
A Hybrid Feasibility Constraints-Guided Search to the
Two-Dimensional Bin Packing Problem with Due Dates

Sergey Polyakovskiya, Rym M’Hallahb,∗

aOptimisation and Logistics Group, School of Computer Science, University of Adelaide,
Australia.

bDepartment of Statistics and Operations Research, College of Science, Kuwait University,
P.O. Box 5969, Safat 13060, Kuwait.

Abstract

The two-dimensional non-oriented bin packing problem with due dates packs
a set of rectangular items, which may be rotated by 90 degrees, into identical
rectangular bins. The bins have equal processing times. An item’s lateness is the
difference between its due date and the completion time of its bin. The problem
packs all items without overlap as to minimize maximum lateness Lmax.

The paper proposes a tight lower bound that enhances an existing bound
on Lmax by 31.30% for 24.07% of the benchmark instances and matches it in
30.87% cases. Moreover, it models the problem via mixed integer programming
(MIP), and solves small-sized instances exactly using CPLEX. It approximately
solves larger-sized instances using a two-stage heuristic. The first stage con-
structs an initial solution via a first-fit heuristic that applies an iterative con-
straint programming (CP)-based neighborhood search. The second stage, which
is iterative too, approximately solves a series of assignment low-level MIPs that
are guided by feasibility constraints. It then enhances the solution via a high-
level random local search. The approximate approach improves existing upper
bounds by 27.45% on average, and obtains the optimum for 33.93% of the in-
stances. Overall, the exact and approximate approaches find the optimum in
39.07% cases.

The proposed approach is applicable to complex problems. It applies CP
and MIP sequentially, while exploring their advantages, and hybridizes heuris-
tic search with MIP. It embeds a new lookahead strategy that guards against
infeasible search directions and constrains the search to improving directions
only; thus, differs from traditional lookahead beam searches.
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1. Introduction

Bin packing (BP) is a classical stronglyNP-hard combinatorial optimization
problem (Jansen & Pradel, 2016; Johnson et al., 1974). It consists in packing a
set of items into as few bins as possible. Because of its prevalence in industry,
BP has engendered many variants. Some variants impose additional constraints
on the packing of the items or on the types of bins such as the oriented, or-
thogonal, guillotine, and variable-sized BP. More recent variants combine BP
with further complicating combinatorial aspects. For example, BP appears in
combination with routing problems: minimizing transportation costs subject to
loading constraints (Iori & Martello, 2013). It also emerges in lock scheduling
(Verstichel et al., 2015) where lockages are scheduled, chambers are assigned to
ships, and ships are positioned into chambers.

Following this trend, this paper addresses the non-oriented two-dimensio-
nal BP problem where items have due dates. This problem, denoted hereafter
2BPP with DD, searches for a feasible packing of a given set of n rectangular
items into a set of at most b ≤ n identical rectangular bins, and schedules
their packing as to minimize the maximum lateness Lmax of the items. Each
item is characterized by its width, height, and due date. Its lateness is the
difference between its completion time and its due date, where its completion
time is that of its assigned bin. All bins’ processing times are equal regardless
of their assigned items. This problem is common in make-to-order low-volume
production systems such as the high-fashion apparel industry and food delivery.
In these contexts, packing efficiency might be increased by mixing up several
orders; however, the increased efficiency can not be at the cost of customer
service. That is, a company should choose, from the pool of items emanating
from all orders, the ones that need to be packed (or cut) simultaneously with
the objective of maximizing material utilization (or packing efficiency) while
meeting due dates.

Similar problems were considered in the literature. Reinertsen & Vossen
(2010) investigate the one-dimensional cutting stock problem within steel man-
ufacturing where orders have due dates that must be met. Arbib & Marinelli
(2017) study a one-dimensional bin packing problem with the objective of min-
imizing a weighted sum of maximum lateness and maximum completion time.
Li (1996) tackles a two-dimensional cutting stock problem where meeting the
orders’ due dates is more important than minimizing the wasted material. Ar-
bib & Marinelli (2014) survey the state of the art on packing with due dates.
Polyakovskiy & M’Hallah (2011) address the on-line cutting of small rectangular
items out of large rectangular stock material using parallel machines in a just-
in-time environment. The cutting pattern minimizes both material waste and
the sum of earliness-tardiness of the items. Polyakovskiy et al. (2017) consider
another variant of BP. Items that are cut from the same bin form a batch, whose
processing time depends on its assigned items. The items of a batch share the
completion time of their bin. The problem searches for the cutting plan that
minimizes the weighted sum of the earliness and tardiness of the items.

Bennell et al. (2013) deal with a bi-criteria version of 2BPP with DD. They
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minimize simultaneously the number of used bins and the maximum lateness of
the items. They propose a lower bound LB1 to Lmax and approximately solve
their bi-criteria problem using a single-crossover genetic algorithm, a multi-
crossover genetic algorithm (MXGA), a unified tabu search, and a randomized
descent. They generate a benchmark set for which they report the best average
value for each of their two objective functions. They conclude that MXGA
yields consistently the best upper bound LMXGA

max on Lmax.
This paper focuses on minimizing Lmax only (in lieu of both the number of

used bins and Lmax as the bi-criteria case does). It is in no way a shortcoming
for four reasons. First, the number of bins is naturally bounded. Second, for a
given feasible bound on the number of used bins b, searching for the minimal
Lmax is a standard practice to tackle multi-objective problems. Thus, it can be
applied iteratively to build the Pareto optimal frontier of the bi-criteria problem.
Third, the objectives of minimizing lateness and maximizing packing efficiency
do not necessarily conflict (Bennell et al., 2013). Finally, it can be used by
decision makers as a decision support tool that quantifies the tradeoff between
service quality loss and reduction of both ecological cost and waste material.

As for all difficult combinatorial optimization problems, finding an exact
solution, in a reasonable time, for large-sized instances of 2BPP with DD is
challenging. Indeed, BP variants are generally tackled using approximate ap-
proaches that are based on meta-heuristics (Lodi et al., 2002, 2014; Sim &
Hart, 2013), including genetic algorithms, and hyper-heuristics (Burke et al.,
2006; López-Camacho et al., 2014; Sim et al., 2015). Unlike the aforementioned
techniques, the proposed two-stage approximate approach for 2BPP with DD ex-
plores the complementary strengths of constraint programming (CP) and mixed
integer programming (MIP). In its first stage, it applies CP. In its second stage,
it hybridizes heuristic search with MIP, where MIP is in turn guided by feasi-
bility constraints. In addition, it applies an innovative lookahead strategy that
(i) forbids searching in directions that will eventually lead to infeasible solutions
and (ii) directs the search towards improving solutions only. Consequently, the
proposed assignment based packing approach with its new lookahead strategy
is a viable alternative to the constructive heuristics traditionally applied to BP,
where bins are filled sequentially in a very greedy manner (Lodi et al., 2002).

Section 2 gives a mathematical formulation of the 2BPP with DD. Section
3 provides essential background information on feasibility constraints and on a
CP-based approach for the two-dimensional orthogonal packing problem. Sec-
tion 4 presents the existing lower bounds LB1 and LB2 and the new one LB3.
Section 5 proposes the two-stage solution approach with Section 5.1 detailing the
first-fit heuristic (i.e., stage one), Section 5.2 describing the assignment based
heuristic, and Section 5.3 summarizing the second stage. Section 6 discusses the
results of the computational investigation performed on benchmark instances.
Finally, Section 7 summarizes the paper and gives some concluding remarks.
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2. Mathematical Formulation

Let B = {1, . . . , b} be a set of b identical rectangular bins. Bin k ∈ B has a
width W , a height H, and a processing time P . Items assigned to the same bin
have a common completion time. Let N = {1, . . . , n} be a set of n rectangular
items, where n ≥ b. Item i ∈ N has a width wi ≤ W , a height hi ≤ H, and a
due date di. When wi ≤ H and hi ≤W , item i ∈ N may be rotated by 90o for
packing purposes. Every item i ∈ N must be packed without overlap and must
be completely contained within its assigned bin. When assigned to bin k, item
i ∈ N has a completion time Ci = kP and lateness Li = Ci − di. The 2BPP
with DD consists in finding a feasible packing of the n items into the available
bins with the objective of minimizing Lmax, defined by Lmax = max

i∈N
{Ci − di}.

Let N∗ denote the set N appended by the rotated duplicates. The duplicate
of item i, i ∈ N , is item n + i of width hi, height wi and due date di. The
problem is then modeled as an MIP with six types of variables.

• x and y denote the position of an item within its assigned bin, where
xi ≥ 0 and yi ≥ 0, i ∈ N∗, are the bottom left coordinates of item i.

• f signals the assignment of an item to a bin, where fik = 1 if item i is
packed into bin k, i ∈ N∗, k ∈ B, and 0 otherwise.

• l and u are binary. They refer to the relative position of two items. lij = 1
(resp. uij = 1), i ∈ N∗, j ∈ N∗, i 6= j, j 6= i+ n, and i 6= j + n, is used
to make i to the left of (resp. below) j when i and j are in the same bin.

