies in comparison to setting a static price for the whole horizon

(when competitor may implement a dynamic pricing strategy). As we can observe from the figure, for

certain instances the static pricing strategies may lead to larger profits than dynamic pricing strategies

(crosses above the dashed line), but again, the result is a theoretical exercise because in practice the

simultaneous static pricing may be infeasible. Moreover in many instances setting a static pricing may

hurt the firm if the competitor changes to a dynamic pricing strategy (crosses belox the horizontal axis).

7.2. Effect of modeling competition

Our analysis continues by measuring the impact of addressing competitor’s decisions into the pricing

and production/inventory planning. To do so, we compute the profits of Firm 1 when this firm makes

pricing and production/inventory planning without taking its competitor’s decisions into account. In order

to model the demand function of Firm 1, we fix the values of the competitor’s prices on equation (1),

and afterwards, we solve the corresponding best response problem. Contrary to Firm 1, we assume that

Firm 2 addresses the decisions of Firm 1. We model the pricing and planning of Firm 2 by solving

the best response problem to the pricing strategy of Firm 1. Note that, even though Firm 1 overlooks

competitors’ decisions, its actual revenues depends on the demand derived from the pricing strategies of

both firms. Moreover, the actual cost of Firm 1 is derived from the observed demand and the already

planned production/inventory planning.

(a) (b)

Figure 5: Effect of Modelling Competition.

Figure 5 summarizes the results for Firm 1 and Firm 2 for the instances used in this section and the

horizon N = 6. In order to represent the decisions of Firm 1, we randomly set its competitor’s price.
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In Figure 5a we provide a histogram of the observed gains of Firm 2 (b2) in comparison to Firm 1 (b1).

From the figure we get evidence that missing competitor’s decisions can significantly hurt the profits of

the firms; on average, the profits of Firm 2 are 12.7% higher than for Firm 1 in our experiments. In

Figure 5b we provide a histogram of the observed ratio between the profit of Firm 2 (b2) in comparison to

the profits obtained when both firms consider competitor’s actions (bDD). The figure shows that taking

competitor’s decisions into account leads to revenues whose magnitude does not vary significantly with

how the competitors makes decisions; on average, b2 capture 96.0% of the profits derived from bDD.

Moreover, in some instances, Firm 2 gain from the fact that the competitor has a myopic pricing strategy

in such a way the profits are even higher than bDD.

8. Summary and Conclusions

We study the joint pricing and production/inventory planning when two firms manufacture and sell

mutually substitutable products. Our modelling is based on two premises: there is a discrete set of

prices firms can use for each period; and the production/inventory decisions of each firm can be modelled

by an LSP. Even though we can solve a sequence of MIP models for finding the pricing strategies that

constitute an NE, the computation of such an equilibrium requires the full mapping of the firms’ payoffs,

which increases exponentially with the length of the horizon and the number of available prices. We

propose a method that discards pricing strategies not leading to an NE before computation. Our method

consists of two steps. In the first, we characterize the pricing strategies of a firm that constitute the set of

best responses to the competitor’s strategies. In the second, we calculate the NE for the pricing strategies

obtained in the previous step. Our numerical experiments show that computational time is significantly

reduced by the implementation of our method rather than a full mapping of the firms’ payoffs.

Although our findings are limited to two competitors, our method can easily be extended to scenarios

with more competitors. Indeed, we could expect that the savings in computational time become even

more significant in such scenarios, due to the exponential increase of the potential combinations of prices.

Moreover, even though we assume a linear relationship between demand and prices, our method suits

other types of demand functions.

One of the main contributions of this paper is that it reduces the decision-making cycle between

Marketing and Operations departments. When these departments make their decisions independently

of each other, inefficiency arises because the operations department may not be able to produce what

marketing offers the customers, and/or the pricing leads to revenues that do not cover production costs.
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In order to reduce such inefficiency, a cycle of information and decision-making is required across the

firm’s departments, but this cycle can result in additional work and slower response to customers. Given

that we propose a joint approach for pricing and operational planning, this paper fosters synchronized

decision-making between departments providing the firm with optimal overall decisions.

The solution discussed in this paper helps to avoid making decisions that overlook the impact of the

business environment. Since we model pricing and operations in competitive environments, the pricing

strategies derived from our method withstand the effect of interaction with other firms. Although previous

research has addressed pricing under competition, we go further by including operations planning on the

competitive interactions of the firm.

This paper can also be of interest to firms launching new products in competitive markets, because the

demand for new products is in general highly sensitive to the posted price. Decision makers can use joint

dynamic pricing and production/inventory planning to learn about the demand. Thus, pricing, planning

and actual demand from previous periods could be used to calibrate the model for the price sensitivity

of the demand.

Our work opens interesting research avenues. First, a natural extension of our work is to study

the capacitated version of the lot-sizing problem. In this line, it could be interesting to incorporate

well-studied valid inequalities for making the computations of the LSP faster and to link them with the

pricing of the firm and competitors. Second, it would be useful to examine the trade-off between price

and delivery time when working in a competitive environment. In practice, customer demand depends on

the price, but it can also depend on other factors, such as the promised delivery time. In that scenario,

promising a shorter time will bring more demand. However, this will require additional efforts when

managing operations. Another way to extend this research would be to study how to obtain an NE when

the firms have incomplete information about their competitor’s strategies. The procedure for obtaining

such an NE has a similar structure to the problem we study. However, the complexity of reaching the

equilibrium will increase due to the uncertainty. Finally, we believe is interesting to analyze pricing

equilibrium under competition with uncertain demands. We perceive two options for planning operations

under such uncertainty: (i) to model the operations of each firm as a Stochastic LSP (see e.g. Guan et al.

(2006)) in which the demand is modeled as a probability distribution, (ii) to assume that the demand will

be in a certain range of values, and model the operations of a firm as a Robust LSP (see e.g. Bertsimas

and Thiele (2006)).
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