• The sixth is the objective value, which is Lmax.

When the rotated duplicate of item i cannot fit into a bin, i.e. its wi ≤ H and
hi ≤ W, i ∈ N , its corresponding decision variables are not defined; thus, they
are omitted from the model; so are any corresponding constraints.

The MIP model (EXACT), which uses the disjunctive constraint technique
of Chen et al. (1995) and Onodera et al. (1991), follows.
min Lmax (1)

s.t. lij + lji + uij + uji − fik − fjk ≥ −1 (i, j) ∈ N∗2, i < j, j 6= n+ i, k ∈ B (2)

xi + wi ≤ xj +W (1− lij) (i, j) ∈ N∗2, i 6= j, j 6= i+ n, i 6= j + n (3)

yi + hi ≤ yj +H (1− uij) (i, j) ∈ N∗2, i 6= j, j 6= i+ n, i 6= j + n (4)

xi ≤W − wi i ∈ N∗ (5)

yi ≤ H − hi i ∈ N∗ (6)∑
k∈B

(fik + fn+ik) = 1 i ∈ N (7)∑
k∈B

(kP − di) fik ≤ Lmax i ∈ N∗ (8)

lij ∈ {0, 1} , bij ∈ {0, 1} (i, j) ∈ N∗2, i 6= j, j 6= i+ n, i 6= j + n (9)

fik ∈ {0, 1} i ∈ N∗, k ∈ B (10)

xi ∈ R≥0, yi ∈ R≥0 i ∈ N∗ (11)

Lmax ∈ R (12)

Equation (1) defines the objective value. It minimizes the maximum lateness.
Equation (2) determines the relative position of any pair of items that are as-
signed to a same bin: one of them is either left of and/or below the other.
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Equation (3) ensures that items i and j do not overlap horizontally if in the
same bin while Equation (4) guarantees that they do not overlap vertically.
Equations (5) and (6) guarantee that i is entirely contained within a bin. Equa-
tion (7) ensures either i or its rotated copy i+n is packed into exactly one bin.
Equation (8) sets Lmax larger than or equal to the lateness Li of i, where Li
is the difference between the completion time of the bin to which i is assigned
and the due date of i. Finally, Equations (9)-(12) declare the variables’ types.
The model has a quadratic number of variables in n. Because b is bounded by
n, the model has a cubic number of constraints in n. The solution space has
a large number of alternative solutions with many symmetric packing set ups.
Subsequently, EXACT is hard to solve. Small-sized instances with as few as 20
items require significant computational effort.

3. Background

The two-dimensional orthogonal packing problem (2OPP) determines whether
a set of rectangular items can be packed into a rectangular bin. This decision
problem is used, in this paper, when generating the lower bound LB3 (cf. Sec-
tion 4.2) and as part of the new first-fit heuristic (FF) (cf. Section 5.1) when
searching for a feasible packing.

LB3 is the optimal solution of a mixed integer program that substitutes the
containment and overlap constraints of EXACT by feasibility constraints. These
constraints explore the notion of dual feasible functions (DFF) to strengthen the
resulting relaxation of EXACT. Section 3.1 presents DFFs and explains their
application to the non-oriented version of 2OPP.

2OPP arises also as a part of the constructive heuristic FF, which consti-
tutes the first stage of the proposed solution approach APPROX . Specifically,
every time it considers a subset of items, FF solves a non-oriented 2OPP to
determine the feasibility of packing those items into a bin. As it calls the 2OPP
decision problem several times, FF needs an effective way of tackling it. For
this purpose, it models the problem as a CP, and augments it with two addi-
tional constraints issued from two related non-preemptive cumulative scheduling
problems. Section 3.2 presents this CP model.

3.1. Feasibility Constraints

Alves et al. (2016) explore standard DFFs for different combinatorial opti-
mization problems, including cutting and packing problems. Fekete & Schepers
(2004) apply DFFs to find a lower bound L2d to the minimal number of bins
needed to pack orthogonally a given set of two-dimensional oriented items. This
section explains how to use DFFs to generate feasibility constraints.

A function u : [0, 1]→ [0, 1] is dual feasible if∑
s∈S

s ≤ 1⇒
∑
s∈S

u (s) ≤ 1

holds for any set S of non-negative real numbers. Let u1 and u2 be two valid
DFFs. For the problem at hand, the DFFs transform the scaled sizes (w′i, h

′
i) of
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item i ∈ I into differently scaled ones (u1(w′i), u2(h′i)) ∈ (0, 1] where w′i = wi/W
and h′i = hi/H. For a feasible packing into a single bin to exist, the sum of the
areas of the transformed items must be less than or equal to 1,∑

i∈I
u1 (w′i)u2 (h′i) ≤ 1. (13)

This section explains how DFFs are combined in various ways to generate m
inequalities/constraints in the form of Equation (13) for the non-oriented 2OPP.

Let Ao = (αoci) ∈ Rm×n≥0 and Ar = (αrci) ∈ Rm×n≥0 denote two real-valued
technological matrices. Element αoci (resp. αrci), i ∈ N, c = 1, . . . ,m, is a
scaled area computed using w′i and h′i (resp. w”i = hi/W and h”i = wi/H) as
arguments for DFFs u1 and u2, respectively. Fekete & Schepers (2004) designed
DFFs, namely u(1), U (ε), and φ(ε), ε = p, q. The functions and approach they use
to obtained L2d is used herein to derive the combinations of functions (u1, u2).

The DFFs’ input parameters (p, q) ∈ (0, 0.5]
2
, as further specified in Section 6.

Furthermore, let to ∈ {0, 1}n (resp. tr ∈ {0, 1}n) be a binary decision vector
such that toi = 1 (resp. tri = 1) if item i, i ∈ N , is packed into the bin without
rotation (resp. with rotation) and 0 otherwise. When toi + tri ≤ 1, the inequality∑

i∈N
(αocit

o
i + αrcit

r
i ) ≤ 1, c = 1, . . . ,m, (14)

derived from Equation (13), is a valid feasibility constraint. Equation (14)
assumes that the rotated duplicate of an item i, i ∈ N, can fit into the bin.
As mentioned in Section 2, when this assumption does not hold, tri = 0 and is
omitted from Equation (14).

Some of the m constraints of Equation (14) may be redundant. A constraint

c, c = 1, . . . ,m, is redundant if either
∑
i∈N

max (αoci, α
r
ci) ≤ 1 or there exists

c′, c′ = 1, . . . ,m, c 6= c′, such that both αoci ≤ αoc′i and αrci ≤ αrc′i for all i ∈ N .

3.2. Solving the 2OPP with Constraint Programming

This section develops a CP model for the non-oriented 2OPP. The CP model,
which is an extension of the model of Clautiaux et al. (2008) for orthogonal
packing, is strengthened by constraints issued of two non-preemptive cumulative
scheduling problems. In this model, a bin corresponds to two distinct resources
rw and rh of capacity W and H, respectively, while the items to two sets of
activities Aw = {aw1 , . . . , aw2n} and Ah =

{
ah1 , . . . , a

h
2n

}
where awi and ahi are the

width and height of item i, i ∈ N∗. The first (resp. second) scheduling problem
treats the widths (heights) of the items as processing times of activities Aw

(resp. Ah) and considers the heights (widths) of the items as the amount of
resource rh (rw) required to complete these activities. The activities in Aw and
Ah have compatibility restrictions; i.e., a•i and a•i+n, • = w, h, cannot both be
scheduled.

The first (resp. second) scheduling problem investigates whether its set of
activities Aw (resp. Ah) can be performed within their respective time windows,
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without preemption and without exceeding the availability H (resp. W ) of
required resource rh (resp. rw). In fact, Aw and Ah are to be performed
concurrently but using two different resources. Activity awi has a processing
time wi and a time window [0,W − wi). To be processed, it uses an amount
hi of resource rh. Similarly, activity ahi has a processing time hi and a time
window [0, H − hi). Its processing requires an amount wi of resource rw. Let
swi and shi denote the respective starting times of activities awi and ahi . Then,
swi and shi are the coordinates (xi, yi) of item i in the bin. The CP model that
solves 2OPP is then given as:(
PresenceOf(awi )∧PresenceOf

(
ahi

))
6=
(
PresenceOf

(
awn+i

)
∧PresenceOf

(
ahn+i

))
i ∈ N (15)

PresenceOf(awi ) 6= PresenceOf
(
awn+i

)
i ∈ N (16)

PresenceOf
(
ahi

)
6= PresenceOf

(
ahn+i

)
i ∈ N (17)

PresenceOf(awi )∧PresenceOf
(
ahi

)
∧PresenceOf

(
awj
)
∧PresenceOf

(
ahj

)
⇒(

swi + wi ≤ swj
)
∨
(
swj + wj ≤ swi

)
∨
(
shi + hi ≤ shj

)
∨
(
shj + hj ≤ shi

)
(i, j) ∈ N∗2, i < j, j 6= n+ i (18)

Cumulative([sw1 , . . . , s
w
2n] , [w1, . . . , w2n] , H) (19)

Cumulative
([
sh1 , . . . , s

h
2n

]
, [h1, . . . , h2n] ,W

)
(20)

Meta-constraint (15) guarantees that one of the pairs (awi , a
h
i ) and (awn+i, a

h
n+i)

is scheduled, where (awi , a
h
i ) and (awn+i, a

h
n+i) correspond to item i and its rotated

duplicate n+ i. It uses the PresenceOf(a) constraint that signals the presence
of optional activity a, a ∈ Aw ∪Ah. It returns true when the optional activity
a is present, and false otherwise. Constraint (16) forbids scheduling activity
awn+i when awi is scheduled and vice versa. Similarly, constraint (17) prohibits
scheduling activity ahn+i when ahi is scheduled. Despite the presence of constraint
(15), constraints (16) and (17) are needed to eliminate some infeasible cases. For
instance, constraint (15) discards neither the case where activities awi , a

h
i , and

awn+i are scheduled while ahn+i is not nor the case where activities awi , a
h
i , and

ahn+i are scheduled while awn+i is not. On the other hand, constraints (16) and
(17) remove these cases. Constraint (18) ensures the no-overlap of any pair
(i, j) ∈ N∗2, i < j, j 6= n + i, of packed items. Its left hand side holds when
activities awi , ahi , awj , and ahj are scheduled and implies the right hand side,
which is a disjunctive constraint that avoids the horizontal and vertical overlap
of i and j by setting i to the left of j or i above j or j to the left of i or j
above i, where the ‘or’ is inclusive. Finally, cumulative constraint (19) (resp.
(20)) makes the activities of Aw (resp. Ah) complete within their respective
time windows without exceeding the resource’s capacity H (resp. W ). Even
though redundant, constraints (19)-(20) do strengthen the search. The CP
model returns a feasible solution if and only if every item of N is assigned to
the bin regardless of its rotation status.

For this model, the search tree is constructed as recommended by Clau-
tiaux et al. (2008); i.e., variables sh1 , . . . , s

h
2n are instantiated after variables

sw1 , . . . , s
w
2n. The CP-model is solved via the IBM ILOG CP Optimizer 12.6.2

(Laborie, 2009); set to the restart mode, which applies a failure-directed search
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when its large neighborhood search fails to identify an improving solution (Viĺım
et al., 2015). That is, instead of searching for a solution, it focuses on eliminat-
ing assignments that are most likely to fail. (cf. Laborie & Rogerie (2008) and
Viĺım (2009) for basics of optional interval variables (i.e. optional activities)
and cumulative constraints.)

When allocated a threshold run time tPACK
lim , the CP Optimizer acts as a

heuristic, denoted hereafter as PACK . Preliminary experiments showed that
PACK fathoms a large portion of infeasible solutions, especially when they are
beyond “the edge of feasibility”.

4. Lower Bounds

This section presents three lower bounds for 2BPP with DD: two existing
and a new one. These three bounds are compared in Section 6.2. Herein, LB
designates the linear-time lower bound algorithm of Dell’Amico et al. (2002) for
the non-oriented two-dimensional bin packing problem while LB(S) is a lower
bound on the number of bins needed to pack the items of set S.

4.1. Existing Lower Bounds

The procedure to calculate LB1 proceeds as follows. First, it sorts N in a

non-decreasing order of the due dates, and sets [j] to the item with the jth

earliest due date. It then uses LB
(
S[j]

)
, j = 1, . . . , n, to deduce a lower bound

of the lateness of the subset of items S[j] = {[1], . . . , [j]}. Some items must have

a completion time P · LB
(
S[j]

)
; thus, have a lateness of at least P ·LB

(
S[j]

)
−dj .

Therefore, LB1= max
j=1,...,n

{P · LB
(
S[j]

)
− dj} is a valid lower bound on Lmax.

Clautiaux et al. (2007) use DFFs to compute lower bounds for the non-
oriented bin packing problem when the bin is a square. They show that their
bounds dominate LB both theoretically and computationally for square bins.
However, for rectangular bins, the quality of this bound remains an open issue.

LB2, the second lower bound on Lmax, is the result of the linear relaxation
of EXACT where all the binary variables are substituted by variables in [0, 1] .

4.2. A New Lower Bound

To the opposite of LB2, which drops the integrality constraints, the new
lower bound LB3 is the optimal value of RELAX , which is a mixed integer
programming relaxation of EXACT. RELAX exchanges the disjunctive con-
straints, given by Equations (2)-(6), with the feasibility constraints∑

i∈N
(αocifik + αrcifn+ik) ≤ 1, k ∈ B, c = 1, . . . ,m, (21)

which are defined in the form of Equation (14). The disjunctive constraints
define the geometrical relationships between pairs of packed items and between
a packed item and its assigned bin. They consider both the height and width
of the items and bins and ensure the non-overlap of pairs of items and the
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containment of an item in the bin in both directions. The feasibility constraint,
on the other hand, assimilates the item and the bin into dimensionless entities.
Its inclusion in RELAX tightens the relaxation and improves the quality of the
lower bound. Excluding it omits the layout aspect of the problem; thus, can not
produce reasonably good bounds. LB3 is a valid bound if and only if RELAX
is solved to optimality.

5. Approximate Approaches

APPROX is a two-stage approximate approach for 2BPP with DD. The
first stage constructs an initial solution and obtains related upper bounds using
a new first-fit heuristic (FF). The second stage is iterative. It improves the
current solution via an assignment-based heuristic HEUR and its relaxed version
HEUR′, and updates the bounds if possible. The second stage diversifies its
search when it stagnates. Sections 5.1 - 5.3 detail FF, HEUR, and APPROX .

5.1. First-Fit Heuristic

FF solves, via CP, a series of 2OPPs, where each 2OPP determines the
feasibility of packing a given set of items into a single bin. It constructs a
solution as detailed in Algorithm 1. It sorts the items of N in a non-descending
order of their due dates, sets k = 0, and applies a sequential packing that
iterates as follows until N = ∅. First, it determines the current bin k to be
filled, and initializes its set Nk of packed items to the empty set. It removes the
first item from N and inserts it into Nk. Two scenarios are possible. When
LB (Nk) ≤ 1, it considers the next item of N. (The use of LB (Nk) ensures
that FF starts with a dense packing; thus, limits the number of sequential calls
to PACK .) Otherwise, it undertakes a backward step followed by an iterative
sequential packing step. It calls PACK from Section 3.2 to determine whether it
is possible to pack the items of Nk. When infeasibility is detected (potentially
because PACK runs out of time), the backward step removes the last added
item from Nk (because it may have caused the infeasibility) and inserts i back
into N. Then it calls PACK again. When a feasible solution is obtained, FF
proceeds with the iterative sequential packing step.

The constructive step considers the items of N sequentially. For every i ∈ N,
it checks whether a feasible packing is possible. Specifically, it calls PACK when
LB (Nk ∪ {i}) ≤ 1. When PACK determines that it is possible to pack the items
of Nk ∪ {i} into the current bin, the constructive step removes i from N and
inserts it into Nk. Having tested all unpacked items of N, FF proceeds to the
next bin by incrementing k to (k + 1) if N 6= ∅. Hence, FF obtains an initial
solution, characterized by its number of bins b and its corresponding maximum
lateness UB. Subsequently, APPROX feeds this information to its second stage.

5.2. An Assignment-Based Heuristic

The second stage of APPROX applies iteratively an assignment-based heuris-
tic HEUR, which determines the feasibility of packing a set of oriented two-
dimensional items into a set of multiple identical two-dimensional bins. Finding
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Algorithm 1 First-fit heuristic algorithm FF(N)

1: sort N in a non-descending order of items’ due dates;
2: set k = 0;
3: while (N 6= ∅) do
4: set k = k + 1;
5: open a new bin k setting Nk = ∅;
6: while (LB (Nk) ≤ 1) do
7: move the first item of N to Nk;
8: end while
9: while (PACK(Nk)⇐⇒ infeasible) do

10: move the last item of Nk back to its position in N ;
11: end while
12: for each item i ∈ N do
13: if ((LB (Nk ∪ {i}) ≤ 1) and PACK(Nk ∪ {i})⇐⇒ feasible)) then
14: move item i from N to Nk;
15: end if
16: end for
17: end while
18: return solution as (N1, . . . , Nk);

a feasible packing is hard not only because of the large number of alternative
positions of an item within a bin but also because of the multitude of solutions
having equal Lmax. Herein, HEUR implements four strategies that enhance
its performance. First, it reduces the search space to a subset of feasible posi-
tions, which correspond to the free regions within a bin. As it applies its greedy
search to position items, it creates some free regions and fills others; thus, the
search space is dynamic. Second, HEUR packs simultaneously as many items
as possible into the various free regions. Thus, it reduces the number of itera-
tions needed to obtain a solution; consequently, it decreases its runtime. Third,
HEUR implements a new kind of lookahead strategy that directs the search to-
wards a feasible packing. This guiding mechanism imposes feasibility constraints
that prohibit the current two-dimensional assignment problem ASSIGN from
generating partial solutions that will lead to infeasible ones in future iterations.
This innovative mechanism makes current decisions account for their impact
on future ones. Fourth and last, HEUR uses upper bounds UB on Lmax and
b(UB) on the number of bins. These bounds further reduce the search space:
a candidate solution is a feasible packing whose Lmax < UB and which uses at
most b(UB) bins. Initially, UB is the Lmax of the solution of FF.

HEUR, sketched in Algorithm 2, uses the following sets as input: the set N
of not yet packed items, the set N of packed items, and the set E of available
rectangular regions. These three sets are updated dynamically at each iteration.
Initially, N is the set of the n items, N = ∅, and E = B, where |B| = b = b(UB).
Thus, the set Ek of free regions contained in bin k, k ∈ B, is initially the kth
bin: Ek = {(W,H)}, with Ek ⊆ E and ∪k∈BEk = E.

Let (e, e′) ∈ E2 denote two free regions characterised by their respective
dimensions (We, He) and (We′ , He′) and by their bottom leftmost coordinate
positions (xe, ye) and (xe′ , ye′) in their respective bins. When in a same bin, e
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and e′ may overlap, as in Figure 1. To guard against assigning two items to the
overlap area of e and e′, HEUR includes, into the assignment model, geometrical
and disjunctive conditions that only apply if e and e′ are in the same bin and
overlap. HEUR signals such overlap via four parameters.

• θiee′ = 1 if (xe < xe′) ∧ (ye > ye′) as in Figure 1.a and 0 otherwise.

• θiiee′ = 1 if (xe < xe′) ∧ (ye < ye′) as in Figure 1.b and 0 otherwise.

• θiiiee′ = 1 if (xe = xe′) ∧ (ye > ye′) as in Figure 1.c and 0 otherwise.

• θivee′ = 1 if (xe < xe′) ∧ (ye = ye′) as in Figure 1.d and 0 otherwise.

Similarly, it signals the already packed items via parameters

• ρoik = 1 if i ∈ N is packed in k ∈ B without rotation and 0 otherwise; and

• ρrik = 1 if i ∈ N is packed in k ∈ B with rotation and 0 otherwise.

When item i is not yet packed (i.e., i ∈ N),
∑
k∈B

ρoik + ρrik = 0.

é

e

(xé   , yé  )

(xe  , ye  )

é
e

(xé   , yé  )

(xe  , ye  )

é

e

(xé   , yé  ) Wé  
Wé  

Wé  

Wé  

Hé  

Hé  

Hé  

Hé  

(xe  , ye  )

We  

We  

We  

We  

He  

He  

He  

He  

é

e

(xé   , yé  )(xe  , ye  )

a) b)

c) d)

Figure 1: Patterns where two regions e and e′ overlap

Let EUi = ∪k∈B {Ek : kP − di < UB} denote the set of regions where i ∈ N
can be scheduled and Li <UB. EUi ⊇ Eoi ∪Eri , where Eoi = ∪e∈EUi {e : (wi ≤We) ∧ (hi ≤ He)}
and Eri = ∪e∈EUi {e : (hi ≤We) ∧ (wi ≤ He)} are the sets of regions where i can
be positioned without and with rotation respectively.

In each iteration, HEUR solves ASSIGN , which attaches a subset of un-
packed items to regions of E using the following variables.

• ϕoie = 1 if item i ∈ N, is assigned without rotation to e ∈ Eoi and 0
otherwise.
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• ϕrie = 1 if i is assigned with rotation to e ∈ Eri and 0 otherwise.

• foik = 1 if i can be packed without rotation in a future iteration in bin k
such that Li = Pk − di < UB, and 0 otherwise.

• frik = 1 if i can be packed with rotation in a future iteration in bin k such
that Li = Pk − di < UB, and 0 otherwise. foik and frik allocate free space
for items to be packed in future iterations without increasing UB.

• we ∈ [0,We] and he ∈ [0, He], the width and height of the used area of
e ∈ E when an item is positioned in (xe, ye).

• lee′ and uee′ are binary. They refer to the relative position of two areas
e and e′. lee′ = 1 (resp. uee′ = 1) is used to make e to the left of (resp.
below) e′ when e and e′ are part of the same bin.

ASSIGN maximizes the total profit generated by the packed items subject to
non-overlap and containment constraints. The profit of i, i ∈ N, is si ≥ 0. When
si = wihi, ASSIGN maximizes the utilization of the bins; i.e., the density of
the packed items. Formally, ASSIGN is modeled as an MIP:
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max
∑
i∈N

si

 ∑
e∈Eoi

ϕo
ie

WeHe
+
∑

e∈Eri

ϕr
ie

WeHe

 (22)

s.t.
∑
i∈N :
e∈Eoi

ϕo
ie +

∑
i∈N :
e∈Eri

ϕr
ie ≤ 1 e ∈ E (23)

∑
e∈Eoi

ϕo
ie +

∑
e∈Eri

ϕr
ie +

∑
k∈B:

Ek∩Eoi 6=∅

foik +
∑
k∈B:

Ek∩Eri 6=∅

frik = 1 i ∈ N (24)

∑
e∈Ek

 ∑
i∈N :
e∈Eoi

αo
ciϕ

o
ie +

∑
i∈N :
e∈Eri

αr
ciϕ

r
ie

+
∑
i∈N :

Ek∩Eoi 6=∅

αo
cif

o
ik+

∑
i∈N :

Ek∩Eri 6=∅

αr
cif

r
ik ≤ 1−

∑
i∈N

(αo
ciρ

o
ik + αr

ciρ
r
ik) k ∈ B, c = 1, . . . ,m (25)

∑
i∈N :
e∈Eoi

wiϕ
o
ie +

∑
i∈N :
e∈Eri

hiϕ
r
ie ≤ we e ∈ E (26)

∑
i∈N :
e∈Eoi

hiϕ
o
ie +

∑
i∈N :
e∈Eri

wiϕ
r
ie ≤ he e ∈ E (27)

xe + we ≤ xe′ +We (1− lee′ ) (e, e′)∈E2 : θiee′ +θiiee′ =1 (28)

ye′ + he′ ≤ ye +He′ (1− ue′e) (e, e′) ∈ E2 : θiee′ = 1 (29)

ye + he ≤ ye′ +He (1− uee′ ) (e, e′) ∈ E2 : θiiee′ = 1 (30)

he′ + (ye′ +He′ − ye)

 ∑
i∈N :
e∈Eoi

ϕo
ie +

∑
i∈N :
e∈Eri

ϕr
ie

 ≤ He′ (e, e′) ∈ E2 : θiiiee′ = 1 (31)

we + (xe +We − xe′ )

 ∑
i∈N :
e′∈Eoi

ϕo
ie′ +

∑
i∈N :
e′∈Eri

ϕr
ie′

 ≤We (e, e′) ∈ E2 : θivee′ = 1 (32)

lee′ + ue′e ≥ 1 (e, e′) ∈ E2 : θiee′ = 1 (33)

lee′ + uee′ ≥ 1 (e, e′) ∈ E2 : θiiee′ = 1 (34)

ϕo
ie ∈ {0, 1} , ϕr

ie ∈ {0, 1} i ∈ N, e ∈ E (35)

foik ∈ {0, 1} i∈N, k∈B : Ek∩Eo
i 6=∅ (36)

frik ∈ {0, 1} i∈N, k∈B : Ek∩Er
i 6=∅ (37)

lee′ ∈ {0, 1} , uee′ ∈ {0, 1} (e, e′) ∈ E2 :(
θiee′ = 1

)
∨
(
θiiee′ = 1

)
(38)

0 ≤ we ≤We, 0 ≤ he ≤ He e ∈ E (39)

Equation (22) defines the objective function value as the weighted sum of the
profits of packed items where the weight of an item i is inversely proportional
to the area of region e used for its positioning. Equation (23) prohibits packing
more than one item into any region e ∈ E.

Equations (24) and (25) are part of the lookahead strategy. They employ
f∗ik, ∗ = o, r, i ∈ N, k ∈ B, to reserve a free space for unpacked items. Equation
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(24) assigns i, i ∈ N , either to one of the available regions during the current
iteration or to one of the bins during a later iteration. Equation (25) imposes
the set of feasibility constraints. Here, c, c = 1, . . . ,m determines a vector
of transformed areas (αoci and αrci) computed for all the items on N ∪ N and
their rotated copies and represented via matrices Ao and Ar (cf. Section 3.1).
For every c, c = 1, . . . ,m, and k ∈ B, Equation (25) requires that the sum of
the transformed areas of (i) the items that have been previously packed (ρ∗ik =
1, ∗ = o, r), (ii) those being packed at the current iteration (ϕ∗ie = 1, ∗ = o, r),
and (iii) those to be packed in future iterations (f∗ik = 1, ∗ = o, r) in selected
bin k be bounded by 1. Even though it discards many partial solutions that lead
to an infeasible packing, Equation (25) doesn’t guarantee that a not-yet-packed
i will get a feasible position during later iterations.

Equations (26) and (27) determine we and he of the used area of e by im-
posing that wi and hi do not exceed we and he if i is assigned to e.

Equations (28)-(34) guarantee the non-overlap of a pair of items packed in
two overlapping regions (e, e′). They substitute the full set of the disjunctive
constraints that are traditionally used to ensure the non-overlap of packed items
in a bin. This substitution reduces the number of constraints by eliminating
redundant ones. That is, instead of considering all possible pairs of regions,
ASSIGN focuses on those that can potentially create an overlap of packed items.
It detects these regions via parameters θiee′ to θivee′ .

Equations (28)-(30) focus on the case where e is to the left of e′ but e and
e′ overlap. For those regions, Equation (28) makes the x−coordinate of the
rightmost point of the used area of e less than or equal to its counterpart for
the leftmost point of e′. Equations (29) and (30) constrain the vertical positions
of the used areas of e and e′. Equation (29) deals with the case when e′ is below
e and θiee′ = 1 as in Figure 1.a. It restricts the y−coordinate of the topmost
point of the used area of e′ to be less than or equal to its counterpart of the
bottommost point of e. Similarly, when e′ is below e and θiiee′ = 1, Equation
(30) constrains the topmost y−coordinate of the used area of region e to be
less than or equal to the lowest y−coordinate of region e′; thus avoiding the
potential overlap of items assigned to the two regions depicted in Figure 1.b.

Equations (31) and (32) deal with two special cases: the left sides of e and e′

are aligned vertically, and the bottom sides of e and e′ are aligned horizontally.
When e and e′ are aligned vertically and an item is packed in e, Equation (31)
constrains the topmost y−coordinate of the used area of region e′ to be less
than or equal to the lowest y−coordinate of region e as in Figure 1.c. Similarly,
when both e and e′ are aligned horizontally and an item is positioned into e′,
Equation (32) restricts the rightmost x−coordinate of the used area of region e
to be less than or equal to the leftmost x−coordinate of e′ as in Figure 1.d.

Equations (33) and (34) ensure that the used areas of any pair of overlapping
regions (e, e′) are such that the used area of e′ is below e, the used area of e is
below e′ or the used area of e is to the left of e′.

Finally, Equations (35)-(39) declare the types of the decision variables.
When ASSIGN returns a feasible solution, HEUR moves the packed items

from N to N , and sets the parameters ρ∗ik = 1, ∗ = o, r, i ∈ N, k ∈ B, of the
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Algorithm 2 Assignment-Based Heuristic HEUR(UB)

1: initialize N = ∅ and E = B, |B| = b = b(UB);
2: while (true) do
3: if (ASSIGN

(
N,N,E

)
⇐⇒ feasible) then

4: for each item i ∈ N do
5: if (∃ e ∈ E : (ϕo

ie = 1) ∨ (ϕr
ie = 1)) then

6: set ρoik = ϕo
ie and ρrik = ϕr

ie for k : e ∈ Ek;
7: move item i from N to N ;
8: end if
9: end for

10: if (N = ∅) then
11: return feasible solution;
12: end if
13: calculate coordinates (x′i, y

′
i) and (x′′i , y

′′
i ) for every item i ∈ N ;

14: update E exploring regions on top and to the right of every item i ∈ N ;
15: for each region e∈Ek, k∈B do
16: if (@ i∈N : (wi≤We)∧(hi≤He)∧(kP−di<UB)) then
17: move e from E to N ;
18: end if
19: end for
20: if (∃ i ∈ N : Eo

i ∪ Er
i = ∅) then

21: return infeasible solution;
22: end if
23: else
24: return infeasible solution;
25: end if
26: end while

items packed in the current iteration. Next, it calculates the coordinates (x′i, y
′
i)

and (x′′i , y
′′
i ) of both the upper left and the bottom right corners of item i ∈ N ,

where (x′i, y
′
i) = (xi, yi + hiρ

o
ik + wiρ

r
ik) and (x′′i , y

′′
i ) = (xi + wiρ

o
ik + hiρ

r
ik, yi).

Finally, HEUR updates E using the following two-step approach.
The first step defines the region et = (Wet , Het) on top of item i (cf. Figure

2.a). To identify the height Het , it searches along the ray x = xi and y ≥ y′i for
the first bottom side of another item j if such an item exists or the upper side
of the bin. It sets Het = yt − y′i, where y = yt is the line intersecting this side,
with yt = yj if j exists, and yt = H otherwise. To determine the width Wet , it
expands its search along the line y = y′i; i.e., to both the left and right sides of
x = xi. It shifts the left edge of et until it meets the first right edge of an item
a or the left border of the bin. It determines the line x = x` intersecting this
side where x` = x′′a if a exists, and x` = 0 otherwise. Similarly, it moves the
right edge of et until it meets either the first left edge of an item b or the right
border of the bin. It finds the line x = xr intersecting this side where xr = xb
if b exists, and xr = W otherwise. Subsequently, Wet = xr − xl.

The second step defines the region er = (Wer , Her ) to the right of i (cf.
Figure 2.b). It identifies the widthWer by searching along the ray y = yi, x ≥ x′′i
for the first left side of another item j if j exists or the right side of the bin. It

15



(xi  , yi )

(xa , ya )

(xi   , yi   )(xa  , ya )

(xj  , yj   )

(xj  , yj  )

e 

t

We 

t

He 

t 1

2 3

i

j

a

W

H

a)

(xi  , yi )

(xa , ya )

(xb , yb )

(xi   , yi   )

(xb  , yb )

(xa  , ya )

(xj  , yj   )

(xj  , yj  )
e 

r

We 

r

He 

r

1

2

3

i

j

a

b

W

H

b)

Figure 2: New regions created by the partial packing of a bin

finds the line x = xr intersecting this side where xr = xj if j exists and xr = W
otherwise. It deduces Wer = xr−x′′i . It determine the height Her by expanding
its search along the line x = x′′i ; i.e., above and below y = yi. It moves the top
edge of er until it meets either the first bottom edge of an item a or the top
border of the bin. It sets the line intersecting this side to y = yt where yt = y′′a
if a exists, and yt = H otherwise. Similarly, it shifts the bottom edge of er

until it meets the first top edge of an item b or the lower border of the bin. It
finds the line y = yb intersecting this side where yb = y′b if b exists, and yb = 0
otherwise. Subsequently, Her = yt − yb.

Having defined et and er, HEUR examines their “utility”. It discards e if e
cannot hold at least one of the unpacked items of N or e can hold an unpacked
item but yields a lateness that is larger than or equal to UB. HEUR inserts a
discarded region e into N treating e as a dummy item packed in bin k. This
insertion strengthens Equation (25). Finally, HEUR inserts all non-discarded
regions into E, and checks whether the stopping criterion is satisfied. In fact,
HEUR stops when all the items are packed or there is an unpacked item that
does not fit into any region of E. When the stopping criterion is not met, HEUR
runs another iteration with the updated N and N .

5.3. Solution Process as a Whole

APPROX , detailed in Algorithm 3, consists of two stages. The first stage
applies FF to obtain an initial feasible solution to 2BPP with DD along with an
upper bound UB on Lmax and an upper bound b(UB) on the number of bins in
an optimal solution. The second stage strives to improve these two bounds and
the current solution using both the assignment-based heuristic HEUR and its
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Algorithm 3 The framework of APPROX

1: Stage 1: Initialization
2: run FF to obtain an initial solution;
3: compute UB and b=b(UB)=max

i∈N
{b(UB+di)/P c} based on the solution of Line 2;

4: Stage 2: Iterative Step
5: repeat
6: set si = wihi, i ∈ N ;
7: set count = 0;
8: repeat
9: if (call HEUR′ (UB)⇐⇒ feasible) then

10: compute UB and b = b(UB) based on the solution of Line 9;
11: break;
12: else
13: modify si = γwihi, i ∈ N, in Equation (22) of ASSIGN ;
14: set count = count + 1;
15: end if
16: until count ≤ aHEUR

lim

17: if count > aHEUR
lim then

18: break;
19: end if
20: until true
21: repeat lines 5-20 replacing HEUR′ with HEUR;

relaxed version HEUR′. Specifically, it solves the non-oriented 2OPP with b =
b(UB) = max

i∈N
{b(UB + di) /P c} bins so that the maximal lateness of any feasible

solution is less than UB. It solves the problem in two steps, each consisting of
two loops: An outer loop whose objective is to identify a solution with a tighter
UB rapidly and an inner loop whose objective is to refine the search.

In the first step, the outer loop (cf. lines 5-20 of Algorithm 3) resets the
profits si = wihi, i ∈ N , and the iteration counter count to 1. Then the inner
loop runs HEUR′ (cf. lines 8-16), which is a reduced version of HEUR where
Equation (25) and the decision variables foik and frik, i ∈ N, k ∈ B, are omitted
from the model ASSIGN . HEUR′ is generally weaker than HEUR in terms of
the tightness of the upper bound of lateness but is faster in terms of run time.
When it obtains a feasible solution, HEUR′ feeds APPROX with a solution
whose Lmax < UB; that is, it tightens UB. This feasible solution may also
reduce b = b(UB). Subsequently, APPROX exits the inner loop and runs one
more iteration calling HEUR′ again but this time with new values of UB and b.

On the other hand, when HEUR′ fails to find a feasible solution, the inner
loop diversifies the search by using a different set of random profits. It changes
the profits to si = γwihi, i ∈ N, where γ is a random real from the continuous
Uniform[1,3], and increments count by 1. If count is less than or equal to
a maximal number of iterations aHEUR

lim , the inner loop starts a new iteration
by solving HEUR′ with its modified profits in the objective function (i.e., in
Equation (22) of ASSIGN).

When count reaches the limit aHEUR
lim , APPROX proceeds with the second

step, which performs exactly the same actions as the first step does except that
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it applies HEUR instead of HEUR′. The use of HEUR should improve the
search. Therefore, the first step pre-solves the problem quickly while the second
looks for an enhanced solution.

Modifying the weight coefficients of Equation (22) of ASSIGN is a random
local search (RLS). The choice of this particular diversification strategy along
with this specific range of γ was based on preliminary computational investi-
gations. Tests have shown that RLS yields, on average, better results than
evolutionary strategies and techniques such as the method of sequential value
correction (G. Belov, 2008). The superiority of RLS is due to the items’ random
order, which is further accentuated by the unequal weights. Classical approaches
on the other hand do not tackle the highly symmetric nature of bin packing so-
lutions. They mainly construct solutions based on the sequential packing of
items in ascending order of their areas/widths/heights (Lodi et al., 2002).

6. Computational Experiments

The objective of the computational investigation is fourfold. First, it com-
pares the proposed lower bound LB3 to both LB1 and LB2. Second, it assesses
the quality of the solution values of FF, APPROX and EXACT. Third, it com-
pares the performance of FF and APPROX to that of MXGA. Last, it evaluates
the performance of FF and APPROX on large-sized instances. All comparisons
apply the appropriate statistical tests. All inferences are made at a 5% signifi-
cance level, and all confidence interval estimates have a 95% confidence level.

APPROX is implemented in C#, which evokes IBM ILOG Optimization
Studio 12.6.2 to handle MIP and CP models. It is run on a PC with a 4 Gb RAM
and a 3.06 GHz Dual Core processor. The time limit tPACK

lim for PACK is set to
2 seconds. This setting, inferred from preliminary computational investigations,
gives the best tradeoff between density of packing and runtime. Indeed, a longer
tPACK
lim does not necessarily lead to better packing solutions while it unduely

increases the runtime of FF. Similarly, a shorter tPACK
lim often hinders FF from

reaching a feasible packing; thus causes poor quality solutions. The maximal
number of iterations for count is aHEUR

lim = 100, which also represents the best
trade-off between quality and performance of APPROX according to our earlier
tests. Furthermore, p ∈ {0.15, 0.3, 0.45}, q ∈ {0.15, 0.3, 0.45}, and up to m =
27 feasibility constraints are generated for the model ASSIGN of Section 5.2.
A larger number of constraints does not generally improve the solution quality
but increases the runtime of ASSIGN . Despite their large variety, the feasibility
constraints of ASSIGN do not always tighten the lower bound on the free space
available for packing. Therefore, their larger number does not necessarily tighten
the model.

Section 6.1 presents the benchmark set. Section 6.2 measures the tightness
of LB3. Section 6.3 assesses the performance of FF, APPROX and EXACT in
terms of their optimality gaps and number of times they reach the optimum.
Section 6.4 compares the results of FF, APPROX and MXGA. Finally, Section
6.5 studies the sensitivity of FF, APPROX and EXACT to problem size.
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6.1. Computational Set Up

Bennell et al. (2013) generated the benchmark set (including the due dates)
that we test. For each instance, they calculated LB1, and applied their multi-
crossover genetic algorithm MXGA to obtain upper bounds. (MXGA was coded
in ANSI-C using Microsoft Visual C++ 6.0 and run on a Pentium 4, 2.0 GHz,
2.0 GB RAM computer with a 120-second time limit per replication, and ten
replications per instance.) They, then, computed the average percent deviations
of their upper bounds from LB1. In their paper, they reported these average
deviations aggregated over problem size. We use their aggregated average de-
viations in the comparisons of Section 6.4. However, we recomputed their LB1

for every instance to perform the comparisons of Sections 6.2 and 6.4.
Their benchmark set uses square bins (W = H) whose processing times

P = 100. It consists of 10 categories as detailed in Table 1. Column 3 gives
the width W of a bin. Column 4 specifies how items are generated. Each
category is characterised by the dimensions of the items, with categories 1-6
having homogeneous items that are randomly generated from a specific discrete
uniform whereas categories 7-10 contain heterogeneous items belonging to four
types in various proportions. The four types correspond to items whose (wi, hi)
are randomly selected from discrete uniforms on the respective ranges:

• type 1:
([

2
3W,W

]
,
[
1, 12W

])
;

• type 2:
([

1, 12W
]
,
[
2
3W,W

])
;

• type 3:
([

1
2W,W

]
,
[
1
2W,W

])
; and

• type 4:
([

1, 12W
]
,
[
1, 12W

])
.

The categories can be divided, according to the relative size of the items, into
two sets L and S. Set L, which contains instances with relatively large items,
consists of categories 1, 3, 5, 7, 8, and 9. Set S, which contains instances with
small items, consists of categories 2, 4, 6, and 10.

Table 1: Generation of the widths and heights of items

Category Set Bin size (W ) Item size (wi, hi)
1 L 10 uniformly random in [1, 10]
2 S 30 uniformly random in [1, 10]
3 L 40 uniformly random in [1, 35]
4 S 100 uniformly random in [1, 35]
5 L 100 uniformly random in [1, 100]
6 S 300 uniformly random in [1, 100]
7 L 100 type 1 with probability 70%; type 2, 3, 4 with probability 10% each
8 L 100 type 2 with probability 70%; type 1, 3, 4 with probability 10% each
9 L 100 type 3 with probability 70%; type 1, 2, 4 with probability 10% each

10 S 100 type 4 with probability 70%; type 1, 2, 3 with probability 10% each

For each category, there are five problem sizes: n = 20, 40, 60, 80, and
100, and ten instances per category and problem size. For each problem, there
are three classes A, B, and C of due dates, generated from the discrete Uni-
form[101, βP · LB] where β = 0.6, 0.8, and 1.0; thus, a total of 1500 instances.

19



6.2. Quality of the Lower Bounds

This section compares the performance of LB1, LB2, and LB3, where LB1 is
computed via the algorithm of Section 4.1, LB2 is the value of the incumbent
returned by CPLEX and LB3 is the optimal value of RELAX when CPLEX
identifies the optimum within 1 hour of runtime. Table 2 summarizes the statis-
tics of the lower bounds per class, category, and problem size. It displays

• γ•, the percent deviation of LB•, • = 1, 2, 3, from the tightest lower bound
LB∗ where LB∗ = max{LB1,LB2,LB3,EXACT}, and γ• = 100(LB∗ − LB•)/LB∗,
with EXACT included in the computation of LB∗ only when EXACT is
proven optimal;

• η•, the number of times LB• = LB∗, • = 1, 2, 3; and

• #, the number of times LB3 is not a valid bound; i.e., the number of times
the linear programming solver CPLEX fails to prove the optimality of its
incumbent within the 1 hour time limit.

Table 3 reports statistics of the runtime of LB3 along with the tallied # per
class, category and problem size. The statistics of the runtime are the average
RT , median Q2, minimum RT and maximum RT ; all in seconds. The median
(i.e., the 50th percentile) separates the ordered data into two parts with equal
numbers of observations. It is a more appropriate measure of central tendency
in the presence of outliers or when the distribution of the data is skewed.

The Category rows of Tables 2 and 3 display the same statistics as the
tables but per category per class. Their last rows report these statistics per
class. Finally, their last eight columns give the statistics over all classes. A
missing value indicates that all ten instances are unsolved by LB3; i.e., # = 10.

The analysis of Tables 2 and 3 suggests the following. LB1 is the best lower
bound in 1083 instances out of 1500 instances. Over all instances, its average
deviation from LB∗ is 5.7%. Its runtime is very reduced.

LB2 never outperforms LB3 nor LB1. It matches LB∗ for only 111 instances;
i.e., in 7.40% of the cases. These instances have n = 20 and 40, and belong to
categories 2, 4, and 6. The average percent deviation of LB2 from LB∗ is 72.5%.

LB3 is a valid bound for 1244 instances. Its average runtime is 74.91 seconds.
Its much smaller median (2.65 seconds) signals the existence of some outlier cases
that increased the mean. This is expected since CPLEX is allocated up to one
hour to prove the optimality of its incumbent.

For those 1244 instances, LB3 enhances LB1 for 361 out of 1500 instances;
i.e., in 24.07% cases. Its average enhancement over these 361 instances is 31.30%.
In addition, it matches LB1 for another 463 instances; i.e., in 30.87% cases.
Subsequently, it is the best lower bound (among LB3, LB2, LB1) in 824 cases.

Figure 3 displays the box plots of the percent deviations γ• of LB•, • =
1, 2, 3, from LB∗ as a function of the class, size, category and set of the instances.
A box plot reflects the central tendency, spread, and skewness of the observed
values. Its box corresponds to the 25th, 50th and 75th percentiles whereas
its fences extend to the lowest and largest value of the data. Its stars signal
outliers or unusual observations. Figure 3 infers that LB3 is mostly superior for
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set L; that is, for all sizes of categories 1, 3, 5, 9 and for small-sized instances
(n = 20 and 40) of categories 7 and 8. Overall, the average percent deviations of
LB3 from LB1 and from LB∗ are 3.58% and 14.1%. Furthermore, LB3 strictly
dominates LB2 in 1074 cases. The three quartiles of the percent improvement,
over all instances, are: 146.4, 218.9 and 417.1; implying a larger enhancement for
the cases with strict dominance. That is, LB3 is at least one order of magnitude
larger than LB2 in most instances.
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Figure 3: Box plots for the mean percent deviations of the lower bounds from LB∗

6.3. Quality of the New Upper Bounds

Table 4 displays for each class, category, and problem size, the average per-
cent deviation δF , δA, δE , of the upper bounds LFmax, L

A
max, L

E
max, obtained

respectively by FF, APPROX and EXACT, from the best known lower bound
LB∗. In addition, Table 4 displays η•, the number of times L•max = LB∗, • =
F, A, E.

Table 4 infers the following results. The mean L•max, • = F, A, E, is equal
for both classes A and B and larger for class C. The average δF and the average
δA are larger than their respective medians (i.e., 66.85% and 33.62% versus
37.91% and 9.89%, respectively); signaling few outliers that are enlarging the
true size of δF and δA. This is expected from NP-hard problems.

The mean δA is the smallest. Its point and confidence interval estimates
are 33.62% and (28.57%, 38.67%). That is, on average, the application of the
second phase of the algorithm improves the solution of FF (except when LFmax =
LAmax = L∗max). The mean improvement is of the order of 33.23%, with a 29.59%
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lower side estimate. On the other hand, the mean δE is the largest because
EXACT fails to obtain reasonably good solutions for large instances.

There is no correlation between δF , δA, ηF , ηA and n, but there is a mod-
erate correlation between both δE , ηE and n with respective 0.402 and -0.598
Pearson correlation coefficients. This infers that as the problem size increases,
EXACT may encounter increasing difficulty in getting the tightest upper bound.
δE depends on the problem category. Its mean for categories 2, 4, and 6 are
larger than those for the other categories. Similarly, ηE is category dependent.
Its estimate is largest for category 9 and smallest for category 2. Finally, δA is
category dependent. Its mean δA is smallest for categories 2 and 9 and largest
for categories 7, 8, and 10. APPROX solves many of the instances of categories
2 and 9 to optimality. It neither reaches the optimum nor proves the optimality
of its solutions for any of the instances of categories 7 and 8. Even though
category dependent, the mean number of times optimality is proven does not
differ among sets or classes.

A valid upper bound to Lmax is the minimum of LAmax and LEmax. This upper
bound equals LB∗ for 586 out of 1500 instances; that is, in 39.07% of the cases.

6.4. Comparing FF and APPROX to MXGA

This section investigates the performance of APPROX relative to existing
upper bounds. Table 5 reports the results per class and category as Bennell
et al. (2013) do not provide results per problem size. Column 3 gives the average
number of attempts made by HEUR (and HEUR′) in order to reach a feasible
solution within a single run. Columns 4-6 and 7-9 report statistics of the runtime
RT •, • = F, A, in seconds: the average, median, and maximum run time, all
in seconds, over each set of 50 instances. RTA includes RTF as it pre-calls FF.
RTMXGA is fixed to 120 seconds per replication for each of the ten replications;
thus, is not included in the table. Columns 10-11 give #•, • = F, A, the
number of times the run times of FF and HEUR are larger than the 120 second
runtime of one replication of MXGA. This number is out of 50 for each class
and category and out of 500 for each class. Finally, Columns 12-14 report the
average relative percent gap γ• = 100(L•max − LB1)/LB1, • = F, A, MXGA.

Table 5 shows that HEUR needs on average 23 attempts to reach a feasible
solution. The mean number of attempts differs among categories. It is smaller
for categories 2 and 9 with respective point estimates of 9.67 and 2.00. The
instances of these two categories contain many tiny items. Therefore, packing
these items is relatively easy. The mean number of attempts is larger for cate-
gories 7 and 8 with respective point estimates of 40.00 and 41.33. However, it
is not different among sets S and L; that is, what defines the level of difficulty
of packing is the homogeneity of the items rather than their sizes. Finally, this
mean number of attempts does not differ among classes. This is expected be-
cause the differences of classes is caused by the tightness of the due dates and
not by the packing procedure itself.

FF and APPROX identify a local optimum in 10.6 and 29.2 seconds, on
average. These values are inflated by few outliers, as the box plots of Figure
4 illustrate. In fact, the respective median run times are 1.2 and 15.6 seconds.
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Table 5: Summary results of computational experiments

Class Category iter RTF RTA #F #A γF γA γMXGA

Mean Median Max Mean Median Max

A 1 25 0.0 0.0 0.6 18.4 13.0 69.4 0 0 28.4 13.9 12.4
2 12 11.5 8.8 35.6 20.7 14.3 69.0 0 0 12.8 2.3 11.1
3 24 2.6 1.7 11.6 25.1 18.6 78.0 0 0 46.7 22.1 22.0
4 14 34.0 29.1 87.6 60.4 52.5 197.0 0 8 36.8 10.5 17.1
5 29 2.2 1.7 12.0 26.0 17.9 126.2 0 1 37.9 19.1 17.9
6 24 46.1 42.7 136.2 76.2 58.7 228.8 2 14 67.0 9.3 16.6
7 33 0.8 0.4 7.0 24.6 20.5 82.6 0 0 43.0 27.7 23.5
8 40 1.1 0.4 7.4 27.3 18.3 105.0 0 0 42.2 26.5 23.3
9 2 0.1 0.0 2.0 12.7 0.1 79.8 0 0 3.5 1.7 1.7

10 19 13.3 7.9 76.2 26.0 17.8 108.4 0 0 34.3 20.2 23.8

All 11.2 1.2 136.2 31.7 19.6 228.8 2 23

B 1 23 0.0 0.0 0.0 15.7 10.0 73.6 0 0 47.5 23.1 24.2
2 3 10.3 7.6 50.0 19.1 13.5 74.4 0 0 9.0 2.9 34.0
3 20 2.5 1.4 12.2 17.5 11.7 78.0 0 0 77.8 41.7 46.2
4 21 28.1 20.4 82.0 50.8 35.4 168.8 0 7 40.9 14.3 36.0
5 32 2.2 1.0 14.6 17.8 9.2 154.4 0 1 61.5 33.3 35.5
6 22 39.1 35.4 134.4 63.4 53.3 292.4 2 10 74.6 12.5 37.7
7 46 0.8 0.2 4.8 21.0 9.8 81.8 0 0 64.2 48.7 52.2
8 47 0.7 0.4 3.8 21.1 10.9 107.0 0 0 64.2 46.5 49.4
9 2 0.1 0.0 1.2 8.1 0.0 61.8 0 0 6.2 2.4 2.4

10 21 11.1 6.7 45.6 21.0 14.8 66.4 0 0 57.4 40.9 53.5

All 9.5 0.8 134.4 25.5 11.5 292.4 2 18

C 1 24 0.0 0.0 0.4 11.5 7.9 44.0 0 0 117.9 69.6 93.0
2 14 10.9 9.7 40.2 18.9 15.1 62.0 0 0 23.1 7.2 149.5
3 24 2.3 1.7 7.2 20.2 13.5 75.8 0 0 152.0 91.2 124.9
4 20 33.1 25.5 88.8 57.6 50.4 217.0 0 8 140.0 35.6 153.2
5 28 3.0 2.0 12.0 23.5 12.8 85.0 0 0 146.7 81.1 105.0
6 29 44.6 45.3 139.0 77.8 68.1 278.4 2 12 248.0 76.9 241.2
7 41 1.2 0.6 7.4 25.3 12.8 108.8 0 0 186.3 156.7 209.6
8 37 1.8 0.8 11.0 26.7 17.1 149.4 0 1 301.5 232.2 273.3
9 2 0.2 0.0 1.8 10.4 0.2 66.8 0 0 15.7 10.5 9.9

10 18 15.0 11.1 47.8 30.1 21.2 156.6 0 1 282.9 214.5 318.5

All 11.2 1.6 139.0 30.2 16.1 278.4 2 22

Over all 1500 tested instances, FF needed a larger than 120-second runtime for
6 instances. Similarly, APPROX needed a larger than 120-second runtime for
merely 63 out of 1500 instances; that is, in 4.2% of the tested cases. Figure 5
displays the confidence interval estimates of the mean run times per category
of FF and APPROX . The mean run times of both FF and APPROX are less
than the 120-second runtime of MXGA at any level of significance. That is,
APPROX is, on average, faster than MXGA.

FF solves the instances of set L particularly fast. However, it is relatively
slower on the instances of set S. In fact, the large number of items per bin for
instances of S leads to inaccurate lower bounds LB; thus, increases the number
of calls to PACK , which checks the feasibility of a packing. In addition, this
large number of items slows down PACK . This, in turn, translates into increased
run times. APPROX spends, on average, approximately the same time to solve
an instance of any category, except of categories 4 and 6.

FF is as competitive as MXGA in terms of solution quality. Their mean op-
timality gaps are not different. However, FF is faster than MXGA. In addition,
FF outperforms MXGA on some categories of classes B and C.

APPROX outperforms MXGA on average. The mean optimality gap of AP-
PROX is smaller than its MXGA counterpart, with point and confidence interval
estimates of the mean difference of -27.45% and (-44.22%,-10.68%). As further
substantiated by Figure 6, the mean optimality gap of APPROX is smaller
than its MXGA counterpart, for both sets L and S and for all classes. Indeed,
the mean difference depends on the class with -1.61, -10.48, and -70.30% point
estimates for classes A, B, and C, respectively. These results are most likely
due to the nature of MXGA. In fact, MXGA along with its packing algorithm
are strongly oriented towards obtaining a dense packing; a rather important
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Figure 4: Box plot for the run times of FF and APPROX by category and class
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Figure 5: 95% confidence intervals for the mean run times of FF and APPROX by category

criterion for class A whose instances are characterized by narrow intervals of
due dates. However, MXGA is myopic when the due dates are sparse. This
myopic nature is further highlighted by Figure 7, which shows that APPROX
produces better results than MXGA more frequently, in particular for class C
whose items have a wider range of due dates.

The size of the optimality gaps seems unusually high. Even though part of
it may be due to the quality of the upper bounds obtained by FF, APPROX
and MXGA, most of it is most likely due to the looseness of the lower bound.
The comparison of Tables 4 and 5 further supports this claim. Tables 4 and
Table 5 report the percent deviations of FF and APPROX from the best lower
bound LB∗ and LB1, respectively. For FF, this gap is 282.9% for class C,
category 10 in Table 5, but reduces to 204% in Table 4. A good example is
rand10.txt C 1, the 10th instance of category 1, class C, n = 20. The percent
gaps of FF and APPROX are 136% when computed with respect to LB1= 69,
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Figure 6: 95% confidence interval of the mean optimality gaps obtained by FF, APPROX
and MXGA (a) by set (b) and by class.
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Figure 7: Observed percent optimality gaps of FF, APPROX and MXGA by class

but become 0% when computed with respect to LB3= 163. In this case, the
upper bound matches LB3, and proves the optimality of the solutions obtained
by FF and APPROX . Even though the instances are numerous, we only cite a
second example: rand6.txt C 10 of category 10, class C, n = 20, where LB1= 3
results in an optimality gap of 1533% whereas LB3= 92 proves the optimality
of the upper bound obtained by APPROX .

In summary, the proposed approach enhances many existing upper bounds,
assesses the tightness of existing and proposed lower bounds, and proves the
optimality of many open benchmark problems. It outperforms MXGA in terms
of solution quality, run time, and number of proven optima.
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6.5. Performance of FF and APPROX on Large-Sized Instances

This section investigates the performance of FF and APPROX for very large
instances. For this purpose, it expands the current benchmark set of n = 100
to a set with n = 100τ, τ = 2, . . . , 5, by duplicating the items of each instance
τ times. It creates 10 new instances per class, category and problem size;
generating the due dates for the new items as Section 6.1 explains.

For large-sized instances, FF may require a sizeable number of iterations
to reach a feasible solution. A large ratio of number of items per bin makes
the lower bound in FF loose; thus ineffective for the packing test. As a result,
PACK is called numerous times with most of these calls being useless due to
their large problem size. FF checks feasibility after appending a single item.
Every feasibility check increases the runtime. A number of heuristic strategies
can be designed to limit such ineffective calls. Two such strategies follow.

The simplest strategy limits the search of Loop (12-16) of Algorithm 1 to σ
items among the items that succeed item i in N . This involves a new counter,
which is incremented every time Condition (13) fails, and is re-initiated to zero
otherwise. The loop stops when the counter equals σ.

A second strategy monitors the maximal dimension µ of an item that can
be packed in the current bin k. Initially, µ = max {W,H}. When item i
violates Condition (13), a supplementary test PACK(Nk ∪ {i′}) is run to check
the feasibility of packing a dummy item i′ defined by wi′ = max {wi, hi} and
hi′ = 1 into k. If the test reveals the infeasibility of such a packing, µ is updated
to wi′ , and Loop (12-16) skips any subsequent item i whose max {wi, hi} ≥ µ.
The additional calls to PACK increase the runtime of the heuristic; a negligible
increase compared to the runtime saved by the omitted unsuccessful future calls
to PACK . That is, this strategy is efficient only when n is large. Because PACK
is a heuristic, its outcome may suggest an infeasible packing while a feasible one
exists. In fact, the choice of µ is not based on an exact method but on a rule
of thumb. Thus, the application of PACK may slightly degrade the solution
quality.

Similarly, APPROX may require too many iterations of HEUR (and HEUR′),
with each resulting in a slight improvement of UB. To avoid a series of too
many small enhancements, APPROX adopts the minimal improvement tech-
nique, which first computes a value for UB using FF, and iteratively examines
feasible solutions whose lateness is δ% smaller than the current UB. When it
fails to find a solution whose lateness is δ% better than the incumbent, it exam-
ines solutions sequentially (as Section 5.3 explains) until no further improvement
can be achieved.

Herein, FF and APPROX are run with a 3-second time limit for PACK ,
and maximal count number of iterations aHEUR

lim =30 and aHEUR’
lim = 10. In addi-

tion, the two heuristic strategies are applied for instances of set S with σ = 40.
Despite their slightly weaker solutions’ quality, the two strategies reduce the
runtime by an order of magnitude for instances with 500 items. Finally, the
minimal improvement technique is used with δ = 2%. It speeds significantly the
search for a local optimum for instances with n > 100. The summary of the
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results for class A is displayed in Figure 8. The results for the other two classes
behave similarly, and are therefore omitted from further consideration. Fig-
ures 8.a-d depict the average run times for FF and APPROX along with their
optimality gaps, computed with respect to LB1. Figure 8.e illustrates the aver-
age runtime per HEUR call in APPROX . This runtime sums the times required
by the iterative calls to ASSIGN until either a feasible solution is reached or
infeasibility is detected. Finally, Figure 8.f reports the average number of bins
used per problem size and category.
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Figure 8: Summary results for large-sized instances of class A

Figure 8.a shows the linear growth of the average runtime of FF as a function
of the number of items with a near to one correlation of determination. This
trend is in turn dictated by the perfectly linear growth of the number of bins
as n increases, as Figure 8.f illustrates. This is expected as the time limit for
PACK is a prefixed constant. To the opposite and as Figure 8.b suggests, the
average runtime of APPROX is not linearly proportional to n as there is no
time limit on MIP. Categories 4 and 6 have the hardest instances. Their mean
run times differ from those of all other categories. These two categories have
the largest number of items per bin ratio as well as the largest variable domains
that are used by CP and MIP. Subsequently, they both require a larger mean
runtime per HEUR call as Figure 8.e shows, and a larger number of HEUR calls
while the ASSIGN sub-problem itself is harder. The mean run times of both
FF and HEUR are category, set and size dependent.

The mean optimality gap of FF is category dependent. It is not however
set or size dependent. On the other hand, the mean optimality gap of HEUR
is both category and set dependent but is not size dependent. HEUR reduces
the optimality gap of all the solutions obtained by FF. This can be further
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inferred by the comparison of Figures 8.c and 8.d. The mean reduction is
4.61%. It is neither set nor size dependent but is category dependent. It is
largest for category 6 with point and 95% confidence interval estimates of 9.61%
and (17.21%,24.64%), respectively.

7. Conclusion

This paper addresses the two-dimensional non-oriented bin packing problem
with due dates. It proposes a lower bound, an exact mixed integer model, and
an approximate approach that significantly enhances existing results on many
benchmark instances from the literature. It solves 33.93% of the instances to
optimality. Because the exact model can be solved to optimality by an off-
the-shelf solver, the total percent of instances solved to optimality is 39.07%.
Unlike many traditional constructive packing heuristics, the packing approach
packs simultaneously several items into several bins and takes advantage of the
feasibility constraints to guide the search to a local optimum. Its concept of
free regions is not specific to the due dates complicating constraints. It makes
the proposed approach easily adaptable to other complex bin-packing related
problems with problem-specific constraints such as routing, time windows, and
tardiness related costs. Since the dual feasible functions are applicable to higher-
dimensional packing, the approach can also be extended to this area.
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